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Field emission electric propulsion (FEEP) thrusters are useful asµN, µ-rad attitude control devices for
satellites due to their very high potential specific impulse. FEEPs generate thrust by application of a strong
electric field to pull liquid propellant such as indium off a tungsten needle. However, this thrust can vary
significantly depending on whether ions or droplets are emitted from the needle tip. In this study, we simulate
in 2D the emission of charged indium droplets from the tip. The boundary integral method (BIM) is used to
rapidly and accurately calculate the electric field on the fluid surface, which is then advected forward in time
using level sets. The effects of surface tension, viscosity, electrode location and electric field on the evolution of
a droplet are analyzed.

Nomenclature

−→E = electric field
−→n = vector normal
−→v = velocity field of surface
∂−→n = derivative in the normal direction
D = rate of deformation tensor
Qinside = number of charges inside shape
F = volume of fluid function
f = Dirichlet boundary condition
G = Green’s function
g = Neumann boundary condition
L = panel length
N = number of panels
p = 3D pressure vector
q = number of charges on panel

Subscripts

t = time change of vector
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u,v,w = local x, y, z velocity vectors
x,y,z = spatial change of vector

Symbols

α = source term for Neumann boundaries
γ̆ = source term for Dirichlet boundaries
ρ̆ = areal charge density in fluid. Zero for perfect conductors
ε0 = permittivity of free space
γ = surface tension of liquid indium
κ = surface curvature
µ = liquid viscosity
Ω = surface
∂Ω = surface boundary
∂ΩD = Dirichlet boundary
∂ΩN = Neumann boundary
φ = level set, whereφ = 0 is the surface
Φ(−→x ) = potential value at location
ρ = fluid density
σ = mixed flux/potential variable solved for on the boundary

I. Introduction

Field emission electric propulsion (FEEP) thrusters are currently being considered for a variety of space missions
both in the United States and Europe. They offer very low thrust levels (µN), thrust repeatability (<10 nN) and high
accuracy impulse bits (nN-s) combined with a very high mass efficiency (8,000 seconds specific impulse). Such
thrusters are required for scientific drag-free missions such as LISA,1 Darwin, GOCE2 and SMART-2. A space-tested
indium FEEP has been under development for over a decade.3

In a field emitter, the surface of a conductive liquid is exposed to a strong electrostatic field generating polarization
forces that move the liquid in the field direction. The ensuing increase in surface area is counteracted by the surface
tension of the fluid, forming an apex.4 When the field strength is on the order of 1V

nm, surface ions are field evaporated
and rapidly accelerated past the electrodes to final velocities of upwards of 50 kilometers per second, producing thrust
in the vacuum of space. A ring electrode with a -6 kV potential around a fine tungsten needle about 1 cm long and
1 mm wide accelerates the liquid metal indium, as represented in Fig. (1). Experimental efforts indicate that below
20 µA current, only ion emission occurs in FEEP needles.5 Above that point, at a current that varies based on the
thermal and electrical properties of the fluid, periodic stochastic motions of droplet formation and emission interrupt
the steady ion stream. The maximum current at which pure ion emission occurs is thus driven by the properties of
the fluid flowing over the tip. As the current increases, ever-increasing mass fractions are emitted as large molecules
and fewer as ions. Due to localized field evaporation on the needle shank, there is never 100% droplet content. For
the emitter to be an effective attitude control thruster, a current of several hundredµA is necessary. At currents this
large, fluid instabilities occur and micro-droplets are emitted in addition to the ion current.6,7 Recent theory states that
droplets begin to form when the velocity of indium being supplied to the tip is insufficient to replenish the mass lost
through ion emission.8

The existence and corresponding behavior of droplets is of large practical concern because as more droplets form,
operational efficiency decreases, lifetime is limited because drops clog the extractor electrode and plume divergence
is impacted due to non-identical charge distributions in the exhaust particles. Therefore, a numerical investigation into
the formation and charge distributions among these expelled droplets is being undertaken.

Simulating droplet snap-off is difficult because the region around the tip possesses characteristics that cause most
numerical methods to fail. Examples of these characteristics are the presence of very large dynamic electrostatic
gradients, rapid temporal change, highly non-symmetric geometry and infinite fluid curvature. To partially address
these issues,front-trackingcan be used (see Unverdi9 and Tryggvason10), but to sidestep them in the present work, a
method involving interface tracking using level set computation is used that relies on the determination and movement
of the boundary interface alone. For FEEP operation, those boundaries are located where the indium propellant
is between a tungsten solid needle and a hard vacuum. The dominating forces on the propellant are surface tension,
shear stress through viscosity and electrostatics.11 Both vacuum-indium and indium-tungsten surfaces can be followed
with the level set method.12 The mathematical boundary integral method discretizes only the interface and is therefore
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Figure 1. FEEP in droplet production mode

very efficient at producing a rapid and exact calculation of the normal electric field. However, if used alone, integral
methods are limited in how they model viscosity and require complicated surface recomputing every time a boundary
merges or splits.13

A combination of the level set and boundary integral methods provides a system that rapidly and accurately com-
putes the electrostatically-induced movement of an interface without surface surgery.

II. Level set model

The level set model considers an incompressible, isothermal, viscous liquid. Indium is treated as a perfect con-
ductor and its atoms are accelerated with ring electrodes producing thrust. The level set two dimensional governing
equations for a FEEP are listed as Eqs. (1-4). The electric field is a surface normal force only, since−→E is zero inside
a conductor. Mass and momentum are conserved with Eq. (1) and the free surface is advected with the pressure
boundary condition, Eq. (4).

Ut +Fx +Gy =−5 p+q−→En (1)

where the main variables are:

U =




ρ
ρu

ρv


 (2)

F =




ρu

ρu2

ρuv


 , G =




ρv

ρuv

ρv2


 (3)

p = γκ+2µliquid(Dliquid ·−→n ) ·−→n (4)

The subfunction variablesu, v, w are local velocity vectors along the x, y and z axes, respectively. Surface tension
(γ) and viscosity (µliquid) are functions of the liquid temperature. Interface curvature isκ14 andDliquid is the rate
of deformation tensor for the liquid. Combining Eq. (1) with the general level set Eq. (5) allows the motion to be
analyzed by convecting theφ levels (values) with the velocity field−→v 15

φt +−→v ·5φ = 0 (5)

where−→v is the desired velocity on the interface and is arbitrary elsewhere. Here,φ is the level set function which is
positive in the liquid and negative in the vacuum. The equation (5) states thatφ remains constant along particle paths,
soφ = 0 always corresponds to the interface. The curvature of the interfaceκ can then be described using the level set
variableφ itself as

κ = (φxxφ2
y +φyyφ2

x−2φxφyφxy)/(2(φ2
x +φ2

y)
1.5) (6)
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The free surface is represented through a “coupled level set and volume-of-fluid” (CLSVOF) method. In addition
to solving the level set equation (5), the volume-of-fluid function F is computed,15 using

Ft +U ·5F = 0 (7)

where the net volume of fluid is conserved.H is the Heaviside function evaluated at grid cellsi, j in Eq. (8).

Fi j =
1

∆x∆y

Z

Ωi j

H(φ(x,y))∂x∂y (8)

This work builds on prior three dimensional examples of level sets interface migration by Sussman, as illustrated in
Fig. (2). These simulations do not include any electrostatic forces.

Figure 2. Sussman’s wave level set simulation16

The efficient and exact calculation of the normal electric field−→En in Eq. (1) presents many challenges. A proposed
algorithm for determining this electrostatic force forN panels in O(N ln N) time is the boundary integral method
(BIM).

III. Boundary integral method

The boundary integral method rapidly and directly solves for the force on the surface without meshing the volume
of the domain. It therefore avoids numerically noisy differentiation and can handle arbitrary geometries. For example,
consider Poisson’s equation

4Φ(x) =
ρ̆
ε0

, Φ|∂Ω = f or ∇Φ|∂Ω ·−→n = g, x∈Ω (9)

whereΦ is the electrostatic potential,ρ̆ is the charge density,Ω the domain and∂Ω the boundary.

A. Green’s function

Let G(x|x0) be the free space Green’s function for the Laplace operator, which is the solution

4G = δ(x̄− x̄0) (10)

where x̄0 is a point on the interior of the domain and̄x is a boundary point. In two dimensional coordinates, the
function becomes:

G =− 1
4π ln{(x0−x)2 +(y0−y)2} (11)

Using Green’s 2nd identity:
Z Z

A
(U4V−V4U)dA=

I
(U5V−V5U) ·−→n dS (12)

and replacing U by the Greens function (G) and V byΦ gives
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Z Z

A
G

ρ̆(x)
y

dA−Φ(x0) =
I

(G(∂−→n Φ)−Φ(∂−→n G)) ·−→n dS (13)

where∂−→n x = ∇x · −→n . Since we do not have any internal charge,ρ̆(x0) = 0 and the potential at any point can be
calculated from the boundary flux and potential conditions.Carefullytaking the limits of the single and double layered
potential17 gives the boundary integral formulation for LaPlace’s equation from the inside of the domain.

Φ(x0)
2

=
I

∂Ω
Φ(x)∂nG(x|x0)ds−

I

∂Ω
∂nΦ(x)G(x|x0)ds (14)

For most problems,∂Ω will consist of a mixture of fixed potential (Dirichlet,∂ΩD) and fixed flux (Neumann,∂ΩN)
conditions.

B. Numerical discretization of the problem

Approximating the integrals as a sum of panels,
H

∂ΩD
Φ(x)∂nG(x|x0)ds≈ ∑ND

i=1 Φ(xi)
H

∂Ωi
∂nG(x|x0)ds. If x1 is on a

Dirichlet portion of the boundary, then we have

ND

∑
i=1

∂nΦ(xi)
I

∂Ωi

G(x|x1)ds−
NN

∑
i=1

Φ(xi)
I

∂Ωi

∂nG(x|x1)ds= γ̆(x1) (15)

whereγ̆(x1) are the known values given by

γ̆(x1) =−Φ(x1)
2

+
ND

∑
i=1

Φ(xi)
I

∂Ωi

∂nG(x|x1)ds−
NN

∑
i=1

∂nΦ(xi)
I

∂Ωi

G(x|x1)ds (16)

Forx2 on a Neumann boundary, we have

Φ(x2)
2

−
NN

∑
i=1

Φ(xi)
I

∂Ωi

∂nG(x|x2)ds+
ND

∑
i=1

∂nΦ(xi)
I

∂Ωi

G(x|x2)ds= α(x2) (17)

whereα(x2) are the known values given by

α(x2) =
ND

∑
i=1

Φ(xi)
I

∂Ωi

∂nG(x|x2)ds−
NN

∑
i=1

∂nΦ(xi)
I

∂Ωi

G(x|x2)ds (18)

The matrix to solve becomes




a1,1..a1,ND

aND,1..aND,ND

b1,1..b1,NN

bND,1..bND,NN

c1,1..c1,ND

cNN,1..cNN,ND

d1,1..d1,NN

dNN,1..dNN,NN







∂nΦ(x1,1)
..

∂nΦ(x1,ND)
Φ(x2,1)

..

Φ(x2,NN)




=




γ̆(x1,1)
..

γ̆(x1,ND)
α(x2,1)

..

α(x2,NN)




(19)

where the values in the matrix are given by Eq. (20).

ai, j =
R

∂ΩD
G(x, |x1, j)ds

bi, j = −R
∂ΩN

∂nG(x, |x1, j)ds

ci, j =
R

∂ΩD
G(x, |x2, j)ds

di, j = −R
∂ΩN

∂nG(x, |x2, j)ds

γ̆(x1) = −Φ(x1)
2 +

H
∂ΩD

Φ(xi)∂nG(x|x1)ds− H
∂ΩN

∂nΦ(xi)G(x|x1)ds

α(x2) =
H

∂ΩD
Φ(xi)∂nG(x|x2)ds− H

∂ΩN
∂nΦ(xi)G(x|x2)ds

(20)

The potential at any arbitrary point in the domain is thus given by summing the contributions from fixed potential
(Dirichlet=D) and fixed flux (Neumann=N) boundaries, as in Eq. (14).
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Figure 3. Computational panel location, in meters.

The computational domain paneled is shown in Fig. (3). With a level set grid of 256x512 cells, each cell is about
1−1.5x10−5m. With 1900 panels, the average panel length is3x10−5m. The droplets described are all1x10−4m
diameter or larger, so both the cell size and panel length are significantly smaller than the droplets. Further resolution
refinement does not change the results up to pinch off, but due to slight asymmetries in the automatic boundary
meshing routine, there is a slight asymmetry left to right after pinch-off. A further refinement study is underway.

C. Solving for the normal electric field directly

One of the main advantages of the BIM is the direct interface force calculation as a direct result of the problem
formulation. Solving the matrix Eq. (19) for the∂nΦ(x1) term directly for the normalized test shape in Fig. (4a)
provides the normal component of the electric field (σ) on the surfacex∈ {0, 1}∪ y∈ [0.2, 0.8], as seen in Fig. (4b).

X [mm]

Y
[c

m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.06

0.08

0.1

0.12

0.14

(a) Normalized test shape boundary nodes

Panel Number

E
n

[V
/n

m
]

10 20 30 40 50 60 70

-0.14

-0.12

-0.1

-0.08

-0.06

(b) Normal electric field for curved surface

Figure 4. Boundary nodes and normal electric field along curved surface of test shape

Gauss’ Law says that the total flux of the electric field through an element is

Φnet =
I −→E ·−→n dA (21)

This field comes from the total interior chargeQinside, so the net potential isΦnet =
−→E nL = Qinside

ε0
. Solving for the
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charge,Qinside = ε0
−→E nL. Drawing a box around each panel, the assumption of the fluid being a perfect conductor

means that all flux is out of the surface and there is not a tangential electric field. Therefore, the entire contribution of
potential comes from the normal electric field times the panel length, L. Therefore, the total force experienced on the
panel is given by:

F = QE = ε0L−→E 2
n (22)

This is the desired force we were originally looking for, with no introduced gradient noise and not requiring a sur-
rounding grid. It holds for any complex geometry and curves.

IV. Results

Using Eq. (22), the force on the surface can be calculated and then advected forward in time with Eqs. (1, 5, 7). Indium
FEEP droplets are formed as a function of space and time, as seen in the following figures. The base computational
case is a two dimensional field emitter with indium having a viscosity of 0.0017N·s

m2 , surface tension of 0.552Nm and

an electric field at the tip of 40Vnm. This is higher than the experimentally observed electric fields of 1V
nm, due to the

simulation being a 2D planar slice instead of a ring electrode surrounding the emitting needle. The electrostatic force
comes largely from 2 points at the edges of the electrode instead of equally surrounding the needle tip, resulting in
unrealistic 2D force vectors. Figure (5) shows the fluid accelerating at about4x1013 m

s2 , and now traveling at 150km
s .

The rectangle at the top of Fig. (5a) represents the position of the electrodes and the triangle in the bottom center is
the underlying solid tungsten needle.

X [mm]

Y
[c

m
]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4
t = 0 µs
t = 2.90 µs
t = 3.00 µs
t = 3.11 µs

__

---
...
__

t = 0 µs
t = 1.38 µs
t = 1.48 µs
t = 1.58 µs

__

---
...
__

(a) Full picture of droplet formation

X [mm]

Y
[c

m
]

0.35 0.4 0.45 0.5 0.55 0.6 0.650.65

0.7

0.75

0.8

0.85 t = 0 µs
t = 1.38 µs
t = 1.48 µs
t = 1.58 µs

__

---
...
__

(b) Zoomed in case of droplet acceleration

Figure 5. Droplet formation and acceleration, base case

Figure (6) displays the instantaneous velocity vector fields at a) 3.12µsand b) 3.39µs. Note the higher cusp and
droplets detaching and moving away from the needle tip as compared to the earlier time vector field.

A. Viscosity

Indium’s ability to flow over a surface is determined largely by its viscosity; it is sensitive to temperature as follows:

µIn

[
N ·s
m2

]
= 3×10−4e800/T[K]
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(a) Velocity at time = 3.12µs (b) Velocity at time = 3.39µs

Figure 6. Velocity field on droplets

The viscosity of the simulations is varied by an order of magnitude lower and higher than the baseline behavior and
the results are shown in Fig. (7). The lower viscosity occurs around 2,000 K while the higher value exists at 200 K. As
the fluid becomes thinner at higher temperatures, it forms into droplets sooner in time and space, and the disturbance
to the fluid moves down the needle much sooner.

X [mm]

Y
[c

m
]

0.35 0.4 0.45 0.5 0.55 0.6 0.650.65

0.7

0.75

0.8

0.85 t = 0 µs
t = 1.05 µs
t = 1.15 µs
t = 1.25 µs

__

---
...
__

(a) Low viscosity,µ= 0.00017N·s
m2

X [mm]

Y
[c

m
]

0.35 0.4 0.45 0.5 0.55 0.6 0.650.65

0.7

0.75

0.8

0.85 t = 0 µs
t = 1.20 µs
t = 1.30 µs
t = 1.35 µs

__

---
...
__

(b) High viscosity,µ= 0.017N·s
m2

Figure 7. Effect of viscosity on droplet evolution

B. Surface tension

Surface tension of the fluid does not vary rapidly with temperature at all, as indicated by:

γIn

[
N
m

]
=

555−0.12(T[K] −430)
1000

(23)

If the temperature were to increase by 1,500 K to the 2,000 K fluid temperature seen in the low viscosity case,
surface tension would drop by only one-third forγIn. To determine the gross effect of this parameter, simulations are
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performed in which the surface tension is varied by an order of magnitude lower and higher and the results are shown
in Fig. (8). At very high values ofγIn, the droplets snap off much faster, as the high cohesion and tension of the
surface interface strongly pulls the evolving surface into droplets, minimizing the internal energy. However, the path
of development is similar to the base calculation, Fig. (5).

X [mm]

Y
[c

m
]

0.35 0.4 0.45 0.5 0.55 0.6 0.650.65

0.7

0.75

0.8

0.85 t = 0 µs
t = 3.10 µs
t = 3.20 µs
t = 3.25 µs

__

---
...
__

(a) Low surface tension,γ = 0.055N
m

X [mm]
Y

[c
m

]
0.35 0.4 0.45 0.5 0.55 0.6 0.650.65

0.7

0.75

0.8

0.85 t = 0 µs
t = 0.75 µs
t = 0.85 µs
t = 0.90 µs

__

---
...
__

(b) High surface tension,γ = 5.5 N
m

Figure 8. Effect of surface tension on droplet evolution

C. Size of axial gap

The width of the gap between the axis centerline and the edge of the electrode has a smaller impact on the shape of the
droplet pulled off the tip. As the gap approaches zero and the electrodes resemble a flat plate, the corresponding electric
field is almost parallel and a pronounced anvil head forms. As the electrode widens, the droplet is pulled towards the
edges preferentially, both at the surface itself and after droplet separation. The axial gap between simulations is varied
by over an order of magnitude and the results are displayed in Fig. (9).

D. Electric field

As expected, the strength of the normal electric field strongly influences the speed of formation, behavior and shape
of indium droplets. Figure (10a) displays droplet evolution at1

100th the base electrode potential; the simulated time
before droplet detachment is ten times greater than in Fig. (5). The droplets accelerate and are now moving at 290
m
s . Note the thin stream going directly vertical as the relatively slow pull allows a local surface equilibrium. At an
electrode potential110th the base electrode potential, Fig. (10b) displays droplets accelerating and are now traveling at
15 km

s . There is a strong two-stream pull towards the edge of the two electrodes in this simulation.

V. Conclusion

Tying together the physical FEEP geometry of Fig. (1) with an existing level set code15 allowed for the simulation
of liquid indium forming a droplet off a field emitter tip. The boundary integral method provided a rapid calculation of
the external potentials and electric fields, thereby driving the propellant’s evolution. The combination of the two meth-
ods provided accurate simulation of a two dimensional electrode forming droplets off the needle tip. The qualitative
effects of varying viscosity, surface tension, size of axial gap and electrode potential were investigated.
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Y
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m
]
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---
...
__

(a) Small axial gap,δ=0.1mm
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Y
[c

m
]
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0.8

1
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1.4
t = 0 µs
t = 1.53 µs
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(b) Large axial gap,δ=0.8mm

Figure 9. Effect of size of axial gap on droplet evolution
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Y
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m
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...
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(a) Low electric field, E=0.4 V/nm
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Y
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m
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__

---
...
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(b) Medium electric field, E=4.0 V/nm

Figure 10. Effect of electric field on droplet evolution
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In on-going work, the 2D planar droplet formulation is being expanded into a full 3D non axisymmetric description
where droplet sizes and charges will be simulated quantitatively. The panel interactions in Eq. (20) are being replaced
with a tree code18 so that future calculations are performed without a connection matrix being necessary. The spacings
on the level set being passed back and forth are going to be uniform. Therefore, a shape with arbitrary geometry
andapriori unknown panel connections can be advected forward in time accurately including gravity and electrostatic
forces without requiring surface reconstruction or time step intervention.
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