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Abst rac t  

This paper presents the exact dimensionless equa- 
tions of motion and the necessary conditions for the 
computation of the optimal trajectories of a hyper- 
velocity vehicle flying through a non-rotating spheri- 
cal planetary atmosphere. Solution is then presented 
for the case where starting with a super-circular en- 
try speed Vo > V,, optimal aerodynamic maneuver, in 
terms of the lift coefficient and the bank angle, is per- 
formed leading to an exit circular speed 6 = = while 
maximizing the plane change If. It  is shown that there 
are two types of maneuvers with nearly identical plane 
change. In the hard maneuver, the vechicle is pulled 
down to low altitude for aerodynamic plane change be- 
fore exit a t  the prescribed final speed. In the slow 
maneuver which is described in detail in this paper, 
the vehicle remains in orbital flight with a small incre- 
mental plane change during each passage through the 
perigee. This maneuver requires several revolutions, 
and the technique for computation is similar to that in 
the problem of contraction of orbit. 

Nomenclature 

=semimajor axis 
=ballistic coefficient defined in Eq. (12) 
=vertical component of normalized lift 

coefficient 
=drag coefficient 
=zero-lift drag coefficient 
=lift coefficient 
=constants of integration 
=lift-to-drag ratio 
=natual exponential 
=eccentricity 
=gravity acceleration 
=dimensionless altitude 
=inclination angle 
=induced drag parameter 
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=constants of integration 
=mass 
=radial distance 
=lateral component of normalized lift 

coefficient 
=dimensionless arc length 
=time 
=dimensioless velocity squared 
=velocity 

=inverse of scale height 
=flight path angle 
=parameter defined in Eq. (12) 
=longitude 
=normalized lift coefficient 
=air density 
=bank angle 
=Iatitude 
=heading 

Superscript 
* =condition a t  maximgm lift-tedrag 

ratio 

Subscripts 
f =final value 
0 =for g,  r and p, value at reference point 
0 =for s, u and 7, initial value 

Introduction 

In recent years, there is a strong interest in the 
problem of optimal aeroassisted orbit transfer. A re- 
cent survey by  ease' has provided an extensive list 
of references. It is known that the use of the a t m e  
spheric forces to perform the plane change during a 
transfer from orbit to  orbit can significantly reduce the 
total fuel consumption as compared to a pure propul- 
sive transfer. Most of the studies such as the one given 
in Ftef. 2 concern the atmospheric maneuver in one sin- 
gle passage through the atmosphere. This type of m& 
neuver is the hard maneuver and it encounters strong 
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deceleration and heating rate. Another possibility is to 
keep the lifting vehicle in orbital flight with its perigee 
low enough such that during each passage through this 
point a small plane change can be achieved. This type 
of slow maneuver will be considered in this paper and it 
is shown that for a same speed depletion it provides the 
same plane change as compared to the hard maneuver. 

The Dimensionless Equat ions  of Mot ion  

For the flight over a spherical, non-rotating planet 
of a non-thrusting, aerodynamic vehicle with the lift 
coefficient CL and the drag coefficient CD, it is custom- 
ary to  use the equations of motion with the notation 
in Fig. 1 .  We have3 

dr - = Vsin y,  dt 
dt9 V cosy cos $ - -  - 
dt r  cos 4 ' 
d4 V cos y sin $ - -  - 
dt 9 r 

d$ p S C ~ V 2  V- = v2 
s i n u -  -cosycos$tanq5, 

dt 2m cos y r  

where the bank angle u  is defined as the angle be- 
tween the local vertical plane containing the velocity 
and the plane containing the velocity and the aerody- 
namic force. 

For continuity between atmospheric flight and 
flight in the vacuum, we define the dimensionless vari- 
ables 

to represent the speed and the altitude variables and 
the dimensionless arc length 

to replace the time as the independent variable. The 
reference distance ro is the initial perigee distance. The 
drag polar used is the parabolic drag polar 

with the condition a t  maximum lift-to-drag ratio 

The aerodynamic control can be modeled as the 
modulation of the vertical and the lateral component 
of the normalized lift coefficient X 

where 
CL A = -  c; . (8) 

Using a Newtonian gravitational field 

and a locally exponential atmosphere 

we obtain the universal equations for flight in both in- 
side the atmosphere and in the vacuum: 

dB cosII, --- - 
ds cos4'  
d4 - = sin $, 
ds 
d$ BX sin u ( l  + h)e-hl' --  - - cos II, tan 4 ,  
ds cos2 y 

du B ( l +  h ) u ( l +  ~ ' ) e - ~ l '  - = -  2 -- 
ds E* cosy ( 1  + h) tan7, 

dy B ( 1 +  h)X cos ~ e - ~ l '  - -  - 1 
ds + 1 -  

cos Y u(1 + h)  ' 

In the equations above, we have defined 
( 1 1 )  

and 

In these equations the only physical characteristics 
of the vehicle are its maximum lift-to-drag ratio, E*, 
and the ballistic coefficient B  specifying the starting 
flight altitude. We consider the case E* = 1.5 for the 
computation, and take a value B  low enough for the 
vehicle t o  stay in orbit for several revolutions. The 
value 1/c = pro = 900 used is representative of the 
Earth's atmosphere. 



At this point, it is not difficult t o  apply the varia- I t  is known that the problem has the following 
tional principle to system (11) and derive the necessary integrals3 
conditions for computing the optimal trajectory lead- 
ing from 

at  the initial time s o  = 0, to the final time sf = free 
such that 

where uf and yf are  res scribed and 4f and .JIf are such 
that 

J = cos If = cos4f C O S $ ' ~  (13) 

is minimized so that the plane change If is a maximum. 
This has been done in Ref. 4 and it is shown that 

the maneuver can be performed in one passage through 
the atmosphere using strong aerodynamic forces or by 
several passages with small plane change each time 
the vehicle passes through its perigee. Since in this 
case, the vehicle stays in orbital flight, the aerody- 
namic forces used are low. The numerical solution ob- 
tained by solving a two-point-boundary-value problem 
for long duration flight is tedious. We shall propose a 
simplified but accurate and fast scheme for the compu- 
tation of the plane change. 

Approximate Aerodynamic Control 

Introducing the adjoint variables p,, we form the 
Hamilton ian 

BX sin o ( l  + h)e-hl' - cos .JI tan 4] 
+P*[ c0S27 

B(1+  h)u(l + ~ ~ ) e - ~ l '  2 
- P u [  E* cosy +- I +  h 

B(1+  h)A cos ~ e - ~ l '  1 + ' - ~ ( l +  h) 
(14) 

p ~ ,  = CI sin 4 + (c2 cos 0 + cs sin 0) cos 4, 
where the cj are constants of integration. In this prob- 
lem of optimal plane change, we are concerned with 
speed depletion and heading angle without prescribing 
the final arc length sf and final longitude O f .  Hence, 
by the transversality condition 

With the four integrals, only two of the remaining ad- 
joint equations need to be integrated. 

With the Hamiltonian integral H = co, the solu- 
tions for any two of the three adjoint variables pi,, pu 
and p, are not known explicitly for atmospheric flight 
but for low aerodynamic forces, by neglecting the den- 
sity ~ e - ~ l ' ,  they can be obtained approximately as 
follows. 

With the atmospheric density neglected, the mo- 
tion is Keplerian and from Eqs. ( l l ) ,  we have the inte- 
grals expressing constant energy and constant angular 
momentum 

2 Pn 

where a is the semi-major axis and e is the eccentricity 
of the orbit. 

Again, we neglect the aerodynamic terms to write 
the adjoint equations (16) 

dph - ~ P U  Pr = -ph tan 7 - 
ds ( l + h ) 2  u(l  + h)' 

The maximization of the Hamiltonian with respect tb Using the first of the Eqs. (11) t o  change the in- 
the controls X and a leads to the optimal law dependent variable from s to h, we have 

E*p7 S =  c=- E*p* . 
2PU u ' 2pu u cos 7 (15) dph - Ph ~ P U  ------- Pr 

dh 1 + h (1 + h)3 u(l  + h)3 tany 
Along the optimal trajectory, the adjoint variable p,, ~ P U  - - -  - Pr 
for any state variable x, satisfies the adjoint equation dh u2(1 + h)2 t an7  (21) 

dp7 - - - - Ph + ~ P U  

(16) dh sinycosy (1+h)2sinycos7'  



Define 

By taking the derivative of c4 with respect to h,  us- 
ing Eqs. (21) and the state equations without aerody- 
namic forces for duldh and dyldh, we easily verify that 
dc4ldh = 0. Hence c4 is a constant. But if co = cl = 0, 
and since we can always select the axis system such 
that q5 = 1C, = 0 at the initial time, by comparing the 
two equations (14) and (22), we obtain 

Using Eqs. (22) and (23), we write the third equation 
of (21) 

With Eq. (11) for y without the aerodynamic term, we 
have the transformed equation 

dp-, - - - Pr . 
dy sin 7 cosy (25) 

which can be integrated to give 

where c5 is a new constant. With this solution for p,, 
we write Eq. (21) for pu 

Since from the first of the integrals (19), du = -2dh/(l 
+ h)', the integral of (27) is 

with c6 being the last constant, completing the inte- 
gration of the adjoint system. 

In summary, of the adjoint system, we have 4 exact 
integrals and 2 approximate integrals. In the approx- 
imation we have assumed that the atmospheric forces 
are low enough so that along each orbital revolution, 
the motion is nearly Keplerian. Therefore, it is ex- 
pected that the explicit optimal control laws obtained 
are suitable for use in the maneuver at very high alti- 
tude as in the present case. 

Using the solutions (17), (26) and (28) for p ~ ,  
p, and p, in the optimal control law (15), we have 
the explicit solution with the new normalized constants 
k1 = c6/c5, k2 = c2/c5 and k3 = c3/c5. 

klu- 1 
E*(k2 cos 8 + k3 sin 8) cos 6 (29) 

S =  
(klu - 1) cosy 

The approximate control laws have been used in 
the exact equations of motion (11) so that we can corn- 
pare their performance with the results obtained from 
the exact integration of the full set of state and adjoint 
equations (11) and (16). They provide excellent agree- 
ment as shown in Figs. 2-6. The plots show the varia- 
tions of the trajectory variables h, u, y, q5, $ and y and 
also the elements of the orbit e and I and the controls 
C and S for a trajectory from uo = 1.6 to uf = 1.0. 
The value B = 0.09 selected is low enough for the ve- 
hicle to stay in orbit for 21 revolutions. The constant 
ki are adjusted such that when u = u j ,  the conditions 
h j  = 0, y j  = 0, and the transversality condition, based 
on the performance (13) and the solution (17), 

are satisfied. It is found that, for a variety of initial 
speeds uo experimented, we have nearly k2 = -1/E*. 
Using the exact optimal controls obtained by numerical 
integration of the adjoint system we have If = 20.130°, 
while the suboptimal controls provide a plane change 
of I, = 20.02O. 

Conclusions 

In this paper, we have considered the problem of 
using speed depletion to perform a maximum plane 
change in near orbital flight of a lifting hypervelocity 
vehicle. Besides the 4 exact integrals for the adjoint 
equations, we have used the fact that with low aerody- 
namic forces, the motion is nearly Keplerian and the 
remaining two equations for the adjoint system can be 
approximately integrated. The optimal lift and bank 
controls are then expressed in explicit form. The ap- 
proximate controls provide excellent agreement when 
compared with the exact solutions. In the slow maneu- 
ver, it is seen bhat the orbit is slowly contracting, while 
there is an incremental plane change during each pas- 
sage through the perigee. The orbit is slowly rotating 
about its apsidal line. Then when expressed in terms of 
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Fig. 1 Coordinate system. 



------o*im.l (Sub-optimal Solution, uo = 1.6) Sub-Optimd 

Fig. 2 The altitude and the velocity versus the loiigitudc 

Fig. 3 The heading and the latitude versus the longitude. 
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Fig. 4 The eccentricity and the flight path angle versus 
the longitude. 
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Fig. 5 The vertical and the lateral components of the 
normalized lift coefficient versus the longitude. 
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Fig. 6 The inclination angle versus the longitude. 


