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Abastract

One of the most promising approaches to advanced propulsion
that could meet the objectivas of the Space Exploratfon Inttiative
(SEI} 1s the open cycle gas core nuclear rocket {GCR}. The energy
in this device s generated by 2 fisstoning uranium plasma which
heats, through radiation, a propellant that filows around the core
and exits through a nozzle, thereby converting thermal energy inte
thrust. Although such a scheme can produce very attractive pro-
pt1sfon parameters in the form of high specific {mpulse and high
thrust, 1t does suffer from serious physics and engineering problens
that must be addressed if it is to become a viable propulsion
system. Among the major problems that must be solved are the
confinement of the uranium plasma, potentfal {nstabilities and
control problems associated with the dynamics of the uranium core,
and the question of startup and fueling of such a reactor.

In this paper, we focus our attention on the problems of
equilibria and stabilfty of the uranfum core, and examine the
potential use of an externally applied magnetic field for these
purposes. We find that steady state operation of the reactor is
possible only for certain core profiles that may not be compatible
with the radiative aspect of the system. We also find that the
system is susceptible to hydrodynamic and acoustic instabilitles
that could deplete the uranium fuel in a short time {f not properly
suppressed.

Introduction

A propulsion scheme that was first introduced fn the sixttes,
and recently revived with the expectatfon that it might meet the
needs of the Space Exploration Initiative (SEI) of the next century
{s the open cycle gas core nuclear rocket{3} (6CR), shown in Fig.(1).
If successfully developed, 1t has the potential of meeting the
objectives of SEI of returning to the moon, and on to Mars with
manned missions in the first half of the twenty-first century.
Since space travel 1s hazardous, and man is umable to endure long
journeys without experiencing physical and mental degradation, it
is {mperative that such missions be completed in the shortest
possible time.: GCR has the potential of meeting these requirements.
The principie of oparation in this system fnvolves a critical uranium
core in the form of a gaseous plasma that heats, through radfation,
2 hydrogen propeilant which exits through 2 nozzle, thereby con-
verting thermal energy fnto thrust as {1lustrated in Fig.{1).
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High Specific Impulse, Porous Wall Gas Core Engine.
{Courtesy of NASA, Lewis Research Center)
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The temperature limitations 1mposed by material melting
encountered 1n solid core thermal reactors is avoided in GCR since
the nuclear fuel 1s allowed to exist in a high temperature
(10*~ F0%°K ) partially fonized state. In this so-called gaseous
or "plasma core” concept, the sphere of fiss{oning uranium plasma
functions as the fuel element of the reactor. Nuclear heat released
within the plasma and dissipated as thermal radiation from the
surface is absorbed by a surrounding envelope of seeded hydrogen
propellant, which 1s then expended through a nozzle to generate
thrust. With the gas core rocket concept, specific impulse values
ranging from 1500 to 7000 seconds zppear to be feasible{l), This
reactor concept requires a relatively high-pressure plasma
{500 - 1000 atm) to achfeve critical mass. At these pressures,
the gaseous fuel is sufficfently dense for the fissfon fragment
stopping distance to be comparable to or smaller than the dimensions
of the fuel volume contafned within the reactor cavity. The hydrogen
propellant {5 infected through the porous wall with z flow dis-
tribution that creates z relatively stagnant non-recirculating
central fuel region 1n the cavity, The question immediately arises
as to whether this hydredynamic containment s compatfble with the
performance requirements placed an GCR as a propulsion device, This
papar is aimed at addressing some of thase quastions, and {dentifying
perhaps the major obstacles that could serfously detract from its
propulsion capabtlfties.

Basic Equations and Analysis .

Assuming a singly {fonized uranium plasma that remains so at
all times, the appropriate conservatfon equations for the system
may be expressed by:
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where N 1s the number density of uranium tons, ¥ the fluld
velocity, T the temperature, and M the mass of the uranium {on.
The above equations bacome a closed system when we specify the
fission power density, namely

P, = NaVoQ = adp - g (4)
and the radiation diffusfon coefficient
160,T?
F TSRy ©

In the above equatfons, n 1is the number density of neutrons, V
their average veloctty, & their flux, ¢ the cross section for
neutron-induced fission, and Q@ the energy released as fragment
kinetic energy per fission. In the second form of P, , the quantity
a 1s in effect a constant, while p = MN {s the mass density of
the uranfum. Eqg.{5) gives an effective diffuston coefficfent for
the radiative energy tern shown at the end of Eq.{3). The quantfity
o, 1s the black body constant and kx the mean Rosseland absovptfon
coefficient. If the expansfon term {second term on the left hand
side) in the energy equation {3} is ignored, the radfative term is
replaced by a stmple heat conduction termwith a constant coefficient
k = kp, and a constant C, (specific heat at constant pressure)
term 15 {ntroduced, then Eqs.(1-3) can be replaced by
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which must be supplemented by the equation of state, i.e.

P = pRT (o3
where £ 1s the familiar gas constant. A quick glance at Fgs.(1-5}
shows that due to the non-linearity of some of the terms, it {s
difficult to analytically obtain the dymamit eguilibrium of the
system as represented by the spatial profiles of the density,
temperature, and velocity of the uranium core. In order to address
some of the questions rafsed earTier, {t is convenfent to deal with
the approximate but simpler set of conservatfon equatfons repre-
sented by Eqs.{6-9).

Ifwe Hmit our analysis to a one-dimensional system (e.g. slab),
consider steady state so that /3¢t = 0, and further assume a
constant heat generation g = g, = constant, then for a system
with 7 @ 0, Eq.{6) ylelds

p¥V = p(OIV(0Q) = a = Constant {(10)
where zero subscript denotes the value at the origin, The energy
equatian [B), under these conditions, assumes tha form
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which, when solved subject to the comditions T7(0) = To and
T(z=1) =~ T,, ylelds the temperature profile:
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The momentum £q.(7) along with Eqs.(9) and {10} can be put in the
form
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which can be readily integrated to yield
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with T(z) given by Eq.(12). The rematning equilibrium profiles

are given by

a oV
p{z}y = Vs " T {15}
P(z) = Rp(z)T(z) (16)

The above results were obtatned on the premise that the uranfum
core undergoes motion (V' # 0) fn equilibrium, which is represented
by the velocity profile given by £q.(14). If the equilibrium is
static {{.e. V¥ = ©), and the hest generation 1is &lso uniform
{(l.e. @ = go), then the corresponding proffles in this case are
obtatned from Eqs.(6-9) to be
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The abgve equilibria, approximate as they are, will be used to
examine the hydrodynamic stabflity of the system.

It is a known fact that when a fluid of density p, moves with
velocity ¥, past another fluid of density p, which is stationary,

in the presence of a gravitational force, the (sharp) boundary
between them will, upon perturbaticn, undergo oscillations which
under certain conditions can become unstable. This instability,
known as the Kelvin-Helmholtz fnstabt1ity(2), can 1ead to turbulent
diffusion of waterial from one vregion fnto the ather, and 1n the
case of GCR, this could mean substantial flow of uranfum from the
core into the hydrogen and cut through the nozzla. Not only will
the Toss of uranfum affuct the criticality of the system 1f not
appropriatety replaced, but aiso the flow of the hydrogen into the
core will affect 1ts composition and ultfmately fts eriticality.

To assess the importance of thts phenomenon, we apply it to a
GCR destgn{3} 1n which the radfus 7 of the urantum core 15 | meter,
the pressure 1s 1000 atm, and the hydrogen temperature {s about
17,500°K , which suggests that the fuel temperature 1s about
35.000°K {4).  Our preliminary analysis of this 7500 MW system
shows that the mean velocity of the hydrogen, which is commensurate
with 2 cited mass flow rate of 4.5 kg/sec, is approximately 5 m/sec.
If we first consider the static equilibrium case represented by
£q.{17), then the system under comnsideration may be viewed as
consisting of a fluid (H) of density p. and velocity V', moving
past a statfonary fluid (V) of average density p, (obtained by
averaging the expression in (17) ) under the f{nfiuence of a
gravitatiopal acceleration ¢. The instability condition can be
written as{3)
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where we have taken advantage of the fact that, for the temperature
and pressure under consideration, the urantum dersity {s much Jarger
than that of the hydrogen. The above eguation reveals that the
minimum wave number, k. , of the oscillation has the value
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and the corvesponding growth rate y of the {nstability is of the
form l_
fos g /B
Y = V,k o " Ve, (20)
The diffusion coefficient D For the urantum Flow inte the hydrogen
can be approximated by

Y
D = = 21
k%
from which we can write the particte flux as
F = _@_‘ (22)
r

where r s the vadfus of the spherical uranium core introduced
eartier. The amount of uraniun escaping per second by this diffusion
process, U, can finally be written as '

U, = 4nriF = 4wrbDp, (23)
or as a fraction of the total uranium, U5, present in the sphere,
Ei_i 4nrDp, . 30 _ 3y (24)

Us - 4nrip, /3 r rigd

At a pressure of 1000 atm, 2 hydrogen temperature of 17.500°K ,
and a urapfum temperature of 33,000°K , the densities of hydrogen
and  uranfdm  are,  respectively, 4.6x107*g/em®  and
5.53x107*g/cm?, With these valuyes, and I/, = Sm/sec, Eq.(23)
yields about 7 kg/sec uranium Yoss, while Eq.(24) shows that
spproximatety 3% of the fuel! escapes per second. Clearly, these
quantitfes are unacceptably large, and well over the 1% of the
hydrogen mass flow rate {1.e. 45 g/sec) often cited as the loss
due to turbulent mixing. In addition, this Toss fs far greater
than the uranium burnup rate of 0.} g/sec of U235 in a 7500 MW
reactor. As can be seen from Eq.{20), the growth rate for a fixed
wave number (1.e. & Fixed wavalength) {s smaller for smailer hydrogen
flow velocity. But decreasing this velocity bevond a certain value
may not be compatible with the mass flow rate dictated by heat
transfer needs.

It may be argued that the sbove description of a hydrogen
propeliant fTowing past a staticnary uranium core is not an adequate
description, since there night exist a thin boundary Jayer of uranium
which fs moving with the same velocity as the hydrogen, and thus
no relativa motion and correspondingly no Instabiiity. This,
however, {s not true since the same instability can arise 4n a
flufd tn which both the density and the velocity are continuousty
varfable. 1In this case, an fmportant parameter, J, known as the
Richardson number, defined by

g dp/dz
p{aVsdz)?
emerges as the critfcal parameter for the Kelvin-Helmholiz
instability. It represents the ratio of the buoyancy force to the
{nertfal force, and must have a vajue of J > 1/4 for stabflity.
¥hen applied to the equilibrium represented by Eqs.{12-16), we see
that J < O and hence the system remains unstable. Unless an

J = (25)



equilibrium with the appropriate densfty profile 1s found, GCR will
continue to suffer from this hydrodynamic tnstabiiity.

If profiling effects cannot be achieved or sustained, then
perhaps the use of magnetic fields to suppress this {nstabiiity
may not be totally avoidable. It can be shown that f a magnetic
field B 1{s introduced in the direction of propellant flow, then
it can act as a "surface tension" type of force that provides
stabil{ty if the following conditfon {s satisfied:

Pi1P2 2 El: 26
repn * ° Bx (24)
We see for the example addressed earlier that a minfmum magnetic
field strength of 54 Gauss is required. The shape of such a field
is Hkely te be "Mirrer-iike™ in order to accommodate the flow
around the spherical uranium core. Although such a field can bring
about stabil4zatfon, tt 15 much too small to confine a plaswma at
1600 atm. pressure, but might be adequate to raspond to pressure
fluctuations that may also occur fn the system.

Another problem of major concern 1n GCR has to do with acoustic
instabilitias that might arise as a result of fluctyations in the
density and temperature gf the fissioning pfasma. The mechanism
for the generatfon of such ascillations can be dascribed as fol-
1ows{®): we imagine a standing sound wave to exist 1n a bounded
region of the fissfoning plasma that includes a constant background
density of thermal neutrons; 1n the wave compressions, the fission
power density fncreases due to the increased uranium density, while
in the rarefactions the power dacreases. This results in an increased
pressure gradient assoctated with the wave, which tn turn leads to
a transfer of fission power to the wave. But competing with this
process 1s the fact that radfation alse tends to transport the
axtra thermal energy out of the wave compressions. Moreover,
radfation diffusion tends to smooth out the temperature fluctuations
of waves more rapidly as their wavelengths become shorter. This
rasults in a critical wavelangth below which waves are stable, and
above which they are unstable. If the characterfsttc dimension of
the system, such as the core radius, fs larger than the critical
wavelength, then the system will be uynstable to these modes, and
that could precipitate significant pressure fluctuations which could
prasent serious control problems for GCR. Moreover, such unstable
wavas could also give rise to a significant uranium loss from the
core which, eventually, will find its way out through the nozzle.

We assess the impact of the acoustic instability by returning
to the basic equations {1-5}, and carrying out a perturbation
analysis. We take the equilibriim state to be that with ¥ = ©
and assume that all perturbed quantities are of the plane wave
form, 1.e.

Ny TV, o~ expifE, -¥ - wt) (27)
where k. and w are the wave number and frequency of the oscillation,

raspectively. A disperston equation relating kv to o {is then
obtained which yields{5), upon solution, the 11near growth rate v,
{.e.

- {2Ps/M — kEK, (VE - 2KT o/ MV/K)
¥ 6N VE
where 1n this case, No aud T, represent the equilibrium density
and temperature of the uranium core. The sound speed 1n the plasma,
V,, 1s given by

KT 1/2
vs - ($52) @

(28)

with K denoting the Boltzmann constant and M the mass of the
uranium atom. We note from Eq.(28) that a positive numerator gives
rise to an instability (§.e. a wave with growing amplitude) while
a negative value denotes a damped (stabTe) wave. The transition
from one to the other is characterized by a critical wave number
k¢ given by

. skp, 1'° 3 P, 0
¢ " lmwvik,| " 2Tk, (30
which, upon substitution fn Eq.(28}, yfelds
Kl { 2 2}
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For the reactor example presented earlfer, the above equatfon reduces
to

¥ - 3.?x102{k§ - ks} (32)
and upon inserting the appropriate parameters, we find that the
critical wave number fs k. = 0.084, and the critica) wavelength
fs A; ~ 75cm . Since the radfus of the core is 1 m, {t 1s clear
that such a system will support acoustic instabilities, and for
wave numbers corresponding to this dimension, Eq.{32) shows that
the e -folding time is 0.9 seconds. Although detailed non-1{near
analysis is reguired to assess the impact of these instabilities,
one can estimate the loss of fuel from the core due to these
oscillations by using Equations (23), (24}, and (32), One finds
for the case at hand that about 9% of the uranium plasma per second
will be transported out of the core, and that corresponds to a fuel
mass flow rate of about 20 kg/sec. Meedless to say, losses of this
magnitude make the problem of refueling GCR a formfdable one indeed.

Conclusion

Tha preliminary analysis presented in this paper shows in a
rather dramatic fashion that hydredynamic confinement of the
fissioning fuel in the gas core nuclear rocket s quite difficult
to achieva. It is shown to be subject to the ¥elvin-Helmholtr
instability and the acoustic instability; both of which could lead
to turbulent mixing and rapid loss of fuel. Although profiling
effects can {n principle alleviate the Kelvin-Helmholtz problem,
they are very difficult to implement in practice, and quite often
run contrzry to properties placed on the system by desirable
performance characterfstics. The acoustic {nstability can also be
addressed by appropriate geometric scaling, but that also may run
contrary to desired performance objectives. It appears in this
connection that the use of externally applied magnetic fields may
be feasible so Tong as they are atmed at stabil{zing these modes
instead of providing total confinement of tha plasma cove itself.
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