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ORBIT TRANSFER USING LIFTLMODULATION'

K. D. Mease** and N. X. Vinh+

Abstract

Minimum-fuel trajectories and 1ift controls
are computed for aeroassisted coplanar transfer
from high orbit to low orbit. The optimal
aeroassisted transfer requires less fuel than the
all-propulsive Hohmann transfer for a wide range
of high orbit to low orbit transfers. The optimal
control program for the atmospheric portion of the
transfer is to fly at maximum positive L/D
initially to recover from the downward plunge, and
then, to fly at negative L/D to level off the
flight, such that the vehicle skips out of the
atmosphere with a flight path angle near zero
degrees. To avoid excessive heating rates, the
vehicle flies initially at high angle of attack in
order to slow down higher in the atmosphere,
allowing recovery from the downward plunge, which
occurs subsequently using the maximum positive
L/D, to take place at a lower atmospheric demsity,
or equivalently, at a higher altitude.

Nomenclature
b R/H¢ .
B PoSHLCp /(2m)
Cp drag coefficient
CD. value of Cp when Cp = 0
CL lift coefficient
CL. value of Cp at (L/D)p,4
E (L/D)pmgyx
F Pn/pPy
8 acceleration of gravity
GEO Geostationary Earth Orbit
h H/He
H altitude
Hp convective heating rate for Im sphere
HEO High Earth Orbit
K coefficient in parabolic drag polar
L/D lift-to—drag ratio
LEO Low Earth Orbit
m vehicle mass
oTvV Orbital Transfer Vehicle
i adjoint variable associated with state i
4 radial distance from Earth’s center
r) radius of HEO
Iy radius of LEO
R radius of spherical atmosphere
S effective vehicle surface area normal to
velocity vector
v v/ /u/R
v inertial speed
aj ri/R
Y inertial flight path angle
& p/po
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Avi AV, /u/R

AV impulsive change in V

AV, AV to deorbit from HEO

AVy AV to circularize at LEO

A CL/CL'l

A E‘py((vpv)

" gravitational constant multiplied by
mass of Earth

p atmospheric density

Po value of p at H = 40 km

T (t/H) /u/R

Subscripts

e value at atmospheric entry
f value at atmospheric exit
P value at hypothetical perigee of

transfer orbit from HEO to atmosphere

Introduction

When orbital transfer is required and there
is an atmosphere-bearing celestial body in the
vicinity, it may be advantageous to utilize
aerodynamic force in effecting the transfer. In
this paper, we present an investigation of
aeroassisted coplanar transfer from a circular
orbit of radius r; to a comcentric circular orbit
of radius ry, where rj is greater thanm rp (Fig.
1). We will consider the orbits to be about the
Earth, however much of the analysis is more
generally applicable. Our assumptions are as
follows. The vehicle has a lifting configuration;
and the lift can be modulated by varying the angle
of attack. Lift modulation is the sole means of
controlling the flight path in the atmosphere,
propulsion being used only outside the atmosphere.
The vehicle has a high—thrust propulsion system so
that applications of the thrust can be considered
to produce impulsive velocity changes (AVs) and
the fuel consumption for an orbital transfer is
thus indicated by the characteristic velocity, the
sum of the AVs needed to effect the transfer. The
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Fig. 1 Aeroassisted coplanar orbit transfer.




transfer must involve only a single atmospheric
pass. And finally, the atmospheric properties,
the vehicle’'s aerodynamic properties, the
equations of motion, and the initial position and
velocity of the vehicle are all known precisely.

Under these assumptions, we determine the
minimum-fuel aeroassisted transfer, the fuel
requirements of which are then compared to those
of the minimum-fuel all-propulsive transfer. The
characteristics of the minimum-fuel trajectory
during the atmospheric portion of the aeroassisted
transfer are examined in detail. In addition, the
effect of a vehicle heating constraint on the
atmospheric trajectory is determined.

The motivation for this study stems from the
current interest in orbital transfer vehicles
(OTVs).l'2 These vehicles would transfer
spacecraft from a space shuttle to higher and/or
different inclination orbits. In the case of a
space-based OTV, the vehicle is then required to
return, after delivering its cargo, to rendezvous
with either a shuttle or a space operations
center. The OTV maneuvers which could potentially
benefit from aeroassist are the orbital plane
change and the transfer from high Earth orbit
(HEO) to low Earth orbit (LEO). The present study
concerns only the latter.

The basic sequence of events for the
aeroassisted HEO to LEO coplanar orbit transfer is
as follows. Referring to Fig. 1, the transfer
begins with a tangential retroburn (AVI) at HEO
which injects the vehicle into amn elliptical
transfer orbit with a hypothetical target perigee
inside the atmosphere. At point E, the vehicle
enters the atmosphere. As the vehicle flies
through the atmosphere, some of its kinetic energy
is converted to heat, and consequently, upon
skipping out of the atmosphere (at point F), the
apogee of the orbit is decreased to the distance
£y Finally, at the new apogee, a second
tangential burn (AV,) jis executed to circularize
and thereby achieve the desired LEO. The minimum-
fuel aeroassisted transfer is that which has the
minimum characteristic velocity, AV; + AVy. The
flight path for the minimum-fuel transfer is
effected by the AV; magnitude, which controls the
atmospheric entry, and the 1ift coefficient as a
function of time during the atmospheric flight,
which controls the exit and hence determines the
required AVj3-

The above version of an aeroassisted transfer
is somewhat restrictive. Firstly, a tangential
AV, at HEO is not always the most fuel efficient
means of effecting a transfer to specified
atmospheric entry conditions. The justification
for this restriction is that, for the range of HEO
to LEO transfers considered in this paper, the
additional fuel savings, if any, offered by non-
tangential or multiple—impulse transfers, are
small. Furthermore, multi-impulse transfers are
often times impractical. For a more general
treatment of the minimum—fuel deorbit, see Ref. 3.
Secondly, the apogee of the transfer orbit, that
the vehicle is in upon exiting the atmosphere,
does not necessarily need to be at the distance
ry. However, for the one-impulse transfer from
exit to LEO, this tangency turns out to be a
property that is consistent with the minimum
characteristic velocity transfer.

Analytic Solution for an Idealized Optimal Transfer

Consider an aeroassisted HEO to LEO transfer
which proceeds as follows. Referring to Fig. 1, a
tangential retroburn, AVI, at HEO injects the
vehicle into an elliptical transfer orbit with
perigee at the distance R. When the vehicle is at
perigee, its lifting capability (in this case,
negative 1lift) is employed to effect flight along
the boundary of the atmosphere (i.e., along a
circular orbit of radius R). Flight along the
boundary is continued until sufficient velocity
has been depleted (by atmospheric drag) such that,
upon reducing the 1ift to zero, the vehicle
ascends on an elliptical orbit to an apogee at rj.
Finally, at rj, a tangential circularizing burn,
AV,, is executed to achieve the desired LEO. The
idealizations here are 1) that the atmospheric
density at R is sufficient to generate enough drag
to slow the vehicle in a reasonable amount of time
and 2) that the vehicle has sufficient lift to
maintain flight along the atmospheric boundary.

Now compare the characteristic velocity of
this idealized transfer with that of any realistic
aeroassisted transfer., A realistic transfer would
require a larger AVjy to ensure sufficient
penetration into the atmosphere such that the
required velocity is depleted before skipping back
out, given the limited 1ifting capability of the
vehicle. Thus the AV] for the idealized transfer
is a lower bound for aeroassisted transfers.
Secondly, for the one—impulse transfer from
atmospheric exit to LEO, exit with a flight path
angle of zero degrees (yg = 0°) into an elliptical
transfer orbit, tangent to LEO at apogee, leads to
the minimum circularizing AVg. The corresponding
exit speed is V¢ = /2ur,/IR(r3+R)})] . Any other
exit pair (Vg, yg) will lead to a higher AVa-.
Consequently, the characteristic velocity, AVy +
AVy, for this idealized aeroassisted transfer is a
lower bound for the characteristic velocity of any
realistic aeroassisted transfer.

An analytic expression for this lower bound

can be derived. Let

@y = rqy/R , a3 = ra/R , and Avi = AVi/V/;7ﬁ7

The elliptical grazing trajectory requires an
impulse

Avl = V1/ay - V2/laglay + 1] (1)

The second impulse used to circularize the orbit
at ry is

sz =

V1/ay -

V2/laglay + D1 (2)

Thus the total characteristic velocity for the
idealized aeroassisted transfer is

AVA=AV1+ Ava (3)



Compare this to the characteristic velocity for
the all-propulsive Hobmann transfer which is

,/2a2/[a1(ai + agl
+ V2ay/leg(ey + o)1 - /1/ay (4)

Avg = 1/a; -

The curve plotted in Fig. 2 represents pairs (al,
ay) for which Avy = Avg. For pairs below the
curve, Avy < Avg, i.e., the idealized aeroassisted
transfer requires less fuel. For example,
idealized aeroassisted transfer from geostationary
orbit to LEO requires less fuel than the Hohmann
transfer, if the LEO radius, rj is less than about
12,000 km.
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Fig. 2 Comparison of <characteristic
velocities for Hohmann and idealized
aeroassisted transfers.

We now proceed to consider more
realistic aeroassisted orbit transfer in which the
vehicle flies a skip trajectory through the
atmosphere. Determining the minimum-fuel
trajectory and control, in this case, requires the
formulation and numerical solution of an
optimization problem.

Equations of Motion

The equations of motion for planar
atmospheric flight are 4

dr .
3t = Vsiny (5a)
2
pSC.V
av D )
rre e g sin vy (5b)
2
pSC.V 2
dy . L _ v
v e 5 (g - ) cos Y (5¢)

assuming a nonrotating atmosphere. It is assumed
that when r > R the flight is Keplerian. Hence,
we shall consider a Newtonian gravitational
attraction, that is

g = pn/r2 (6)

Furthermore, it is assumed that the drag polar is
parabolic, that is

Cp = Cp, + KCL2 M

With this relation, using Ci, as a control
corresponds physically to using pitch modulation
to shape the trajectory. It is convenient to use
a normalized 1lift control

A= CL/CL‘ (8)
where CL‘ is the 1lift coefficient corresponding to

the maximum l1ift-to-drag ratio E*. In terms of
Cpo and K, we have

* * * 1

— (9)
2
KCD
o

Using the following dimensionless variables and
parameters

t
h=H/H ; v=V/Ju/R;t=— Ju/R
e H

e

sc*
o SH

. o el
5—o/oo,b—R/He,B— o

the equations of motion can be rewritten as

dh _ .
17 - v osiny (10a)
2
gX.: _ EQ; 1+ v2 b sin vy (10b)
T 2E (b-1+h)
dy cos Y _ b
dr T EOAY Y I [" (b-1+h)v] (10¢)

Besides being preferable for numerical
computation, the dimensionless equations of motion
(10) focus attention on the critical aerodynamic
parameters which affect flight, namely, the 1lift
loading coefficient B and the maximum lift-to—drag
ratio E*, Again A is the modulated lift comtrol,
scaled such that A = 1 corresponds to flight at
the maximum lift-to-drag ratio.

The Optimization Problem
The optimization problem is to find the
magnitude of the tangential AVy and the 1lift

control A, as a function of time, which minimize
the total characteristic velocity

Avy +Avy = J/1/ay - v cosyel/ag
+ J1llag = vg cos yglay (11




Equivalently, we can maximize the function

L=vecos ye/al +vgcos yg/a (12)

The atmospheric entry and exit variables must
satisfy the relations

(2-v,2) a2 - 2ay + vg? cos? v, =0 (13)
and
(2—vf2)a22 - 2ay + vfz cos? 1¢ = 0 (14)

which are derived from the energy and angular
momentum equations for the HEO-to—-entry and exit-
to~LEO transfer orbits, respectively. At entry we
have

Te =0 and hg =1 (15)

and at exit

Te = free and hy = 1 (16)

We now proceed to derive necessary conditions
for the optimal solution. Introdncing adjoint
variables pp., Py, and pyr W€ form the Hamiltonian

B§ 2 2 b sinY
K= Py v sin vy R S 1+ 7) +——S—~—2}
2E (b-1+h)

b
cos Y _
*p, {dex * (o-17h) [v (b—1+h)v]} an

With respect to the 1ift control A, H is maximized
when

= —X (18)

However, realistically the range of values which A
can assume is bounded, namely, the lift control
must satisfy the inequality constraint

<

FY - N (19)

where Apax is a positive constant whose value is
dictated by the aerodynamic characteristics of the
vehicle. According to the Maximum Principle, we
find that the optimal 1ift control is determined
by the rule

A'luax L) xmax
A = A PAL < Apax (20)
Amax A Ay

where A= E* pY/(vpv). In determining this rule,
we have used the fact that the Hamiltonian is a
quadratic function of A whose second derivative
with respect to A is negative.

The adjoint variables satisfy the necessary
conditions

d
To o we B _aw Py,
K oh ° drt ov 4t By

However, note, that to compute the optimal
control, only the value of A is required. This
suggests replacing the three differential
equations (21) with two which involve only ratios
of the adjoint variables, namely A and F = pp/py-
Differentiating the expressions for A and F with
respect to time and using Egs.(21), we obtain

2
A gkp cosy + S [ZA?&\ +  bEX
dr (b-1+0) “v ‘
Asiny b (22)
(b-1+h) [" Y i
and
dF  _ 2bsiny , _vAcos [ 2b
_ _2bsiny vhcosy S
dr (b-14h)° gx(b-1+h) b -1+
2 2
Bv 2.0 v ' 2,
+omp (I8 - g ABXE + Fosiny
B oayaan’y + Lo ar
- T v(1+r7) + o BSM
AFcosy b
28 e 23
Y Eeboien) | VT (b~l+h)v] 2%
where
oo a8 Mo

Writing the Hamiltonian in terms of N and F, we
have

S = Fsiny - Eg; 6v(l+A2) - bsiny

G)—l+h)2V
ABSvA __Acosy b
*TEr T EEG 1+n) ERCSE (24)

Since the equations of motion (10) do not depend
explicitly on time and the final time is not
prescribed, we have the Hamiltonian integral

H =0 (25)

Now, rather than the original six
differential equations, we have five, namely, Egs.
(10) for the three states, and Eq. (22) and Eq.
(23) for 1 and F. Integration of these equations
will yield extremal trajectories for a number of
problems which differ only in the entry and exit
conditions which must be satisfied. Besides
having reduced the dimension from six to five,
this formulation has the distinct advantage that




four of the five dependent variables are physical
variables. (Actually,Aonly has physical meaning if
,Als Amax,) This situation eases the difficulty in
guessing unknown initial conditions during the
course of solving the boundary value problem. The
nonphysical variable F can almost always (sin y #
0) be computed from the other four using the
Hamiltonian integral (24). Indeed one might use
the Hamiltonian integral to eliminate the need for
solving the differential equation for F. However,
to avoid the difficulty in evaluating F at the
singularity, sin y = 0, we shall integrate the
equation for F and instead use the Hamiltomnian
integral as a check on the accuracy of the
numerical integration.

The heating rate, Hp, along the atmospheric
trajectory is computed according to the egquation

Hp = (3.08 x 107%) pl/2 y3.08 (26)

where p is the atmospheric density in kg/km3 and V
is the speed in km/s. Eq. 26 gives the convective
heating rate for a sphere with a radius of omne
meter, under conditions of laminar flow. Since
only relative changes are of concern, this model
will suffice.

Method of Numerical Solution

We shall only concern ourselves with
minimizing AV,  Although AVy is the larger of the
two burns, the difference between the value of
AV1, required to target to a perigee at the
atmospheric boundary, R = 6498 km, and that,
required to target to a perigee at the surface of
the Earth, is a mere 13 m/s. In contrast, AVp is
very sensitive to the valuwes of the exit
parameters vg¢ and Ttf. For example, the AV3
required for a given HEO to LEO transfer can
increase by 100 m/s or more for each degree above
zero in the exit flight path angle, vg.

Knowing that a skip trajectory with y¢ = 0°
leads to the minimum AV at the LEO to which the
ascending orbit is tangent, we employed the
following approach to compute minimum-fuel
trajectories and controls. A target perigee, Tp
is chosen and, from this, the entry parameters vg
and v, are determined according to the equations

vel = 2[1 - 1/(ag + a.p):l 2n

cos? y, = [2a1 - (2 - veD) “1%pve2 (28)

Then, using the computed values of v, and yg, he <
1, and a pair (8, F,) as initial conditions, Egs.
10,22, and 23 are integrated from v = 0 to h =1,
using Eq. 20 to determine the 1lift control. The
pair (A,, F.) is determined by choosing /A, and
using Eq. 24 to solve for the corresponding value
of Fg» with v, v, and h as specified above. The
integration is performed by a variable order,
linear, multistep predictor—corrector routine of
the Adams—Moulton type,5 with the local absolute
error controlled to less than 1.0x107° for each of
the five dependent variables. In all cases
studied, it has been possible to find, by

iterative search, a value of 1, such that y¢ = 0°
at exit. The corresponding value of vg determines
the apogee of the transfer orbit, following exit,
and hence, the LEO to which the vehicle is
optimally transferred. As the value of r_ js
lowered from R, ygf = 0° continues to be reachgile.
but the exit speed decreases, resulting in lower
LEO transfers. There is a certain critical value
of r ., below which, the lifting capability of the
vehicle is insufficient to effect a skip
trajectory.

A trajectory and control computed in this
manner is optimal in the following sense.
Firstly, the necessary conditions (10), (22), and
(23), the entry and exit conditions (15) and (16),
and the relations (13) and (14) are satisfied.
Secondly, the 1lift control satisfies the
constraint (19). Thirdly, the near—zero degree
flight path angle at exit ensures that the
circularizing AV,y, to achieve the LEO to which the
post—exit orbit is tangent, is the absolute
minimum, when compared to those for all other
aeroassisted transfers from the same HEO to the
same LEO., (The exit flight path angles achieved,
as indicated in Table 1, are a few tenths of a
degree. The iteration on A, Was stopped at this
point because the associated value of AV2 was
within 8 m/s of the lower bound set by the
idealized transfer.) Fourthly, although only AV,
has been minimized, the characteristic velocity,
AVy + AVy, is very close to the absolute minimum.
The value of AVy; for the cases shown in Table 1 is
within 10.4 m/s of the lower bound on AV; given by
the idealized transfer. Thus, the characteristic
velocity can not get much smaller. More
important, however, is whether the trajectory
and/or control would change significantly, as the
characteristic velocity is reduced the last few
meters per second. Numerical experience indicates
that they do not. As the exit flight path angle
is reduced, the atmospheric trajectory is changing
very little. Indeed, the value of A, is being
changed only slightly (parts in 106 or less) to
get the exit angle below a few tenths of a degree.
This level of change in /\e affects most of the
trajectory almost negligibly, but extends the
trajectory, in order to achieve the lower exit
angle. Furthermore, as mentioned above, for zero
exit flight path angle atmospheric trajectories,
there is a one—to—one mapping, based on numerical
experience, from values of r_ to values of vg, and
hence, to the LEOs for which the AVy is a minimum.
Therefore, if r_  were increased in order to
decrease AVy, the corresponding AVy would be
greater. Given the low sensitivity of AVy to
changes in the value of r,» it is unlikely that
the characteristic velocity could be reduced much,
if any, by adjusting rp,- In conclusion, &
trajectory and control, computed in the manner
described above, is a good approximation to that
with the absolute minimum characteristic velocity
and, henceforth, we shall refer to such a solution
as a minimum-fuel solution.

When a heat rate constraint is imposed, the
solution procedure is somewhat different. We
follow an approach used in Ref. 6. The heating
rate for a skip trajectory reaches its maximum
value shortly after entry, in a monotonic fashion
(see Fig. 4). It then decreases during the
remainder of the flight, although some oscillation
may occur. In order to satisfy a heating rate
constraint, Hp < (HR)p,,, we shall assume that it




is sufficient to control the first peak of the
heating rate function, such that the peak value is
equal to (HR)pmayx- Furthermore, we shall assume
that, once this peak value is reached, flight does
not continue on the constraint boundary. These
assumptions allow us to solve the constrained
problem in two stages each requiring an iteration
on only one parameter.

In the first stage, we begin at v=0 as in the
unconstrained case, except that now the goal is to
choose A, such that Hp = (HR)pyyy at the time when
the derivative of the heating rate with respect to
time is equal to zero. Once this value of /g
is found, an extremal trajectory up to the peak
heating rate is determined. The second stage is
to find a value for A , L= hp» such that, when
Eqs. 10, 22, and 23 are integrated from the time
of the peak heating rate to atmospheric exit, the
exit flight path angle is zero degrees. Indeed,
in the cases studied, it has been possible to find
such values of A, and A,. Thus, the functions
A and F are, in generaf, discontinuous at the
time of the peak heating rate; the states h, v,
and y are always continunous.

Minimom —Fuel Trajectories

For all the cases reported below, the
transfer is from geostationary Earth orbit (GEO),
for which r1 = 42,241 km. The radius of the
atmosphere is 6498 km. Above this distance, the
density is identically zero. Over the altitudes
of atmospheric flight, 40-120 km (where the radius
of the Earth is taken to be 6378 km), the density
is approximated by a fifth-degree Chebyshev
polynomial whose coefficients were determined by a
least—squares fit to the U.S. Standard Atmosphere,
1976 (Ref. 7). The vehicle mass—to-surface area
is 300 kg/m2 for all cases.

Table 1.

Unconstrained

We begin by presenting some minimum-fuel
trajectories, under conditions of unbounded lift
(Amax" @) and unconstrained heating rate. Three
vehicle configurations were considered, as
distingnished by their respective maximum L/D
capabilities, namely, 0.845, 1.5, and 2.9. Data
from wind tunnel tests is available for vehicles
with these maximum L/D capabilities (Refs. 8,9,
and 10, respectively) and the values for the
parameters CDc and K which appear in the parabolic
drag polar were chosen to best fit the data. The
values used for the pair (Cm’,K) were (0.21,
1.67), (0.10, 1.11), and (0.017, 1.76),
respectively.

For each of the three maximum L/D cases, we
have fixed r,. = 6400 km and have searched and
found the A, such that yp = 0°. In this manner, a
minimum—fuel trajectory for each case was
generated. The corresponding LEQ orbits, to which
the transfers are optimal, are not exactly the
same, but are close enough to permit comparisons.
The alternative approach of specifying the LEO
orbit a priori would require searching on two
parameters, r, and Ae. in order to determine the
minimum—fuel %rajectory.

Certain characteristics of the minimum—fuel
unconstrained trajectories are given im the first
three columns of Table 1. We see that the high L/D
vehicle penetrates farthest into the atmosphere
and experiences the highest dynamic pressure and
heating rate. The low L/D vehicle experiences the
highest g-load. For comparison, the Shuttle
design limits for dynamic pressure and g—load are
16 ¥N/m2 and 2.5 respectively.ll  Time histories
of the state variables for the (L/D)y,y = 1.5 case
are shown in Fig. 3; those for the heating rate,

Characteristics of minimum-fuel trajectories

L/D Capability

Heating Rate

Low Moderate High Unconstrained Constrained
(L/D)max 0.845 1.5 2.9 1.5 1.5
6400.0 6400.0 6400.0 6415.0 6415.0

Target perigee rp (km)

he ( AP) 2.303247 2.701724
Exit flight path angle (deg) 0.3 0.4
LEO orbit radius (km) 6558.8 6578.7
AV, (m/s) 26.1 31.0
Ideal AV, for same LEO (m/s)  18.3 24.0
Min altitude (km) 58.8 58.2
Max dynamic pressure 15.9 18.6

(kN/m?)
Max convective heating rate 193.1 222.8
for a one meter sphere (W/cm?)
Max g's 3.6 2.7

3.2586836 2.947660826 6.56(.79867315)

0.3 0.45 0.49
6557.6 6608.0 6625.0
25.2 40.5 45.1
18.0 32.6 37.7
51.5 61.2 64.0
44.2 13.1 8.8
361.4 190.8 150.0
1.8 1.9 3.7
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Fig. 3 Time histories of state variables,
(L/D)pax = 1.5.

dynamic pressure, and g-load are shown in Fig. 4.
The behaviors illustrated in these two figures are
qualitatively representative of all the cases
investigated in this paper.

Fig. 5 shows the lift-to-drag ratio as a
function of the time from atmospheric entry for
the three cases. A similar pattern is followed in
each case. The maximum positive L/D is used
initially to recover from the downward plunge. As
the flight path angle becomes positive, the
maximum negative L/D is used to level off the
flight. These first two phases occur within the
first four minutes of flight. Of course, although
the basic pattern is similar, quantitatively,
there are definite differences in the flight
characteristics of the three L/D vehicles, as
indicated in Table 1. After the first four
minutes, a negative L/D is used to maintain flight
at a small positive flight path angle in order to
achieve the desired shallow exit. The required
negative L/D increases, as the flight proceeds, to
compensate for the decreasing atmospheric demnsity.

Bounded Lift

For the vehicle, with (L/D)ma = 1.5, wind
tunnel data show that the 1ift coefficient does
not exceed 0.9 in absolute value. Thus, we impose
the constraint

e ¢ 0.9
which corresponds to setting Apyy - 3.0 in Eq. 20.

The resulting lift control is given by the dashed
curve in Fig. 6. For comparison, the
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Fig. 4 Time histories
dynamic pressure, and
(L/D) pay = 1.5.

of heating rate,
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-
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; (L/D)pyax = 15 j *\\

_ ~. —
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0 5 10 15 20 25 30
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Fig. 5 Time histories of lift-to-drag ratio.

corresponding curve with CL unbounded is given by
the solid curve. We see that flight is along the
constraint boundary for much of the flight. The
important point, however, is that a near zero exit
flight path angle is still reachable by proper
choice of Mg

Constrained Heating Rate

Using Eq. 26, the heating rate along the
minimum-fuel trajectory can be calculated.
Referring to this as the unconstrained heating
rate, we can ask the gquestion: What is the
minimum-fuel trajectory, if the maximum heating
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Fig. 6 Time histories of optimal 1lift control
for unbounded and bounded cases.

rate is constrained to be no greater than some
fraction of the maximum unconstrained heat rate?

In order to see the effect of a heating rate
constraint, we again consider the configuration
with (L/D)max = 1.5, as described earlier, except
that the target perigee is taken to be 6415 km.
The minimum-fuel trajectory is computed first with
the heating rate unconstrained. The maximum
heating rate is found to be 190.8 W/cm2 for a
reference one meter sphere. Next, the minimum-
fuel trajectory is computed with all conditions
identical, except that the heating rate is
constrained not to exceed 150.0 W/cm2. In both
cases, the 1lift coefficient is bounded, as
described earlier.

Certain characteristics of the unconstrained
and constrained cases are given for comparison in
the last two columns of Table 1. In both cases, a
near—zero exit flight path angle is reachaile and
the AV, is within 8 m/s of that for the idealized
transfer. With the heating rate constrained, the
vehicle does not pemetrate the atmosphere as
deeply, the maximum dynamic pressure is reduced,
but the maximum g—-load is increased.

The optimal 1ift control, for each case, is
plotted versus time in Fig.7 . We see that the
vehicle flies, initially, at (CL)max' in the
constrained case; whereas, in the unconstrained
case, CL is decreasing steadily during the same
period. By flying at (Cp)p,y initially, and
correspondingly at a higher Cp, the vehicle slows
down higher in the atmosphere, allowing recovery
from the downward plunge, which occurs
subsequently at the maximum positive L/D, to take
place at a lower atmospheric density or
equivalently at a higher altitude. In this
manner, higher heating rates are avoided.

As a final note, the minimum entry flight
path angle from which the vehicle can recover and
achieve the prescribed exit state conditions, is
raised when a heating rate constraint is imposed
(that is, raised with respect to the unconstrained
case). The reason is that, if the entry is too
steep, even by flying at the maximum positive Cp,
excessive heating rates cannot be avoided. In the
particular case investigated here, an optimal
solution was found for entry angles as low as —
6.5° (r, = 6400 km) in the unconstrained case. In
the constrained case, the lowest entry angle, that
could be tolerated, was —6.0° (rp = 6415 km).
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Fig. 7 Time histories of optimal 1ift control
for unconstrained and constrained
heating rate cases. (Only first two
minutes shown.)

Summary and Conclusions

Under the assumptions and restrictions
given in the Introduction, minimum-fuel
aercassisted coplanar transfer from high orbit to
low orbit has been considered. An idealized
version of the transfer lent itself to amalytic
treatment and allowed a lower bound on the
characteristic velocity for any given HEO to LEO
seroassisted transfer to be determined. In order
to examine minimum-fuel transfer under more
realistic conditions, an optimization problem was
formulated and solved numerically. It was found
that for each given HEO to LEO transfer
considered, even with bounded 1ift and/or a
heating rate constraint, a characteristic velocity
within 10-20 m/s of the lower bound is achievable.
Thus, Fig. 2 provides a good indication of the
high orbit to low orbit coplanar transfers for
which the optimal aeroassisted transfer requires
less fuel than the Hohmann transfer.

The characteristic 1lift program for the
atmospheric portion of the minimum-fuel transfer
is to fly at the maximum positive L/D initially to
recover from the downward plunge, and then, to fly
at negative L/D to level off the flight, such that
the vehicle skips out of the atmosphere with a
flight path angle near zero degrees. This program
is modified at the beginning if high heating rates
are to be avoided. Flight initially at mazximum
1ift, and correspondingly, high drag, lowers the
vehicle’'s speed higher in the atmosphere, allowing
recovery from the downward plunge, which occurs
subsequently using the maximum positive L/D, to
take place at a lower atmospheric demnsity, or
equivalently, at a higher altitude.
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