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ABSTRACT

~—~ Theaeroelastic characteristics of tuned and randomly mis-

o’

tuned blade assemblies which possess two blade-alone
natural modes with close frequencies are studied. Modal
interactions among the two blade modes are shown to be-
come extremely significant for small frequency separation.
The two distinct loci of the aeroelastic eigenvalues, which
characterize an assembly with well separated modes, fully
merge into a single root locus as the blade-mode fre-
quency separation vanishes. Also, while in the case of
well separated blade modes the intreduction of random
mistuning into one blade mode affects only the assembly
modes which are predominantly of that blade-mode type,
mistuning results in the localization of all the assembly
modes when the blade-alone natural frequencles are close.
Results indicate that in the case of closely-spaced blade
modes a single-degree of freedom blade model yields qual-
itatively erroneous results and that an N-blade assembly
with two close blade modes behaves like an equivalent 2N-
blade assembly with a singie blade mode.
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1. INTRODUCTION

Perfect periodicity, or cyclic symmetry, is a convenient
and frequent assumption when analyzing the dynamics
of bladed disk assemblies. A primary reason for taking
advantage of cyclic symmetry is that the blade excitation
and response can always be expressed in terms of con-
stant Interblade phase angle modes which uncouple the
equations of motion, thereby reducing the size of the prob-
lem to that of one blade. This simplification yields a dras-
tic reduction In computational cost. Such ideal regular-
ity, however, holds true only if all the blades are identical
and uniformly spaced and if the disk {s symmenmric and
homogeneous. Perfect periodicity, though, is always dis-
rupted by small differences in the blade structural prop-
erties, which result from manufacturing and marerial tol-
erances and in-service degradation. Cyclic symmetry of
the unsteady aerodynamic loading may also be destroyed
by a slightly unegual spacing of the blades or by small
variations in the mode shapes of the blades. This phe-
nomenon, commonly known as mistuning, tremendously
increases the size, cost, and complexity of the analysis of
blade assemblies such as engines and fans.

Numerous research studies have been conducted in
an attempt to understand the effects of mistuning on the
dynamics of blade assemblies (for example, we refer to
the survey paper by Srinivasan {1] and the references con-
tained therein). These studies have shown that while mis-
tuning has a beneficial, stabilizing effect in a flutter situa-
ton [2,3], it typically has a quite undesirable effect on the



assembly forced response through a possibly very large
increase in the amplitude experienced by some blades [4].
It has also been found that blade mistuning results in the
appearance of new peaks in the frequency response [5].

Several recent studies sought to identify the key sys-
tem parameters which govern the sensitivity of the as-
sembly dynamics to random mistuning (for example, see
the works of Valero and Bendiksen [6], Wei and Pierre [7],
and Pierre and Murthy [8]). These studies showed that
the sensitivity of the aeroelastic dynamics of a blade as-
sembly to mistuning can vary by several orders of mag-
nitude depending on the strength of the interblade cou-
pling (whether structural or aerodynamic or both), the ex-
citation frequency, and the number of blades. Perhaps
the most important finding was that weak aerodynamic or
structural interblade coupling results in close aeroelastic
eigenvalues, high sensitivity to mistuning, and qualitative
alterations of the blade assembly dynamics. Specifically,
in the high sensitivity case both the free and forced vibra-
tion responses were found to become localized to a small
geomertric region of the assembly (that is, to a few blades),
a phenomenon which generally leads to a severe amplitude
increase for some of the blades. Associated with the phe-
nomencn of mode localization is that of root locus scat-
tering, in which the locus of the aercelastic eigenvalues
{frequency versus damping) loses the regular pattern that
characterizes a tuned assembly to become apparently ran-
domly scattered for smali random mistuning.

The above general trends regarding mistuning effects
and the associated physical insights into the dynamics of
mistuned assemblies were generated through the appii-
cation and development of perturbation methods to the
aeroelastic eigenvalue problem [7, 8], The perturbation
approach capitalized on the existence of two small param-
eters for highly sensitive blade assemblies, namely the ran-
dom mistuning and the interblade coupling. It was shown
that it is the combined effects of these two small param-
eters which is the cause of high sensitivity to mistuning
and mode localization.

In the proposed paper we examine the effects of a
third small parameter on the sensitivity of blade assem-
blies to mistuning, namely the frequency separation be-
tween the natural modes of a blade. Typically, the modal
interactions among the various natural modes of a blade
are weak unless some modes feature close frequencies.
When all the natural frequencies are well-separated, each
blade can be effectively approximated as a single-degree of
freedom system for each of the blade modes of interest—
an approach widely adopted. However, situations may
arise in which two blade modes feature close frequencies,
for example a bending mode and a torsion mede of a blade,
or two of the modes of a plate-like blade with low aspect
rato (recall that depending on geometry, plates may fea-
ture a number of close or even repeated natural frequen-
cies). In such cases one can anticipate significant interac-
tions among the close blade modes, due to aerodynamic
coupling and mistuning effects. The aim of the proposed

paper is to study the consequence of these modal interac-
tions on the sensitvity of the assembly to mistuning and
the localization of the aeroelastic modes.

To date, most research studies of mistuning have con-
sidered single-degree of freedom oscillator modeis of the
blades, thereby implicitly assuming large frequency sepa-
ration of the blade modes. In a few mistuning studies, cou-
pling among blade natural modes was accounted for, but
also for well separated natural frequencies [9,10]. Kaza
and Kielb [2] examined the effect of varying the ratio of
the bending to torsion natural frequencies of the blades
on the flutter speed, but to date no systematic examina-
tion of mistuned assemblies with close blade modes has
been performed.

In this paper we study the aeroelastic characteristics
of tuned and randomly mistuned blade assemblies which
possess two blade-alone natural modes with close fre-
quencies, Only (weak) aercdynamic coupling among the
blades is considered. Both the scattering of the locus of
the complex eigenvalues and the localization of the asso-
clated mode shapes are examined as descriptors of the
sensitivity to mistuning. The existence of three small pa-
rameters for this problem—the interblade coupling, blade
mode separation, and random blade mistuning—allows us
to formulate physical interpretations of and identify simi-
larities between the effects of blade mode separation and
blade mode mistuning. It 1s shown in the paper that the
modal interactions between the two blade modes hecome
extremely significant for small frequency separation. Fur-
ther, the effects of small frequency separation are shown
to be easily understood by invoking analogies to equiva-
lent assemblies of single-degree of freedom blades. Specif-
ically, it is argued that the blade mode frequency separa-
tion can be regarded as a form of frequency mistuning,
and that an N-blade rotor with two close blade modes can
be viewed either as a 2N-bladed rotor with alternate *mis-
tuning” (which corresponds to the small blade mode sepa-
ration) or as two coupled N-blade rotors—one correspond-
ing to each blade mode,

The paper is organized as follows. The equations
of aeroelastic motion are formulated in Section 2 for
tuned and randomly mistuned rotors with two degrees of
freedom per blade. The aercelastic eigensolution of the
tuned rotor is discussed in Sectdon 3 as a function of the
blade mode frequency separation, and the interpretation
of mode separation as a mistuning parameter is formu-
lated. Sectlon 4 describes the results obtained for the ran-
domly mistuned rotor. Root locus scattering and mode
localization phenomena are examined in terms of blade
mode separation., The paper’s conclusions are given in
Section 5.

2. EQUATIONS OF AEROELASTIC MOTICN FOR MULT-
DEGREE OF FREEDOM PER BLADE FORMULATION

The structure we examine consists of N blades equally
spaced on a rigid disk. Hence there is no structural cou-
pling among the blades. Each blade is modeled as a “typ-
lcal section,” with one bending and one torsion degree of



freedom. The model of the blade and that of the blade
assembly are taken from the work of Kielb and Kaza [2].

The center of gravity of the typical section is taken to
coincide with its elastic axis, which results in completely
uncoupled torsion and bending natural modes for a blade
in a vacuum. This allows us to vary the ratio of the bend-
ing natural frequency to the torsional natural frequency
of a blade, simply by changing the stiffness of the tor-
sional or the translational spring of the typical section.
Hence the two blade modes are completely uncoupied
structurally, and the only bending-torsion coupling orig-
inates from unsteady, motion-dependent aerodynamic ef-

fects. This setup allows us to vary the separation of the

blade mode frequencies in a controlled manner.

The unsteady, motion-dependent aerodynamic forces
are calculated by applying two-dimensional, linear, un-
steady, cascade aerodynamic theories for the subsonic
regime considered here [11]. Note that the effects of airfoil
thickness, camber and steady incidence are neglected and
thar the flow is assumed to be isentropic and irrotational.
This calculation résults in a complex matrix of generalized
aerodynamic coefficients. Note that motion-independent
aerodynamic forces and structural energy dissipation are
not included in our model.

The ahove model formulation vields a system of 2N
linear, homogeneous, ordinary differential equations in
the N blade torsion amplitudes and the N bending ampli-
tudes. We seek motions such that all the blade coordinates
oscillate with the same frequency and/or decay or grow at
the same rate. This yields the aeroelastic eigervalue prob-
lerm:

[-AM+A(wa) +Kju=0 (1)

where
eu = [h/b, &y, ha/b,az,....hn/b,an]” is the 2N-
dimensional complex etgenvector of the blade ampli-
tudes, where T denotes a transpose, h is the bending
amplitude of ith blade normalized by the blade semi-
chord, b, and «; is the ith blade torsion amplitude.

e M and K are 2N by 2N mass and stiffness matrices,
respectively,

* A is the 2N by 2N complex aerodynamic matrix, cal-
culated at the assumed frequency wg.

o A ls the complex eigenvalue.

The matrices K, M, and A consist of N2 blocks, each of
size two by two. Since there is no structural coupling be-
tween blades, K and M are block-diagonal matrices, where
the blocks on the diagonal are the stiffness and mass ma-
trices of the individual blades, respectively. Furthermore,
since in this work the center of gravity of the typical sec-
ton is taken to coincide with its elastic axis, there is no
structural coupling between the bending and torsion mo-
tions for an individual blade {in a vacuum), which means
that the blocks which make up K and M are themselves di-
agonal. Hence the assembly stiffness matrix can be written

as:
K

K= o ()
Ky

where

2
_ | Wk O .
Ka—[ 0 w?;-] i=1,....N (3)

where wp; and wy; are the bending and torsion natural fre-
quencies of the ith blade, respectively. (Equation (3) holds
only if both modes of all individual blades have been nor-
malized, in which case the mass matrix M simply equals
the 2N by 2N identty matrix.) Here frequency mistuning
has been assumed. For a tuned system all bending blade
natural frequencies are equal, wp; = wy, and all torsion
frequencies are equal, w,; = w;. For a mistuned assembly
the blade bending frequencies, or the torsion frequencies,
or both are random. Also note that with the assumption
of frequency mistuning the mass matrix consists of identi-
cal blocks on the diagonal (these blocks being themselves
diagonal).

While the assembly mass and stiffness matrices are di-
agonal, the aerodynamic matrix A is fully populated. The
off-diagonal blocks of A provide aerodynamic coupling be-
tween the blades, while the off-diagonal elements of each
block (including of the blocks on the diagonal) account for
the aerodynamic coupling between the bending and tor-
sion blade modes.

When the system is assumed to be tuned, ie., the
blades are all identical, all matrices are block-circulant,
where the dimension of each block equals the number of
blade modes, that is, two. In the tuned case the blade
motion in each normal mode of free vibraton is simple
harmonic in space as well as in time. In a normal mode
motion, all blades vibrate with equal amplitude and with
a constant phase angle between adjacent blades. Due 1o
cyclic symmetry, this interblade phase angle is restricted
to take N discrete values, o, = 2m{n~-1)/N,n=1,...,N.
Hence for each admissible value of the interblade phase
angle there are two free vibraton modes of the tuned
assembly—for example, but not necessarily so, one mode
featuring predominantly bending blade motion and the
other mostly torsion blade motion.

For an assembly with biade frequency mistuning, how-
ever, the stiffness matrix is still diagonal but no longer
bleck circulant, signifying the departure of the assembly
modes from constant interblade phase angle modes (note
that the mass and aerodynamic matrices remain block-
circulant). ' _

The solution of the aercelastic ejgenvalue problem,
Eq. (1), dictates the nature and stability of the assembly’s
motion in an aercelastic mode. For an efgensolution (A, u),
the blade assembly's motion is given by uexp{iwt), with
A = w? and i2 = -1, where w is the compiex frequency
defined by itw = y + iv. In this paper we shall refer to g,



the rate of exponential growth of the blade motion ampli-
tude, as the “real part of the eigenvalue.” Note that flutter
instability occurs in 2 mode when g > 0. The frequency
of oscillations, v, is referred to in the paper as the “imag-
inary part of the eigenvalue.” The complex eigenvectors
provide the 2N amplitudes and phases of the agroelastic
mode shapes.

Detailed expressions for the matrices in Eq. (1) can
be found in reference [2]. Also, the parameters used for
generating the results of this paper are given in Table 1.

In the remainder of the paper we examine how the
aeroelastic modes of the assembly, obtained by solving
Eq. (1), are affected by the closeness of the bending and
torsion natural frequencies of a blade and by the introduc-
tion of small random mistuning in the bending or torsion
natural frequencies of the various blades.

3. TUNED SYSTEM RESPONSE FOR CLOSELY-SPACED
BLADE MODES

Here we examine the effect of blade mode frequency sepa-
ration on the aeroelastic eigenvalues and mode shapes of
the tuned assembly.

Figure 1 depicts the root locus of the aeroelastic
ejgenvaiues (natural frequency versus damping factor} of
a tuned assembly with 56 blades, for various values of
the ratio of the blade-alone bending frequency to the tor-
sion frequency. Since in this modei there are two natural
modes per blade, the system possesses 112 eigenvalues.
The corresponding mode shapes all feature a constant
interblade phase angle, such that there are two modes
for each admissible value of the interblade phase angle
(On =2m(n—-1)/N,n =1,...,N). The two mode shapes
for each n feature each torsion and bending modal am-
plitudes which are constant throughout the rotor, but in
general the ratios of the bending amplitude to the torsion
amplitude differ for the two modes.

Observe in Fig, 1a that when the two blade mode fre-
quencies are not too close (here the bending to torsion fre-
quency ratio equals 0.9) the aeroelastic eigenvalues form
two distinct loci of 56 eigenvalues each. There is one mode
with a given interblade phase angle in each locus. The ra-
tios of the torsion amplitude to the bending amplitude,
indicated for some modes in Fig. 1a, reveal that the up-
per locus features modes in which the assembly vibrates
primarily in the blade torsion mode, while the lower locus
corresponds mostly to a bending motion of the blades.
Nevertheless, note that there is a small contribution of
the bending blade mode to the assembly modes of the
upper (torsion) locus and vice versa. This phenomenon
is due to the coupling of the two blade modes through
the unsteady aerodynamic forces. This modal coupling,
though clearly not sufficient to merge the two distinct loci
in Fig. 1a, affects the blade modal amplitudes significantly.
This is because the blade torsion and bending frequencies
are not strongly separated in this case. The modal cou-
pling effect is most pronounced for the modes of one lo-
cus which are closer to the other locus {for example, the

low frequency modes of the torsion locus), as these are
observed to feature a large contribution from the other
blade mode. Also note in Fig. 1a that the spread in the
natural frequencies for each locus represents the amount
of aeredynamic coupling ameng blades for that particular
mode group. This implies that for our system the cou-
pling among blades which vibrate in their torsion mode
is stronger than that among blades undergoing a bending
motion, although the aerodynamic coupling is obviously
weak for both blade modes. Finally, note that the root lo-
cus displayed in Fig. 1ais quite similar that of an assembly
with alternate blade mistuning {2]. Hence we can view the
N-blade assembly with two blade modes as an equivalent
assembly of 2N single-mode blades, with every other blade
featuring a torsion mode frequency and the others a bend-
ing mode frequency—thus corresponding to an alternate
bending/torsion “mistuning.” Alternatively, we can regard
the root loci depicted in Fig. 1a as those of two weakly cou-
pled, dissimilar assemblies of N blades each—one “bend-
ing mode assembly” and one “torsion mode assembly,”
such that the coupling between the two subsystems is not
sufficiently large to overcome the frequency separation
between the bending- and the torsion-dominated motions
which characterize each *assembly.” The structure of the
equations of motion derived in Section 2 supports these
conjectures.,

Figures 1b-d show that as the blade-alone bending
to torsion frequency rato increases, the two distinct loci
come closer together and gradually merge. Indeed, for
bending to torsion frequency ratios between 0.94 and 0.97,
the aercelastic elgenvalues constitute a single locus of 112
eigenvalues, which would be characteristic of an equiva-
lent assembly of 112 blades with a single mode per blade.
One difference between the locus of the assembly with 56
blades and two blade modes and that of an assembly with
112 single-mode hlades, however, is that in the former
there are only 56 distnct interblade phase angles, with
two modes for each phase angle value, while the latter fea-
tures 112 distinct interblade phase angles. The merging of
the two root loci observed in Figs. 1b-d occurs because the
aerodynamic coupling between the bending and torsion
meodes become predominant as the frequency separation
between these two blade modes decreases. Indeed, as fre-
quency separation decreases, the assembly mode shapes
become less dominated by either the bending or the tor-
sion component to feature a significant contribution from
both blade modes. In particular, the two assembly modes
for each interblade phase angle become more alike as fre-
quency separation decreases and thus as coupling between
blade modes through the aercdynamic terms increases.
This is confirmed by the torsion to bending amplitude ra-
tios listed for some modes in Figs. 1b-d, which are gener-
ally closer to the value of one than in Fig, 1a. {Here it is
worth pointing out that all pairs of interblade phase angle
modes do not feature strongest coupling, that is, closest
bending to torsion amplitude ratios within a mode pair,
for the same value of the bending to torsion frequency



rato; hence the still relatively wide range of amplitude
ratios obsetved in Figs. 1b-d.} As the bending to torsion
frequency keeps increasing, the root locus is observed to
separate gradually into two distinct loci in Figs. le and 1f,
signifying the decrease of blade mode coupling through
the aerodynamic terms as the bending and torsion fre-
guencies move apart. Note that for the larger bending to
torsion frequency ratos the bending-dominated locus be-
comes the upper locus. Hence a switching of the two root
loci effectively occurs as the frequency ratio increases. Fi-
nally, it is worth mentoning that the merging of the two
loci is not exactly centered at a frequency ratio of one, but
rather near 0.95. This is most probably due to the fact that
aerodynamic terms provide not only coupling between the
blade modes but also additional stffness to the individual
blade modes, and that the bending and torsion modes may
not be identically affected by these aerodynamic terms.

Returning to the analogy to a 2N-blade assembly with
alternate bending/torsion mistuning invoked above, the
merging of the loci observed in Figs. 1b-d can be explained
by noting that as the blade mode frequency separation de-
creases, the alternate “mistuning” strength decreases and
thus the coupling between blade modes becomes dom-
inant. As the blade mode frequency separation (which
ought to be defined by appropriately accounting for the
added aerodynamic stiffness) vanishes, the “mistuning”
vanishes as well, ylelding a 112-blade “tuned” assembly
which features a single root locus, as shown in Figs. 1b-d.
As the blade mode separation increases in Figs. 1e and 1f,
the alternate mistuning grows again and the aerodynamic
coupling between the blade modes is not sufficient to keep
the loci merged, and separation is observed.

The merging of the root locl can also be interpreted
with the anajogy to two assembiles with N blades each, one
corresponding to the bending blade mode and the other to
the torsion blade mode. As the blade mode frequency sep-
aration decreases, the two N-blade assemblies become in-
creasingly similar and, relatively, the inter-assembly aerc-
dynamic coupling increases. This means that the blade
bending and torsion modes become increasingly coupled,
causing all assembly modes to feature significant bend-
ing and torsion components, much in the same way as
the modes of a system of two coupled, slightly dissimilar
oscillators feature oscillations of both oscillators as cou-
pling increases. As blade mode frequency separation is in-
creased in Figs, 1e and 1f, the “mistuning” between the two
N-blade sub-assemblies grows and the assembly modes
resume being either bending- or torsion-dominated, simi-
larly to the localized modes of a weakly coupled, mistuned
two-oscillator system [12].

In order to further {llustrate the effect of coupling
among blade modes as frequency separation varies, Fig. 2
displays the bending to torsion amplitude ratio versus
the bending to torsion frequency ratio for the palr of in-
terblade phase angle modes n = 18. Observe how the
torsion- and bending-dominated assembly modes, which
are characteristdc of the larger frequency separation, be-

come a nearly equal mix of bending and torsion compo-
nents as the two blade-alone frequencies approach each
other, with the strongest blade mode coupling occurring
for a frequency ratio equal to about 0.98, Note that for this
mode pair the strongest coupling occurs slightly after the
two loci have separated. This point of strongest coupling
was observed to depend slightly on the interblade angle
considered—again this is because of the stiffness added by
the aerodynamic terms, which depends on the interblade
phase angle. It is also noteworthy that the bending to tor-
sion amplitude ratios are not equal to one for strong blade
mode coupling. This is not surprising since the bending
and torsion modal amplitudes represent physically differ-
ent motions, hence equal contributions to the motion from
the bending and torsion components do not necessarily
imply equal modal amplitudes.

The effect of coupling between bending and torsion
blade modes is further illustrated in Fig. 3, which depicts
the loci of the aeroelastic frequencies for the n = 18 pair
of modes in terms of the blade mode frequency separation.
The phenomenon of curve veering is observed, such that
the two aercelastic frequency loci approach each other as
blade mode separation is reduced, and then veer away
from each other as the bending to torsion frequency ratio
is increased (stronger or weaker curve veerings would be
observed for the other pairs of constant interblade phase
angle modes). The curve veering in Fig. 3 Is similar to that
obtained for a system of two coupled oscillators [12}, indi-
cating the validity of the analogy to the two N-blade sub-
assemblies described above. The interaction between the
bending and torsion motions is strongest in the veering re-
gion, thereby confirming the merging of root loci in Fig. 1.

4. RANDOM MISTUNING AND MULTI-DEGREE OF FREEDOM
PER BLADE RESPONSE

The rotor assembly can be mistuned either by altering the
blade-alone torsion natural frequencies or the bending fre-
quencies or both. The blade mistuning considered here is
random with a uniform probability distibution, and it is
characterized by its small standard deviation. As an il-
lustratdon of the effects of random blade frequency mis-
tuning on the aeroelastic modes of the assembly, Fig. 4
displays the root locus of the eigenvalues for a bending
to torsion frequency ratio of 0.99. Both a tuned assembly
and one with mistuning of standard deviation 0.3% in the
blade-alone bending natural frequencies are considered.
In the tuned state the eigenvalues form two close but dis-
tinct locd, and it is apparent that mistuning affects only
the upper locus in a noticeable way, which corresponds
mostly to a bending vibration of the blades. Specifically,
observe the scattering of the bending-dominated locus as
the strength of bending frequency mistuning increases.
The phenomenon of root locus scattering was shown by
Pierre and Murthy [8] to be characteristic of highly sensi-
tive mistuned blade assemblies and to signify the occur-
rence of severe mode localization. Hence we expect the
mode shapes associated with the eigenvalues of the up-
per locus to be strongly localized to a few of the 56 blades



due to the small mistuning. On the other hand, notice that
the torsion-dominated (lower) locus remains quite regular
when mistuning is introduced. We reckon that the cor-
responding mode shapes conserve a constant interblade
phase angle and extend throughout the assembly.

In the case of Fig. 4, the introduction of mistun-
ing in the blade bending frequencies only influences the
bending-dominated locus because the aerodynamic cou-
pling between the two blade modes is fairly weak. Thus
the torsion-dominated modes remain relatively unaffected
by the bending frequency mistuning. Similarly, one ex-
pects that mistuning the torsion blade frequencies would
only affect the lower root locus to any significant degree.
The conchusion is that in the case of distinct root loci for
the two blade modes, the effects of mistuning on the as-
sembly dynamics are similar to those on two uncoupled
assemblies, one for each blade mode. Hence for weak cou-
pling between blade modes, two separate anaiyses of as-
semblies with a single degree of freedom per blade can be
performed—an expected result. This is the case because
coupling between the two N-blade sub-assemblies is too
weak for mistuning in one assembly to affect the other, or
equivalently, because the blade-mode separaticn is large
compared to the bending mode mistuning.

To confirm these findings, Fig. 5 depicts the frequency
loci and selected mode shapes for a randomily mistuned
assembly with a bending to torsion frequency ratio equal
to 0.9 (case of Fig. 1a) and with 1% bending frequency
mistuning. Observe the scatter of the bending-dominated
root locus, while the torsion-dominated locus remains reg-
ular and little affected by mistuning, Furthermore, note
that the mode shapes that are bending-motion dominated
fundamentally change character from the tuned modes
to become strongly localized about a few blades. Mode
shape localization and root locus scattering were shown
in reference [8] to be two manifestations of the same phe-
nomenon; this is confirmed in Fig. 5 for the bending-
dominated aeroelastic modes. Conversely, the torsion-
dominated mode shapes in Fig. 5 are little affected by mis-
- tuning and feature a nearly uniform amplitude throughout
the assembly. This is consistent with the regular root lo-
cus of the torsion-dominated modes. Back to the bending-
dominated modes, notice that the localization of the mode
shapes is less pronounced for the natural frequencies
which are closer to the torsion-mode locus. This is be-
cause these mode shapes feature a greater, though still
small, torsion participation, thereby making them slightly
less sensitive to bending-mode mistuning,

Figure 6 displays the effects of torsion frequency mis-
tuning on the root locus of the assembly, for a bending to
frequency ratio of 0.965 and various mistuning strengths.
In this case the tuned assembly features a merged locus,
corresponding to blade modes which are strongly cou-
pled through the aerodynamics. Contrary to the behavior
shown in Fig. 4, the root locus in Fig. 6 graduaily loses its
regular structure to become randomly scattered as mis-
tuning strength increases. Although the mistuning is re-

stricted to the torsion natural frequencies of the blades,
the entire locus, hence all of the 112 aercelastic modes,
seem to be similarly affected by mistuning. This can be
explained by noting that the strong blade mode coupling
causes all assembly modes to have a significant torsion
component and hence to be strongly affected by torsion
mistuning. The corresponding aercelastic mode shapes
are depicted in Fig. 7 for a mistuning of strength 2%. The
figure reveals that all the modes seem to be strongly af-
fected by torsion-mode mistuning and high levels of Jo-
calization are observed. Therefore in this case the assem-
bly appears to behave like an equivalent randomly mis-
tuned assembly with 2N blades. It is, however, interesting
to note that the localization is not uniform for all mode
shapes: in Fig. 7 the mode shape which belongs to the
more regular portion of the locus features less severe lo-
calization than those which are assocjated with the “scat-
tered” regions of the root locus, This is again consistent
with the findings of Pierre and Murthy [8).

5. CONCLUSIONS

The aeroelastic characteristics of tuned and randomly
mistuned blade assemblies with two closely-spaced blade
modes have been examined. The following conclusions
can be drawn:

« Modal interactions among the two blade modes be-
come extremely significant for small frequency sepa-
ration. The effects of random mistuning are governed
by the relative strengths of the interblade coupling,
blade mode separation, and blade mistuning.

» Blade-mode frequency separation can be regarded as
a form of frequency mistuning, and an N-blade ro-
tor with two close blade modes can be viewed as a
fictitious 2N-bladed rotor with alternate “mistuning”
(which corresponds to the small Hlade mode separa-
ton).

¢ As blade-mode frequency separation vanishes, the fic-
ttlous 2N-blade rotor becomes “tuned,” and the two
root loci of the aeroelastic eigenvalues, which charac-
terize the assembly with well separated modes, fully
merge into a single root locus.

o While in the case of well separated blade modes,
the introduction of random mistuning into one blade
mode affects only the assembly modes which feature
predominantly that blade mode, in the case of close
blade-mode frequencies, mistuning results in the lo-
calization of alf the assembly modes and in the scat-
tering of the entire root locus.
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Random mistuning distribution Uniform
Number of blades 56

Gap to chord ratio 0.534
Stagger angle 54.4°

Mass ratio 258.5

| Inlet Mach nuinber 0.5
Reduced frequency 0.469
Radius of gyration 0.577
Elastic axis location at mid-Chord
Center of gravity location at mid-chord
Structural Damping 0

Table 1 Model parameters (see reference {2)).
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Figure 1. Transformation of root loci as blade-alone natural frequencies approach each other (dimensionless

frequen
(v) on vertical axis versus dimensionless damping {u) on horizontal axis). The ratio of torsion amplitude to ggndjrg
?mphmde is given for selected modes. The frequency ratio is that of the blade-alone bending frequency to the torsion
requency.



Interblade Phase Angle Index = 18
i Bending/Torsion Amplitude Ratio
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Figure 2. Variation of the bending to torsion amplitude ratio as a function of the blade-alone bending to torsion frequency
ratio, for the n = 18 pair of constant interblade phase angle modes.
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Figure 3, Variation of the assembly aeroelastic natural frequencies (v} as a functon of the blade-alone bending to torsion
frequency ratio, for the n = 18 pair of constant interblade phase angle modes,
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Figure 4, Scattering of the regular structure of the bending root locus by the introductien of random mistuning in the
blade-alone bending natural frequericies (axes are as in Fig, 1), The blade-alone bending to torsion frequency ratio is 0.49
and in the mistuned case the mistuning standard deviation s 0.3%.
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Figure 5, Localization of the mode shapes associated with the scattered bending root locus. The blade-alone bending
to torston frequency ratio is 0.9 and the random mistuning in the blade-alone bending natural frequencies has standard
deviation 1%. For the mode shapes, bending amplitudes (black bars) and torsion {white bars) are plotted versus the blade
number.
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