
COMPUTATIONS OF INVISCID COMPRESSIBLE FLOWS USING 
FLUCTUATION-SPLITTING ON TRIANGULAR MESHES , 

H. Pailkre* - H. Deconinck* - R. Struijs* 
P.L. Roef - L.M. Mesarost - J.-D. Miiller*f 

* von Karman Institute for Fluid Dynamics, Belgium 
f The University of Michigan, Ann Arbor, USA 

Abstract 
The multidimensional upwind approach for the Euler equa- 
tions discussed in this paper generalizes to 2D the well- 
known flux difference scheme of Roe. The method, which 
uses grids composed of triangles, is based on a conservative 
decomposition of the flux balance for each cell into scalar 
wave contributions, which are then upwinded to the vertices 
using a high-resolution compact monotone scalar advection 
scheme. Whereas the advection part and the conservative 
linearization have been extensively treated in the past, the 
present paper concentrates on the choice of the wave model 
generalizing the characteristic decomposition at the base of 
the 1D flux difference splitters. Contrary to the 1D case, 
many possibilities exist and a thorough review and com- 
parison of existing and new models are given, emphasizing 
performance in subsonic as well as supersonic flows. The 
numerical results presented for a wide range of internal and 
external flows show the strong potential of the method. 

1. Introduction 
In the last fifteen years, upwind finite volume methods 
have emerged as a robust and rather accurate tool in 
computing multidimensional compressible flows. Nev- 
ertheless, most of these schemes rely on 1D physics, 
i.e the Riemann problem that describes the interaction 
between two fluid states separated by a cell face, by 
waves propagating in the direction of its normal. Typ- 
ically, this leads t o  a misinterpretation and unwanted 
diffusion of shocks or shear layers not aligned with the 
grid. To cope with this basic weakness, multidimen- 
sional elements have been incorporated in the interface 
fluxes, to  allow waves to  propagate in more physical di- 
rections [I ,  21. 
While these attempts have met with some degree of suc- 
cess (see the review papers by Roe and van Leer [3, 4]), 
the present approach starts from a totally different 
viewpoint: instead of trying to cure the interface fluxes 
in a finite volume approach, we start  from a different 
interpretation of Roe's flux difference scheme in ID,  
namely as a cell vertex residual distribution scheme. 

A multidimensional generalization then leads to  a flux- 
balance splitting scheme over triangular cells in 2D and 
tetrahedral cells in 3D. Thus, to  construct a method 
based on this idea, three basic ingredients are needed: 

an analytical model to  decompose the 2D or 3D 
flux divergence into scalar wave contributions; 

a discrete version which preserves conservation. 

0 a cell vertex scheme for the scalar advection equa- 
tion which governs each scalar wave, 

Each of these ingredients has evolved substantially over 
the last years and all three have reached a degree of 
maturity which almost allows routine computation of 
standard 2D inviscid flows, as is shown in this paper. 

Concerning the advection step, Roe [5] presented the 
first fluctuation-splitting schemes on triangles in 1987. 
Soon after, Struijs et  al. [6] proposed a number of 
non-linear schemes satisfying crucial properties such as 
positivity and linearity preservation. Extension to  3D 
and further refinements were made in 1992 by Bourgois 
et  al. [7]. Paillkre [8] and Mesaros (unpublished results) 
made a study of the shock capturing of the non-linear 
scalar advection schemes for particular grid configura- 
tions, thus greatly improving their understanding. An 
exhaustive discussion of the advection schemes is given 
in [9], including a detailed accuracy study. 
The generalization of the 1D Roe linearization to  tri- 
angles and tetrahedra turned out to  be very simple 
and was discovered independently by Roe and Stru- 
ijs [lo, 111 in 1991. 
While the scalar advection step and the conservative 
linearization are now fairly well understood, the wave 
modeling step is still a topic of further study, and the 
major purpose of this paper is t o  discuss the many re- 
cent developments in this area. Indeed, contrary t o  the  
1D case where the wave decomposition of the residual 
is unique, waves in 2D can travel in an infinite number 
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of directions ; to  define the most physically relevant di- 
rections and the number of active waves is the task of 
the wave model. The first developments in multidimen- 
sional wave modeling date from 1986, with the simple 
wave models of Roe [12] and the characteristic decom- 
position of Deconinck et al. [13]. Other important con- 
tributions were made in the following years (De Palma 
et al. [14], Roe and Mesaros [15]). In 1992 (see [16] for a 
detailed account), Rudgyard [17] proposed a new family 
of models while Parpia [18] proposed a new wave model 
applied in the context of finite volume methods. Very 
recently, Roe developed yet another model which incor- 
porates both steady patterns (which do not contribute 
to the residual) and unsteady simple waves [19]. A thor- 
ough evaluation and comparison of these wave models 
is made in the present paper, including the first results 
for Parpia's model and for the latest Roe models. 
The paper is organized as follows: in sections 2 and 3, 
the scalar advection schemes and the conservative lin- 
earization are briefly recalled. The different wave mod- 
els are described in section 4. A detailed analysis of the 
performance of the solver in subsonic flow is made in 
section 5, highlighting some severe deficiencies of exist- 
ing models as well as the improvements brought by the 
latest model. In section 6, the accuracy of the solver 
is evaluated, which confirms the analysis performed in 
the scalar case, where the monotone non-linear scheme 
was found to be of order 1.6. Finally, section 7 gives an 
overview of the performance of the method for a number 
of standard testcases. 

2. The scalar advection equation 
Fluctuation-splitting is a cell-vertex space discretization 
for the scalar advection equation, 

where is the advection vector, which depends on the 
space coordinates and eventually on the solution itself. 
For simplicity, let it be a constant vector. Assuming 
a continuous piecewise linear representation of W on a 
triangular mesh, the residual or "fluctuation" for each 
triangle with surface ST can be computed as: 

- 
where k;.= $ A .  iii and Zi are the inward scaled normals 
of the triangle, see fig 1. Considering simple Euler ex- 
plicit time integration, all compact distribution schemes 
can be cast into the following forms, for mesh point i: 

Figure 1: cell-vertex triangle 

where the summation extends over all triangles hav- 
ing i as common vertex. Further, for conservation and 
consistency, the coefficients PT,, and the functions 7T,j 

are chosen such that for each individual triangle T with 
3 vertices j ,  C,,, Pr,j = 1 and z Q = ,  y ~ j  = dT. For 

compactness of the stencil, the distribution is done on 
a triangle basis, and only involves the nodes of each tri- 
angle. Si is the area of the median dual cell around 
node i. For an upwind scheme, the weights ,BT,i depend 
on the advection speed s: only downwind nodes receive 
a contribution. This can be expressed as: 

Both positive and linearity-preserving schemes have 
been developed. To combine both properties, the 
schemes have to be made non-linear, i.e the YT,, have 
to  be non-linear functions of the data. In this paper, 
three particular schemes have been used: the linear N 
and LDA (Low Diffusion A) schemes, and the non-linear 
PSI (Positive Streamwise Invariant) scheme. Compact 
formulae have been derived for each of these schemes [7]: 

L D A  - max(0, k,) 
YT,i - 4~ 

~ g = l  ma409 kj) 

PSI - max(0, ki) min(0, (W, - W i n ) 4 ~ )  
YT,i - OT,  

C,"=1 max(0, kj) min(O, (Wj - Win)dT) 

where Win is the interpolated solution a t  the inflow 
point of the triangle (fig 2) given by: 

These schemes are all upwind in the sense that no con- 
tribution is sent to  upstream vertices. Fig 2 shows the 
two possible situations that can occur in a triangle. 
In 2a), the fluctuation is split between nodes 1 and 2 
(k1 > 0, k2 > 0, kg < O), and in 2b) the whole fluctu- 
ation is sent to  node 2 (kz > 0, kl < 0, kg < 0). From 
the formulae given above, it is clear that the N and 
LDA schemes are linear, whereas the PSI is not, and 



Figure 2: a) two-target situation b) one-target situation 

that the LDA and PSI schemes preserve linear steady- 
state solutions (yTj  -' 0 when 4T + 0) unlike the 
N scheme. Furthermore, the N and PSI schemes can 
be made positive under a CFL condition, unlike the 
LDA scheme. The three schemes are also continuous 
for changes of advection speed i as well as for changes 
in the solution, unlike the non-linear N N  scheme used 
previously [20]. Continuity is a requirement for robust- 
ness of the schemes, since it  allows smooth transitions 
of the solution, and so avoids limit cycle behaviour in 
the convergence. In all scalar cases run, convergence t o  
machine zero is obtained each time for all of the three 
schemes considered. 
In [9], an accuracy study was also made to estimate the 
order of the schemes for smooth solutions. Using the 
L2 norm, the N scheme was found to be of order 0.85, 
the PSI 1.6 and the LDA exactly 2.0. 

3. The Euler equations 
The Euler equations in conservative form are: 

where U is the vector of conserved variables and F and 
G are the flux vectors: 

For a system of equations, the fluctuation-splitting 
schemes are based on a "wave" decomposition of the 
residual in each cell. This wave modeling step is dis- 
cussed in detail in the next section. Very generally, the 
flux divergence can be written as 

where w k  is a scalar, and Rk its projection onto the 
conservative variables. Thus, the solution evolves in 
time according to a set of scalar equations: 

by projection onto the vectors Rk. To construct a 
conservative scheme for the Euler equations based on 
wave-decomposition and upwind distribution, a par- 
ticular linearization is applied [lo]. As in the scalar 
case, cell-vertex triangular meshes are considered: at 
each time-step, and in each cell, the state vector 
Z = (fi, f i u ,  f i v ,  f iH) '  is assumed to vary linearly. 
This vector is such that U ,  F and G are quadratic in 
its components, leading to an easy linearization of the 
flux balance in each cell: 

(Fn, + Gny)dl = ST 
k 

where ST is the area of the cell and the hat () denotes 
the evaluation at the average state of the cell, 

Applying now the scalar advection scheme to each wave, 
the residual of the cell  an be distributed in a conser- 
vative way to the nodes. After performing the resid- 
ual distribution step, the solution can be updated. At 
present, explicit time-stepping is used, with Forward 
Euler or Runge-Kutta type schemes. The final update 
formula can be written as 

(10) 
where the summation index T carries over all triangles 
having i a s  a common vertex, while ,!3$,i represents the 
fraction of the residual of the kth wave in cell T sent to 
node i .  
At the boundaries, two approaches can be applied: ei- 
ther a strong imposition using characteristic boundary 
conditions, or a weak form that enforces the conditions 
on the fluxes. The latter allows the use of interior 
schemes a t  the boundary and can enhance the robust- 
ness of the solver. 

4. Wave models 

In one dimension, the solution can be projected 
uniquely onto the eigenvectors of the flux Jacobian, 
leading to the decomposition of the flux difference F, 
into waves or "characteristics" traveling along the axis: 

In 2D, the decomposition of the flux divergence into 
scalar waves is no longer unique. At present, three dif- 
ferent approaches exist and are compared in this paper. 
The first one is based on characteristic compatibility 
equations of the Euler system, the second one on simple 



wave decompositions of the solution, and the third one 
on a projection of the solution onto a basis of steady 
and unsteady patterns. Each of these families allows 
many variants. We begin with a brief presentation of 
all the models. 

4.1 Characteristic decom~osition 

This decomposition [13] is based on a particular choice 
of a vector of characteristic variables dw( td l ) ,  id2)), 
which allows an optimum decoupling of the Euler sys- 
tem for certain choices of z(') and id2). The character- 
istic variables d W  are given by 

dp - dp/a2 
d l ) .  8; 

d = [ '(id2) - dii + dp/pa) ) = p*-lm, 

i(-."2) . dii + dplpa) 

where P*-' is the transformation matrix from conser- 
vative to characteristic variables. Thus d U  = P * d W .  
dl) is the vector perpendicular to dl). Substituting 
into the Euler system, the following system of compat- 
ibility equations is obtained: 

where the qk are coupling terms: 
q1 = 0, q2 = ad1) . (VW3 + VW4) = dl) . Vp/p and 
q3 = q4 = ~ ( V U ,  Vv, dl), ~('1). q2 can be set to zero 
by choosing dl) parallel to  the pressure gradient, and 
q3 = q4 can be minimized for certain choices of id2). 
Finally, the cell residual is decomposed as: 

4 -, 4 

with A1 = A 2  = fi, A314 = t i  & dZ), while Gk are 
the columns of the matrix @*, and Q is the coupling 
term expressed in conservative variables. To distribute 
the coupling term, two-possible alternatives exist: ei- 
ther to equidistribute Q to  the three nodes (eq (12)), 
or to upwind the qk in the same way as the advective 

part (eq (11)). 

4.2 S im~le  wave decom~ositions 

This decomposition method relies on a "pattern recogni- 
tion" step, by which the local flow gradients are modeled 
by a set of simple waves. Simple waves are elementary 

solutions of the Euler equations for linearized flow, of 
the form 

+ * 
where Q and 6 = cos el, + sin ely are constants repre- 
senting respectively the wave strength and the direction 
of propagation of the wave front, and Am and Rm are 
corresponding eigenvalue and eigenvector of the matrix 

The eigenvalues, A&* = fiiirii&a and A 2  = i i . 6 ,  are the 
wave speeds corresponding respectively to two acoustic 
waves, a shear wave and an entropy wave. 
The requirement for a simple wave model is that it has 
enough degrees of freedom to match any arbitrary linear 
variation of the data. Thus in 2D, a model should have 
8 degrees of freedom, represented by the unknowns rwk 
and Bk. In practice, these are derived from the decom- 
position of the linear variations of the primitive vari- 
ables V = ( p ,  u, v, p ) T :  

where Pt is the 2 x 4 matrix or pattern describing the 
linear flow variations due to the unsteady simple wave k. 
For instance, the patterns for an entropy wave and a 
shear wave propagating in the directions Be and B* are 
respectively: 

0 0 
- sin Bs cos BS - sin2 BS P:(BS) = 

cos2 BS cos BS sin 0" 
0 0 I 

and for an acoustic propagating in the direction B a ,  

pcosOa/a psinBa/a 
cos2 Ba cos Oa sin Ba 

p:(ea) = 
sin 0" cos Ba sin2 Ba 

pa cos Ba pa sin Ba 

Different models have been proposed following this ap- 
proach: Roe's family of 6-wave models, Parpia's 5-wave 
model, and the "directional splitting" models of Rudg- 
yard: 

In [12], Roe showed that a simple wave model could be 
produced by considering four acoustic waves propagat- 
ing a t  90' to one another, an entropy wave and a shear 
wave, the latter propagating in a well-chosen direc- 
tion. The acoustic waves represent 5 degrees of freedom 
(strengths and direction), the entropy wave 2 (strength 



Figure 3: wave directions: model D (entropy wave not 
represented) 

and direction) and the shear wave 1 (strength). Since 
the direction of the latter is free, a one-parameter fam- 
ily of models is obtained: Roe's original model B [12] 
(direction perpendicular to the velocity), model C of 
De Palma et al. [14] (direction of the pressure gradi- 
ent), Roe's model D [15] (bisector of the principle axes 
of the strain rate tensor, X and Y ,  see fig 3). 

Another simple wave model was developed by 
Parpia [18], combining two opposite acoustic waves 
(3 degrees: two strengths and one direction), two per- 
pendicular shear waves (3 degrees: two strengths and 
one direction) and an entropy wave (2 degrees: strength 
and direction), see fig 4. The directions and strengths 
of the five waves are: 

PY Oa = arctan - 
Pz 

for the acoustic waves, 

1 
OS = - arctan (us + vy ) cos 20a - (u+ - vY) 

2 (vz + uY) - (u, + vy) sin 2Oa 

R = (uz + vy) cos 20" - (u, - v,) 
sin 20s 

- - (vz + uY) - (11, + vy) sin 20a 
COS 20s 

for the shear waves and 

for the entropy wave. 
Another family of models was recently developed by 

Figure 4: wave directions: Parpia's model (entropy 
wave not represented) 

Rudgyard [16]. The starting point is the decomposition 
of VV into an entropy wave pattern, and two sets of 
patterns (each one comprises two acoustic waves and a 
shear wave) depending on two arbitrary directions O1 
and $2: 

The model is complete since there are 8 unknowns, the 
strength and direction of the entropy wave, and the 
strengths of the 4 acoustic and 2 shear waves. By 
choosing the angles O1 and 6'2, a two-parameter fam- 
ily of models is obtained, consisting of 7 waves. This is 
clearly computationally expensive, and can lead to un- 
necessary dissipation, as will be shown later. Rudgyard 
therefore proposed to reduce the number of active waves 
by choosing particular directions for which some of the 
wave speeds are zero. For instance, taking the direc- 
tions parallel and perpendicular to  the velocity yields a 
6-wave model called the "streamwise splitting". A less 
diffusive model, called the "Mach angle splitting" and 
valid for supersonic flow only, is obtained by taking the 
directions normal to  the Mach lines, see fig 5: 

Finally, for all these models, the cell residual can be 
written as: 

where we define V W ~  = crkriik,  ik = ii for the shear -. 
and entropy wave, and X~ = ii + ariik for the acoustic 
waves. The wave speed is then given by X i  = ik . f i k .  
However, as pointed out by Rudgyard [16], there is no 



where 11 = M 2  - 1 and M  is the Mach number. Note 
that in the first potential solution pattern, the pressure 

Figure 5: wave directions: Mach angle splitting (en- 
gradient is normal to  the flow, and in the second, it is 

tropy wave not represented) 
aligned with it. By definition, the Pg satisfy 

clear justification for this choice: we cannot assume in 
a decomposition involving more than one simple wave, A model combining both steady patterns P, and un- 
that those waves do indeed propagate in the directions steady simple waves p, is now considered: 
iiik. Using a different approach than was presented here, 
he proposed other expressions for v wk and Ak , leading vv = C@P; + C a k p : .  
to a different implementation. a k 

(17) 

4.3 Steady pat tern decomposition 

At present, neither the characteristic approach nor the 
simple wave models as presented above have proven en- 
tirely satisfying, in particular when computing subsonic 
flows. It was observed that the fewer waves used, the 
more accurate the solution. This observation confirms 
the idea that using more waves than there are unknowns 
(as occurs in all the above models except for the charac- 
teristic model) leads to unnecessary numerical dissipa- 
tion, as will be shown later. Recently [19], Roe proposed 
to match the local data gradient with a combination of 
steady patterns (which do not contribute to the resid- 
ual) and unsteady simple waves. Thus one may hope 
that at steady state, all unsteady waves would vanish, 
i.e akXL - 0 V k ,  and the solution could be interpreted 
as the superposition of steady patterns rather than the 
cancellation of unsteady simple waves. 
Starting from the quasilinear form of the Euler equa- 
tions, 

a basis of linearly independent steady state solutions 
can be constructed by considering a steady entropy 
layer, a steady shear layer and two potential (isentropic, 
irrotational) flow solutions: 

Just as before, this model should have 8 degrees of free- 
dom, represented by the p,  ak and Ok . Roe suggested 
taking the steady patterns corresponding to the shear 
and potential flow solutions (3 degrees), as  well as an 
unsteady entropy wave (2 degrees) and two acoustic 
waves propagating in opposite directions (3 degrees). 
As in all previous models, expressions for the strength 
and direction of the entropy wave are given by the norm 
and direction of the entropy gradient. For the acoustic 
waves, the algebra is much more difficult. However, 
taking the product of VV with (A,  B)  eliminates all 
mention of the steady terms. Finally, extremely simple 
expressions are obtained: 

v t  0 = arctan -, 
U t  

with A$ = u cos O + v sin O f a .  In this model, the resid- 
ual reduces to a 3-wave decomposition: 

Expressions for the intensities of the steady patterns, 
which are not actually needed since only unsteady terms 
appear in the residual, are given by: 



ppot2 = u p ,  + up,  - ( a+  - a - ) p a u ~  
pa2(u2 + v2) , 

where u l  = u cos 8 + v sin 8 and ull = -u  sin 8 + v cos 8. 
Thus, the intensity of the steady shear is proportional to 
the vorticity. As for the intensities of the potential so- 
lutions, it is seen that at steady state ( a+ ,  a- -+ 0) the 
intensity of the first potential pattern is proportional to 
l lVp  x ZII, and that of the second potential pattern is 
proportional to V p  . Z, as could be expected. 
This model adds a completely new element to the dis- 
cretization: if the steady state solution can be repre- 
sented up to truncation error by the steady patterns, 
the unsteady waves will merely act as a stabilization 
and the advection scheme will not influence the accu- 
racy. Of course, the basis of steady patterns must be 
well chosen; in its present form, it seems particularly 
well suited to the computation of subsonic flows. 

The following table summarizes the different wave mod- 
els used in the computations, where the second column 
shows the number of "active" waves contributing to the 
residual, that is the waves for which the product a k ~ i  
is non-zero. 

model 
Roe's model C 
Roe's model D 
Rudgyard's streamwise splitting 
Parpia's model 
Rudgyard's Mach angle splitting 
Characteristic model 
Roe's steady pattern model 

number of waves 
6 waves 
6 waves 
6 waves 
5 waves 
5 waves ( M  > 1) 
4 waves 
3 waves ( M  < 1) 

5.1 Com~arison between advection schemes 

A comparison is made for a given model and the dif- 
ferent advection schemes N, LDA and PSI. Results for 
the 4-wave model are shown in fig 6. They confirm that 
the highest accuracy is obtained for the PSI and LDA 
scheme. Results with other models are less conclusive, 
suggesting that the property of linearity preservation 
(PSI and LDA) is lost when the residual is split in more 
than 4 waves: a zero residual can be split in non-zero 
contributions, cancelling one another. 
Remark the expected non-monotonic behaviour for the 
LDA solution in fig 6c. 

I PSI scheme 
&,ax = O.O1 6 I 

Figure 6: entropy generation for different schemes and 
5 .  The problem of entropy generation the ~ - w ~ v ,  model: a) N scheme b) PSI scheme C) LDA 

scheme 
In this study, the performance of the schemes and mod- 
els are studied in the case of a smooth subsonic solution 
of the Euler equations, the isentropic flow inside a "sine" 5.2 ~~~~~~i~~~ between wave 
shaped channel. The equation for the lower wall is: 

0.1 (1 - cos(x - l )n)  if 1 5 5 3 A comparison between the different wave models is now 
Y W ~ ( X )  = { O else. made, to show the problem of entropy generation. A 

coarse grid of 33 x 9 nodes is chosen, and the N scheme 
The inlet Mach m d ~ e r  is Mm = 0.5. The exact so- is used to convect the scalar fluctuations. Fig 7 shows 
lution being isentropic, the generation of entropy along the entropy contours obtained with the different mod- 
the walls is of particular interest, since it affects the ac- els: the streamwise splitting, models C and D, Parpia's 
curacy of the numerical solution. In the following, both model, the characteristic model and the steady pattern 
the effect of the advection scheme and that of the wave model. Clearly, the latter produces the best solution, 
model are assessed. The isolines of the entropy C, whereas the 6-wave models are much less accurate. 

5.3 Two model problems 

are plotted, with an increment AC = 0.001. In [4] (pp. 12-14), van Leer explained how the misin- 
terpretation of the flow at a stagnation region by Roe's 



Parpia's 
Cmax = 

model 
0.0165 

- 

steady pattern model 
Emax = 0.0066 

Figure 7: entropy generation for different wave mod- 
els and the N scheme: a) grid 33 x 9, b) streamwise 
splitting, c) model C, d) model D, e) Parpia's model, 
f) characteristic model and g) steady pattern model 

grid aligned Riemann solver can result in the produc- 
tion of entropy. A similar explanation can be given here 
for the multidimensional wave models: 
Consider the simplified model problem consisting of a 
flow pattern with arbitrary linear variations of the ve- 
locity (with the condition U, + vy = 0) and small varia- 
tions of pressure or density. This pattern, characterized 
by three degrees of freedom (u,, uy and v,), can be rep- 
resented by two shear waves propagating in directions 
O1 and 02 with strengths a1 and a2: 

where for instance, O2 is chosen so as to minimize a1 

and ~ 2 .  This pattern recognition is "correct" in the 
sense that individually, each wave brings no change of 
pressure or density. But the same flow pattern can also 
be interpreted as due to four orthogonal acoustic waves 
with strengths f a1 propagating in direction 01, and 
a shear wave propagating in an arbitrary direction 02, 
with strength a2: 

This interpretation of the flow is not correct, and will 
result in non-zero pressure updates, which, in turn, will 
generate entropy. To illustrate the problem, the models 
are tested in a triangular cell representing a stagnation 
flow. The conditions are u, = -U/Ah, uy .= v, = 0, 
and v, = UlAh. Density and pressure variations are 
neglected. Fig 8 shows the active waves for Roe's 6- 
wave model D, Parpia's 5-wave model and the 4-wave 
characteristic model. Model D interprets the flow as 
the superposition of 4 acoustic waves, Parpia's model as 
that of two shear waves and the characteristic model as 
the superposition of one shear and two acoustic waves. 
Consequently, the entropy error with model D will be 
larger than with Parpia's model. However, this does 
not explain why Parpia's model does not do better. 

Another aspect of the problem is illustrated by the 
following model experiment. A triangular cell is con- 
sidered, upon which is imposed a steady state solution, 
consisting of a potential flow turning along the wall, as 
sketched in fig 9. 

For a given "average" state, /3pot1 and /3pot2 can be 
computed from the conditions that Vnode 1 = 0 and 
?)node 2/unode 2 = tan 6, where 6 represents the flow an- 
gle at node 2. This is a steady solution of the Euler 



acoustic 2 acoustic 1 

acoustic 3 

acoustic 1  HI^^^ 2 

Figure 8: different interpretations of a flow pattern: 
a) model D, b) Parpia's model, c) characteristic model 

equations, therefore the flux balance is zero. Now, a 
model will preserve this solution if: 

meaning that each scalar residual is identically zero. 
On the contrary, if the waves are non-zero and can- 
cel one another, even a linearity-preserving scheme can- 
not preserve the solution. In fig 10, the pressure up- 
dates A p i  to  the three nodes are plotted versus the an- 
gle 6 .  It  is shown that the 4-wave model as well as the 
3-wave model (by construction) preserve the solution. 
On the other hand, model D, the streamwise splitting 
and Parpia's model destroy it. It  is to be noted that the 
entropy contours shown in fig 7 are consistent with the 
pressure updates: the largest A p i  are indeed associated 
with the largest entropy generation. 

6. An accuracy study 
An accuracy study is made for a given wave-model and 
different advection schemes. A smooth continuous flow 
is computed on a series of grids of decreasing mesh size, 
and the "error" estimated. The flow chosen is a shear 
layer at a constant angle with the grid (30'). Taking 
z = y - tan(30°)x, the density profile chosen is given 
by: 

if z < 0  
if z > l  

1.0 - 0.5 sin2(?rz)z(z - 1) else. 

Figure 9: Potential flow turning 

and the velocity profile given by: 

if z < O  
if z > l  

500 + 50(6z5 - 15z4 + 10z3) else. 

with u = Vcos(30°), v = Vsin(30°) and p = lo5. The 
error between the numerical solution and the exact so- 
lution is taken as: 

The study was made using the N, LDA and PSI schemes 
for the convection part, and Roe's model D for the wave 
modeling part. The domain (x, y) E [O,1] x [-I, 21 was 
triangulated into a series of isotropic grids. The error 
is plotted in a logarithmic graph log IIcIILa = f (log Ah),  
see fig 11. The slope of the curve determines the order 
of accuracy of the scheme, giving 0.65 for the N scheme, 
1.60 for the PSI scheme and 2.2 for the LDA scheme. 
These values agree well with those obtained in the scalar 
case [9]. 
This accuracy study is certainly not complete, since one 
could argue that only two unknowns, namely V and p, 
actually vary. A study where all the unknowns undergo 
changes has to be conducted to assess the accuracy of 
the schemes for complex flows. However, it can be con- 
cluded from this study that the linear N scheme is not 
sufficient to guarantee high accuracy. 

7. Numerical results 

The fluctuation-splitting schemes are now tested on 6 
testcases representative of different flow regimes: (1) the 
supersonic flow over a wedge in a channel, (2) the super- 
sonic and subsonic flows in a sine-shaped channel (3) the 
subcritical flow over a cylinder, (4) the subcritical flow 
over a NACA 0012 airfoil, (5) the transonic flow over 
a NACA 0012 airfoil, and (6) the hypersonic flow over 
a cylinder. One of the big advantages of the method 
lies in its natural application to unstructured meshes, 
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Figure 10: pressure updates: a) streamwise splitting, 
b) model Dl c) Parpia's model, d) characteristic model 
and steady pattern model 

Figure 11: Order of accuracy of the schemes 

since all computations are done on a triangle basis. The 
unstructured meshes used subsequently were generated 
using a Delaunay frontal method by J.-D. Miiller [21]. 

- 

-0.80 

-1.20 

-2.00- 

1% 

- 

- 2.80- 

, 

-3.60 

7.1 15' wedge channel 

log Ah 

i N &erne 
j PSI &heme 
j LDAi scheme 

/ 0.65 i .......................................... ........................ 

1 1 4 1 ~ 2  j 
i 1 . 6  : ........... : ........... : ................... ;z A ........... : ........... 

' : ip' ; 
i 

-i 2.2 i 
........... ..... .............. .......... i...&-&-I .-j a ---.---.: - 5  : 

8 , I y' 1 A j .-: 
: ; 
: ->  . 

............ : ...... ,...........:.........,L.r..........:.--,...........:.........,L.r..........:.--,...........:.........,L.r..........:.--,LC: ......... .'...... .............................. 
. s  i...'- i 

I I I I I 

-1.40 -1.20 -1.00 

The flow in a channel at M ,  = 2.0 is considered. Due 
to the presence of a wedge, an oblique shock wave is 
produced with reflects a t  the upper wall. At the tip 
of the wedge, a Prandtl-Meyer fan is produced, which 
interacts with the reflecting shock. Fig 12 shows the 
grid and the Mach number contours obtained respec- 
tively with model C, Parpia's model, the characteristic 
model, and the Mach angle splitting, all used with the 
PSI scheme. The solution obtained with the Mach angle 
splitting and the N scheme is also shown: this scheme 
is more diffusive than the PSI and results in a smearing 
of the shocks. In all cases, the shock and the expansion 
fan are well resolved; however, Parpia's model has prob- 
lems dealing with the regions of interaction between the 
expansion fan and the reflected shock, as does the char- 
acteristic model. The best solution, perhaps not sur- 
prisingly, is obtained with the Mach angle splitting and 
the PSI scheme. 

7.2 Flow in a sine channel 

This problem is the well-known problem of Powell and 
van Leer [22], where the flow in a symmetric sine chan- 
nel is computed. Here, the channel is prolongated in the 
upstream and downstream directions by straight walls. 
Inflow Mach numbers are M ,  = 1.75 for the supersonic 
case and M, = 0.5 for the subsonic case. 
Supersonic case: 



Figure 12: 15" wedge: a) grid, Mach number contours: 
b) model C, c) Parpia's model, d) characteristic model, 
e) Mach angle splitting, f )  Mach angle splitting ( N  
scheme) 

Fig 13b shows the Mach number contours obtained with 
model C whereas fig 13c shows the contours obtained 
with Parpia's model. Both were used in conjunction 
with the PSI scheme. In the first case, the compression 
waves coalescing into shock waves, the reflected shocks 
and the regions behind those shocks are clearly defined. 
With Parpia's model, the flow is not as well resolved, 
just as in the wedge case. 
Subsonic case: 
Fig 13d shows the Mach number contours obtained with 
the steady pattern model and the N scheme. The so- 
lution is very symmetric and is characterized by very 
low entropy levels (C z lo-*), confirming the appro- 
priateness of that model for computing potential flows. 

7.3 Subcritical flow over a cylinder 

The flow over a cylinder a t  M, = 0.38 is computed. 
The mesh, shown in fig 14a, consists of 2900 nodes, 
with 120 nodes on the body. The theoretical solution 
is a potential solution (irrotational, isentropic) with no 
lift and no drag. In a first computation, the steady 
pattern model is used together with the N scheme, pro- 
ducing small values of lift and drag (CL = 0.023 and 
CD = -0.007) and a maximum entropy error C,,, = 
5 x which is very small. The Mach number con- 
tours are shown in fig 14b, confirming the high degree 
of symmetry of the solution. This solution compares 
well with the best solutions obtained in the GAMM 
workshop [23], where this testcase was proposed. In a 
second computation, model D and the PSI scheme are 
used, and the results confirm the analysis of section 5: a 
large entropy error Emax = 9 x and consequently 
an increase in drag (CD = 0.880). The Mach number 
contours are shown in fig 14c, where the lack of symme- 
try of the solution is clearly visible. Finally, the Mach 
number distribution along the body is plotted for both 
solutions in fig 15. 

7.4 Subcritical NACA0012 Airfoil 

The subcritical flow (M, = 0.63, a = 2O) around a 
NACA0012 airfoil is computed. The grid consists of 
1811 nodes, with 128 nodes on the body, see fig 16a. 
The far-field boundary is a t  20 chords, and a point- 
vortex correction was applied. For the first computa- 
tion, model D and the PSI schemes were used. The 
scheme converged to machine zero, with values of lift 
(CL = 0.25) and drag (CD = 0.042) which are far from 
the correct values [23] (CL w 0.33 and CD = 0.0). This 
can be attibuted to  the entropy layer generated a t  the 
leading edge of the airfoil (Em,, = 0.12). For the second 
computation, the steady pattern model was used t c ~  
gether with the N scheme. This time, the residual only 
dropped 2 orders of magnitude, but the lift and drag 
stabilized around the values CL = 0.33 and CD = 0.001 
which is quite accurate. About 12 times less entropy 



Figure 13: a) detail of the grid, b) Mach number con- 
tours ( M ,  = 1.75) model C, c) Mach number contours 
( M ,  = 1.75) Parpia's model, d) Mach number contours 
( M ,  = 0.5) steady pattern model 

Figure 14: cylinder M,  = 0.38: a) grid, b) Mach num- 
ber, steady pattern model and N scheme, c) Mach num- 
ber, model D and PSI scheme 



Figure 15: cylinder M,  = 0.38: Mach number along 
the body 

is generated with this model (C,,, = 0.01) than with 
model D. The Mach number profiles for the two com- 
putations are compared in fig 16b. The pressure coef- 
ficient for the steady pattern model solution is plotted 
in fig 16c. 

7.5 Transonic NACA0012 Airfoil 

The critical flow ( M ,  = 0.85, a = l o )  over a 
NACA0012 airfoil is computed. A blending of two mod- 
els is used in this computation: to avoid excessive en- 
tropy generation near the leading edge, the steady pat- 
tern model is used in the subsonic region of the flow, 
whereas the 4-wave model is used elsewhere. The grid 
used contains 9000 cells, 4600 nodes, with 128 nodes on 
the airfoil. The far-field boundary is a t  20 chords and a 
point-vortex correction is applied. The values of lift and 
drag CL = 0.354 and CD = 0.057 agree well with those 
of reference solutions. Fig 17a shows the Mach num- 
ber contours for this solution, fig 17b the Mach number 
profile on the body, and fig 17c the entropy profile on 
the body. 

7.6 Hv~ersonic flow over a cvlinder 

The flow a t  Mach 8 over a cylinder is computed. A grid 
similar to that shown in fig 14 is used. The flow is char- 
acterized by a strong bow shock in the front part, and a 
more complex structure in the low density region a t  the 
rear part of the cylinder, with shocks and separations. 
Some reference solutions for this severe testcase can be 
found in [23]. 
Careful choice of the CFL number is needed to pre- 

Figure 16: NACA0012 M,  = 0.63, o = 2O: i a) grid, 
b) Mach number profiles along the airfoil for model D 
and the steady pattern model, c) pressure coefficient for 
the steady pattern model 



Figure 17: NACA0012 M, = 0.85, cr = l o :  steady 
pattern model + characteristic model and PSI scheme 
a) Mach number, b) Mach number profile, c) entropy 
profile 

vent the appearance of negative pressures during the 
transient phase. In the following, the results obtained 
using the N scheme and the Mach angle splitting are 
shown, since the combination proved a relatively stable 
one. Since the Mach angles are not defined in subsonic 
flows, an empirical fix [17] is used, whereby 
is replaced by d m a x ( l ~ ~  - 11, c). In fig 18a, the Mach 
number contours are shown. A detailed view of the ve- 
locity field in the rear part of the cylinder is shown in 
fig 18b: the recirculation is clearly visible, but more 
points are needed there for a better resolution of the 
flow. 

Figure 18: cylinder M, = 8.0, a) Mach number, b) de- 
tailed view of the velocity field 

8. Conclusions 

A detailed study is made of the wave modeling step in 
the multidimensional upwind fluctuation-splitting Euler 
solvers. While most models perform well for supersonic 



flows with shocks, i t  is found that  wave models with 
5 or more active waves lead t o  excessive false entropy 
generation along curved walls in subsonic flow. The  new 
model combining steady patterns and three active sim- 
ple waves performs extremely well in this respect, but  
fails in presence of shocks. An optimal compromise a t  
present seems t o  lie in a combination of the 3 and 4- 
wave models as a function of the flow regime. 
The  accuracy of the  different advection schemes has 
been evaluated numerically for the  Euler solver in the 
case of a shear flow, confirming the accuracy of 0.85 
for the linear monotone N scheme, 2.0 for the linear 
non-monotone LDA scheme and 1.6 for the non-linear 
monotone PSI scheme obtained previously for scalar ad- 
vection equation. 
As a general conclusion, the  paper stresses tha t  wave- 
modelling, although improved in recent times, is still a 
topic of further research. 
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