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Abstract 

A sclicinc to generate tlrruster firing tiincs as func- 
tions of tlic initial and the desired state of a spinning 
iriissil~ is dcscribcd. The missile is niodelcd as arigid 
body w l i i c l i  is syminctric about one axis and which 
Iias a large roll rabc about this axis of symmetry. 
Coiitrol is achieved by a single reaction jet which, 
wl i c i i  fired, pro\,idcs a constant inorricr~t abont a 
traiisvcrsc axis. 1ht.iirbaiice torqncs are assumed 
to tic x r o .  ’l‘lic missi le is assumed to have some ar- 
hit.rary initial transvcrsc angnlar velocity and it is 
d c s i w d  to take it to sonic final attitude in minimum 
timc wl i i lc  rcdncing t,lic transverse angular velocity 

0 .  This inininittni-time reorientation probleni 
ally h n i i d l c r l  by solving a TPDVP ( T w o  I’cint 

Jhrindary Valuc Problcni). Tlic control liistory thus 
otjt,iiiiicd is stored i n  an oil-board computer 
plcnrriit.ed oii-line by table look-lip. \\‘e d 
scliiviic wliicli docs not nccd to solve a TI’DVI’. 111- 

s t i x d ,  coordin;rt.e t.ransforiiiations arc iiscd si ic l i  that 
cacl i  Ijackwards int,egratioii of the traiisfornicd s t a k  
a n d  costate equations yields a unique time-optiinal 
trajcct,ory. Ry storiiig the st,at,c and tlic associated 
t,iine-optiinal control at discrete points i n  timc, a sct 
of bornidary condition points can be generated for 
w l i i c l i  (,lie niinimnni-tiinc control is known. This set 
of poii it,s can later be uscd to gciierat,c a table of 
l , l ~ r i ~ s t o r  firing t i m r s  as functions of tlic ctirrcnt and 
t,lic drsircd stzitc of tlic miss i le .  Sonic crainplcs are 
plot lid t,o illiist.rat,e thr applicat.ion of t,lic concepts 
prrwiI1 cd. 

1. Introduction 

Ovcr t , l i c  pz~st  t,lircc dccadcs many papcrs and rc- 
ports I i i i ~ v  t.rcat,cd varioiis aspccts of I ioini~ig sc l~c i i ies  
mid t r; i jrct ,ory cont,rol associated wi th  t,licsc sclicincs. 

Most of tlicsc papcrs consider surface-to-air or air-1,- 
air missiles which use aerodynamic forccs for traj1.c- 
tory control. With the advent of SDI, much al.tcrr- 
tion h a s  been focused on t l i e  interception of satclli1,cs 
or ICBM’s outside the sensible atmosphere. Ilciice, 
aerodynamic forces cannot be generatcd for vcliiclc 
control. Instead, tlie tlirust of a rocket engine is uscd 
to provide tlic necessary maneuver forces, witlr vc- 
Iiiclc attitude control employed to point the tlirtist, 
in the desired direction. Conventional thrnst v 
control systems tend to add both weight and COII I -  

plexity, and as a result counter the ohjcctivr of i l l i l l -  

imizing the weight of the griidcd warliead. The sini- 
plest control involves a singlc thruster a t  riglit anglcs 
to the spin axis of tlic missi le.  In this sclicllic t,lic 
missile is givcn a large roll rate and t,hc tlirrlstcr is 
turned on for a fraction of each revol~ition i n  roll a n d  
at the riglit timc during each roll cycle so that t,hc di:- 
sired attitude changes are achicved. ! v l ca~~w l i i l c  t,lrc 
inaiii thruster, by producing a tlirust colnponrnt, p a -  
pendicular to the flight path,  provides tlic necessary 
trajectory changcs. 

The problem of attitude control of spinning rigid 
bodies has not received much attcntion rcccnt,ly, ill- 
tliough some rcscarcli has: bccii rcportcd on this topic  
i n  tlic 19GO’s. Tlic reorientation probleni’of a spi l l -  
ning rigid body is conccptually different t,Iiaii t , l i c  

s i m p l e  rest-to-rest inancuvcr of a noli-spinning rigid 
body. nccausc of the spin of the body about, it,s 
symmctry axis, application of airy moment i t l ) o l l l .  

tlic transverse axes generates a prcccssional niot io11 
If tlic initial transverse angular velocity is not w o ,  
the probleni becomes cvcn more dilfcult bccarisc 1,111. 
probleiii loses its symmetry. 

Atlians and Falb2 consider the problcni of t,iiii(,- 
optimal velocity control of a rotating body wit,li a 
single axis of symmetry. They show that  for a siiigli’ 
fixed control jet ,  tlic system lias the properties of ;I 

Iiarmonic oscillator. Thus, a switching ciirvc call Ir 
derived to iinpleineiit the control sclienie. ‘Hie c a m  
of a giniballcd control jet  and two control jc t ,s iiw 

also considerctl. N o  incntion is iiiadc of tlic coinplctc 
att,it, i idc rcoriciit;rtion p r o b l c i ~ ~ ,  Iiowcvcr. I ~ o w c ’  pro- 
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poses an  attitude control scheme for sounding rock- 
ets. The main feature of this schcme is that i t  uses a 
single control jet. The control jet  is fired for a fixed 
duration whenever certain conditions on direction 
cosincs or transverse angular velocity are satisfied. 
This results in the alternate reduction of attitude er- 
ror aiid transverse angular velocity, finally ending in 
a limit cycle. Some other r e f e r e n ~ e s ' ~ ~ ~ ~ ' ~ ~ ~ ~ ~ ' ~ ~ ~ ~ ' ~ ~ ~ ~  
discuss thc prohlcm of reorienting a rotating rigid 
body which has  no initial transverse angular velocity. 
WindenknechtI6 proposes a simple system for sun 
oricntation of spinning satellites. In this scheme the 
desired attitude is achieved by a succession of 180' 
precessional motions, each resulting in a small at- 
titude change (small-angle approximations assumed 
valid), until the spin axis arrives at  an attitude corre- 
sponding to the dead zone of the sun sensors. Cole el 
d3 prescribe the desired attitude change and solve 
for the necessary torques hut give no details on mech- 
anization. Other papers which propose active atti- 
tude control systems for spin stabilized vehicles have 
been published by Adams', Freed5, and Grasshop,  
hut none of these explicitly discusses the reorienta- 
tion problem. Grubin' uses the concept offinite rota- 
tions to mechanize a twc-impulse scheme for reorient- 
ing the spin axis of a vehicle. If the torques are ide- 
ally impulsive, thcn the scheme is theoretically per- 
fect. But in the case of finite-duration torquing, con- 
siderable errors can result. Wheeler" extends Gru- 
bin's work t o  include asymmetric spinning satellites, 
but the underlying philosophy is the same. Porcelli 
and ConnollyI3 use a graphical approach to obtain 
control laws for the reorientation of a spinning body. 
Their results are only valid for small angles and small 
angular velocities. For this linearized case they prove 
that a two-impulse control scheme is fuel-optimal. 
Two sub-optimal control laws are then derived for 
the case of limited thrust based on the two-impulse 
solution. Most recently, Jahangir and Kowe" have 
proposed a time-optimal scheme which does not re- 
quire solving a TPBVP. This scheme can be used 
for the specific case when only two thruster firings 
are snfficieiit t o  complete the time-optimal attitude 
change maneuver. If the boundary conditions hap- 
pen to lie outside this subset of the state space, the 
algorithm given by Jahangir and Howe fails to con- 
verge, since there does not exist a two-pulse time- 
optimal solution for siich a case. If a control law is 
desired for boundary conditions which require more 
than two thruster pulses, we must solve a TPBVP 
involving ten nonlinear differential equations. 

Both the two-pulse solution and the multiple-pulse 
solution require iterations and, therefore, can be 
costly in terms of the computer time required for the 
solution to converge and also in terms of the com- 
plexity of the iterative update scheme. Hence, an on- 
line iterative procedure does not appear to be prac- 
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Figure 1: Axis systems 

tical for a real-time control algorithm. One possible 
alternative is to precompute the thruster firing times 
by solving a TPBVP for discrete values of the desired 
boundary conditions. These thruster firing times can 
then he stored as a table in an on-board computer 
and the control scheme can he implemented in real- 
time by table look-up and interpolation. 

Since we must store the control history as a func- 
tion of the boundary conditions, we look for ways to 
generate a set of boundary condition points for which 
the thruster firing times are known without solving 
an iterative problem. To this end a new state vector 
is introduced in Section 4 which is related to the orig- 
inal state vector by a transformation. We will show 
in Sections 5 and 6 that we can generate a trajectory 
on the boundary of the set of reachable states by as- 
suming a set of final conditions and integrating the 
transformed state and costate equations backwards 
in time. Since the boundary of the set of reachable 
states dcfines all the minimum-time trajectories, we 
can obtain all the desired boundary conditions and 
the associated time-optimal control histories by vary- 
ing the final conditions over the range of their possi- 
ble values. Finally, in Section 7 we illustrate the pro- 
cedure by plotting some example time-optimal tra- 
jectories. 

2. Equations of Motion 

Figure 1 shows the orientation of the moving body 
axes zb, yb,zb relative to the inertial reference axes 
zi, yi,zj, and also the Euler angles +, 0 ,  4 relating 
the two axis systems. The  body axes origin is at  the 
missile c.g. with the sa-axis assumed to he the axis 
of symmetry; the y6- and 25-axes lie in a plane per- 
pendicular to the longitudinal axis, 25. The missile is 
modeled as a rigid cylindrical body. We also assume 
that the control jet. is located in the z6-q plane and 
pointed in the direction of the za-axis. When fired, 
the control jet generates a constant positive moment 
ahoiit the ya-axis. 

We have assumed no disturbances such as aero- 
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dynamic forces, gravity, solar radiation pressures, 
or structural damping. Because of the short flight 
times, these disturbances have negligible effect on the 
dynamics of the missile. Since no moment is applied 
about the zb-axis, and since Iy = 1, (the moments 
of inertia about the ub-  and rb-axes are equal for a 
missile that is axially symmetric about its zb-axis), it 
turns out that  w z ,  the missile angular velocity com- 
ponent along the zb-axis, is a constant equal t o  the 
initial spin velocity of the missile. We then obtain a 
set of five state equations: two dynamical equations 
involving the transverse angular velocities and three 
kinematical equations giving the rates of change of 
Euler angles. Thus 

w, = - (1 - i) w,wy 

$ = (wy sin 4 + wi cos 4) sec 0 

0 = wy cos4 - w L  s in4  
(3) 

(4) 
4 = wr  + (wy sin 4 + wz cos 4) tan 0 ( 5 )  

where 

wy ,wz = trasverse angular velocity components 

$, O,+ = Euler angles corresponding to yaw, pitch 

along the y- and z-axes, respectively, 

aud roll, respectively, 

I,, I, = the moments of inertia about the longitu- 
dinal and transverse axes, respectively, 

My = the thruster torque about the y-axis 

For convenience we choose to write Eqs. (1)-(5) in 
tcrms of dimensionless variables and parameters in 
accordance with the following definitions: 

0 - 3  0 -a' 
Y - w , '  z - W r  

dimensionless time T = w,t 

Now, if we redefine the - operator as differentiation 
with respect to the dimensionless time T ,  the equa- 
tions become 

A = l - k ,  y - I , w :  -% 

fly = AR, + A, 

J, = (n, sin d + 0, cos 4) sec 0 

B = 0, cos4 - R, s in4  

(6) 

(8) 

(9) 

(10) 
In order to write a state variable description of the 

ha = -AOy (7) 

4 = 1 + (Rys in4  + R, cos4)tanO 

system, we define the state x of thc system as 

x = [  ny n, 71, n 4 1'' 

and the control u as 

u = A, 

Eqs: (6)-(10) can now be written in the standard V 
form. 

X = f ( x ) + g u  (11)  

where 

Azz 
-Ax1 

f ( x )  z ( z l s i n x 5 + z 2 ~ ~ ~ x 5 ) s e c z 4  
X I  cos15 - xzsinzs  I 1 + (11 sin z5 + z2 cos 2 5 )  tan z4 

(13) 
T 

g = [ l  0 0 0 0 1  

We assume that at  the initial time, the missile body 
axis system coincides with the inertial axis system 
The initial transverse angular velocity of the missile, 
however, is non-zero. We thus obtain the following 
initial condition: 

xo = [ XI ,O zz,o 0 0 0 1' (1.1) 

We want to find a control which will take this initial 
state to a desired state, described by some non-zero 

angular velocity, in minimum time. The desired final 
state vector, xd,  can be written as: 

desired yaw and pitch angles and zero final transverse W 

(15)  
T 

x d  = [ 0 0 x ~ , ~  xq,d free ] 

We also assume an upper bound uma. on the control 
u. Thus, the constraint on the control can be written 
as: 

0 5 u 5 u,,, 

The numerical values for the two parameters, A 
and u,,,, which will be used l a k r  in examples, are 

A = 0.9, umaZ = 0.02 

This value of A corresponds to a length to diameter 
ratio of 3.775 for a cylindrical body of uniform dcn- 
sity A missile weighing 10 Ibs. and having a uniform 
mass density of a luminum would have the follownig 
dimensions: 

(16) 

length = 12.30 in., diameter = 3.2G in. 

If the moment arm is half the length and the spin 
velocity is 50 rad/sec, urnor = 0.02 corrcsponds to n 
thrust of 2.70 ibs. 

W 
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This, in addition to Eq. (26), shows that 

l i ( x * , p ' , T ) = O f o r a l l T E [ T ~ , ~ ~ ]  

Hencc, in the problem we have 10 diffcreiitial cqua- 
tions (Eqs. (19) and (20)) with 10 boundary con- 
ditions (Eqs. (22)-(25)) constituting a TPBVP. As 
mentioned earlier, the solution of this problcni rc- 
qnires iterations and, therefore, is difficult, t.o implc- 
ment in real-time. In the actual missilc, thruster 
firing times are computed off-line and arc storcd cas 
a table in an on-board computer. Function gcncr- 
ation is then used to compute the thrustcr turn-on 
and turn-off times as fnnct,ions of the boniidary coii- 
ditions. 

Instead of obtaining the tlrrnstcr switch timcs by 
solving this iterative problcm, we considcr an altcr- 
native approach in the next scction. An alternative 
optimal control formulation in terms of a new state 
vector is given. It is shown that,  by assuming a set of 
final conditions and integrating backwards i n  time, 
we can generatc time-optimal trajcct,orics in tbc stat.e 
space. 

Formulation 
'fhc problem, as stated in the previous section, is 
t,o fiird a control u ( T )  which takes the initial state, 
xo, to the desired statc, xd, in minimum time whilc 
satisfying thc constraints x = f(x) +gu and 0 5 u 5 
uTnOz. This is one specific casc of a gencral Mayer 
problcm. Filippov4 gives a thcorem and provcs the 
cxistcncc of an optimal control for a Maycr problem. 
At this time no gencral theorems arc available on 
the nniqueness of optimal solutions for the one-sided 
controls, ie., 0 5 u 5 umaz. Therefore, we can only 
givc necessary conditions for u* to be an optimal 
control. 

In order to derivc an exprcssion for the time- 
optimal control, wc writc the pcrformance index 

_, 

TI 
J = / ldt 

L 

JTo 

We want to minimize the performance indcx J under 
thc constraints of Eq. (11) and (16). Thus, we can 
writc t,he Hamiltonian 

11 = pTX - 1 (18) 

wlicrc p is the costatc vector. Ttie nccessary condi- 
tions for u* to be an optimal control are 

(19) 
. *  dII  

BP 
x = - = f(x') -t 6"' 

and 
x(7-0) = xo (22) 

X(T/) xd (23) 

 TO) = [ free free frcc free free 1' (24) 

p(T/) = [ free free free free 0 1'' (25) 

lI(T,) ZZ 0 (26) 
where H(x) = -df/ax. Eqs. (IO) and (20) are 
t,he differential equations for the state and costate 
vector. Eq. (21) is derived from the optimality con- 
dition, i . e . ,  maximizing the Hamiltonian I f .  Eqs. 
(22) and (23) are the given boundary conditions and 
Eqs. (24)-(26) are derived from the transversality 
conditions. Furthermore, we note from the theory of 
necessary conditions that 

4. An Alternative Formulation 
of the Time-Optimal 

Control Problem 
Wc define a new refcrcncc axis system. This axis 
system is fixed in the target and its z-axis points 
along the desired dircction of the missilc za-axis. The 
orientation of the missile with respcct to an observer 
fixed in the target is given by the Eulcr anglcs, y3, 
y4, and y5, where y3, y4, and y5 corrcspond to yaw, 
pitch and roll, respectively. We also deiinc y1 = 2'1 
and 112 = 2 2 .  Thus, wc can write a new statc vector 

7 
Y = [ Y1 Y2 Y3 Y4 YS I 

The two state vectors x and y are related by a trans- 
formation (see Section 6.3 for the transformation rc- 
lations). The equations of motion can be writtcn in 
terms of this new state vector and are given by: 

Y = f(Y) + 6" ( 2 7 )  

We assume the initial and final condit,ions, respec 
tively, to bc 

T 
Y(To) = YO = [ YI,O YZ,O Y3,O Y4,O YS,O ] 

(28) 
y(T,) = y, = [ 0 0 0 0 free ] (29) 

A time-optimal control problem can bc formulated 
for this system, similar to Section 3. We want to 
minimize the maneuver timc, so we can again write 
the performance index as 
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in tiinc, we can obtain a set of points in the state 
spacc for which the time-optimal control history is 
known. If we assume a different initial s f ,  another 
tiinc-optimal trajcctory is obtained. By varying S J  

ovcr X 2  and integrating the system for cach S J  back- 
wards in time, dl trajectories on the boundary of the 
set of rcachablc states can be gencrated. In this way 
all the  rcacliablc states can b e  obtained at discrete 
intmvals and the a5sociated control history can be 
stored as a fiinction of thcse states. 

In thc next section wc employ the techniques dc- 
scribcd licrc to obtain a set of boundary condition 
points for which the control history is known for 
t,lrc ciisc of minimum-time rcorientation of a spinning 
missile. 

-~I  

6.  An Examination of the 
U y 17 System 

Wc itsc bcrc thc idea of hackwards iritcgrnt,ion and 
cnarninc thc system bchaviour. Siiriilar to the previ- 
ous scction, RC conduct the following experimcnt. 

I*’our of the final statc variablcs are zero, as given in 
Eq. (29). We assume that. y s ( T j )  = y s , ~ ,  whcrc B,J  
i s  RII xhit rary constant. Similarly, wc assume an ar- 
hitrary valnc for the final costate vcctor, q(T,) = g J ,  
where g5,, = 0. The expression for the time-optimal 
control is givrn in Eq. (34). Once all tlrc final condi- 
!.ions on the state and costatc variables are spccificd, 
we smrt, the iiidcgratioii at TJ and iiitcgrak the statc 
arid costat.c equations backwards in time. At cach 
niimcrical integration step, we obtain a y(?”) wlicrc 
7’’ = T - TJ .  This trajcctory connects all points 
along its pat11 to the specified final state in minimum 
h e .  13y varying the first four components of thc fi- 
l ial costatc vector qJ over R‘ (the fifth component is 
aero as given in Eq. (37)), the entire boundary of the 
set of rcnchablc states is gcncrat.cd starting from the 
spccificd y ~ .  Wc note hcrr t.liat. the only noii-zero 
componcnt~ of tlie state vcctor is ys,J,  wliicli corre- 
spoi ids t,o t,hc roll anglc of the missile. This anglr 
can fhkc on valiics in tlrc range [ - 7 r , 7 r ] .  R y  varying 
?is,, i n  this range, and following thc aforcmcntioiicd 
~procrdurc of generat.iiig t.he boundary of thc set of 
rcacliablc states, all the time-optimal soliitioiis can 
be gcneratrd. I h r i n g  the integration, tbc slate vcc- 
[.or, y ,  a n d  L I E  corresponding tlirustcr switch himcs 
can be stored a t  discrctc poiiits in t,ime. Hence, this 
procrihirc givcs a set, of y points for which t,hc coli- 
t,rol history given in tcrnis of Lhc t,lirostcr firing times 
is ~ I I O W I I .  

‘lh control schcinr can then bc iinplcnieiitcd ill 
real-tiiirc by using t h  thrnster switch times which 
are st.orcd at disc.rctc values of the traiisfornicd state 
vcct,or, y. Ilowcvcr, i n  tlie actual missile tlic desired 
at,t.it ~ i d e  is mcasnred with respect to the moviiig mis -  
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silc frame, whcreas thc vector y givcs thc orieutation 
of the missile with respcct to an ohscrver fixed in 
the targct. IIence, i t  is desirable t,o storc the bound- 
ary conditions in tcrms of the original state vcctor x. 
The boundary conditions in terms of the x vcctor arc 
given in Eq. (14) and (15). The  s ta tc  vector y(T’)  
can be  transformed back to our original syst.cin to 
obtain the corresponding bounda,ry condit,ions z1.0, 

X2,0, X 3 , d ,  and 2 4 , d .  

The procedure to generate the control history as a 
function of the boundary conditions can h e  smnn~a- 
rizcd in the following way: 

Initialize Y J  aud 4, 

Integrate thc y and q equations backwards in 
time and at each TA = nAT obtain y(TA), where 
AT is the timc intcrval chosen to givc dcsircd 
d a h p o i n t  spacing bctwccn y[T:,) a i d  Y(T:,+~), 
and n is a positive integer. Note bliat t,he 1111- 
merical integration step cau be a s r ~ b m ~ ~ l t i p l c  of 
AT. 

Transform y(TA) to get the boundary conditiorrs 
in the original fornr, 12.0, x+i,  and x q .  
Storc thc thruster switching times z frmctions 
of thcse four variablcs. Note that if  q i  > 0, thcn 
Ti = 0, and similarly if, ql < 0 thcn TI > 0, 
wlicrc TI is the first tnrn-on time of the t,hrust.cr. 

Each of thcsc steps is discussed in t,lie following sec- 
tions. 

6.1. Initialization of vi  and ai 

As indicated earlier, five of t,he variables a t  T, are  
zero. 

Y l , J  = WL.1 = Y 3 . J  = 114.1 sz ‘15.1 = 0 

The othcr five variables at T, are frcr. Thcsc most, 
be varied ovcr all possililc values to obtain t.he op- 
timal control history as a function of the boundary 
condit,ions. The vsriable y5,J correspouds to the roll 
angle and, thus, is confined to  

?/5,/  E I-.,.] 
The spacc over which 91.1, q ~ , , ,  qz,,, arid y,,, must 

be varied is a subset of thc costate spacc. Wc rcfer 
to this suhspace as Q. 
Definition: The spacc Q is defined as 

Q = {q(Tj) : f i (Tj)  = O,q i (T j )  = + I ,  
‘lj(TJ) E [-1,+1],i,j = 1 , 2 , 3 , 4 , j  # i) 

An algoritlrm t,o vary thcsc variablrs ovcr t.he range 
of their possible values is given below: 
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do y5,f = -r, rr,6 where 6 is the desired 
spacing between values 
of Y5.f 

do i = 1,4 
q i , j  = f l  
do qj ,J  = - l , + l , A  where j # i and A is the 

desired spacing between 
values of q,,f 

During the implementation of our scheme to gen- 
erate time-optimal solutions, we observe that a con- 
stant A (uniform spacing in qj,J’s) does not result in 
a uniform span of the entire desired space of time- 
optimal solutions. We find that when qj,f is close to 
zero, very small A is nceded to span the set of de- 
sired timeoptimal solutions. Conversely, when qj,, 
is not close to zero. A need not be small. 

6.2. Integration of State and Costate 
Equations 

A practical issue in the implementation of the scheme 
given in Section 6 is the choice of a numerical inte- 
gration algorithm and the handling of discontinuities 
that  occur when the control switches from on t o  off 
or wee versn. 

The RK-4 fixed-step algorithm is used to integrate 
the state and costate equations. We utilize the fact 
that  analytic solutions for y1 and yz can be obtained 
from Eq. (11). Thus, the equations for 211 and y z  do 
not have to be integrated numerically. The analyt- 
ical solutions for yI and yz arc also used to obtain 
the half- and full-frame derivative estimates of the 
remaining state and costate variables, as required in 
the RK-4 integration algorithm. 

There is a discontinuity in these derivatives when 
the application of the control u starts or stops. This 
switching time is a function of q l ,  the first compo- 
nent of the costate vector, as given by Eq. (34). If 
this discontinuity occurs within an integration step, 
it can cause large errors in the numerical solution. 
To reduce these errors, the step size must be cho- 
sen small enough to meet some integration error cri- 
terion, which can result in excessive computational 
time. Several papers have been written suggesting 
special methods t o  circumvent this difficulty. We 
choose the method proposed by IIowe, Ye and Li9 
for its accuracy and case of implementation. In this 
scheme, at each successive time step, 41 is tested to 
see whether it tias switched sign. If it has not, the 
integration proceeds t o  the next step. If switching 
has  occurred, the time of its occurrence is computed 
by combining a fixed-point simplified Hermite inter- 
polation with a continued fraction formula. Hermite 
interpolation is also used to compute the state and 
costate variable values a t  the crossover time. The 
RK-4 algorithm is then used to integratc through 

the remainder of the fixed-time step. 
We define the following nohtion: 

T;=ih ,  i = o , 1 , 2 , . .  

uj = u ( Z ) ;  yi = y ( Z ) ;  qi = q(Z) W 
where li is the integration step size and yi and qi 
are the numerical approximations to the exact solu- 
tion y(Z) and q(T,). The following computational 
procedure is used at  the ith step. 

Integrate from T; to T,+l with the RK-4 a -  
gorithm. In this integration u; is used for  a l l  
derivative evaluations over the interval. 

Determine if ql,:+l bas changed sign with rc- 
spect to 41,;. If not, repeat I starting at  Ti.+.t 
If q1 has changed sign (ql , ;+lql , ;  < 0), it meatis 
that q1 has a zero over the interval T,  5 7’ 5 
T,+, and the discontinuity has hccn crossed. I t i  

that case, proceed to step 3. 

Using a fixed-point simplified Hermite intcrpol;r- 
tion betwcen T, and Z+, followed by the contin- 
ued fraction zero-finder described by IIowe, Ye 
and Li’, determine the aero T, of q l .  Again, 11s- 

ing IIermite interpolation, determine y ( T , )  a n d  
471 1. 
Change the control u from 0 to unLaz (or from 
u,,, to 0, as appropriate) and integratc from 
T, to Z+I to recompute y;+l and qi+i .  

Return to step 1 and repeat the steps st,artiiig 
a t  Ti+1. 

W 

6.3. Transformation Relations 
Between x and y 
Let ns consider a vector r originating at  the missili: 
c.g. We let {r,) represent the components of tlic 
vector r in the missile body axis frame; {ri) rcpre- 
sent the cornponeirts of the same vector i n  the frarric 
7; and {TJ} represent the components of the same 
vector in the frame 3. The frame of reference 7 is nil 

arbitrary axis system whose z-axis coincides with Llic 
desired direction of the missile zb-axis. The framc of 
reference F is defined to be the missile axis sytein 
at  the end of the maneuver. Previously, we have de- 
fined X 3 , d  and zq,d to be the yaw and pitch anglcs 
describing the orientation of the desired direction of 
the missile za-axis with respect to the missile body 
axis system. In addition, we define z 5 , d  to he thc 
roll angle of the frame F with respect to the missile 
body axis system. It should be borne in mind that 
z5,d is free in the formulation of the optimal control 
problem in Section 3. Thus, we can write. 

U 
{ r J )  = [c ( z 3 . d 1 z 4 , d , ~ 5 , d ) l  {rm) (38) 
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. x1,o Y1 
xz,o YZ 

tan- 1 x3,d C o s Y s m s Y r  

z4,d 

- an y j  cos “S+COs YJ 81” Y, S1”JA 

-sin-’ (sin y3 sin y5 + COS y3 sin y4 COS y5) 

Finally, the frame 3 is obtained by rotating the 
frame 7 about its x-axis. This rotation is given by 
the angle y5.j = y5(Tj) and we get 

{r,I = PI {Ql (41) 

where 

O ] (42) 
0 

[a] = 0 c o s y ~ , ~  siny5,t [ ’  0 -sinys,) C O S Y S , ~  

The matrices [C] and [a] are both direction cosine 
matrices; therefore, each is an orthogonal matrix. 
Hence, the inverse of these matrices is obtained by 
merely transposing them. 

v 

Eqs. (40) and (41) can he combined to write 

{ r , }  =lall[C(Y3,~4,1/5)lT {rm} (43) 

Comparing Eqs. (43) and (38), we finally get 

[c (Z3,d,z4,d, l 5 , d ) l  = [@I [c (y3, Y4, ?&)IT (44) 

We let the entries in [C(Z3,d, Z4,d, Z S , ~ ) ]  be denoted 
by <jj and the entries in [@][C(y3,y4 ,y~)]~  by v,j, 
where i and j are the row and column indices re- 
spectively. Equating C13 = ~ 1 3 ,  we obtain 

- sin x4,d = sin y3 sin y5 + cas y3 sin y, cosy5 (45) 

Sincc -r/2 < 24,d < ~ / 2 ,  the above equation gives 
a unique value for xq,d .  

xq,d = - sin-’ (sin y3 sin y5 + cos y3 sin y4 cos ys) 

To get an cxpression for x3,d, we equate CII  = 011 
and (12 = 012 and obtain 

(46) 

cos I 3 , d  cos 24 ,d  = cos 313 cos 314 (47) 

- cos+cos6 sin @cos 6 -sin6 - 
- sin $cos $+ cos @ cos $+ cos @sin $ 
cos+sinBsin$ sin+ssinBsin$ 

- cos $sin $+ 
sin 11 sin 6 cos 4 

sin Jt sin $+ 
COS $ sin 6 cos $ 

cos 6 cos $ 
- 

v sin Z3,d cos zq,d = - sin ys cos y5 + cos y3 sin yq sin ys 

(48) 

(39) 

Dividing Eq. (48) by Eq. (47), we get the follow- 
ing expression for X3,d without an ambiguity in the 
quadrant: 

-sin y3 cos ys + cos y3sin y4 sin y5 
cos y3 cos u4 

(49’) 

X3,d = tan- 

\ ,  

Similarly, by equating CZ3 = q23 and C33 = 1133, we 
obtain 

c o s ~ ~ , d s i n z ~ , ~  = cosy5,, (-cosy3siny5+ 
sin y3 sin y4 cos y5) + sin y5,f cos y4 cos y5 (50) 

cosz4,dcosX5,d = -siny5,, (-cosy3siny5+ 
siny3siny4cosy5) +cosy5,, cosy4cosy5 (51) 

Dividing Eq. (50) by Eq. (51), we get the follow- 
ing expression for z5,d without an ambiguity in the 
quadrant: 

where 
a = cos y3 sin y5 

6 = sin y3 sin y4 cos y5 

e = cos y4 cos y5 
Table 1 summarizes the  transformation relations be- 
tween the boundary conditions, given in terms of the 
state vector x, and the new state vector y at  time 
T-TI. 

7. Example Trajectories 
Threesets offinal conditions on the state and costate 
variables are given in Table 2 .  We only vary the final 
roll angle ys,, in these three cxamples. Starting with 
these final values, the state and costatc equations are 
integrated backwards in time. Figurc 3 shows thc 
plot of y3 vs. y,, where y3 and y4 are the yaw and 
pitch angles of the missile with respect to a frame 
whose z-axis coincides with the desired direction of 
the missile zb-axis. At each integration step the state 
vector y i s  transformed to obtain tlic bonndary con- 
ditions z3,d and ~ 4 , d .  Thc total angle a betwcen the 
initial and the dcsired dircction of thc missile is given 
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Example 1 Example 2 Example 3 

-0.50 -0.50 -0.50 
0.75 0.75 0.75 
1.00 1.00 1.00 

Y5 0.00 

Table 2: Final conditions to generate example con- 
trol histories. 

Y. 

J 

c 

0.0 2 0  4.0 6.0 8.0 10.0 12.0 14.0 

v 

Figure 3: Path of the missile z.e-axis in the y3-y4 - W T J  

plane, where y3 and y4 are the yaw and pitch angles, 
respectively, of the xa-axis with respect to the desired 
pointing direction, 

Figure 6: Total transverse angular velocity R vs 
-(T - Tf). 

by a = c o s - 1 ( c o s z 3 , d c ~ z ~ , ~ ) .  Figure 4 shows the 
angle (Y as a funct,ion of the dimensionless time T .  
The angles zg,d and x4,dr which represent the target 
yaw and pitch angles, respectively, relative to the 
moving missile frame, arc plotted in Figure 5. 

The total transverse angular velocity Q = 
is plotted as a function of the dimension- 

less time T in Figure 6. We start a t  R = 0 and, 
integrating backwards, obtain the time history of y1 
and y2. Figure 7 shows the trajectory of transverse 
angular velocity components y1-y2 as the integration 
proceeds. 

0.0 20 4.0 8.0 8.0 10.0 12.0 14.0 
-CW Control Scheme 

Figure 4: Total angle a vs. -(T - T,). 
The thruster switch times x , i  = 1 , 2 ,  
obtained from the approach given in Section 6 for 
the desired set of boundary conditions, where ?; is 

W 
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Figure 7. Trajectories o f  transverse angular vclocily 
componrnts y1 and ?)A. 

t,hc time when control switches and n is the total 
~ iurnbcr  ofswitches rcqiiircd to cornpletc the attitude 
clrangc maneuver. In order to implenient this scheme 
i n  real-time, the switch times Z, i = 1,2,  . . . , n  must, 
hc st,ored in an on-hoard computer. We propose a 
coiitrol srhcmc which only nccds to st,orc Tr and T,, 
the first turn-on arid t.~~rn-off times, rcspcctivcly. 

111 this sclicmc tablc look-up followed by intcrpo 
lal.iorr is used to compulc TI and Tz. The thruster 
is thcti turiied on from TI to T,. After this first 
thruster firing has hccn completed, we can tneasnre 
the state variahles a t  7‘2. The switch times TI and 
1 2  can now he recomputed based on this measured 
stale. ’I’liesc new Ti and Tz correspond to T.J and 
1 4 ,  rcspccf,ivcly, for the previous TI and 7’. Thus 
for [,lie two-pnlsc case, the new T, and T4(= T,) arc 
such  [,hat 7; - 7; = 0. In the presence of interpola- 
tion, numerical, or measurement, errors this will not 
hc qi i i lk  true. Ncvertliclcss, in reality this schcmc 
would pmhahly be superior hccausc it can correct 
for system and measurement errors by introducing 
fccdh;rck based on the latest state information. 

When we storc the t.hruster firing times ai spec- 
ified t,iinc inkrvals whilc integrating the state and 
costate equations backwards in time, a randomly 
spaccd function is obtained. Ilowcver, it is desirable 
for real-tirnc fiinct~ion gcncration to have an equally 
spaccrl function. This tablc of equally spaccd fiinc- 
tioii valuss can be obtained by using linear intcr- 
iiolal.ioii across the randomly spaced function val- 
ues. Oncc the cqlially spaced function to be used in 
rcal-tiiiir fiinct.ion gcncration is created, tablc search 
and it~tcrgolation can be carried out easily. Our rc- 
cent research has fociiscd on creating this table and 
i~iiplcmcnt,ing the condrol law using function gencra- 
t.ion. l‘hc rcsults of this approach appear in a P1i.D. 
disscrtation“’ ‘and will also be piihlishcd in future 

v 

, ,  
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