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Abstract

A scheme to generate thruster firing times as func-
tions of the initial and the desired state of a spinning
missile is described. The missile is modeled as a rigid
body which is symmelric about one axis and which
has a large roll rate about this axis of symmetry.
Control is achicved by a single reaction jet which,
when fired, provides a constant moment about a
transverse axis. Disturbance torques are assumed
to he zero. The missile is assumed to have some ar-
bitrary initial transverse angular velocity and 1t is
desired Lo take it to some final attitude in minimum
time while reducing the transverse angular velocity
to zero. This mintmum-time reorientation problem
is usually handled by solving a TPBVP (T'wo Point
Boundary Value Problem). The contrel history thus
obtained Is stored in an on-board computer and im-
plemented on-line by table look-up. We describe a
scheme which does not need to solve a TPBVP. In-
stead, coordinate transformations are used such that
each backwards integration of the transformed state
and costate equations yields a unique time-optimal
trajectory. By storing the state and the associated
thime-optimal control at diserete points in time, a set
of boundary condition points can be generated for
which the minimum-titne coutrol is known. This set
of points can later be used to generate a table of
thruster firing times as functions of the current and
the desired state of the missile. Some examples are
plotted to illustrate the application of the concepts
presented.

1. Introduction

Over the past three decades many papers and re-
ports have treated various aspects of homing schemnes
and trajectory control associated with these schemes.
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Most of these papers consider surface-to-air or alr-to-
air missiles which use aerodynamic forces for trajec-
tory control. With the advent of SDI, much atten-
tion has been focused on the interception of satellites
or ICBM’s outside the sensible atmosphere. Hence,
acrodynamic forces cannot be generated for vehicle
control. Instead, the thrust of a rocket engine is used
to provide the necessary mancuver forces, with ve-
hicle attitude control employed to point the thrust
in the desired direction. Conventional thrust vector
control systems tend to add both weight and com-
plexity, and as a result counter the objective of min-
imizing the weight of the guided warhead. The sim-
plest control involves a single thruster at right angles
to the spin axis of the missile. In this scheme the
missile is given a large roll rate and the thruster is
turned on for a fraction of each revolution in roll and
al the right time during each roll cycle so that the de-
sired attitude changes are achieved. Meanwhile the
main thruster, by producing a thrust componcent per-
pendicular to the flight path, provides the nceessary
trajectory changes.

The problem of attitude control of spinning rigid
bodies has not received much attention recently, al-
though some research has been reporied on this Lopic
in the 1960’s. The reorientation problem of a spin-
ning rigid body is conceptlually different than the
simple rest-to-rest maneuver of a non-spinning rigid
body. Becausc of the spin of the body about ils
symmectry axis, application of any moment about
the transverse axes generates a preecssional motion.
If the initial transverse angular velocity is not zero,
the problem becomes even more difficult because the
problem loses its symmetry.

Athans and Falb® consider the problem of time-
optimal velocity control of a rotating body with a
single axis of symmetry. They show that for a single
fixed control jet, the system has the properties of a
harmonic oscillator. Thus, a switching curve can be
derived to implement the control scheme. The cases
of a gimballed control jet and two control jets are
also considered. No mention is made of the complete
attitude reorientation problem, however. Howe® pro-



poses an attitude control scheme for sounding rock-
ets. ‘I'he main feature of this scheme is that it uses a
single control jet. The control jet is fired for a fixed
duration whenever certain conditions on direction
cosines or transverse angular velocity are satisfied.
This results in the alternate reduction of attitude er-
ror and transverse angular velocity, finally ending in
a limit cycle. Some other references!®®1,%6,7,12,15,13
discuss the problem of rcorienting a rotating rigid
body which has no initial transverse anguiar velocity.
Windenknecht'® proposes a simple system for sun
oricntation of spinning satellites. In this scheme the
desired attitude is achieved by a succession of 180°
precessional motions, each resulting in a small at-
titude change (small-angle approximations assumed
valid), until the spin axis arrives at an attitude corre-
sponding to the dead zone of the sun sensors. Cole et
al® prescribe the desired attitude change and solve
for the necessary torques but give no details on mech-
anization. Qther papers which propose active atti-
tude control systems for spin stabilized vehicles have
been published by Adams!, Freed®, and Grasshoff®,
but none of these explicitly discusses the reorienta-
tion problem. Grubin? uses the concept of finite rota-
tions to mechanize a two-impulse scheme for reorient-
ing the spin axis of a vehicle. If the torques are ide-
ally impulsive, then the scheme is theoretically per-
fect. But in the case of finite-duration torquing, con-
siderable errors can result. Wheeler'® extends Gru-
bin’s work to include asymmetric spinning satellites,
but the underlying philosophy is the same. Porcelli
and Connolly!® use a graphical approach to obtain
control laws for the reorientation of a spinning body.
Their results are only valid for small angles and small
angular velocities. For this linearized case they prove
that a two-impulse control scheme is fuel-optimal.
Two sub-optimal control laws are then derived for
the case of limited thrust based on the two-impulse
solution. Most recently, Jahangir and Howe!! have
proposed a time-optimal scheme which does not re-
quire solving a TPBVP. This scheme can be used
for the specific case when only two thruster firings
are sufficient to complete the time-optimal attitude
change maneuver. If the boundary conditions hap-
pen to lie outside this subset of the state space, the
algorithm given by Jahangir and Howe fails to con-
verge, since there does not exist a two-pulse time-
optimal solution for such a case. If a control law is
desired for boundary conditions which require more
than two thruster pulses, we must solve a TPBVP
involving ten nonlinear differential equations.

Both the two-pulse solution and the multiple-pulse
solution require iterations and, therefore, can be
costly in terms of the computer time required for the
solution to converge and also in terms of the com-
plexity of the iterative update scheme. Hence, an on-
line iterative procedure does not appear to be prae-

Figure 1: Axis systems.

tical for a real-time control algorithm. One possible
alternative is to precompute the thruster firing times
by solving a TPBVP for discrete values of the desired
houndary conditions. These thruster firing times can
then be stored as a table in an on-board computer
and the control scheme can be implemented in real-
time by table look-up and interpolation.

Since we must store the control history as a func-
tion of the boundary conditions, we look for ways to
generate a set of boundary condition points for which
the thruster firing times are known without solving
an iterative problem. To this end a new state vector
is introduced in Section 4 which is related to the orig-
inal state vector by a transformation. We will show
in Sections 5 and 6 that we can generate a trajectory
on the boundary of the set of reachable states by as-
suming a set of final conditions and integrating the
transformed state and costate equations backwards
in time. Since the boundary of the set of reachable
states defines all the minimum-time trajectories, we
can obtain all the desired boundary conditions and
the associated time-optimal control histories by vary-
ing the final conditions over the range of their possi-
ble values. Finally, in Section 7 we illustrate the pro-
cedure by plotting some example time-optimal tra-
jectories. '

2. Equations of Motion

Figure 1 shows the orientation of the moving body
axes Tp, s,z relative to the inertial reference axes
Ti, ¥, %, and also the Buler angles 1, 4, ¢ relating
the two axis systems. The body axes origin is at the
missile c.g. with the x;-axis assumed to be the axis
of symmetry; the y;- and z;-axes lie in a plane per-
pendicular to the longitudinal axis, . The missile is
modeled as a rigid cylindrical body. We also assume
that the control jet is located in the zy-z3 plane and
pointed in the direction of the zz-axis. When fired,
the control jet generates a constant positive moment
about the y;-axis.

We have assumed no disturbances such as aero-



dynamic forces, gravity, solar radiation pressures,
or structural damping. Because of the short flight
times, these disturbances have negligible effect on the
dynamics of the missile. Since no moment is applied
about the z;-axis, and since I, = I, (the moments
of inertia about the - and z,-axes are equal for a
missile that is axially symmetric about its z3-axis), it
turns out that w,, the missile angular velocity com-
ponent along the xp-axis, is a constant equal to the
initial spin velocity of the missile. We then obtain a
set of five state equations: two dynamical equations
involving the transverse angular velocities and three
kinernatical equations giving the rates of change of
Euler angles. Thus

I;
= (“r:)

M
Wew, + =% (1)
I

w, = - (1 - %) Wy {2)
¥ = (wy sin ¢ 4w, cos @) secd (3)
é:wy coS ¢ — W, sin ¢ (4)
¢ = w, + (wy sin ¢ + w, cos ¢) tan 0 (5)
where
wy,w, = trasverse angular velocity components

along the y- and z-axes, respectively,

¥,0,¢ = Euler angles corresponding to yaw, pitch
and roll, respectively,

Iz, I, = the moments of inertia about the longitu-
dinal and transverse axes, respectively,

M, the thruster torque about the y-axis.

For convenience we choose to write Egs. (1)-(5) in
terms of dimensionless variables and parameters in
accordance with the following definitions:

= Zx - W

I
i —_ Ll = i
A=1 Iy”\y_fng

dimensionless time T = w,t

Now, if we redefine the — operator as differentiation
with respect to the dimensionless time T, the equa-
tions become

, = AQ, + Ay (6)

Q, = ~AQ, (7

= (Q,sind 4+ Q, cos ) secd (8)
Q:chosqb—ﬂzsind) )]

&:1+(stin¢+9zcos¢)tan0 (10)

In order to write a state variable description of the
system, we define the state x of the system as

x=[9Q U v 8 o]

e

and the control u as
U= Ay

Eqs. (6)-(10) can now be written in the standard
form.

x =f{x) +gu (11)

where

A.’Eg
—Aml
(xysin &5 + x5 cOS T5) s€C Ty
X1 COS x5 — &2 8iN Ty
1 + (zy sin 25 + 7 cos #5) tan 4

£(x) (12)

g=[1 000 0] (13)
We assume that at the initial time, the missile body
axis system coincides with the inertial axis system.
The initial transverse angular velocity of the missile,
however, is non-zero. We thus obtain the following
initial condition:

Xo = [ Z1,0 .‘1’,‘2’0 0 0 0 ]T (14)
We want to find a control which will take this initial
state to a desired state, described by some non-zero
desired yaw and pitch angles and zero final trahsverse
angular velocity, in minimum time. The desired final
state vector, x4, can be written as:

T
xa={0 0 x5 z44 free (15)
We also assume an upper bound umqz on the control

u. Thus, the constraint on the contrel can be written
as:

0 <u < Umar (16)
The numerical values for the two parameters, A
and .., which will be used later in examples, are

A=09 up. = 0.02

This value of A corresponds o a length to diameter
ratio of 3.775 for a cylindrical body of uniform den-
sity. A missile weighing 10 1bs. and having a uniform
mass density of aluminum would have the following
dimensions:

length = 12.30 in., diameter = 3.26 in.

If the moment arm is half the length and the spin

velocity is 50 rad/sec, Umer = 0.02 corresponds to a
thrust of 2.79 ibs.



3. Time-Optimal Control
Formulation

The problem, as stated in the previous section, is
to find a control u(T) which takes the initial state,
Xp, to the desired state, x4, in minfmum time while
satisfying the constraints x = f(x) +gu and 0 < u <
Umgz. This is one specific case of a general Mayer
problem. Filippov? gives a theorem and proves the
existence of an optimal control for a Mayer problem.
At this time no general theorems are available on
the uniqueness of optimal solutions for the one-sided
controls, i.e., 0 < u < Upmar. Therefore, we can only
give necessary conditions for u* to be an optimal
contral.

In order to derive an expression for the time-
optimal control, we write the performance index

Ty
J o= f 1d¢ (17)
Ty

We want to minimize the performance index J under
the constraints of Eq. (11) and (16). Thus, we can
write the Hamiltonian

H=pTx-1 (18)

where p is the costate vector. The necessary condi-
tions for #* to be an optimal control are

an

-k aH - * *
p* =~z =Hx")p (20)
* Umaax lfp’{ >0
”“{0 if i < 0 (21)
and
x(Ts) = xq (22)
x(Tf) = xq (23)

p(To) = | free free free free free ]T (24)

p(Ty) = [ free free free free 0 ]T (25)
H(T;) =0 (26)

where H(x) = —-0f/dx. Egs. (19) and (20} are
the differential equations for the state and costate
vector. Eq. (21) is derived from the optimality con-
dition, i.e., maximizing the Hamiltonian . BEgs.
(22) and (23) are the given boundary conditions and
Eqs. (24)-(26) are derived from the transversality
conditions. Furthermore, we note from the theory of
necessary conditions that

OH(x*,p",T) _ dH(x",p",T)
oT N ar

=0

This, in addition to Eq. (26), shows that
Hx",p",T)=0for all T € [T}, TY]

Hence, in the problem we have 10 differential equa-
tions (Eqs. (19) and (20)) with 10 boundary con-
ditions (Eqs. (22)-(25)) constituting a TPBVP. As
mentioned earlier, the solution of this problem re-
quires iterations and, therefore, is difficult to imple-
ment in real-time. In the actual missile, thruster
firing times are computed off-line and are stored as
a table in an on-board computer. Function gener-
ation is then used to compute the thruster turn-on
and turn-off times as functions of the boundary con-
ditions.

Instead of obtaining the thruster switch {imes by
solving this iterative problem, we consider an alter-
native approach in the next section. An alternative
optimal control formulation in terms of a new state
vector is given. It is shown that, by assuming a sct of
final conditions and integrating backwards in time,
we can generate time-optimal trajectories in the state
space,

4. An Alternative Formulation
of the Time-Optimal
Control Problem

We define a new reference axis system. This axis
system is fixed in the target and its z-axis points
along the desired direction of the missile z;-axis. The
orientation of the missile with respect to an observer
fixed in the target is given by the Euler angles, s,
¥4, and y5, where vz, y4, and ys correspond to yaw,
pitch and roll, respectively. We also define y1 = =4
and y» = 3. Thus, we can write a new state vector

T
YZ[yl Y2 ¥z Y ys]
The two state vectors x and y are related by a trans-
formation (see Section 6.3 for the transformation re-
lations). The equations of motion can be written in
terms of this new state vector and are given by:

y =1(y)+gu (27)

We assume the initial and final conditions, respec-
tively, to be

y(MY=yo=[ v10 v20 ¥s0o Yao Us0 ]T
(28)
y(Tr)=y;=[0 0 0 0 free ]T (29)
A time-optimal control problem can be formulated
for this system, similar to Section 3. We want to
minimize the maneuver time, so we can again write

the performance index as
Ty

J= | 1dt (30)
To



under the constraints of Egs. (23) and (16).
Proceeding with the derivation of the necessary
conditions on the time-optimal control, we write the
Hamiltonian
H=qfy 1 (31)

where q is the costate vector. The necessary condi-
tions for u* to be an optimal control are

. aH . .
V=g =f(y") + gu (32)
q
. oH
* — I = H L3 * 33
q By (¥y")a (33)
. Umax if q; >0
* ‘{ 0 ifq <0 (34)

The houndary conditions on the state variables are
given by Eqs. (28) and (29). The boundary condi-
tions on the Hamiltonian and the costate variables
are derived from the transversality conditions:

1) =0 )

a(1o) = ao = [ frec free free frec free
(36)
alT)=qy = [ free free free free 0 ]’I (37)

We observe that this formulation still results in a
TPBVP. If the initial state vector, y(Ty), is specified,
an initial costate vector, q(75), must be determined
which results in the desired final state and costate
veclors. Tlowever, the state and costate vectors at
the final time have some simple features. Each of
the components of these vectors is either zero or frec.
Therefore, it is worthwhile to examine the system
characteristics if the state and costate equations are
integrated hackwards in time starting at Ty,

I the next scction we discuss a two dimensional
system in terms of some simple sets in the state and
costate space. By looking at the problem from a
geomwetric point of view, we show for this 2-1D sys-
tem that the origin can be connected Lo all points
in the set of reachable states in minipnun time by
varying the costate vector over R? and integrating
the system equations backwards in thiine. We note
that this procedure of integrating the system back-
wards in time is fairly common. The most familiar
example is the simple inertia system, £ = ». In this
systemn the state equations are integrated backwards
in time, using the time-optimal control, to obtain a
switching curve in the state space.

In Section § we apply this scheme to the complete
nonlinear minimum-time atlitude control prohlem of
a spinning missile.  Using the procedure analogous
to Section 5, all mimimum-time trajectorics can be
generated. By storing the state vector at discrete
points in time along the minimum-time trajectorics,
we are able to generate a set of points for which the
thruster firing times are known.

zti)
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ARt A

-

" 5,
Ry

-ty

74ft-ty)

Figure 2: The set of rcachable states for a 2-T) sys-
tem.

5. The Set_of Reachable States
for a 2-D System

In this section we examine the characteristics of the
following 2-I) system:

% = h(z,u)

where z Is a 2 X 1 state vector and w is the scalar
control. The desired final condition is assumed to he
the origin, i.e., z(t;) = 0. If we subject the system
with final state z(f;) = 0 to all control histories and
integrate the system backwards in time starting at
t;, we obtain a set of states that are reachable from
the origin at time t—1;, or simply the sct of rcachable
states. We denote the set of reachable states simply
as f2(f — ) in Figure 2. In the figure the boundary
of the set of reachable states at time #; — 15 is denoted
by OR(t; — tg). It is well known from the geometric
properties of the optimal control that the boundary
of the set. of reachable states defines all the minimum-
time solutions. We, therefore, conduct the following
experiment:

Let uyin(#,s) be the optimal control which is ob-
tained by minimizing the Hamiltonian with respect
to the control, where s is the 2 x 1 costate vector.
Hence, if 2 is an optimal motion, it satisfies

A h(?;* , Umin(z* ) S*))

where s* is a solution to the related costate cqua-
tions. Clearly, #*{t;) = 0.

In order to obtain a specific time-optimal trajee-
tory, we need to assume some final conditions on the
costate vector. We let s(fy) = sy, where s s an
arbitrary constant vector. The system cquations,
% = NW(#,tmin(z,s)), can now be integrated hack-
wards in time starting from the final time t; to ob-
tain a trajectory #(sy, t—t;) shown in the figure. The
trajectory z(sy,t — ;) represents the fact that it is a
function of the specified final costate vector, sy, and
the time parameter, t —1,. This trajectory connects
all points along its path to the origin in minimum
tine. Also, as mentioned carlier, this mininmum-time
trajectory lies on the boundary of the sct of reach-
able states. By storing #(sy,t —1;) at discrete poinis



in thme, we can obtain a set of points in the state
spacc for which the time-optimal control histery is
known. If we assume a different initial s;, another
time-optimal trajectory is obtained. By varying s;
over R? and integrating the system for each sy back-
wards in time, all trajectories on the boundary of the
set, of reachable states can be generated. In this way
all the reachable states can be obtained at discrete
intervals and the associated control history can be
stored as a function of these states.

In the next section we employ the techniques de-
scribed here to obtain a set of boundary condition
potnts for which the control history is known for
the casc of minimum-time reorientation of a spinning
missile.

6. An Examination of the
“y” System

We usc here the idea of backwards integration and
examine the system behaviour. Similar to the previ-
ous section, we conduct the following experiment.

Four of the final state variables are zero, as given in
q. (29). We assume that ys(77) = ys,7, where ys ¢
is an arbitrary constant. Similarly, we assume an ar-
hitrary value for the final costate vector, q(77) = qy,
where g5 ¢ == 0. The expression for the time-optimal
contrel is given in Eq. (34). Once all the final condi-
tions on the state and costate variables are specified,
we start the integration at Ty and integrate the state
and costate equations backwards in time. At cach
numerical integration step, we obtain a y(7") wherc
1" = T — Ty, This trajectory connects all points
along its path to the specified firal state in minimum
time. By varying the first four components of the fi-
nal costate vector q; over R (the fifth component is
zero as given in Eq. (37)), the entire boundary of the
set of reaclhable states is generated starting from the
specified yy. We note here that the only non-zero
component of the state vector is y5 r, which corre-
sponds to the roll angle of the missile. This angle
can take on valucs in the range {-=,7]. By varying
ys s in this range, and following the aforementioned
procedure of generating the boundary of the sct of
rcachable states, all the time-optimal solutions can
be generated. During the integration, the state vee-
tor, ¥, and the corresponding thruster switch times
can be stored at discrete points in time. Hence, this
procedure gives a set of y points for which the con-
trol istory given in terms of the thruster firing times
is known.

‘The control scheme can then be implemented in
real-time by using the thruster switch times which
are stored at discrete values of the transformed state
vector, y. However, in the actual missile the desired
attitude 1s measured with respect to the moving mis-

sile frame, whereas the vector y gives the orientation
of the missile with respect to an observer fixed in
the target. Hence, it is desirable to store the bound-
ary conditions in terms of the original state vector x.
The boundary conditions in terms of the x vector are
given in Eq. (14) and (15). The state vector y(7")
can be transformed back to our original system to
obtain the corresponding boundary conditions xy o,
9,0, 3,4, and Lq,4d-

The procedure to generate the control history as a
function of the boundary conditions can be summa-
rized in the following way:

1. Initialize y; and qy -

2. Integrate the y and ¢ equations backwards in
time and at each T/, = nAT obtain y(7},), where
AT is the time interval chosen to give desired
data-point spacing between y(T},) and y(75, ),
and n is a positive integer. Note that the nu-
merical integration step can be a submultiple of
AT.

3. Transform y (7} ) to get the boundary conditions
in the original form, =z, #20, 732, and x4
Store the thruster switching times as functions
of these four variables. Note that if ¢; > 0, then
Ty = 0, and similazly if, ¢; < 0 then T3 > 0,
where T is the first turn-en time of the thruster.

Each of these steps is discussed in the following sec-
tions.

6.1. Initialization of y; and gy

As indicated earlier, five of the variables at T} are
ZETO.

Vi =Y f=Yag =Yg =4qsy =0

The other five variables at T} are free. These must
be varied over all possible values to obtain the op-
timal control history as a function of the boundary
conditions. The variable yy ; corresponds to the roll
angle and, thus, is confined to

ys,p € [~7, 7]

The space over which ¢y 7, 2.7, 93,5, and g4,y must
be varied is 2 subset of the costate space. We refer
to this subspace as @,

Definition: The space @ is defined as

Q = {q(Ty) - gs(Ty) = 0, q(Ty) = %,
(T e -1, 41],4,7 = 1,2,3,4,7 # 1}

An algorithm to vary these variables over the range
of their possible values is given below:



where ¢ is the desired
spacing between values
of Ys. f

do ys5p=-mm$

do i=1,4
gi,g = E1
do gj s = —1,+1, A where j # i and A is the
desired spacing between
valucs of g; f

During the implementation of our scheme to gen-
erate time-optimal solutions, we observe that a con-
stant A (uniform spacing in ¢; 5 ’s) does not result in
a uniform span of the entire desired space of time-
optimal solutions. We find that when g¢; 5 is close to
zero, very small A is needed to span the set of de-
sired time-opiimal solutions. Conversely, when g; ;
18 not close to zero, A need not be small.

6.2. Integration of State and Costate
Equations

A practical issue in the implementation of the scheme
given in Section § is the choice of a numerical inte-
gration algorithm and the handling of discontinuities
that occur when the control switches from on to off
OT wice versa.

The RK-4 fixed-step algorithm is used to integrate
the state and costate equations. We utilize the fact
that analytic solutions for 3 and y, can be obtained
from Eq. (11). Thus, the equations for y; and gz do
not have to be integrated numerically. The analyt-
ical solutions for y; and ya are also used to obtain
the half- and full-frame derivative cstimates of the
remaining state and costate variables, as required in
the RK-4 integration algorithm,

There is a discontinuity in these derivatives when
the application of the control u starts or stops. This
switching time is a function of ¢, the first compo-
nent of the costate vector, as given by Eq. (34). If
this discontinuity occurs within an integration step,
it can cause large errors in the numerical solution.
To reduce these errors, the step size must be cho-
sen small enough to meet some integration error cri-
terion, which can result in excessive computational
time. Several papers have been written suggesting
special methods to circumvent this difficulty. We
choose the method proposed by Howe, Ye and Li°
for its accuracy and case of implementation. In this
scheme, at each successive time step, ¢ is tested to
sce whether it has switched sign. If it has not, the
integration proceeds to the next step. If switching
has occurred, the time of its occurrence is computed
by combining a fixed-point simplified Hermite inter-
polation with a continued fraction formula. Hermite
interpolation is also used to compute the state and
costate variable values at the crossover time. The
RK-4 algorithm is then used to integrate through

the remainder of the fixed-time step,
We define the following notation:

Ty =ih, i=0,1,2,...

v =uw(ly);,  yiey(T),  q=aolly)

where k is the integration step size and y; and
are the numerical approximations to the exact solu-
tion ¥{T;) and q(7;). The following computational
procedure is used at the ith step.

1. Integrate from T; to T;;; with the RK-1 al-
gorithm. In this integration wu; is used for all
derivative evaluations over the interval.

2. Determine if ¢y ;41 has changed sign with re-
spect to g1 ;. If not, repeat 1 starting at 774,.
If ¢y has changed sign (¢1,i4191: < 0), it means
that ¢, has a zero over the interval T} < T <
T;4+: and the discontinuity has been crossed. In
that case, proceed to step 3.

3. Using a fixed-point simplified Hermite interpola-
tion between T} and T}, followed by the contin-
ued fraction zero-finder described by Howe, Ye
and Li®, determine the zero T, of ¢;. Again, us-
ing Hermite interpolation, determine y(7,) and

q(T%).

4. Change the control u from 0 to ., (or from
Umaer 0 0, as appropriate} and integrate from
T, to Ti41 to recompute yiy) and qit1.

5. Return to step 1 and repeat the steps starting
at T,‘.{_l .

6.3. Transformation Relations

Between x and y

Let us consider a vector r originating at the missile
c.g. We let {r,,} represent the components of the
vector r in the missile body axis frame; {r;} repre-
sent the components of the same vector in the frame
T; and {ry} represent the components of the same
vector in the frame F. The frame of reference 7 is an
arbitrary axis system whose z-axis coincides with the
desired direction of the missile zy-axis. The frame of
reference F is defined to be the missile axis sytem
at the end of the maneuver. Previously, we have de-
fined 234 and z44 to be the yaw and pitch angles
describing the orientation of the desired direction of
the missile zj-axis with respect to the missile body
axis system. In addition, we define x5 4 to be the
roll angle of the frame F with respect to the missile
body axis system. It should be borne in mind that
z5 4 is free in the formulation of the optimal control
problem in Section 3. Thus, we can write,

{rs} = [C(z3,4,Ta,d, T5,a)] {rm } (38)

R



where [C] is the direction cosine matrix and is de-
fined in the following way:

([C(4.8,¢)] =
cos i cosf sin ¢ cos @ —sin ¢
—sin 9 cos ¢+ cospecosp+  cosfsing
cosPsinfsing sinysindsing (39)
gin 9 sin ¢+ —cosypsingd+ cosfcosg

costsinfcos¢ sinpsind cosd

We have already defined y3 = ys(T — T}), ya =
ya(T — T7), and y5 = ys(T — Ty) to be the Euler
angles describing the missile orientation relative to
an observer fixed in the frame 7. Therefore, we can
write

{rm} = [C (y3, ¥4, ¥5)] {r:} (40)

Finally, the frame F is obtained by rotating the
frame 7 about its z-axis. This rotation is given by
the angle y5,; = y5(T;) and we get

{rs} = [®] {r:} (41)
where
i 0 0
[®]= 1 0 cosysy sinysy (42)
0 —sinysy cosys;y

The matrices [C] and [®] are both direction cosine
matrices; therefore, each is an orthogonal matrix.
Hence, the inverse of these matrices is obtained by
merely transposing them.

Eqgs. (40) and (41) can be combined to write

{r1} = 12)[C (v3 94, ¥5)]" {rm} (43)
Comparing Egs. (43) and (38), we finally get
[C (23,0 24,4, 75,0)] = [B1[C (2, ua, 36T (44)

We let the entries in [C(23 4, 24,4, T5,4)] be denoted
by {i; and the entries in [®I[Cys, ya, ys)IT by mij,
where ¢ and j are the row and column indices re-
spectively. Equating (i3 = 113, we obtain

—sinzqq = sinygsinys + cos yasinyscosys (45)

Since —7/2 < x4 4 < w/2, the above equation gives
a unique value for 24 4.

r44 = —sin”" (sin y3 sin g5 + cos y3 sin y4 cos ¥5)
(46)
To get an cxpression for #3 4, We equate {13 = 7y
and (12 = 712 and obtain

COS T3 4 COS Lq 4 = COS Y3 COS Ya (47)
Sin 23,4 COS T4 g = — Sin Yz cOS Y5 + cos yasin yasinys
(48)

x_] #(y) J
T1.0 #1
T20 Y2
v | o (SR i
T4q | —8in ' (sin y3sin ys + COS Y3 5in yu cos ys)

Table 1: Transformation relations between x and y.

Dividing Fq. (48) by Eq. (47), we get the follow-
ing expression for r3 4 without an ambiguity in the
quadrant:

— 8in ya cos ys + €08 Y3 8in Y4 sin Y5
COS Y3 €OS Yq

T34 = tan~! (

(49)
Similarly, by equating o3 = 723 and (33 = 7as, We
obtain

COS T4 4 8iN &5 g = €O Yy 5 (— COS Ya sin ys5+

sin ya sinyy cos ys) +sinys s cosyscosys  (50)
COSEq,4CO8T5 4 = — 8iN Y5y (— ©OS Yz sinys+
sin y3 5in y4 cOSys) + coS Ys y cosyacosys  (51)

Dividing Eq. (50) by Eq. (51), we get the follow-
ing expression for zg 4 without an ambiguity in the
quadrant:

z5 4 =tan™! ( fu+b) ik T eonYsg ) (52)
' (~a+b)sinys s +ccosys s

where :
a = Cosyg sinys

= sin yasin y4 cos Y5
€= CO8Y4CO8Y5

Table 1 summarizes the transformation relations be-
tween the boundary conditions, given in terins of the
state vector x, and the new state vector y at time
T-Ty.

7. Example Trajectories

Three sets of final conditions on the state and costate
variables are given in Table 2. We only vary the final
roll angle s s in these three examples. Starting with
these final values, the state and costate equations are
integrated backwards in tirne. Figure 3 shows the
plot of ys vs. y4, where y; and y4 are the yaw and
pitch angles of the missile with respect to a frame
whose r-axis coincides with the desired direction of
the missile zy-axis. At each integration step the state
vector y is transformed to obtain the boundary con-
ditions x3.4 and z4 4. The total angle o between the
initial and the desired dircction of the missile is given



Example I Example 2 Example 3
q.f 0.25 .25 0.25
qa.f —0.50 —0.50 —0.50
ga.f 0.75 0.75 0.75
Ga,f 1.00 1.00 1.00
Y5, ¢ 0.00 /3 47 /3

Table 2: Final conditions to generate example con-

trol histories.
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Figure 3: Path of the missile z-axis in the y3-yy
plane, where y3 and y4 are the yaw and pitch angles,
respectively, of the zy-axis with respect to the desired

pointing direction,.

Figure 4: Total angle o vs. —(T' ~ T%).
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Figure 5: Path of the target in the z3 4-24 4 plane,
where 234 and z44 are the yaw and pitch angles,
respectively, of the target direction with respect to
the moving missile body-axis frame.
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Figure 6: Total transverse angular velocity  vs.
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by a = cos™!(cosz3 4co8244). Figure 4 shows the
angle o as a function of the dimensionless time T
The angles #a 4 and x4 4, which represent the target
yaw and pitch angles, respectively, relative to the
moving missile frame, are plotted in Figure 5.

The total transverse angular velocity Q =
V¥ + yi is plotted as a function of the dimension-
less time T in Figure 6. We start at © = ( and,
integrating backwards, obtain the time history of 1,
and ya. Figure 7 shows the trajectory of transverse
angular velocity components y,-y; as the integration
proceeds.

8. Mechanization of the

Control Scheme

The thruster switch times T:,7 = 1,2,...,n can be
obtained from the approach given in Section 6 for
the desired set of boundary conditions, where T} is
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Figure 7 Trajectoties of transverse angular velocity
components y; and .

the time when control switches and n is the total
number of switches required to complete the attitude
change maneuver. In order to implement this scheme
i real-time, the switch times 73,1 = 1,2, ..., n must
be stored in an on-board computer., We propose a
controd scheme which only needs to store T and Ty,
the first turn-on and turn-off times, respectively.

In this scheme table look-up followed by interpo-
lation is used to compule Ty and Ty. The thruster
is then turned on from 73 to Th. After this first
thruster firing has been completed, we can measure
the state variables at T3, The switch times 7} and
14 can now be recomputed based on this measured
state. These new Ty and T4 correspond to T3 and
Ty, respectively, for the previous Ty and T%. Thus
for the two-pulse case, the new Ty and Ty(= Ty) are
sucl that 7Ty — T3 = (. In the prescnce of interpola-
tion, namerical, or mcasurement errors this will not
be quite true. Nevertheless, in reality this scheme
would probably be superior because it can correct
for system and measurement errors by introducing
feedback based on the latest state information.

When we store the thruster firing times at spec-
tfied time intervals while integrating the state and
costate cquations backwards in time, a randomly
spaced function is obtained. However, it is desirable
for real-time function generation to have an equally
spaced function. This table of equally spaced fune-
tion values can be obtained by using linear inter-
polation across the randomly spaced function val-
wes. Once the equally spaced function to be used in
rcal-time function generation is created, table search
and interpolation can be carried out easily. Qur re-
ccnt research has focused on creating this table and
implementing the control law using function genera-
tion. The results of this approach appear in a Ph.D.
dissertation® ‘and will also be published in future
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research papers.
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