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I

N THIS paper we study optimal spacecraft formation motion

design for fuel-image optimality. Previous results indicate a
tradeoff between image quality and fuel expenditure [1,2]. Hence,
we formulate an optimal control problem that optimizes fuel
expenditure while meeting imaging goals. First, we state results
from [3,4] that relate image quality to the trajectory of a sparse
system of N telescopes. This relationship is used to define an
optimal control problem that includes imaging and fuel
performance measures. We then derive the necessary optimality
conditions for a generic multispacecraft formation and specialize
them to a two-spacecraft formation. We show that the optimal
trajectory must be symmetric about the system center of mass,
which in turn moves uniformly in space. We also show that there
is a “speed control” effect that is necessary for meeting the
desired image quality. Simulation results are provided to show
the local behavior of the resulting control law. Finally, we prove
optimality of a class of circular Earth-orbiting constellations
introduced earlier in the literature [5]. This work is fundamental
to current and future work related to motion path planning of
deep-space, separated spacecraft interferometric missions used for
the imaging of exosolar targets as those sought in NASA’s
Origins Program [6].
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II. Imaging Problem and Modulation

Transfer Function

Refer to Fig. 1. Let o denote an extended incoherent source. Let
q = (x9,v0.0) and g = (xp, yp. zp = Z + {p) be the positions of a
point Q on the image plane / and a point P on the observation surface
O’. The image plane / is the plane on which an image of o is
reconstructed and is set to be coincident with the x—y plane of our
coordinate system, whose origin is at the geometric center of 0. On
the other hand, the observation surface O’ is one on which the
constellation evolves and is located at a distance z from /. The
observation plane is a plane through O’ on which we project the
motion of the constellation. Let D denote the effective dimension of
the constellation, d denote the effective size of the target o, and A
denote the aperture area. There are two basic assumptions that we
make in this paper. Firstly, the aperture area A; of each craft is much
smaller than the size of the constellation. In other words, Ay < D?.
Secondly, the observation plane O is assumed to be sufficiently far
from the target 0. In other words, D/Zz < 1 andd/z < 1. The theory
behind the model described next is applicable to any range of
wavelengths, from infrared to radio-wave ranges [3]. Whereas in the
infrared range metrology and control tolerances are very stringent, in
radio-wave ranges tolerances are manageable with present day
technology.

The main objective of the imaging constellation is to reconstruct
the light intensity distribution deposited by o on I using light
collectedinasetof regions A, A,, ..., Ay, which represent the entry
pupils of the separated telescopes and N is the number of apertures in
the system. Under the assumptions that A; < D?, D/7 < 1, and
d/7 < 1, one can show that the estimate of the image intensity
i .(v) = FII,(q)], where v is the spatial frequency and F: R?> — R?
is the Fourier transform, satisfies [3]

Iv.)y=M@.0iw) M
where I(v) is the true image intensity,
9 _ ! N Gmn (T)
My, 0)=8)" A thp(v - )»_z) )

m.n

B is a scalar constant, ¢,,, is the relative position between spacecraft
m and n, A is the wavelength, and A » 1s the Fourier transform of the
“field-of-view” or “picture frame” function

1 ifqgel
0 otherwise

A,(q) = { )
Note that the assumptions that D/Z < 1 and d/7z < 1 has directly
led to the elimination of {; from the derivation. Hence, Eq. (1)
presents a valid model for the system whenever z > 1. This
assumption, however, does not imply that there is a need to constrain
the formation to the observation plane O.

The function M is the modulation transfer function (MTF). Note
that the MTF is simply the superposition of the functions A »» €ach
evaluated at ¢,,,/(Az). The MTF is defined as the ratio of the
estimated intensity to the true image intensity. For an interferometric
imaging constellation, the MTF can be computed given the
measurement history and corresponding relative position data
between the light collecting spacecraft. In the wave number plane, a
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Fig. 1 Basic imaging situation.

point with a zero MTF value implies that the system is “blind” to the
corresponding sinusoidal pattern, whereas a large value of the MTF
implies that the image signal can be restored at that frequency. For
more on the MTF, see [3,4] and references therein.

Let 6, denote the desired angular resolution. The resolution disk
D, has a diameter >~ 1/6, and is the region where we desire to have
MTF > 0. We assume that

1 ifv=<r,
0 otherwise

A3 =4,00={ @

where r,, is the effective radius of the true function A - This model

introduces a sensible error only at the edge of the domain of A p- This
model is valid under the assumption that D/7 < 1 and d/7 < 1
[3.4]. The picture frame region is a circular disk of diameter 2r), that

is used to approximate the effective size of A e

III. Multispacecraft Problem: Necessary
Optimality Conditions

In this section, we derive the necessary optimality conditions for a

multispacecraft formation by appealing to the maximum principle

(MP). The dynamics are given by

q:() =), v, (1) = u,(1) ®)

where v; and u; are the velocity and control vectors of spacecraft i.
The cost function is

T N
7 == M(Z ||u,-(r)||2)dt ©
i=1

where the cost y(7) satisfies the differential equation
N
Y0 =) w0 ™
i=1

In Eq. (7), p is a parameter introduced to study the local behavior of
the resulting control law in Sec. IV. An optimal solution will be
independent of the parameter 1 in general. Define the normalized
MTF as

A~ 1 N ~

2. =gl = [ 4,0 =g
ﬁ 0 n=1

The second term after the first equality sign in the definition of z

ensures that z does not include contributions due to self-interaction at

the origin of the frequency domain. Hence, for the spacecraft

formation, z satisfies the differential equation

N N
0= Y A= Gu0)] ®)
m n=1,#m

and is treated as a state of the system. Let ¢,,, denote the relative
position vector between spacecraft m and n:
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If we let 4 denote the saturation function 4(x) = xif0 < x < l and
h(x) = 1if x > 1, then the terminal condition on z is given by

hz(v, T)] =1 (10)
for all v € D,. This guarantees that z > 1 (i.e., complete coverage)

everywhere inside D, at time 7. To summarize, initial and terminal
conditions are

v,(0) = v,0, y(0)=0
hzw,T)] =1,

q:(0) = q,o,

(1D
z(»,0)0=0, VwveD,

YveD,

The problem at hand is to minimize Eq. (6) subject to the dynamics
of Egs. (5). (7), and (8) and the boundary conditions in Eq. (11). We
note that the system of Egs. (5) and (8) involve three independent
variables ¢ and the two-dimensional spacial frequency v € R?. This
kind of system resembles problems involving partial differential
equations (PDESs) such as those in heat transfer and fluid mechanics
(i.e., infinite-dimensional systems). There are two basic differences
between our problem and infinite-dimensional problems such as the
problem of controlling the temperature of a two-dimensional plate.

The first difference is that we do not have diffusion as evidenced
by the absence of a partial differential equation in v governing z. In
the PDE literature, this is known as an elliptic PDE. This is a special
subclass of PDEs that also falls under the more general class of PDEs
considered in, say, [7]. One novelty in this Note is that we identify the
imaging problem as one that can be addressed using results from
PDE systems theory. This potentially opens the door for using many
of the results in control of PDE systems in the imaging problem.

The second difference is that in the plate temperature control
problem we are able to control the temperature at each point on the
plate. However, in our problem, the value of z can only be changed at
frequencies where A p» has anonzero value. In turn, the location of the
A » functions are determined by the dynamics governing g;.

In this Note, we use the MP to derive the necessary optimality
conditions. We begin by defining the function

N
H(t) = Z(pq,- v+ Dy, U; + /'pr”ui”z)

i=1

N
n <pz(v,r), > A —ém,,)> (12)
m.n=1,n#m
where p, and p, are vector Lagrange multipliers, p, is a scalar
Lagrange multiplier, and p.: D, x[0,7] — R is a Lagrange
multiplier function taken pointwise in v. The inner product (-, -) in
Eq. (12) is defined on the vector space of real functions whose
domain is the resolution disk D,: (f(v), g(v)) = va f()g(v)dy,
for any two functions f, g: D, — R. A necessary condition for
optimality is that dH/du; =0, i=1,...,N. This implies that
u; =—p,/2up,, i=1,...,N. Hence, the Hamiltonian is given as

- lp.,I? S
H([) = Z[pq,- cU; = 4/.:’[7 . ] + <pz(v7 t)? Z Ap(v - qmn)>

i=1 m.n=1,n#m

(13)
Transversality conditions imply [see Eq. (2.3.8) in [8]]
p4(T)=p,(T) =0, p.(v.T) = pl(v), py(T) =1

(14)

for some function p!: D, — R. By the MP, the necessary optimality
conditions are given by
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. oH N
40 =g, =u0.  WO= ap - Zsz;(t()t)
vi v; y
Ip,, O
o= Z 4o
oH N . _
i =g—= S A =G, 0]
z m.n=1,n#m
. oH 15
Py, (1) = T9q <.D (v, 1), Z —VA oV — i (1)] as)
i n=1,#i
+ VA, + qm(r)1>
. 0H ) oOH
p""(t):_a_v,:_pqi(t)’ py(t):—gz()

=0

. oH
Pz(v7 t) - _37

From the initial and terminal conditions, the transversality
conditions, Eq. (14), and the seventh and eighth equations in
Eq. (15), we find that p, (1) =1 and pz(v,t)zpf(v) for all
t € [0, T]. We have

N 2
i0=v0. 50=-L20 5=y 1200

N
Z(V,t)z Z Ap[v_émn(l)] (16)
m,n=1

p,,,()——<p<(v> Z —VA,[v— qm(r)]+VA,,[v+qm<t>]>
n=1#i

ﬁu, (t) = _pq, (l)

IV. Two-Spacecraft Problem

In this section, we derive the necessary conditions for a two-
spacecraft formation using the MP. Because we have two degrees of
freedom, instead of using the positions of the spacecraft as system
states, we will use the relative position between the spacecraft and the
position of the center of mass as our states. As before, let g denote the
relative position vector between the spacecraft pair divided by Az

q(1) =[g:(1) — q:(0]/(A2) (17)

where ¢;, i = 1, 2, is the position vector of the two spacecraft. ¢
corresponds to the motion of one of the picture frame disks in the
frequency domain. Let s be the position vector of the center of mass
of the formation

s (1) =[g:(0) + q:(1]/2 (18)

where we assume unity mass for both spacecraft. The dynamics of
the system are given by

G =v,(0),  ¥y(0) =[us(0) —u, (1)/ (2,
V(1) = [ur (1) +u,(1)]/2

$(n=v,(1) (19)

The cost function to be minimized is given by Eqs. (6) and (7),
subject to Egs. (7) and (8) with N =2, Eq. (19), and initial and
terminal conditions are

(](0) = q()v vq(O) =y,

S(O)ZSO, vs(o):vso’ y(O):O

(20)

Again, we use the MP to derive the necessary conditions. Hence,
we have
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H(1) =py(1) - v,(0) + 352, (1) () =, (D) + Py (1) - v,(1)
+ %pus (©) - [ (1) + ua (D] + pp, Ol D11 + ez (1))
+ (P00 A, = GO] + A, (0 + ) 1)
where p,, Py, Ps and p, are vector Lagrange multipliers, p, is a
scalar Lagrange multiplier, and p.: D, x [0, T] — R is a Lagrange

multiplier function taken pointwise in v. A necessary condition for
optimality is that dH /du, = dH/du, = 0. These imply that

1L [p,(® p, (0
“1(0) _ZMPy(t)[ T2 ]

_ 1 P, (1) p, (1)
uZ(t)__Zupy(t)[ T ]

Transversality conditions give

p(D=p, (D=p)=p,(T)=0, p.v.T)=pl )

py(M)=1

(22)

After applying terminal and transversality conditions, the necessary
conditions are found to be p,(¢) = p,, =0, s(t) = s, and v, = v,
for all 7 € [0, T]. This implies that u; = —u,. Hence, a necessary
optimality condition is that the center of mass drifts with constant
velocity. That is because, firstly, motion of the center of mass does
not affect image quality. Secondly, an accelerated motion of the
center of mass will result in additional unnecessary fuel expenditure.
And so, it is intuitive that the center of mass be fixed as an optimality
necessary condition.

Finally, after omitting equations related to the motion of the center
of mass, the preceding discussion implies that the necessary
conditions are

3 P, (1) . Ip., O
g =v,(1), v ()=~ (A o y(@) = 20007
2.0 = A, —GO]+ A,y +4(1)] (23)

Po(t) =—(pL(v).—VA,[v — G(0] + VA, [v + 4()])
Po, () =—p,(0)

These equations are the necessary optimal conditions for the two-
craft problem. These and the transversality conditions in Eq. (22)
represent a two-point boundary value problem. Although not
sufficient, these conditions are helpful in that one can study the
general behavior of an optimal solution. We may also numerically
investigate whether the previously given control law behaves as we
would expect it to. We will treat the problem as an initial value
problem by selecting arbitrary initial values for the adjoint variables.
Note here that our goal is not to solve for the extremals of the optimal
control problem. We merely desire to study the dynamic behavior of
trajectories that flow according to the conditions in Eq. (23). We
perform the simulation using Matlab. D, is such that it is 30 pixels in
diameter. The picture frame disk is 4 pixels in diameter. We use the
Matlab function “gradient” to compute the gradient of the picture
frame functions. We normalize the position vector g such that
position is given in terms of number of pixels and v,, in terms of pixels
per second. The duration of the simulation is 50 sec and
AZ=1x 10*. We also set py(0) = (0,0), p,, (0) = (0,0), and
pl(v), ¥ v = —1000. We use these values for all simulations. We
consider four numerical examples. The parameters are set as shown
in Table 1.

In Figure 2a, we investigate the behavior of the picture frame disk
when it gets a “head-on” impact with the boundary of the resolution
disk. The behavior shown agrees with our intuition behind the
formulation of the optimal control problem in that the picture frame
disks move in directions seeking to achieve z(v, T') > 1 to satisfy the
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Table 1 Variable choices for numerical

examples
Example in qo Vg n
Fig. 2a 9,9 (-1,) 1x10°°
Fig. 2b (13,2) (—10,0) 1x 107
Fig. 2¢ (13,2) (=9,0) 1x10™*

terminal condition. We note that the trajectory is very sensitive to our
choice of pf(v).

Another interesting behavior is given in Figs. 2b and 2c. In these
two examples we investigate the response of the control law to the
speed of the picture frame disks. How the value of z(v, ¢) is related to
speed of motion is discussed in [3] and Sec. V.A. In Figure 2, the
initial velocity is set too large and we note that coverage improves as
the picture frame disks move (this is observed by the fact that
coverage becomes darker in color). The initial speed in Fig. 2b is
larger than that in Fig. 2c. We note that, in the former case, coverage
converges to a darker shade of red less rapidly than that in the latter
case. This is true assuming that we have chosen a value for p{ (v) that
is close enough to the desired value.

V. Particular Solutions
A. Two-Spacecraft, One-Dimensional Problem

In this section, we further specialize Eqs. (23) to the two-
spacecraft, one-dimensional case. By one-dimensional, we mean that
the wave number resolution disk D, collapses to a wave number
interval £, =[-L,/2,L,/2], where L,/2 is the bound on the
frequency content of the signal to be reconstructed (that is, L, is the
width of the resolution interval).

This one-dimensional problem is analogous to the spiraling, one-
dimensional problem studied in [3,4]. However, the simple linear
example has an important theoretical implication because, locally in
time, the motion of any particular picture frame disk in the two-
dimensional case can be approximated by a one-dimensional linear
motion. Hence, studying the one-dimensional case gives insight into
the local-time behavior of the picture frame disk. For example,
studying how a one-dimensional picture frame disk interacts with
partially covered (z < 1) one-dimensional intervals along the line of
motion enables us to understand how a two-dimensional picture
frame disk infinitesimally interacts with neighboring (two-
dimensional) coverage areas.

In the one-dimensional case, the necessary conditions become

g=v.  v=—p,/IuADY  ¥=plP/20(3)]
v )=A,(0—q) + A, +q)
d ~ d ~
pq =—<P'§(V)y—aAp(V_‘]) +aAp(v+Q)>7 pvz_pq
(24)

where we omit the subscript ¢ in v, and remove the over-bars that
indicated vector-valued variables. The inner product (-, -) refers to
the inner product on the vector space of real functions whose domain
is the resolution interval
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L,/2
£y = [ sosma

for any two functions f,g: £, — R. The initial and terminal

conditions are given by

v(0) = vy, y(0) =0, z(v,0) =0

py(T) =0, p(T)=0

q(0) = qo,
zvn, T) =1,
Note also that the gradient operator changes to a simple derivative

over the frequency domain. Under the model given in Eq. (4), we
then have

~ 1 g-r,sv=r,+gq
Ap(v q)_{O otherwise and

A 1 —r,—gq=<v=r,—q
— P P
4,0+ = {O otherwise
and, hence
d
dv

%AP(V +q)=8v—(=r,—@]—=dv—(r,—q]

A, w—q)=8v—(qg—r)]—8v—(q+r,)]

where §(x) is the Dirac delta function (assuming the picture frame
function A » assumes a Heaviside step function).

We study a trajectory such that the picture frame disks move with a
constant critical speed v,

q(t) = —v.t + qg (25)

We choose ¢y = (L,/2) + r, such that the picture frame disks are
initially located right outside the resolution interval. The critical
speed v, is the speed that guarantees that at any frequency component
vel[-L,/2,L,/2] we achieve z(v,T)=1 at the end of the
maneuver with only a single passage over the resolution interval.
Note that z(v, t) is equal to the amount of time spent by the frequency
v inside one of the picture frame disks up to time ¢. These choices
imply that we have to set v, = 2r, to ensure that z =1 at each
frequency inside the resolution interval [-L, /2, L, /2]. The terminal
time 7 1is chosen such that ¢(7) =0. Hence, we have
T=1/2+4+(L,/2)/v.. We will fix this terminal time value and
assume it is chosen as such beforehand.

Equation (25) and the necessary conditions in Eq. (24) imply that
v(t) = —v,, p() =0, p,(1) =0, p,(v,1) = pl(v). Thus, we are
left with

y=0. n)=4,0-q)+4,0+09)
0=plv=g—rpn—plo=q+r,0+plv=—g—r,.1
—plv=—q+r,.1 (26)
V t € [0, T]. The first of these equations and the initial condition
v(0) = Oimplies that y(r) = Oforall 7 € [0, T]. In particular, we have

v(T) = 0. Hence, the proposed solution achieves zero cost. Because
the cost functional J is positive definite, then any solution that

Fig. 2 Motion of the picture frame disks in the u—v plane ata)¢ =10 s, b) # = 3 s, and c) f = 3.5 s for three different initial conditions (see Table 1).
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achieves zero cost and satisfies the terminal condition is then an
optimal solution.

In [9], the authors show that the terminal conditions are satisfied
for the proposed motion. By construction, the time spent by the
picture frame disk over v turns out to be exactly equal to one [9].
Because we do not have double passages over any frequency point v,
then at t =T, z(v,T) =1, for all v e L,. This shows that the
proposed motion is indeed optimal because it achieves zero cost and
satisfies the desired terminal conditions. To complete the proof, we
just need to show that the third condition in Eqgs. (26) is satisfied for
all 7 € [0, T]. Note that the function p!(v) does not influence the
remaining necessary conditions. Hence, any choice for pl(v) that
will set the right-hand side equal to zero is a valid choice. For
instance, any symmetric function pf (v) will satisfy this condition
because the second term in the inner product is skew symmetric (if f
is symmetric and g is skew symmetric, then (f, g) = 0). Indeed,
pf (v) =0forall v e £, is a valid choice.

B. Class of Circular Earth-Orbiting Observatories

In this section, we show that a circular Earth-orbiting observatory
that was introduced in [5] is optimal. This class of constellations is
designed to achieve complete wave number plane coverage. This
constellation was further studied in [ 10] to examine the effect of orbit
perturbations on the quality of the reconstructed image and to
examine ways to correct the design to counteract these perturbations.
The satellite constellation is placed on a circular arc that is a segment
of an Earth orbit and whose center is located at the center of the Earth
(see Fig. 3). The basic assumption is that the formation maintains its
rigidity. The Earth-orbiting observatory will maintain formation
even when in eccentric orbits as long as the spacecraft elliptic
motions are in phase and have the same value for the semimajor axis.
The satellites are distributed such that the second satellite is located at
a distance of d,,;, from the first satellite, the third at 2d,,;, from the
first, the fourth at 3d,;, from the first, and so on. This arrangement
ensures the complete coverage of the wave number plane once every
half an orbit period [5]. Figure 3 shows the geometry of this
configuration for N, = 3 satellites. We nominally assume that the
orbit plane is perpendicular to the line of sight to the target. The
motion in the frequency domain is as shown in Figure 3.

We choose the terminal time 7 such that 7" spans an integer
multiple, say /, of the orbit period 7,,: T' = IT,. The reason for having
to wait for multiple orbits before capturing an image is due to the fact
that coverage in the frequency domain is radially uneven. That is to
say, for each v* € R, we have even coverage for all v satisfying
|lv|]| = v* after each half orbit period. However, as v* changes, the
value of z changes (in fact, decreases as shown earlier). Hence, we
choose I such that after //2 orbit periods the value of z(v, ) is at least
unity everywhere inside the resolution disk D,. Specifying T
automatically specifies the orbit size.

A similar analysis as before gives the following necessary
conditions

q.:(t) =v,(1), v, (1) = g(q,), y() =0
N
‘(v 1) = A = g (0]
& ,,,,:12#, ’ @7)

N
0= <p§(v), > VA, (v—q) + VA, (v + qm)>
n=1,#i

where g is the central gravitational force.

Note that the first two equations in Eqs. (27) simply express the
Keplerian motion in differential equation form, which is necessary
by design. Secondly, the initial condition y(0) =0 and the third
equation gives y(#) = Oforall ¢ € [0, T]. In particular, the total cost is
v(T) = 0. Because the cost functional is positive definite, then if the
formation satisfies the terminal necessary conditions, then the Earth-
orbiting observatory is optimal. To check for this, we need to verity
that the terminal condition in Eq. (10) and that the last condition in
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Fig. 3 'Wave number plane coverage for a three-spacecraft formation.

Eq. (27) are satisfied. By construction, the formation makes enough
orbits [ such that at terminal time 7 we have h[z(v,T)] =1 and,
hence, satisfying the terminal condition. Similar to the discussion
made in the last paragraph of Sec. V.A, any symmetric function
p]; (v) [such as pf (v) = 0] will satisfy this condition by symmetry of
the second term in the inner product. This shows that the Earth-
orbiting formation is an optimal solution to the problem.

Finally, note that in [10], the authors propose thrust-free designs
that guarantee full coverage of the frequency domain for the circular
orbit observatory under general (and, in particular, J,) perturbations.
Although the craft may not be rigidly moving together, zero-thrust
solutions that meet the imaging requirements do exist and the result
presented in this section applies to the case in which perturbations are
present after nominal design modifications as proposed in [10].

VI. Conclusions

In this Note, we study an optimal control problem for optimal
image and fuel usage. The main contribution of this Note is to show
that an optimal trajectory must be symmetric about the origin. We
also show that an optimal trajectory has a “speed control” property
thatis desirable for uniform coverage of the u—v space. This is shown
to be true using numerical simulations. Finally, we show that a class
of Earth-orbiting constellations introduced earlier in the literature is
optimal. Future research will focus on the mathematical formalism of
optimal control of infinite-dimensional systems with and without
diffusion, with special focus on the latter case. We will also seek to
find solutions to the N-spacecraft problem other than the Earth-
orbiting constellation.
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