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Abstract

For planetary satellite orbiters (such as the Europa Or-
biter) and planet orbiters (such as the Mercury Messen-
ger Mission), tidal forces can induce large changes in or-
bital elements over one orbit. The longitude of the as-
cending node and the argument of periapsis of a transfer
orbit can be viewed as control variables since they have
a strong influence on the dynamics, and can be set to an
arbitrary precision by proper timing. In this paper we
investigate some aspects of the practical application of
transfer maneuvers in a strongly perturbed tidal environ-
ment with a focus on plane change maneuvers. In partic-
ular, transfers involving an ellipse cannot be considered
without taking the tidal forces into account, and two and
three impulse transfers must be replaced by tidally driven
transfers. These tidally driven plane changes are shown
to be optimal over classical plane change maneuvers for
plane changes larger than ~ 38°, replacing the classical
optimality of bi-elliptic transfers over the one impulse
plane changes in the case of tidally perturbed environ-
ments. The investigation is performed by solving an op-
timization problem with constraints and using the Hill
three body problem for the underlying dynamics. Sav-
ings on the order of 256% are obtained when compared to
the one impulse transfers for plane changes of ~ 60° and
plane changes of —180° are shown to be possible (with
~ 15% savings).

I ntroduction

Planetary satellite orbiter missions, like the Europa Or-
biter Mission, present new challenges to the design of
trajectories. In such environments the tidal forces due
to the nearby planet (Jupiter in the case of Europa) are
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strong enough to cause instabilities that can result in the
impact of the orbiter on the satellite over relatively short
time spans, even for low altitude trajectories. In par-
ticular, while low inclination orbits have been shown to
be stable, scientifically interesting orbits, like near polar
orbits needed for high latitude mapping of the satellite,
have been shown to be unstable!. Assuming a spacecraft
in such an unstable trajectory, large plane change ma-
neuvers may then be required to transfer it into a lower
inclination, stable orbit, in order to avoid impact with the
satellite over long time spans. During the transfer the
tidal perturbations are of prime concern since two and
three impulse transfers involve raising the apoapsis ra-
dius, resulting in larger perturbations. As a consequence,
classical types of transfers are not directly applicable to
this environment as one must take these tidal perturba-
tions into account. As shown in a previous paper2, these
dynamics are strongly dependant on the orbit geometry
at apoapsis and, in particular, on the longitude of the as-
cending node Q and the argument of peripasis w. These
variables allow us to use tidal perturbations as control
forces for the design of transfer maneuvers, resulting in
lower costs and new optimal criteria for these maneuvers.

In this paper, focus is given to the case of tidally driven
plane change maneuvers, a problem initially motivated
by the Europa Orbiter mission. The underlying dynam-
ics are modeled using the Hill three body problem, which
is a good model for the dynamics of particles in the en-
vironment of a planetary satellite (or even a Sun-planet
system) and present attractive analytical features that
simplify the analysis (symmetries and non-dimensional
form). Bi-elliptic plane changes with the apoapsis ma-
neuver suppressed by the use of the tidal forces are first
considered. The operation of these transfers involves the
choice of precise values of the longitude of the ascend-
ing node relative to the satellite-planet line, 2, and the
argument of periapsis, w, which are obtained by solving
an optimization problem over a Poincaré section. These
surfaces are defined by the periapsis condition and repre-
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sent the orbital dynamics taken from one periapis to the
next one. Comparisons with classical transfers are then
given. This results in a new version of the classic op-
timality of bi-elliptic plane change maneuvers over one
impulse plane change maneuvers? in the case of tidally
perturbed environments.

Tidal transfers and
Dynamicsin the Hill model

Classically, the design of orbit transfers is based on the
two body problem for the underlying dynamics. In this
model, the trajectory of a spacecraft is entirely deter-
mined by its five orbital elements, semi-major axis a,
eccentricity e, inclination 7, longitude of the ascending
node Q and argument of periapsis w, at one point of its
orbit, until the next maneuver. In this situation, relations
between two points on a given orbit are readily obtained
and the problem of determinig a transfer can be viewed
as a geometrical problem of the intersection of conics to-
gether with an optimization over all possible impulsive
maneuvers. In particular, there is no distinction between
the dynamics on the initial, final and transfer orbits. The
time appears as a secondary variable (possibly as a con-
straint to optimize over) in the sense that if a transfer is
possible at time ¢y, it is also possible at time ¢+ 7T where
T represents the period of motion on the initial orbit.
Also, the absolute position of the initial and final orbits
relative to a given inertial frame are not generally taken
into account in the formulation of the problem. Only
the relative orientation of the initial orbit with respect to
the final one is important. A typical example of trans-
fer is given by the bi-elliptic plane change (or restricted
three impulse plane change®), where a spacecraft starts
in an initial low, circular orbit, a first maneuver transfers
it to an ellpise where a second maneuver is performed at
apoapsis, changing its orbital plane, and a final maneu-
ver at the next periapsis retransfers the spacecraft to a
low circular orbit (see figure 1).

When perturbations occur, however, this state of affairs
changes. Orbital elements are now a function of time
and there may be no definite analytical relationship be-
tween two points on a given orbit. The situation is not so
bad for small perturbations where averaging theory gives
a good approximation of the secular changes of the or-
bital elements over one orbit. Since by assumption these
perturbations are small, variations over one orbit remain
small and the two body approximation retains its value
and gives useful estimates of the AV required for a given
maneuver. This is, for example, the case for orbiters
moving in a Jy perturbed gravitational field. Moreover,
in this case, the perturbations decrease as the apoapsis
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of the transfer orbits are raised, justifying again the two
body assumption. Still, even in this slightly perturbed
environment, w and Q are shifted during each orbit and
the absolute orientation of the initial and final orbit at a
given epoch enters into the problem.

Second impulsive
maneuver
(plane change)

First impulsive
maneuver

Last maneuver
(recircularization)

Figure1: Geometry of bi-éliptic plane changes

In the case of a planetary satellite, the tidal perturba-
tions may be strong enough to cause a spacecraft to im-
pact the surface of the satellite over a single orbit. More
precisely, assuming that a spacecraft is in a low circular
orbit, and that a AV maneuver is performed to place the
spacecraft onto an eccentric orbit, performing the ma-
neuver at time ¢ or ¢ +7" may result in an impact or es-
cape from the satellite before the spacecraft has reached
the next periapsis?. Unlike the J, perturbations, tidal
forces become more prominent as one gets further from
the attracting body. Dynamics close to the satellite and
on the transfer orbits now have very different character-
istics, and the orientation of the initial and final orbits (or
equivalently the timing of the maneuvers) are of prime
importance. More precisely, the initial value of w and Q
now control, in some way, the changes that occur during
a transfer orbit, and a careful choice of these variables
allows us to use the tidal forces to generate the plane
change without any cost (see figure 5).

After presenting the model used to characterize the
tidal effects in the next subsection, the assumptions and
dynamics that make such transfers possible are pre-
sented.

TheHill mode

This model was first derived by Hill* to explain the mo-
tion of the moon around the Earth, and is a useful model
to characterize the motion of two close masses perturbed
by a larger, massive object. In particular, this model de-
scribes the dynamics of a spacecraft in the environment
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of a planetary satellite, or even in a large orbit about a
planet.

This model is given by the following set of differential
equations:

i—2N§ = —%w+3Nzx )
j+2Ne = —Ly ¥
r
i = —%Z—N2z (3)
r

where (z,y, ) are the cartesian coordinates of a rotating

frame (see Figure 2), r = /z2 + y2 + 22 is the mag-
nitude of the radius vector, N is the angular velocity of
the satelite (planet) around the planet (sun), and y is its

gravitational parameter.

Orbiter

Planctary satelite

Figure 2: Geometry of the Hill problem

These equations can be made nondimensional and pa-
rameterless by setting the length and time scales to be
I = (u/N?)'/3 and 7 = 1/N respectively. The resulting
equations are obtained by setting x = 1and N = 1in
the previous set of equations. Therefore all the analysis
performed on the nondimensional system can be scaled
to any physical system by setting the proper length and
time scale. This feature makes the Hill model an attrac-
tive dynamical model. Table 1 gives the length and time
scales of a few planetary satellites of the solar system and
of Mercury (as perturbed by the Sun).

Table 1: Physical parameters for Mercury, Europa,
Titan, Miranda and Triton®

Primary Length scale Timescale Normalized
(perturbation) (km) (hr) radius
Mercury (sun) 318,272 336.00 0.007
Europa (Jupiter) 19,692 13.56 0.079
Titan (Saturn) 75,576 60.90 0.034
Miranda (Uranus) 1,214 5.39 0.199
Triton (Neptune) 38,406 22.44 0.045
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Dynamics closeto the primary

Note that { and 7 give the length and time scale at which
the non-Keplerian phenomena of the dynamics become
important. For instance, the libration points L; and Lo
are situated on the z-axis at a distance of (1/3)'/3] ~
0.697 from the center of mass and 277 is the period of
motion of the satellite (planet) around the massive planet
(sun). This shows that for small values of radius and
short time scales (as compared to [ and 7), the dynamics
become close to Keplerian and mation is only slightly
disturbed. This is in accordance with our physical intu-
ition of a tightly bound trajectory (the disturbung planet
is far away and its gravitational pull is small when com-
pared to the primary) or the notion of a sphere of in-
fluence in interplanetary trajectories. Note also that for
N = 0 the Hill model reduces to the two body problem.

In such a realm of motion, tidal perturbations can be
averaged over as has been done in Scheeres et al'. In
that paper, a double averaging has been performed, since
one order of magnitude appears between the motion of
the spacecraft around the satellite and the motion of the
satellite around the planet (i.e., the motion is considered
for low nearly circular orbits of normalized radius less
than 0.215). The results of the analysis shows that, even
though the tidal perturbations are small, they can gen-
erate instabilities that can cause a spacecraft to impact
the surface of the satellite after a few weeks or months
for the case of Europa. These instabilities appear only
for certain ranges of the inclination (near polar orbits,
39.23° < i < 140.77°) and are characterized by an ex-
ponential growth of the eccentricity. However, the time
scale for such an exponential growth is large when com-
pared to the orbital motion of the spacecraft, and is an or-
der of magnitude larger than the period of Europa about
the planet (as a result of the double averaging). The semi-
major axis and inclination remain constant on average (at
first order in €), which means that, starting from an ini-
tial quasi-circular orbit of eccentricity 0.001, the eccen-
tricity will be less than 0.01 for a number of revolutions
of Europa around the planet. In other words, as concerns
orbital transfer maneuvers, one can assume that a space-
craft is in a low, circular orbit with a precessing ascend-
ing node. The orbital elements © and w of the transfer
maneuver, determined by the first maneuver, can then be
set close enough to any prescribed value by a simple tim-
ing of the maneuver.

Table 2 gives some characteristics of these instabilities
for the few celestial bodies mentioned in the previous ta-
ble, together with a bound on the positioning error for w
and Q for a time span of one satellite period. More pre-
cisely, the characteristic instability time 75 represents the
inverse of the exponential characteristic of the eccentric-
ity growth (e(t) ~ e* and s = 1/)) for a polar orbit.
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The eccentricity will grow by an order of magnitude after
In(10) ~ 2.302... characteristic times. Finally, assuming
that the mean motion of the spacecraft is n and the mean
motion of the primary is N, the simple rotation of the
frame implies that, given some nominal value Qq of the
longitude of the ascending node, the spacecraft can reach
any value of mean anomaly within one revolution around
the primary and a shift in Q by 180N /n. Note that this
positional accuracy will improve orbit after orbit.

Table 2: Parameters for the dynamics close to Mer-
cury, Europa, Titan, Miranda and Triton?

Primary Characteristic  Mean  Positioning

instability motion  error on Q

time 75 (days) ratio N/n (in degree)
Mercury > 30 years 0.00067 0.12
Europa 13.66 0.0225 4.05
Titan 220.28 0.00627 1.12
Miranda 1.36 0.0893 16.07
Triton 31.20 0.0163 2.93

Outside this instability region, the eccentricity is shown
to oscillate around its inital value and, once again, one
can assume the spacecraft to be in a circular orbit over
a number of orbits. These assumptions are by no means
necessary for the practical application of the transfers de-
scribed below, but ease the understanding of the geome-
try of the maneuver and the comparisons to be made.

Orbital dynamics

As mentioned earlier, the idea of our tidal transfers is to
place the spacecraft into a highly eccentric transfer tra-
jectory (to raise the apoapsis radius) so that the large tidal
forces can perform plane change maneuvers without any
AV costs (at apoapsis). This implies that the spacecraft
will start from one periapsis and follow the transfer tra-
jectory to the next periapsis (see figure 5). Such motion is
then fully characterized by the change in orbital elements
from one periapsis to the next one. These orbital dynam-
ics are, in spirit, the same as a Poincaré section used to
investigate the dynamics close to a periodic orbit. Here,
the sections are defined by the periapsis condition 7 = 0
and 7 > 0.

These conditions define a 5-dimensional manifold in
the phase space of the system which is transversal to the
flow for periapsis smaller than 0.2 in the Hill problem®
(which contains the domain of phase space in which we
are interested: low initial and final circular orbits).

The initial phase space is furthermore restricted by as-
suming that the spacecraft is in an initially circular orbit
with a given semi-major axis and inclination, and that
the AV of the first maneuver is fixed (or equivalently,
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that the apoapsis radius of the transfer trajectory is fixed
at periapsis). The only remaining variables are then the
argument of periapsis and the longitude of the ascending
node, parametrizing the surface of a torus.

The flow can then be integrated numerically to obtain a
map of the dynamics from one periapsis to the next. Fig-
ure 3 gives an example of such a computation showing
the change in periapsis radius, Ar,, and inclination, Az,
over one iteration of the map.

These contour plots strongly indicate a symmetry in w
and . This is indeed the case, and one can check that
the Hill equations of motion are invariant under several
transformations, generated by three independant symme-
tries S1, S2 and Ss. If (z,y, 2, 2, 9, 2, t) denotes a solu-
tion of the equations of motion, then the trajectories ob-
tained by applying the following transformations are also
valid solutions:

(JU,Z/,Z,C&,?J, Z’t) L} (_m’y’zvfba_l.h —2,—t)
(.Z','y,Z,Zi’J,’y,ZI,t) L} ($7_y7z7_¢7y7_2.:7_t)
(z,y,2,8,9,4t) _5 .  (2,9,—2,%,9,—%,1t)

The composition of these three symmetries yield other
symmetries, notably the composition of (1) and (2) yield:

Sy

(%%Z@:?)ai,t) _— (_xa_yaz7_a}1_y7z.7t)

This last symmetry corresponds to a symmetry about
the origin in the (z,y)-plane, which is equivalent to a
symmetry of motion for shifts in w of the form w + m,
m = 0,=£1,.... Also the S3 symmetry (reflection about
the (z, y)-plane) is equivalent to a symmetry in  of the
form Q — Q + mr.

Therefore all the dynamics of the transfer trajectories
can be represented on the region [0, 180°] x [0, 180°] of
the (w, 2)-space.

Another interesting feature of these contour plots is the
presence of zero lines. That is, there exists some values
of argument of periapsis and longitude of the ascending
node for which the change of periapsis radius from one
periapsis to the next one is zero. This is precisely one
of the ingredients needed for the case of a plane change
transfer.

As apoapsis is raised (i.e., the initial AV is incre-
mented), tidal perturbations become stronger and can
cause the spacecraft to escape from the planetary satel-
lite (planet). Figure 4 shows two examples of such con-
tour plots with escape regions. It should be noticed that
the topology of the zero curves has changed. There is
now only one zero curve and it does not fill the whole
Q-space. This means that there are some time spans over
which no transfer maneuvers can be performed, whatever
value of w is chosen. However, at Q = 0, the Ar, =0
lines still cross the w-axis at exactly two distinct points.
These observations will be assumed in the computation
of an optimal plane change in the next section. They
are, at this point, conjectures checked only by numerical
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Changein periapsis radius
(r,;=0.08, r;=0.4, i=90 deg)
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Figure 3: Contour plotsfor Ar, and As with r, = 0.08,r, = 0.4 and 5 = 90°
(rp representsthe periapsisradius and r, the apoapsisradius)
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Change in periapsis radius
(rp=0.08, r,=0.6, i=90 deg)
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Figure4: Contour plotsfor Ar, and A¢ with r, = 0.08, r, = 0.6 and i = 90°
(The contourswith value +1e05 delineate the escape regions)
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computations of several contour plots at different initial
values.

It can also be observed that as the inclination changes
from 0 to 180, the orbital element changes over one or-
bit get larger around 90° and, at the same time, the ho-
motopy type of the zero curves changes.

Finally, one can see on these plots that the values of w
and Q have a very strong influence on the dynamics of
the transfer orbits, as was already noticed2. A change by
a few tens of degrees in one of these variable can lead to
an escape or impact, all other elements remaining equal.

Tidally driven plane changes

In the previous section, we have shown that tidal pertur-
bations can produce large changes over a single orbit, al-
lowing the use of these forces as a control by choosing w
and Q of the transfer orbit. In this section, we specialize
the analysis to plane change maneuvers where the crite-
ria to be met are a zero change in periapsis radius while
achieving a maximum plane change over a single trans-
fer trajectory. Inspection of the previous contour plots in-
dicates the possibility of transfers which correspond to a
large change in inclination over the Ar,, zero lines. After
briefly reviewing the geometry of the plane change ma-
neuvers analysed in this paper, a numerical exploration
of the possibilities of such transfers is dicussed. Maxi-
mum plane changes as a function of apoapsis radius are
obtained by solving an optimization problem under con-
straint (Ar, = 0), and comparisons with the classical
one impulse maneuvers are given.

Geometry of thetransfers

As noted in the introduction, the tidally driven plane
changes considered in this paper are analogous to bi-
elliptic plane changes, with the apoapsis maneuver re-
placed by the “cost free” action of the tidal forces. More
precisely, consider a spacecraft initially in a low circular
orbit. A first tangential burn places the spacecraft into
a highly eccentric orbit. This first maneuver determines
the elements of the transfer trajectory at periapsis. In
particular, the argument of periapsis and the longitude of
the ascending node are directly determined by the time
at which the maneuver is performed. One can view the
spacecraft moving on its initial circular orbit as describ-
ing a line (parametrized by time) on the (w, () torus
space of the previous contour plots. The value of w and
Q at a point of this line would correspond to the value of
the argument of periapsis and longitude of the ascending
node of the transfer trajectory if the maneuver were per-
formed at that point (€2 being measured with respect to
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the z-axis* at the time of the maneuver). As noticed ear-
lier (subsection “Dynamics close to the primary™) proper
timing of the maneuver allows us to choose the value of
these two variables with a fair accuracy.

After this first maneuver, the tidal forces cause changes
in the orbital elements as the spacecraft completes one
orbit. At the next periapsis, a plane change has occured
while the careful choice of w and Q ensured that no net
change in periapsis radius occured. A second tangential
maneuver is then used to place the spacecraft in its final,
low altitude circular orbit (see figure 5). Note that, unlike
the case of the bi-elliptic plane change maneuvers, the
magnitude of this recircularizing burn is not, in general,
equal to the magnitude of the first maneuver.

z T First impulsive
maneuver
(raise the
apoapsis
radius)

Second impulsive
maneuver
(recircularize)

Figure5: Geometry of tidally driven plane changes

Numerical solution for the maximum
and minimum plane change

In order to choose the values of w and (2 that yield a de-
sired plane change, the maximum and minimum values
of plane change realizable for a given value of initial in-
clination, periapsis and apoapsis radii have been solved.
This is realized numerically by first searching the Ar,
zero lines on the torus [0, 180°] x [0, 180°] and then look-
ing for the maximum plane change on these zero lines.

The program written assumes that there is, at most, two
different Ar, = 0 lines in this space for low inclination
regions (where escape regions can exist), and at most 4
different zero lines crossing the w-axis, for regions with
larger inclination (above 130°). Future developements of
the programs should relax these assumptions.

A first search is hence performed on this axis to deter-
mine these intersections. More precisely, it is assumed
that the zero lines are separated from each other and
from the escape regions by at least 1°. With these as-
sumptions, the intersection is computed to an accuracy
of 5.7 x 10~7 degrees. It should be noted that no errors

*that is, the planet-satellite or Sun-planet line
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have been generated during the execution of these runs
and that, in most of the cases considered, two intersec-
tions have been found. Four intersections can however
occur for large values of apoapsis radius, where plane
changes of —180° can occur. As noticed earlier, the ho-
motopy type of these zero lines can vary.

After this first search, the zero lines are tracked by
moving, step by step, along the tangent of these zero
lines. Again it is assumed that no escape region lies
within 5.7 x 1075 degrees of these lines. This has always
been the case in the domain of phase space considered.
The maximum step size used to perform this tracking is
1° and a search for the maximum and minimum A3 is
then performed over all these points. This means that the
determination of the global maximum of plane change is
done within this limit.

120 F T = T T 3
100 | -
80 - __*" Maximum plane \\‘ i
change: +39 deg |
60 | ‘,// R . \\ .
" Minimum plané\\\ i
hi : -60 d h
0 change: leg ]
(o]
20 | ! |
|
0 i i
20 | 4
40 4
Il Il Il Il Il Il
-40 -20 0 20 40 60 80 100 120 140
)
Figure6: Ar, = 0 linesfor r, = 0.08, r, = 0.6 and
1 = 90°

Figure 6 gives an example of such a computation where
the zero lines have been computed for the same initial
values as in figure 4. The position of the maximum and
minimum of plane change is indicated by a small label.

Once the maximum (or minimum) has been found, the
accuracy is improved up to 5.7 x 10~° degrees, that is, the
positional accuracy of the local maximum is 5.7 x 105
degrees. Note that all the integration performed use a
Runge-Kutta-Felhberg integrator of order 7 — 8, with an
accuracy of 10719,

Finally, we should note that the dynamics considered
here are smooth (or, at least, continuous), so that, when
the maximum and minimum plane change are located on
the same Ar, zero line, all the values of plane change
between these two extrema are possible. In particular,
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zero plane changes are possibles. This is the case for
example in figure 6. This is not true, however, for the
cases of —180¢ plane changes indicated in the next sub-
section. In these cases, indeed, the maximum and min-
imum plane changes are located on two different, sepa-
rated zero lines.

Variationswith theinitial elements

Once this computation has been performed for a given
set of values of periapsis radius, apoapsis radius, and in-
clination, a loop is performed to cover a wide range of
cases. Figures 7 to 101 give the result of such computa-
tions when, respectively, the initial inclination, apoapsis
radius and periapsis radius are varied. Each plot has been
computed with at least 90 points for the variable being
varied.

Two distinct behaviors of the variations of the mini-
mum plane change are obtained when inclination varies,
according to the initial values of periapsis radius, r,, and
apoapsis radius, r,.

For the lower values of apoapsis radius (at fixed r,),
the minimum plane change obtained for the inclinations
of 0° and 180° is zero. In this case, the changes in orbital
elements become larger around an inclination of 90 as
can be seen on figure 7 for the change in inclination.

30 T T T T T T T T T
.

20

10 -

-10

-20

Plane change (deg)

-30

Critical points
-40 |

-50 +
Savings = 26.8%
(i= +1po°, i =-52%
90
inclination (deg)

-60 L

135 180

Figure 7: Optimal plane change valuesfor r, = 0.08,
ro = 0.5 asafunction of inclination

For higher values of apoapsis radius, a bifurcation oc-
curs, so that, at the inclination of 180°, a minimum plane
change of —180¢ is obtained, as can be seen on figure
8. Note that this result is consistent with the invariance

1 Tags on these graphs are explained in the next subsection
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of the (z, y)-plane in the Hill model. A plane change of
—180° at an incliantion of 180° corresponds, indeed, to a
change in the direction of motion relative to the primary
(change from retrograde to prograde orbit), and does not
involve any z-component of the velocity vector. The mo-
tion remains planar during such a transfer.

T . . T . . T
45 . o STl L -
i=+35 £ . P
i % Critical points e
Ai=+ar) i=+067 -
/ Ai=+37°
0 < =
=) Critical point:
fox i160% Ai=200
S 4 i=+69, Ai=-39 Savings = 25% 7
S (i = +84°, Ai = -53.5%)
8
<
°
S Savings = 50%
T g} (i =+114° Ai =-885% |
-135 B
Savings = 64%
(i = +165° Ai = -157°)
-180 L L L
0 45 20 135 180

inclination (deg)

Figure8: Optimal plane change valuesfor r, = 0.08,
rq = 0.6 asafunction of inclination

For positive plane changes, no bifurcation occurs and
zero plane changes are obtained at the inclinations of 0°
and 180°. Hence, we clearly see that the dynamics are
not symmetric for positive and negative plane changes.
Positive plane changes are larger only for lower incli-
nations (~ 45° — 60°) and the overall maximum plane
change is smaller than the overall minimum (i.e., taken
over all the range of inclination).

In the rest of the paper, an inclination of 90° has been
assumed as a representative inclination for the study of
the variations of plane change with apoapsis radius and
periapsis radius. Such an inclination corresponds, in-
deed, to the mean inclination over the unstable region
for planetary satellite orbiters (see subsection “Dynam-
ics close to the primary™), and gives a good picture of the
dynamics considered.

As the initial apoapsis radius is raised the plane
changes obtained become larger, as expected (see fig-
ure 9). Here again, the dynamics are not symmetric
for the maximum and minimum plane change, positive
plane changes remaining smaller than the negative plane
changes. However, in both cases, large plane changes
can be obtained and for initial apoapsis radius larger than
0.645 (with 7,=0.08 and s = 90°), both positive and neg-
ative plane changes allow us to transfer an unstable polar
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orbiter back to a stable region over a single transfer tra-
jectory. For such values of apoapsis radius, both positive
and negative plane changes are, indeed, larger than 45°.

e e M o7 ==
(r=0.645,Ai = +45°)X/
a0 - I
/,//’/Crilical point:

- r,=0.59, Ai=+37.5°

0t 4

Plane change (deg)

-20

Critical point:
r,=0.47, Ai=-36°
.40 +

Savings = 32%

Savings = 25%
J r,= 0.6, Ai = -60%)

ry=05, Ai =-51.5% (
0l (ra )

1 1 1 1 1
04 0.45 05 0.55 0.6
Initial apoapsis radius

0.35 0.65

Figure 9: Optimal plane change valuesfor r, = 0.08,
1 = 90° asafunction of apoapsisradius

At fixed apoapsis radius, a decrease in the initial pe-
riapsis radius results in the amplification of the tidal ef-
fects. As a consequence, larger plane changes can be
obtained, as shown on figure 10. Note that, even though
the Hill problem has a similarity property, i.e., it can be
made nondimensional so that each system modeled by
the Hill equation of motion can be mapped into one an-
other by a simple scaling, it is not true that the dynamics
are similar at different values of the normalized radius.
In particular, an increase in r, with a fixed ratio r, /7,
does not mean that the plane changes realizable are the
same. For instance, at r, = 0.08 and r, = 0.4, the min-
imum plane change is smaller (in absolute value) than
—20°, whereas for r, = 0.1 and r, = 0.5, the minimum
plane change achievable is larger than —40°. That is, as
the periapsis radius increases with fixed r, /r, ratio, the
extrema of plane change achievable increase. These dy-
namics are also not linear in the sense that they do not
depend solely on the difference between r, and r,, as
can be easily checked on the previous graphs.

Finally, it should be noticed that tidally driven plane
changes of more than 60° (both positive and negative) are
possible for Earth orbiters (the normalized radius of the
Earth is ~ 0.003), allowing us to compare tidal transfers
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to parabolic plane change maneuvers.
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Figure 10: Optimal plane change valuesfor r, = 0.5,
i = 90° asafunction of periapsisradius

Comparison with classical transfers
and optimality

Classical results® on plane change maneuvers indicate
that for low plane changes, one impulse maneuvers are
less expensive than bi-elliptic transfers (see figure 1 for
the geometry of bi-elliptic plane change maneuvers).
The AV cost required to perform such a maneuver is
given by:

AVy = 2V sin(Ai/2) 4)
where Vi = 4/1/r is the local circular velocity speed at
the time of the maneuver.

From these formulas, we can see that the cost asso-
ciated with a single impulse maneuver decreases as we
get further from the attracting body. As the required
plane change becomes larger, it then becomes cheaper
to first raise the apoapsis radius before performing the
plane change maneuver. It can be shown that bi-elliptic
transfers become more optimal than a direct one impulse
plane change for changes in inclination, A, greater than
38.94°. In such a case, the classical optimal AV is given

by:

AV =2V}, [\/E (1 + Sin(iim) - 1] ©)

where p = 1/(csc(Ai/2) —2) is the ratio of the apoapsis
radius of the transfer ellipse to the radius of the initial
circular orbit.
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As the desired plane change As increases, we can see
from the previous formulas that the optimal value of
apoapsis radius of the bi-elliptic transfer increases to
reach infinity at A¢ = 60°. That is, for a plane change
larger than 60°, parabolic plane change maneuvers are
the classical optimal solution. In such a case the total
AV is given by:

AV =2V, [V2-1] (6)

As noticed earlier, in strongly perturbed tidal environ-
ments, raising the apoapsis radius cannot be done ar-
bitrarily without inducing changes in other orbital ele-
ments. For low apoapsis radius, the tidal changes remain
very small, however, and the classical approach is still
valid. This is the case, for example, for plane changes
performed in the Earth environment where the optimal
apoapsis radius of the bi-elliptic transfer remains small
in the nondimensional scale of the Hill problem. As
the plane change to be performed increases, however,
this approach can not be used without taking the tidal
forces into consideration. That is, at some point below
Ai = 60°, tidal effects can be used to reduce the cost of
plane changes.

A AV comparison between the optimal classical trans-
fers (given by equations 4 to 6) and tidally driven plane
changes has been performed. The tags on the graphs
shown in figures 7 to 10 indicate some values of the sav-
ings associated with tidally driven plane changes when
compared to one impulse maneuvers. It should be no-
ticed that savings larger than 25 percent are obtained
for large plane change maneuvers (~ 60°). The criti-
cal points also indicated on these figures, show the val-
ues of the initial elements and plane change for which
the transition of optimality between one impulse maneu-
vers and tidally driven plane changes occurs. That is,
for plane changes larger than the critical values, tidally
driven plane changes are more optimal than one impulse
maneuvers. Note that, in fact, except for the critical
point shown on figure 10, the transition generally occurs
before the transition considered in the classical setting
(38.94°), so that tidally driven plane changes become
more optimal than the classical approach at these critical
points. For the case of figure 10, it can be checked that
the transition of optimality (as compared to the optimal
classical approach) is reached at As = 46°.

Note that for plane changes larger than 60°, tidally
driven plane changes still remain more optimal than the
classical optimum of parabolic plane changes. Savings
on the order of 5 — 10% are obtained in the case of fig-
ure 10 and more than 15% in the case of figure 9. These
values give an idea of what should be achievable for the
case of Earth orbiters, since the normalized radius of the
Earth is ~ 0.003. Also, we should note the large savings
made for the case of change of direction of motion (plane
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changes of —180°), as shown on figure 8. In this case,
savings of more than 15% are obtained when compared
to the parabolic transfers. In addition, such transfers have
the advantage of remaining bounded, and in particular,
the transfer time is much smaller than in the parabolic
case.

All these results show that the classical optimality
of bi-elliptic transfers over one impulse maneuvers for
plane changes larger than 38.94° must be replaced by the
optimality of tidally driven plane change over the classi-
cal transfers (and in particular over the one impulse plane
change maneuvers) for plane changes larger than ~ 38°
(the precise critical value depending on the initial ele-
ments rp, 74, and ¢).

Note, however, that in the classical case, the general
three impulse maneuver, that is a bi-elliptic transfer with
plane changes performed at each burn, is always more
optimal than one-impulse and bi-elliptic maneuvers3. A
similar type of transfer should be possible in the tidally
perturbed case, improving the optimality criterion ob-
tained in this article. The analysis becomes much more
involved, however, as the number of degree of freedom
increases.

Finally, we should note that the results presented here
can be modified to match the more general case of radius
and plane change maneuvers. Instead of computing the
zero lines of Ar,, one has to compute the lines Ar, = a
where a represents the amount of desired radius change.
Though larger savings may be possible in such cases, the
order of magnitude of the savings obtained for the case
Ar, = 0 should be attainable since these zero line cor-
respond to a change of sign of the function Ar,(w, ),
so that performing the first maneuver a little ahead or af-
ter the values considered in this article, should yield a
positive or negative net change in periapsis radius while
keeping the values of plane change realized with zero pe-
riapsis change. This may be of interest for safety issues
where a decrease in periapsis radius is generally not de-
sirable.

Conclusion

Plane change maneuvers in tidally perturbed environ-
ments have been investigated. The natural tidal forces
allow us to reduce the costs of these maneuvers by per-
forming the desired plane changes without using an im-
pulsive manuever during the transfer orbit. These new
types of transfers (tidally driven plane changes) are based
on the idea of the classic bi-elliptic plane change with the
apoapsis maneuver suppressed. Their operation involves
only a timing of the first burn in order to approximate
some optimal values for the longitude of the ascending
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node (relative to the Sun-planet line) and the argument
of periapsis of the transfer ellipse. These transfers have
been shown to be optimal over the classical approach
for plane changes larger than ~ 382, replacing, in many
ways, the bi-elliptic plane change maneuvers. Savings
on the order of 25% are obtained for plane changes of
~ 607, and the possibility of a reversal of the direction
of motion (plane changes of —180°) has been shown to
exists using such an approach, realizing more than 15%
savings when compared to parabolic transfers. Larger
savings should be possible by considering a combination
of both the classical methods and the approach outlined
in this paper (i.e., a strategy using the tidal forces and
performing plane change maneuvers at each burn). A
better understanding of the topology of the change in or-
bital elements over one and one-half orbits is necessary
to be able to evaluate such an approach.
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