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Abstract

The first experimental measurements are presented for the full three-dimensional spatial scalar energy
spectrum Ey(k) resulting from the molecular mixing of a S¢ » 1 conserved scalar quantity in a turbulent flow.
These results are based on three- and four-dimensional laser induced fluorescence imaging measurements of
adye concentration field {(x,!) in the self-similar far-field of an axisymmetric turbulent jet at local outer-scale
Reynolds numbers Reg between 3,000 and 6,000. Each of the resulting data sets consist of up to 3 billion
individual data points, arranged into a temporal sequence of individual three-dimensional spatial data volumes,
each of which consists of a series of parallel two-dimensional data planes. The resolution within each spatial
data volume is finer than the local strain-limited molecular diffusion scale Ap in all three dimensions. In
addition, the temporal resolution between successive data volumes is made finer than the local diffusion scale
advection time Ap/u when time differentiation of the scalar field is of interest. This resolution, together with
the signal quality achieved, permits differentiation of the data to determine the scalar gradient vector field V
£(x.£), and in particular the scalar dissipation rate field (ReSc)! VT VE(x,t), throughout the data space. Results
are presented for various statistics of the scalar and scalar gradient fields. The three-dimensional character of
these measurements allows direct evaluation of the three-dimensional spatial scalar spectrum Er(k) associated
with turbulent mixing. The resulting isotropic spectrum function Ey(k). integrated from this full spectrum, is
compared with its individual one-dimensional counterparts E¢(ky) and E(ky) and E¢(kz)} as a test of the small-
scale isotropy hypothesis. These one-dimensional spatial spectra are compared with previous temporal spectrum
measurements, and with Batchelor’s classical theory of the high wavenumber spectrum for Sc » [ scalar
mixing in turbulent flows.

Introduction

The molecular mixing of one or more dynamically

passive conserved scalar quantities in turbulent flows is
the rate limiting step in many practical engineering
problems. Among these, combustion processes in non-
premixed reactant systems are especially notable.
Applications range from combustor design for reacting
flows in high speed airbreathing propulsion systems, to
the reduction of environmental pollutants in industrial
combustion systems. The arbitrary scalar quantity of
interest depends on the particular problem at hand, but in
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general refers to any scalar property that is advected by
the flow and diffuses relative to the fluid, but which is
neither created nor destroyed within the flow and does
not directly affect the flow field. Relevant examples
include the concentration of inert tracers in a flow, the
composition field in the mixing of two inert gaseous
streams, or even the elemental mixture fraction in a
chemically reacting turbulent flow. Often the diffusivity
D of the scalar quantity being mixed is comparable to the
vorticity diffusivity v of the fluid, so the Schmidt number
Sc = (v/D) is approximately unity. However, in many
other cases the scalar diffusivity can be much smaller than
that of the vorticity, so that S¢ » |. This occurs, for



instance, in the mixing of particulates in gaseous flows or
in mixing between two or more liquid components.
Moreover, recent interest in differential diffusion effects
in gascous turbulent combustion motivates an under-
standing of the dependence of the structure of fluid mixing
on the Schmidt number. This paper focuses on the
structure of S¢ » | conserved scalar mixing in turbulent
flows. We present experimental results for the statistics
of the scalar and scalar gradient fields associated with
mixing at the inner scales of turbulent flows. The fully
three-dimensional spatial character of these measurements
allows a detailed examination of the spectral structure of
Se» | scalar fields in turbulent mixing processes.

2. Experimental Details

The results presented here are from experiments on
molecular mixing in a turbulent shear flow in water. The
measurements are conducted in the self-similar far field
of an axisymmetric turbulent jet issuing into an essentially
quiescent medium. The conserved scalar under
consideration here is the concentration of a dynamically
passive dilute laser fluorescent dye {disodium ftuorescein)
carried by the jet fluid, for which the Schmidt number is
2075. This concentration is measured repeatedly in time
at a large number of points within a small three-
dimensional volume in the flow by imaging the laser
induced fluorescence from dye-containing fluid onto a
high-speed planar photodiode array. The flow is
established by issuing jet fluid through a round nozzle
mwa 0.8 mx 0.8 m x [.8 m tank filled with water, in
which a very small cotlow insures that there is no
recirculation of dyed tluid into the imaged volume in the
tlow, The measurements reported here were conducted
at local outer-scale Reynolds numbers Reg = (48/v) from
3,000 1o 6,000, where u and & are the local velocity and
length scales that characterize the local mean shear in the
flow. Here these are the mean centerline velocity and the
local full width of the mean velocity profile. These
moderate Reg values are dictated by the spatial and
temporal resolution demanded of the measurements.
However, the imaged region of the flow is quite small in
comparison with the local outer scale &, and is comparable
to the local inner scale A, of the flow. Each planar image
from which the data are comprised typically spans less
than 1715 of the outer scale, and roughly twice the inner
scale, in both directions. As a result, if these outer-scale
Reynolds numbers are large enough so that on the inner
scales the velocity has become independent of the outer-
scale Reynolds number, then the scalar field fine structure
would also be independent of Res and would depend only
on the Schmidt number. Furthermore, since the outer
scales can influence the inner scales only through Reg,
once the inner-scaled quantities have become independent

of this outer-scale Reynolds number then all effect of the
outer scales is lost. The fine structure at the inner scales
JUSt to the turbulentjet but should apply to Se'» | mixing
in turbulent shear flows in general. In this sense, we
believe that many features of the fine structure seen in
our data are generic to mixing at the small scales in all
high Reynolds number turbulent tflows.

2.1 Laser diagnostics

The experiments use a laser induced fluorescence
imaging system specifically designed for very highly
resolved, three- and four-dimensional, spatio-temporal
measurements of the full space- and time-varying
conserved scalar field {(x,f) and the associated scalar
energy dissipation rate field V{-VE(x,r) in a turbulent flow.
Each measurement produces the scalar field at over 3
billion individual points in space and time. The resulting
gigabyte-sized data sets are structured as shown in Fig.
1. Each such measured data space consists of a rapid
succession of individual three-dimensional spatial data
volumes. Each of these data volumes is itself composed
of a sequence of two-dimensional spatial data planes,
which in turn consist of an array of 256 x 256 data points.
The spatial separation between adjacent points within each
data plane, and between adjacent data planes within each
data volume, is smaller than the local strain-limited

Two-Dimensional
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FIG. 1. Structure of the four-dimenional data space which consists of
temporally connected three-dimensional data volumes. Each data
velume is comprised of a series of spatially connected two-dimensional
data plangs which are in turn made up of a square array of 256 X 256
pixels. The final data space can have over 3 billion point measurements
of the conserved scalar field.



molecular diffusion lengthscale Ap of the scalar field.
Similarly, the temporal separation between adjacent data
planes within each data volume, and between the same
data plane in successive data volumes, is shorter than the
local motecular diffusion scale advection time A, /i,
where u is the mean velocity for the measurement
location (Wygnanski & Fiedler 1969).

Key elements of the imaging and data acquisition
system assembled for these three- and four-dimensional
measurements are shown schematically in Fig. 2. This
system is described in more detail in Dahm er af (1951).
Briefly, a pair of very low inertia, galvanometric mirror
scanners are used to sweep a collimated laser beam in a
raster pattern through the desired spatial volume in the
flow. The ramp signals driving these mirror scanners are
slaved to the same master clock that drives the imaging
array, thus insuring that each sweep of the beam
corresponds to a single data plane. One scanner provides
the (fast) vertical sweep in the x-y plane, while the second
creates the (slower) horizontal sweep in the z-direction.
Depth of ficld considerations set the aperture limit on the
imaging lens. The resulting laser induced fluorescence
intensity is measured with a 256 X 256 element photodiode
array with center-to-center pixel spacing of 40pm. This

array can be driven at variable pixe!l rates up to 11 MHz.
The fluorescence output from the array is digitized to 8-
bits, and then ported into a 16 MB buffer from which is
continuously written in real time to a 3.1 GB high-speed
parallel transfer disk rank. The overall sustained data
throughput rate to the disks is up to 9.3 MB/sec. The 3.1
GB disk capacity can accommodate more than 50,000
such 256 x 256 spatial data planes.

2.2 Resolution

The present measurements were obtained at an axial
location 235 jet momentum diameters (1.15 m)
downstream of the jet source and a radial location 13 ¢m
off the jet centerline (half-way along the jet radius). To
estimate the resulting resolution requirements, we note
that 8(x) = 0.44-x and u(x) = 7.2 (J/p)"2-x"!, with J the jet
source momentum flux and p the ambient fluid density.
At the outer scale Reynolds number of 3,700 and with
the Schmidt number of 2075, these scalings give the local
strain-limited molecular diffusion lengthscale estimate of
Ap= 257 um and the local advection time scale estimate
of (Ap/ # ) = 113 msec at the location of the measurement
volume, where Ay, = 11.2-8-Rey 3 5¢'12 (Buch & Dahm
1991). With the measurements having an image ratio of
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FIG. 2. Key clements of the high-speed variable rate imaging and data acquisition system assembled for these highly resolved four-dimensional
measurements of scalar mixing in turbulent flows, Two low-inertia galvanometric mirror scanners are staved to the imaging array timing to rapidly
sweep the laser beam in a suceesive raster scan fashion through the scalar field, The data acquisition system can achieve a sustained data throughput
rate to the disk rank of up to 9.3MB/sec for volumes as large as the full 3.1 GB disk capacity.



2.72, the in-plane spatial resolution was A(x,y) = 109 um.
The (1/e) laser beam thickness was measured as 270 wm,
Deconvolution of the scalar field measurements among
adjacent planes increases the effective spatial resolution
in the z-direction to the interplane separation Az = 120
um between successive data planes. Comparing these
Ax, Ay and Az values with Ap allows assessment of the
relative spatial resolution achieved. In particular, both
the resulting pixel image volume (Ax-Ay-Az)'” and its
maximum dimension {Az) are more than 2 times smailer
than Ap. Similarly, the temporal separation between
successive data planes was At = 8.6 msec, which can be
compared with the local diffusion scale advection time of
113 msec. As a result, the present measurements should
be capable of resolving essentially all of the fine scale
structure ot the local turbulent mixing process.

3. Sample Data

The scalar field data are obtained in both three-
dimensional (spatial) and four-dimensional (spatio-
temporal} form, depending on the number of z-planes
chosen for each data volume. In the former, data for £(x.t)
throughout each of the nominally 2563 spatial volumes
are simultaneously differentiable in x, v, and z. In the
latter, spatial volumes with fewer z-planes, the {(x,0) data
are differentiable in x, y, z, and t and thus the volumes are
more closely spaced in time. Note that, in both cases,
time resolution is maintained as noted above. However,
for the purposes of this paper, time differentiability is not
essential for any of the results to be presented. We
therefore focus on analyzing data in three-dimensional
spatial data volumes of the type shown in Fig. 3a.,b. Each
such volume consists of over 16 million individual data
points on a regular 2563 spatial grid. For the chosen
coordinate frame, the x axis points outward along the jet
radius, the y axis points along the upstream direction, and
z points in the azimuthal direction following a right-
handed convention. QOwing to the fully-resolved three-
dimensional nature of these scalar field data, together with
the high signal quality attained, accurate differentiation
is possible in x, y and z to obtain the scalar gradient vector
field VE(x.r) throughout each volume, Of interest for
mixing applications is the corresponding scalar energy
dissipation rate field V{-VI(x,t}, giving the local
instantaneous rate at which the scalar energy Y,(%(x.1) is
being reduced by molecular diffusion in the flow. Fig.
da,b shows the scalar dissipation fields obtained for these
same two spatial data volumes. These are obtained by
direct linear central differencing on a 3 x 3 x 3 template
in the scalar field. Beyond the filtering effect implicit in
this (or any other) discrete derivative template, no explicit
smoothing or filtering is applied to any of these fields. A
closer view of these scalar dissipation fields in one of
these volumes is given in the individual planes of Fig. 5.

217 O
(b)
FIG. 3. Sample three-dimensional volumes of the measured scalar
field in the far-field of an azisymmetric jet with Re=3700 and Sc=2075.
The two velumes shown are temporatly separated within the fuil four-
dimensicnal data space with (a) correspending to volume #39 and (b) to
volume #77. Red denotes the highest scalar value seen in the volume
while blue represents pure ambient fluid entrained within the jet,

The dissipation fields in Figs. 4 and 5 are shown in
both linear and logarithmic mappings. The linear mapping
clearly demonstrates the relatively infrequent occurrence
of high rates of molecular mixing, while the logarithmic
mapping better reveals the layer-like structure in the
dissipation fields, Our previous work has focused on the
physical-space structure of these dissipation layers, and
their implications for modeling molecular mixing and
chemical reactions in turbulent flows. Here we will focus
in part on the spectral signature of these layers in the high
wavenumber part of the scalar fluctuation spectrum.



Each measurement of this type produces a temporal
sequence of more than 150 such three-dimensional spatial
data volumes, spanning slightly more than three local outer
scale times (8/u). We typically analyze data from every
third such volume to reduce the computational load
involved to a manageable level and avoid repetition of
scalar field information. This appears adequate to extract
essentially all the statistics from each of the data sets,
however the relatively small number of outer time scales
spanned by each of these precludes full convergence of
the temporal statistics of the scalar field. In principle this
requires analysis of data from, say, three or more data
sets at a given condition in order to obtain reasonably
converged statistics. The results presented here are from
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a preliminary analysis of 29 data volumes at Reg = 3700.
The point-to-point spacing in the x and y directions in
this case is 108.8 um, and the interplane spacing is 120
pm, with the estimated diffusion lengthscale being 257
pm. This case is chosen for detailed analysis since it offers
the highest resolution of the data collected to date. Note
that the data volumes are stripped down to 223 x 249 x
254 points in the x, y, and z directions respectively to
remove edge pixels deemed to have unreliable response.
Analyses are performed on only these central points within
each volume.
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FIG. 4. The scalar dissipation fields resulting from direct differentiation in all three spatial directions of the scalar volumes of fig. 3. Data is
presented as V4 V{(x.2) on the left and log (V4 VI(x.0) on the right. As in figure 3, (a) above corresponds to volume #39 and (b) below to volume
#77 within the full four-dimensiona! data space comprised of as many as 180 such volumes. The cubes on the left reveal the infrequency of high
molecular mixing rates while those on the right reveal a layer-like structure for all levels of dissipation,



4. Scalar Field Statistics

We first present results for single-point statistics of
the conserved scalar and scalar dissipation fields in the
self-similar jet far field. Such single-point scalar field
statistics in turbulent jets have been reported from a
number of previous investigations (e.g. Wygnanski &
Fiedler 1969; Antonia, Prabhu & Stephenson [975;
Becker, Hottel & Williams 1967; Birch et al 1978;
Chevray & Tutu 1978; Lockwood & Moneib 1980). These
aftow comparisons and partial validation of the
measurements, however it must be kept in mind that the
resolution in the present data is higher than in any prior
investigation. It is thus equally interesting to look for
differences that may be attributable to the higher
resolution. Also, measurements of scalar field statistics
for large Sc scalar mixing in jets are comparatively few.
Moreover, unlike most previous measurements of scalar
dissipation and scalar gradient statistics, the present results
are obtained from simultaneous measurements of all three
scalar gradient vector components, and thus do not require
any Taylor hypotheses or assumptions of isatropy. Two-
point statistics, in the form of scalar field spectra, are
presented in §5.

Figure 6 shows the probability density function (pdf)
of the conserved scalar £ at the {i/x) = 0.1! measurement
tocation. [Note that this radial location is at the point
where the scalar fluctuation level is highest; e.g. see
Wygnanski & Feidler 1969]. Both the shape and width
of this pdf are interesting. Notice first the strong spike
near { =10, corresponding to near-ambient fluid
concentration levels, The area under this spike accounts
tor a significant fraction of the pdf - over 11% of the
fluid at this radial location in the far field is at
concentrations less than one-tenth of the local mean value,
Previous measurements of the pdf along the jet radius for
Se » | scalar mixing also show an ambient fluid spike at
this location, however in those cases the spike accounted
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FIG. 5. Two-dimensional cuts through volume #39 revealing seme of
the interior data of the cubes in figs. 3 and 4. (a) gives a slice of the
scalar fietd which spans approximately two vorticity diffusion scales in
both the outward radial and the upstream directions. Its corresponding
scalar dissipation fields are shown in linear formin (b), and in logarithmic
form in (¢). The color bar above gives the numerical values associated
with cach color and image.
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FIG. 6. Probability density of the conserved scalar in the far field of
an axisymmetric jet with a Reynolds' number of 3700 and a radial loca-
tion of i/x = 0.1L, or 13 ¢m from the jet centerline.
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FIG. 7. Probability density of thé scalar dissipation rate y, with the
same conditions as those of fig. 4. {a) gives the pdf(x) while (b} re-
veals the pdfflog ). Alsa shown in (b) is a gaussian curve, represent-
ing a lognormal distribution for pdf(y), fit to the pdf above log x'=-3.

for a significantly smaller fraction of the fluid. In fact,
the entire pdf in Fig. 6 has a noticeably different shape
than do results reported from previous investigations for
large Sc mixing. These differences appear directly
attributable to the lower spatial resolution of earlier
investigations. In particular, prior measurements of the
pdf show a broad peak centered near the local mean value,
with a small spike near the ambient fluid value. The
present result show no peak near the mean value, and show
more fluid at extremely low and high concentrations than
has been suggested by results reported to date. The most
highly resolved of prior measurements {Dahm &
Dimotakis 1987, 1990) give the maximum scalar
concentration hormalized by the local mean at this radial
location as 2.4, whereas we find a significant fraction of
the scalar values above even three times the local mean.
Consistent with this difference in the maximum values,
prior measurements of Sc » 1 scalar fluctuation levels in
turbulent jets showed a normalized scalar variance at this
radial location no higher than 0,68 (Antonia et al 1973).
By comparison, the second moment of the pdf in Fig. 6
gives the normalized variance as 0.88. These observations
suggest that the pdf in Fig. 6, based on these highly
resolved measurements, properly reflects the true
distribution of scalar values at this radial location in the
jet far field. Note, however, that while this shape is
significantly different than previous lower-resolution
measurements may have suggested, it nevertheless still
appears reasonably representable by the B-function family
of shapes commonly used in assumed-shape pdf models
of scalar mixing.

The availability of scalar field information in all three
spatial dimensions allows determination of the true scalar
energy dissipation rate field, and hence allows
measurement of the probability density of this quantity.
Unlike previous measurements, no assumption of isotropy
needs to be made to convert a lower-dimensional estimate
into the true three-dimensional scalar gradient. Similarly,
the spatial nature of these measurements allows direct
evaluation of spatial derivatives, in contrast with time
series measurements that require a Taylor hypothesis to
estimate spatial derivative components. In Fig. 7a we
show the probability density of the true scalar energy
dissipation rate y B (ReSc) VL.V, Note that, as can be
seen from the dissipation fields in Fig. 4, most of the values
are concentrated near the low dissipation end, with high
dissipation rates being rare. This intermittent character
of the dissipation fields in turbulent flows has been known
since the earliest measurements of Batchelor & Townsend
(1949). Classical theories of turbulence (e.g. Kolmogorov
1962) suggest a lognormal distribution for dissipation
variables to account for this intermittency. Accordingly,
in Fig. 76 we show the probability density of log, ¥,
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direction (azimuthal).

together with a true lognormal distribution having the
same first and second moments. Note that, owing to the
limited digital resolution of the measurements, the range
of dissipation rates that can be distinguished does not atlow
accurate assessment of the distribution at low values.
However, for higher values it can be seen that the
lognormal distribution gives a fair fit, though significant
differences are discernible. While accurate determination
of the complete pdf of i is currently of considerable
interest, and has important implications for validation of
alternative descriptions of turbulence, the 8-bit signal
depth of the present measurements does not permit mote
precise statements than in Fig. 7. We choose therefore to
tocus instead on the three-dimensional spatial information
offered by these data.

Figure 8 shows the probability densities for the
individual spatial derivatives in the three orthogonal
directions that make up the local scalar gradient and the
assoclated scalar dissipation. These in turn reflect the
degree of isotropy at the small scales in the scalar field,
In particular, for an isotropic scalar field, the scalar
gradient vector has no preferred orientation, and thus the
diswributions for all three gradient vector components will
be identical. It is apparent in Fig. 8 that the distributions
are largely similar, though there are differences discernible
(it must be kept in mind that the axes are semi-
logarithmic). Moments of each of these distributions show
that the mean-square gradient in the x, v, and z directions
are respectively, 0.039, 0.031, and 0.060 when normalized
with the molecular diffusion scale and the mean scalar
value. The differences in the x and y components are
fikely to be a result of genuine anisotropy, as discussed
below. However, the significantly higher gradients in the
z-direction are likely to be aresult of the slewing between

successively acquired planes in the three-dmensional data
volume. Small but unavoidable motion in the scalar field
between successive z-planes leads to an enhancement of
the z-derivative component. Other manifestations of this
stewing will be seen in results presented below. Note
that it is possible to partly correct the z-derivative to
account for this slewing in the four-dimensional data, Tn
particular, if the local velocity were known, then the z-
derivative could be exactly corrected. Lacking the velocity
required for this, a partial correction can be based on the
local mean velocity, however, this is not implemented
here.

The final feature of interest in Fig. 8 is the scaling of
the tails of these distributions at very large positive and
negative derivative values. Unless these tails are
exponentially decreasing, moments of the distribution
above some order will become divergent, Exponential
tails will appear as straight lines in these semi-logarithmic
axes.

Since the scalar dissipation fields in Figs. 4 and 3
result from direct differentiation of the scalar fields in
Fig. 3, simultaneous conserved scalar and dissipation rate
information is available at each point. This allows the
joint probability density between these two variables to
be directly constructed. Figure 9 shows the joint
distribution resulting from these measurements. The
contour values increase logarithmically, with each being
twice that of the one above it. Again, no assumptions of
isotropy are involved. The result shows that the scalar
and scalar dissipation rate are essentially statisticatly
independent. Perhaps more importantly, this joint
distribution allows the conditional dissipation <yI{> ,
which is central to conditional moment closure models of
reacting turbulent flows, to be evaluated. Note also that
this joint pdf reveals that points in the flow with high and
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FIG. 9. Joint probability density function between the conserved sca-
lar { and its corresponding scalar dissipation rate 3. Contours vary

togarithmically with each one having twice the value of the one above
it.



low values of the conserved scalar tend to have low
dissipation rates, while the greatest dissipation rates occur
most frequently at points with approximately 80% of the
mean scalar value. This appears to be in good agreement
with the results of Anselmet & Antonia (1985), who
estimated the joint pdf for this pair of variables in the far-
fietd of a turbulent planar jet and found the contours to
peak slightly below the mean temperature.

A different view of the anisotropy in the scalar
gradients is shown in Figs. 10a.b. This gives the
probability densities for the two spherical angles © and ¢
describing the vector orientations in the gradient tield
V{(x,t). Here 9 measures the angle from the (positive)
x-axis of the vector projection into the x-y plane, while @
measures the angle between the gradient vector and the
(positive) z-axis, so that

= -l m
U =tan (BC/B.:) (la)

ac/az] (5

Vel

In an isotropic scalar field, the probability density of ¢
values will be uniform at (2m)~!, while the spherical
geometry requires @ to be sinusoidally distributed as
1/2sin{¢). These isotropic distributions are also shown
in Fig. 10. Figure 10a shows that, for the data represented
here, the § distribution has peaks at 8 = 0 and ¥ = 7,
suggesting slightly more gradient vector content in the x-
derivatives than in the y-derivatives, Tt is known that the
pixel rows and columns in the array have slightly different
characteristics. These peaks however account for only
slightly more than 5 percent of the total probability. Itis
also apparent that there is a smaller peak in the direction
of the most compressional mean strain axis, namely
%= 41" and 139", In addition, a minimum is seen in the
direction of the most extensional principal strain axis of
the mean flow strain field at this radial location in the jet,
namely © ~ 49° and also diametrically opposite. Note
also in Fig. 10b that the distribution of ¢ values shows a
dip away from its isotropic form near n/2, so that the
gradient vector has a disproportionate tendency not to lie
in the x-y plane. It appears likely that this is a
manifestation of the slewing between adjacent data planes.
The slight motion of the flow between the acquisition of
cone plane and the next causes an artificial gradient to be
produced in the z-direction if the local velocity vector
points significantly in the direction of the local scalar
gradient vector. Motion perpendicular to the scalar
gradient will have little effect on the measured z-derivative
component.

o= cos"‘[

0.3 T T T

02

pdf (3)
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FIG. [0. The probability densities of (a) the angfe, &, measured from
the positive x-axis and formed by the projection of the full three-dimen-
sional scalar gradient vector into the x-y plane and (b the angle be-
tween the scalar gradient vector and the positive z-axis, ¢. An isotropic
arrangement of the scalar gradient vector would lead to pdf (%)=1/2r)
and pdf{Q)=1/Zsin(e).

5. Spatial Spectra

For locally homogeneous and isotropic turbulence at
Reynolds numbers sufficiently high to allow an inertial
subrange, classical turbulence theory suggests that the
spatial spectrum of the kinetic energy field in the inertial
range will follow a k= power law scaling. Similar
arguments and dimensional reasoning can be applied to
the scalar spectrum, and measurements show that this
spectrum also follows, at least approximately, a £/ power
law form in the inertial range as well (Gibson and
Schwartz 1963; Grant, Hughes, Vogel, and Moillet 1968).
For yet higher wavenumbers, Batchelor (1959) argued
that, when Sc» 1, owing to the disparate dissipative scales
Ay and Ap in the scalar and kinetic energy fields, the scalar
spectrum should follow a k~! form in the range of
wavenumbers k, « k « kp where &, =2m/A, and kp= 2n/Ap.
For wavenumbers on the order of &, and higher, the theory

N
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FIG. 11. One-dimensional spectra from the three measured orthogonal directions in the axisymmetric jet, x (radially outward), y (upstreamy, and
z (clockwise) preseated as {a) the scalar energy spectra and (b) the dissipation spectra. Overlayed is Batchelor's equation for the scalar spectrum of

high wavenumber mixing given in {2} for ¢=35.

suggests an exponential roll-off as the scalar energy is
dissipated. Batchelor’s resulting theoretical function for
the one-dimensional scalar spectrum at high wavenumbers
can be written in the notation of Williams & Pauison
(1977) as

4nlf1q3,'2 Dllzi’_ N(B)
(8/1/)3"4 B

Ep(kjkp)= - [Ny | @
B

Here ¥ is the measured scalar energy dissipation rate, €
is the kinetic energy dissipation rate (here estimated from
measurements in turbulent jets by Taulbee, Hussain, &
Capp (1987)), and v and D are the diffusivities of the
vorticity and the scalar, respective}iy. N(B} is the normal
distribution given by (21)7*exp(-3B?) where
B = (2q)!2 k/kg. kg is the characteristic wavenumber of
the Batchelor scale and q is a constant that relates the
magnitudes of the principal rates of strain. Batchelor
suggested that this universal constant should be two, but
subsequent experimental investigations have suggested

values as high as six (Williams & Paulson 1977).

In addition to these one-dimensional spectra, the
three-dimenstonal spatial nature of data such as those
shown in Figs. 3-5 allows the full three-dimensional spatial
scalar spectrum £y (k) to be obtained. Such measurements
have not previously been possible. Moreover, the three-
dimensional spatial scalar spectrum then allows
determination of the spherical spectrum E.(k), obtained
by integration over spherical shells centered around the
origin in three-dimensional wavevector space. For
homogeneous isotropic turbulence, the relationship
between this one-dimensional spectrum estimation and
its isotropic spectrum function denoted Er(k) is {(e.g.
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FIG. 12. Comparisen of the one-dimensional spatial spectra within a
jet of Re=3700 and Sc=2075 with that of the temporal spectra of
Clay(1973). The Pr=0.7 curve resulted from a heated air jet of
Re=100,000 ard the Pr=7.0 curve came from temperature measurements
in the wake of a sphere, Re=27,600. The data is presented in Kolmogorov
normalized coordinates

Tennekes & Lumley 1972)

d[14E;
E Qkty=k> S = 2100 3
¢ Ok dk(k dk ] &

Collapsing the three-dimensional spectrum into its three
one-dimensional spectra allows an isotropy test through
this equation. Note from (3) that any power law scaling
P in the one-dimensional spectrum will remain unchanged
in the corresponding isotropic spectrum function £;(k).

The results presented below for these various scalar
spectra were obtained using an FFT algorithm (Press, W.
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one-dimensional spatial spectra tn these figures appear to
asymptote to the Batchelor spectrum at the lowest
wavenumbers, there are large disparaties between them
in the dissipation range. Notice that the x and y spectra
are in relatively good agreement with one another except
at the very highest wavenumbers where various noise
sources dominate. Indeed, the data are known to typically
be slightly noisier in the y-derivatives than in the x-
derivatives, and this shows in the corresponding spectra.
[Note that, while spectral results are often shown truncated
above their spectral noise limit, we present the full spectra
to allow identification of the different noise patterns
inherent in them.] The z-spectrum in Fig. 11, however,
contains considerably more high-frequency content. It
appears likely that this is at least in part due to the slewing
mentioned previously. The artiticial z-gradient this
introduces will contain a wide range of frequencies. As
also noted previously, it may be possible to partly correct
tor this artificial gradient, though this has not been done
in the results presented here. Lastly, the three one-
dimensional spatial spectra are compared with Clay’s
(1973) temporal spectrum results for §¢ = 7 and 0.7 in
Fig. 12. The Sc = 7 spectrum is a result of temperature
measureinents in the wake of a sphere at a Re = 27,600,
while the Sc = 0.7 spectrum results from measurements
within a heated air jet with a much higher Reynolds’
nurnber of 100,000. The spacing between the spectra in
Fig. 12 atong the ki axis is slightly short of the expected
Sc1”2 dependence and is being investigated.

The three-dimensional spectrum is estimated from
the same three-dimensional spatial data volumes as were
the one-dimensional spectra. However, in the interest of
speed and consistency, the FFT algorithm with no memory
swapping was used for the three-dimensional spectrum
as well. Limitations on computer memory required
reduction of these calculations from nominally 2563
volumes to 1287 volumes. Each 2567 volume is therefore
broken down inte 8 subvolumes, and a separate spectrum
computed for each. The ensemble average of these three-
dimensional spectra is shown in the color images of Fig,
13. Each of the 64 images shown represents a slice
through the three-dimensional k wavevector space for a
constant &; value. Within each such slice, &y increases
from left to right and ky from the bottom to the top of
each plane. The wavenumber k; in the out-of-plane
direction starts at zero in the upper left and increases from
left to right and then top to bottom. The color coding
gives the value of the three-dimensional spatial scalar
energy spectrum Er(k) throughout the wavevector space,
The highest spectral values are color coded red, with
logarithmically decreasing values down to blue.

Noise in the three-dimensional spectrum manifests
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FIG. 14. Two independent realizations of the one dimensional spatial
spectrum, calculated in the outward radial direction, are shown for a
conststency check. The line represents the direct one-dimensional cal-
culation while the overlayed points result from integration of the fult
three-dimensional ensemble-averaged spatial scalar energy spectrum,
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FIG. 15. isotropic scalar spectrum function derived from integration

of the three-dimensional spectrum along spherical shells. Overlayed

arg the one-dimensional spectra for comparisons.

itself in three minor peaks. One is located at large &, and
small values of the other two components, ky and £;. The
other two peaks occur at the corresponding points in the
remaining directions. Noise from the photodiode array
has essentially two components, one that causes the signal
to vary from row to row, resulting in the peak in ky, and
one that manifests itself in a column to column variation
resulting in the peak in kx. The temporal aspects of the
noise manifest themselves in the z-direction. This notse
factor is introduced when the planes, acquired sequentially,
are stacked in the z-direction as noted previously. This
results in the peak seen in the lower left corner of the
bottom right image, where k; is large and ky and &y are
small. The source of noise that results in the minor peak
in the three-dimensional energy spectrum that appears in
the center of all 64 planes of constant k; is currently under
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investigation.

The calculated one-dimensional scalar spectrum in
any of the three directions is compared for consistency
against the spectrum resulting from integration of the full
three-dimensional spectrum in the other two directions.
Good agreement between the two spectra in the outward
radial {or x-) direction can be seen inf Fig. 14. The
calculated one-dimensional spectrum is twice as dense as
the integrated one and extends to slightly lower
tfrequencies. Perfect agreement is not expected, since due
to the overlap in the cubic subsets used to calculate the
three-dimensional spectrum, scalar information from some
points is used more than others in determining this
spectrum,

In addition to integration in the three orthogonal
directions, integration of the three-dimensional spectrumm
over spherical shells in the wavevector space k is also
possible. Since the full three-dimensional spatial spectrum
has not previously been available to any direct
experimental measurement, this spherical spectrum has
instead been typically calculated under the assumption of
isotropy using {3}. Here however no such assumption is
necessary. Instead we can integrate Ey(k) in Fig. 13
directly over spherical shells in k space. This provides
information as to the behaviour of the spectrum when the
magnitude of the wavevector, and not merely one of its
components, is the independent variable. As shown in
Fig. 15 the shape of this spectrum very closely matches
those of the individual one-dimensional x- and y-
directional spectra. All four spectra shown have been
normalized via (5), so that the area under each curve is
the same and equal to the measured scalar variance,

6. Conclusions

The present results show that experimental
measurements of fully-resolved scalar fields with three-
dimensional spatial data volumes in turbulent flows at
moderate Reynolds numbers are possible. This in turn
permits evaluation of the true three-dimensional scalar
energy dissipation rate field, without any need for
assumptions of isotropy to convert lower-dimensional
measurements, and without any need for Taylor
hypotheses to convert time measurements to spatial
gradients. The resulting data allow relatively detailed
studies of the three-dimensional spatial structure in the
scalar and scalar dissipation rate fields at the small scales
of the flow. The pdf of scalar values shows a shape that
differs significantly from previous S¢ » [ measurements
at this radial location in the jet, and these differences
appear to be consistent with the higher spatial resolution
available in these measurements. There is a strong spike

corresponding to near ambient fluid values, and a longer
tail extending to higher values than previously measured,
with an attendant increase in the true scalar variance. This
extended tail also is apparent in the joint pdf of scalar and
scalar dissipation. The full three-dimensionai spatial
scalar spectrum is also accessible to analyses from these
measurements. One-dimensional spectra obtained from
this show an apparent asymptotic approach in agreement
with the &~! Batchelor scaling in the range of wavenumbers
ky « k « k.
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