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Abstract 
The first experimental measurements are presented for the full  three-dimensional spatial scalar energy 

spectrum Er(k) resulting from the molecular mixing of a Sc n I conserved scalar quantity in a turbulent flow. 
These results are based on three- and four-dimensional laser induced fluorescence imaging measurements of 
a dye concentration field ((x,t) in the self-similar far-field of an axisymmetric turbulent jet at local outer-scale 
Reynolds numbers Res between 3,000 and 6,000. Each of the resulting data sets consist of up to 3 billion 
individual data points, arranged into a temporal sequence of individual three-dimensional spatial data volumes, 
each of which consists of a series of parallel two-dimensional data planes. The resolution within each spatial 
data volume is finer than the local strain-limited molecular diffusion scale hD in all three dimensions. In 
addition, the temporal resolution between successive data volumes is made finer than the local diffusion scale 
advection time hD/u when time differentiation of the scalar field is of interest. This resolution, together with 

<(x,f), and in particular the scalar dissipation rate field (ReSc)-' Vc.Vc(x,f), throughout the data space. Results 
are presented for various statistics of the scalar and scalar gradient fields. The three-dimensional character of 
these measurements allows direct evaluation of the three-dimensional spatial scalar spectrum Ey(k) associated 
with turbulent mixing. The resulting isotropic spectrum function Ec(k), integrated from this full spectrum, is 
compared with its individual one-dimensional counterparts E&,) and E&) and E<@,) as a test of the small- 
scale isotropy hypothesis. These one-dimensional spatial spectra are compared with previous temporal specmm 
measurements. and with Batchelor's classical theory of the high wavenumber spectrum for Sc B I scalar 
mixing i n  turbulent flows 

the signal quality achieved, permits differentiation of the data to determine the scalar gradient vector field V d' 

1. Introduction 
The molecular mixing of one or more dynamically 

passive conserved scalar quantities in turbulent flows is 
the rate limiting step in  many practical engineering 
problems. Among these, combustion processes in non- 
premixed reactant systems are especially notable. 
Applications range from combustor design for reacting 
tlows in high speed airbreathing propulsion systems, to 
the reduction of environmental pollutants in industrial 
combustion systems. The arbitrary scalar quantity of 
interest deoends on the Darticular Drobtem at hand, but in 
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general refers to any scalar property that is advected by 
the flow and diffuses relative to the fluid, but which is 
neither created nor destroyed within the flow and does 
not directly affect the flow field. Relevant examples 
include the concentration of inert tracers in a flow, the 
composition field in the mixing of two inert gaseous 
streams, or even the elemental mixture fraction in a 
chemically reacting turbulent flow. Often the diffusivity 
D of the scalar quantity being mixed is comparable to the 
vorticity diffusivity v of the fluid, so the Schmidt number 
Sc (v/D) is approximately unity. However, in many 
other cases the scalardiffusivity can be much smaller than 
that of the vorticity, so that Sc n I .  This occurs, for 
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instance, i n  the mixing ofparticulates in gaseous flows or 
in mixing between two or more liquid components. 
Moreover. recent interest in differential diffusion effects 
i n  gaseous turbulent combustion motivates an under- 
standing of the dependence of the structure of fluid mixing 
on the Schmidt number. This paper focuses on the 
structure of Sc u I conserved scalar mixing in turbulent 
tlows. We present experimental results for the statistics 
of thc scalar and scalar gradient fields associated with 
[nixing at the inner scales of turbulent tlows. The fully 
three-di tnensional spatial character of these measurements 
allows a detailed examination of the spectral structure of 
Sc )> I scalar fields in turbulent mixing processes. 
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2. Experimental Details 
The results presented here are from experiments on 

molecular mixing in  a turbulent shear flow in water. The 
measurements are conducted in the self-similar far field 
of a n  axisymmetric turbulent jet issuing into an essentially 
quiescent medium.  The  conserved scalar under 
consideration here is the concentration of a dynamically 
passive dilute laser fluorescent dye (disodium fluorescein) 
carried by the jet fluid, for which the Schmidt number is 
2075. This concentration is measured repeatedly in time 
at a large number of points within a small three- 
dimensional volume in  the flow by imaging the laser 
induced fluorescence from dye-containing fluid onto a 
high-speed planar photodiode array. The flow is 
established by issuing jet fluid through a round nozzle 
into a 0.8 m x 0.8 m x 1.8 m tank filled with water, in 
which a very small coflow insures that there is no 
recirculation of dyed tluid into the imaged volume in the 
flow. The measurements reported here were conducted 
at local outer-scale Reynolds numbers Res (u6/v) from 
3,000 IO 6,000, where u and 6 are the local velocity and 
length scales that characterize the local mean shear in the 
tlow. Here these are the mean centerline velocity and the 
local full width of the mean velocity profile. These 
moderate Res values are dictated by the spatial and 
temporal resolution demanded of the measurements. 
However, the imaged region of the flow is quite small in 
comparison with the local outer scale 6, and is comparable 
to the local inner scale h, of the flow. Each planar image 
from which the data are comprised typically spans less 
than 1/15 of the outer scale, and roughly twice the inner 
scale, i n  both directions. As a result, if these outer-scale 
Reynolds numbers are large enough so that on the inner 
scales the velocity has become independent of the outer- 
sciile Reynolds number, then the scalar field fine structure 
would also be independent of Res and would depend only 
o n  the Schmidt number. Furthermore, since the outer 
sc, ‘I 1 es . c m  I 

once the inner-scaled quantities have become independent 
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influence the inner scales only through Res, 
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of this outer-scale Reynolds number then all effect of the 
outer scales is lost. The fine structure at the inner scales 
seen in these measurements would then not be particular 
just to the turbulent jet, uld apply to sc >> I mixing 
in turbulent shear flows in general. In  this sense, we 
believe that many features of the fine stwcture seen in 
our data are generic to mixing at the small scales in a11 
high Reynolds number turbulent flows. 

2. I Laser diagnostics 

The experiments use a laser induced fluorescence 
imaging system specifically designed for very highly 
resolved, three- and four-dimensional. spatio-temporal 
measurements of the full space- and time-varying 
conserved scalar field <(x,r) and the associated scalar 
energy dissipation rate field V(.V((x, t )  in a turbulent flow. 
Each measurement produces the scalar field at over 3 
billion individual points in space and time. The resulting 
gigabyte-sized data sets are structured as shown in Fig. 
I .  Each such measured data space consists of a rapid 
succession of individual three-dimensional spatial data 
volumes. Each of these data volumes is itself composed 
of a sequence of two-dimensional spatial data planes, 
which in turn consist of an m a y  of 256 x 256 data points. 
The spatial separation between adjacent p i n t s  within each 
data plane, and between adjacent data planes within each 
data volume, is smaller than the local strain-limited 
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FIG, I .  Stmcture ofthe four-dimenianal data space which consists of 
temporally connected threc-dimensional data volumes. Each dala 
volume is comprised of B series of spatially connected two-dimcnsionnl 
data planes which are in turn made up of a square array o f  2% X 256 
pixcls. The final data space cm have over 3 billion point measurements 
ofthe conserved scalar field. 



molecular diffusion lengthscale A.D of the scalar field. 
Similarly, the temporal separation between adjacent data 
planes within each data volume, and between the same 
data plane in successive data volumes, is shorter than the 
local molecular diffusion scale advection time L, , / i i ,  
where ii is the mean velocity for the measurement 
location (Wygnanski & Fiedler 1969). 

Key elements of the imaging and data acquisition 
system assembled for these three- and four-dimensional 
measurements are shown schematically in Fig. 2. This 
system is described in more detail in Dahm et a1 (1991). 
Briefly. a pair of very low inertia, galvanometric mirror 
scanners are used to sweep a collimated laser beam in a 
raster pattern through the desired spatial volume in the 
flow. The ramp signals driving these mirror scanners are 
slaved to the same master clock that drives the imaging 
array, thus insuring that each sweep of the beam 
corresponds to a single data plane. One scanner provides 
the (fast) vertical sweep in the x-y plane, while the second 
creates the (slower) horizontal sweep in the z-direction. 
Depth of field considerations set the aperture limit on the 
imaging lens. The resulting laser induced fluorescence 
intensity is measured with a 256 x 256 element photodiode 
array with center-to-center pixel spacing of 40pm. This 

array can be driven at variable pixel rates up to I I MHz. 
The fluorescence output from the array is digitized to 8- 
bits, and then ported into a 16 MB buffer from which is 
continuously written in real time to a 3. I GB high-speed 
parallel transfer disk rank. The overall sustained data 
throughput rate to the disks is up to 9.3 MBlsec. The 3. I 
GB disk capacity can accommodate more than 50,000 
such 256 x 256 spatial data planes. 
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2.2 Resolution 

The present measurements were obtained at an axial 
location 235 je t  momentum diameters ( I .  15  m) 
downstream of the jet source and a radial location I3 cm 
off the jet centerline (half-way along the jet radius). To 
estimate the resulting resolution requirements, we note 
that F(x) = 0 . 4 4 . ~  and u(x) = 7.2 (J/P)'".X-~, with J the jet 
source momentum flux and p the ambient fluid density. 
At the outer scale Reynolds number of 3,700 and with 
the Schmidt number of 2075, these scalings give the local 
strain-limited molecular diffusion lengthscale estimate of 
XD= 257 pm and the local advection time scale estimate 
of (hdii) = 113 msec at the location of the measurement 
volume, where h, = 1 I .2.6.Re8-3'4.Sc-ln (Buch & Dahm 
1991). With the measurements having an image ratio of 
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Pllnle, Scanner auadra 600 
FIG. 2. Key elemcnts of the high-speed variable rate imaging and data acquisition system assembled for thesc highly resolved four-dimensional 
nieasur~ments of scalar mixing in turbulcnt flows. Two low-inerlin galvaname1"c mirror scanners at slavcd to thc imaging m a y  timing to rapidly 
w e e p  the laser henm in a succesivc mtcr scan fah ion  through the scalar field. The data acquisition system cnn achieve a sustained data throughput 
r x e  IO the disk rank of up to 9 iMB/sec for volumes 3s large 3s the full 3.1 G B  disk capaciry. u' 
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2.72, the in-planespatial resolution was A(x,y)= 109 pm. 
The ( I l c )  laser beam thickness was measured as 270 vm. 
Deconvolution of the scalar field measurements among 
adjacent planes increases the effective spatial resolution 
in the z-direction to the interplane separation Az = 120 
pin between successive data planes. Comparing these 
Ax, Ay and Az values with ho allows assessment of the 
relative spatial resolution achieved. In particular, both 
the resulting pixel image volume (AX.AY.AZ)"~ and its 
tnaximum dimension (Az) are more than 2 times smaller 
than hD. Similarly, the temporal separation between 
succcssive data planes was At = 8.6 msec, which can be 
compared with the local diffusion scale advection time of 
I13 msec. As a result, the present measurements should 
be capable of resolving essentially all of the tine scale 
structure of the local turbulent mixing process. 

3. Sample Data 
The scalar field data are obtained i n  both three- 

dirnensional (spatial) and four-dimensional (spatio- 
temporal) form, depending on the number of z-planes 
chosen for each data volume. In the former, data for <(x,t) 
throughout each of the nominally 256) spatial volumes 
are simultaneously differentiable in x, y, and z. In  the 
latter, spatial volumes with fewer z-planes, the <(x,t) data 
are differentiable i n  x, y, z. and t and thus the volumes are 
more closely spaced in time. Note that, in both cases, 
time resolution is maintained as noted above. However, 
for the purposes of thispaper, time'differentiability is not 
essential for any of the results to be presented. We 
therefore focus on analyzing data in three-dimensional 
spatial data volumes ofthe type shown in Fig. 3a,h. Each 
such volume consists of over 16 million individual data 
points on a regular 256' spatial grid. For the chosen 
coordinate frame, the x axis points outward along the jet 
radius, they axis points along the upstream direction, and 
z points in the azimuthal direction following a right- 
handed convention. Owing to the fully-resolved three- 
dimensional nature of these scalar field data, together with 
the high signal quality attained, accurate differentiation 
is possible in x, y and z to obtain the scalar gradient vector 
field V<(x,r) throughout each volume. Of interest for 
mixing applications is the corresponding scalar energy 
dissipation rate field V('V<(x,t), giving the local 
instantaneous rate at which the scalar energy '12L2(x,t) is 
being reduced by molecular diffusion in the flow. Fig. 
4n.b shows the scalar dissipation fields obtained for these 
same two spatial data volumes. These are obtained by 
direct linear central differencing on a 3 x 3 x 3 template 
i n  the sciilar field. Beyond the filtering effect implicit in 
this (or any other) discrete derivative template, no explicit 
smoothing or filtering is applied to any of these fields. A 
closer view of these scalar dissipation fields in one of 
these volumes is given in the individual planes of Fig. 5 .  

.6 

1.6 

(b) 
FIG. 3. Sample three-dimensional volumes of the measured scalar 
field in the fx-fieldofanazisymmetric jet with Re=3700and Sc=2075. 
Thc two volumes shown are remporally sepamted wirhin the ful l  four- 
dimensional data space with (a) correspondingto volume #39 .and (b) to 
volume #77. Red denotes the highest scalar value seen in the volume 
while blue represents pure ambient fluid entrained wirhin the jet, 

The dissipation fields in Figs. 4 and 5 are shown in 
both linear and logarithmic mappings. The linear mapping 
clearly demonstrates the relatively infrequent occurrence 
of high rates of molecular mixing, while the logarithmic 
mapping better reveals the layer-like structure in the 
dissipation fields. Our previous work has focused on the 
physical-space structure of these dissipation layers, and 
their implications for modeling molecular mixing and 
chemical reactions in turbulent flows. Here we will focus 
in part on the spectral signature of these layers in the high 
wavenumber part of the scalar fluctuation spectrum. 
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Each measurement of this type produces a temporal 
sequence of more than 150 such three-dimensional spatial 
data volumes, spanning slightly more than three local outer 
scale times (S/u). We typically analyze data from every 
third such volume to reduce the computational load 
involved to a manageable level and avoid repetition of 
scalar field information. This appears adequate to extract 
essentially all the statistics from each of the data sets, 
however the relatively small number of outer time scales 
spanned by each of these precludes full convergence of 
the temporal statistics of the scalar field. In principle this 
requires analysis of data from, say, three or more data 
sets at a given condition in order to obtain reasonably 
converged statistics. The results presented here are from 

2.3 
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(b) 

a preliminary analysis of 29 data volumes at Re6 = 3700. 
The point-to-point spacing in the x and y directions in 
this case is 108.8 pm, and the interplane spacing is 120 
pm, with the estimated diffusion lengthscale being 257 
Km. This case is chosen for detailed analysis since it offers 
the highest resolution of the data collected to date. Note 
that the data volumes are stripped down to 223 x 249 x 
254 points in the x, y, and z directions respectively to 
remove edge pixels deemed to have unreliable response. 
Analyses are performed on only these central points within 
each volume. 

u' 

.6 

.6 

,. . 
FIG. 4. The scalx dissipation fields resulting from direct differentiation in all three spatial directions of the scala volumes of fig. 3. Data is 
prescnted 3s V i  V<(x.r) on the left and log~(V<.V<(x.t)) on the right. As in figure 3. (a) above corresponds to volume #39 and (b) below to wlume 
#77 within the ful l  four-dimensional data space comprised of as many as 180 such volumes. The cubes on the left reveal the infrequency of high 
i i iolrc~i lnr mixing rates while those on the right reveal B layer-like structuce for 811 levels of dissipation. u' 
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4. Scalar Field Statistics 
We first present results for single-point statistics of 

the conserved scalar and scalar dissipation fields in the 
self-similar jet far field. Such single-point scalar field 
statistics in turbulent jets have been reported from a 
number of previous investigations (e.g. Wygnanski & 
Fiedler 1969; Antonia, Prabhu & Stephenson 1975; 
Becker, Hottel & Williams 1967; Birch ef ai 1978; 
Chevray &Tutu 1978; Lockwood &Moneib 1980). These 
allow comparisons and partial validation of the 
measurements, however it must be kept in mind that the 
resolution in the present data is higher than in any prior 
investigation. It is thus equally interesting to look for 
differences that [nay be attributable to the higher 
resolution. Also, measurements of scalar field statistics 
for large Sc scalar mixing in jets are comparatively few. 
Moreover, unlike most previous measurements of scalar 
dissipation and scalar gradient statistics, the present results 
are obtained from simultaneous measurements of all three 
scalar gradient vector components, and thus do not require 
any Taylor hypotheses or assumptions ofisofropy. Two- 
point statistics, in the form of scalar field spectra, are 
presented in $ 5 .  

<"  ... i., 

Figure 6 shows the probability density function (pdo 
of the conserved scalar 5 at the (r/x) = 0.1 I measurement 
location. [Note that this radial location is at the point 
where the scalar tluctuation level is highest; e.g. see 
Wygnanski & Feidler 19691. Both the shape and width 
of this pdf are interesting. Notice first the strong spike 
near ( = 0, corresponding to near-ambient fluid 
concentration levels. The area under this spike accounts 
for a significant fraction of the pdf - over 11% of the 
fluid at this radial location i n  the far field is at 
concentrations less than one-tenth of the local mean value. 
Previous measurements of the pdf along the jet radius for 
Sc B I scalar mixing also show an ambient fluid spike at 
this location, however in  those cases the spike accounted 

I 
0 

0 

-3.9 

I 

3.5 

2.0 

L 
FIG. 5 .  Two-dimensional cuts through volume#39 revealing some of 
rhc i rnx ior  dam of the cubes in figs. 3 2nd 4. (a) gives a .dice o f  the 
iciilsr k i d  which spans approxiiuntcly two wl t i c i t y  diffusion scales in  
both the n u t w x d  radial nnd the upstream directions. Its comsponding 
EC&U dissipation fields we shown in linear form in (b), nnd in logarithmic 
form in  (c). The color hnr nhovc gives thc numerical values associated 
with each color :and imnge. 
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I 
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2.3 - 

0 -  
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0 0.5 I 1.5 2 2.5 3 

FIG. 6. Probability density of the conserved scalar in the far field of 
on oxisymmetric jet with 3 Reynolds' number of 3700 and n radial Iaca- 
tion of ,In = 0 I I. or 13 cm from thc jet centerline. 
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FIG. 7.  Prahnhility density of t h i  &Id dissipation rate x. with the 
w m c  conditions 3s those of fig. 4. (a) gives the pdf(x.) whilc (h)  re^ 

ienls the pdf(lugJ). Also shown in (b) i s  3 gaussian curve, represent- 
ing a lognormal distribution for pdf(X). fit to the pdf abovc logsX'=-3. 

for a significantly smaller fraction of the fluid. In  fact, 
the entire pdf in Fig. 6 has a noticeably different shape 
than do results reported from previous investigations for 
large Sc mixing. These differences appear directly 
attributable to the lower spatial resolution of earlier 
investigations. In particular, prior measurements of the 
pdfshow a broad peakcentered near the local mean value, 
with a small spike near the ambient fluid value. The 
present result show no peak near the mean value, and show 
more fluid at extremely low and high concentrations than 
has been suggested by results reported to date. The most 
highly resolved of prior measurements (Dahm & 
Dimotakis 1987, 1990) give the maximum scalar 
concentration normalized by the local mean at this radial 
location as 2.4, whereas we find a significant fraction of 
the scalar values above even three times the local mean. 
Consistent with this difference in the maximum values, 
prior measurements of Sc B 1 scalar fluctuation levels in 
turbulent jets showed a normalized scalar variance at this 
radial location no higher than 0.68 (Antonia et al 1975). 
By comparison, the second moment of the pdf in Fig. 6 
gives the normalized variance as 0.88. These observations 
suggest that the pdf i n  Fig. 6, based on these highly 
resolved measurements, properly reflects the true 
distribution of scalar values at this radial location in the 
jet far field, Note, however, that while this shape is 
significantly different than previous lower-resolution 
measurements may have suggested, it nevertheless still 

of shapes commonly used in assumed-shape pdf models 
of scalar mixing. 
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Y appears reasonably representable by the p-function family W 

The availability of scalar field information in all three 
spatial dimensions allows determination of the true scalar 
energy dissipation rate field, and  hence allows 
measurement of the probability density of this quantity. 
Unlike previous measurements, no assumption of isotropy 
needs to be made to convert a lower-dimensional estimate 
into the true three-dimensional scalar gradient. Similarly, 
the spatial nature of these measurements allows direct 
evaluation of spatial derivatives, in contrast with time 
series measurements that require a Taylor hypothesis to 
estimate spatial derivative components. In Fig. 7a we 
show the probability density of the true scalar energy 
dissipation rate x (ReSc)-'Vc,Vc. Note that, as can be 
seen from thedissipation fields in Fig. 4, most of the values 
are concentrated near the low dissipation end, with high 
dissipation rates being rare. This intermittent character 
of the dissipation fields in turbulent flows has been known 
since the earliest measurements ofBatchelor & Townsend 
(1949). Classical theories of turbulence(e.g. Kolmogorov 
1962) suggest a lognormal distribution for dissipation 
variables to account for this intermittency. Accordingly, 
in Fig. 7b we show the probability density of log? x. 

W 



100 
successively acquired planes in the three-dmensional data 
volume. Small but unavoidable motion in the scalar field 
between successive z-planes leads to an enhancement of 
the z-derivative component. Other manifestations of this 
slewing will be seen in results presented below. Note 
that it is possible to partly correct the z-derivative to 
account for this slewing in the four-dimensional data. In 
particular. if the local velocity were known, then the z- 
derivative could be exactly corrected. Lacking the velocity 
required for this, a partial correction can be based on the 
local mean velocity, however, this is not implemented 
here. 

y-component ------ 
I 0 z-component ....... 

L h 

4Q<LP 

I 
v 
'- 
3 
a 0. I 

0.01 

0.001 
-1.5 - I  -0.5 0 0.5 I I .5 The final feature of interest in Fig. 8 is the scaling of 

the tails of these distributions at very large positive and __ a< hll - 
3.q < negative derivative values. Unless these tails are 

exponentially decreasing, moments of the distribution 
above some order will become divergent. Exponential 

FIG. 8. Prohahility densities of thc individual rcalargiadientcompo- 
iicnts in thc x~dircction (outw:rd indial), y-direction (upsmnm). and z~ 
direction (azimuthal). 

tails will appear as stnight lines in these semi-logarithmic 
axes. together with a true lognormal distribution having the 

same first and second moments. Note that, owing to the 
limited digital resolution of the measurements, the range 
of dissipation rates that can be distinguished does not allow 
iiccurate assessment of the distribution at low values. 
However, for higher values i t  can be seen that the 
lognormal distribution gives a fair t i t ,  though significant 
differences are discernible. While accuratedetermination 
of the complete pdf of x is currently of considerable 
interest, and has important implications for validation of 
alternative descriptions of turbulence, the %bit signal 
depth of the present measurements does not permit mote 
precise statements than in  Fig. 7 .  We choose therefore to 
focus instead o n  the three-dimensional spatial information 
offercd by these data. 

Since the scalar dissipation fields in Figs. 4 and 5 
result from direct differentiation of the scalar fields in 
Fig. 3, simultaneous conserved scalar and dissipation rate 
information is available at each point. This allows the 
joint probability density between these two variables to 
be directly constructed. Figure 9 shows the joint 
distribution resulting from these measurements. The 
contour values increase logarithmically, with each being 
twice that of the one above it. Again, no assumptions of 
isotropy are involved. The result shows that the scalar 
and scalar dissipation rate are essentially statistically 
independent. Perhaps more importantly, this joint 
distribution allows the conditional dissipation <xlc> , 
which is central to conditional moment closure models of 
reacting turbulent flows, to be evaluated. Note also that 
this joint pdf reveals that points in the flow with high and 

4 

Figurc 8 shows tile probability densities for the 
individual spatial derivatives in the three orthogonal 
directions that make up the local scalar gradient and the 
associated scalar dissipation. These in turn reflect the 
degree of isotropy at the small scales in  the scalar field. 
I n  particular, for an isotropic scalar field, the scalar 
gnldient vector has no preferred orientation, and thus the 
distributions for all three gradient vector components will 
be identical. It is apparent in Fig. 8 that the distributions 
are largely similar, though there are differences discernible 
( i t  must be kept i n  mind that the axes are semi- 
logarithmic). Moments ofeach ofthese distributions show 
that the mean-square gradient in the x, y. and 2 directions 
are respectively, 0.039,0.03 I ,  and 0.060 when normalized 
with the inolecular diffusion scale and the mean scalar 
value. The differences in the x and y components are 
likely to be a of genuine anisotropy, as discussed 

2-direction are likely to be aresult of the slewing between 

I I .5 2 2.5 3 o,5 

<I4 
FIG. 9. Joint probabilitydensity function between theconservedsca- 
1x and its corresponding walx dissipation rate x .  Contours vary 

it, 

below. However, the significantly higher gradients in the loganthmica,,y wi th  each one having twice the value of ane above 

b 
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low values of the conserved scalar tend to have low 
dissipation rates. while the greatest dissipation rates occur 
inost frequently at points with approximately 80% ofthe 
mean scalar value. This appears to he in good agreement 
with the results of Anselmet & Antonia (1985) who 
estimated the joint pdf for this pair of variables in the far- 
field of a turbulent planar jet and found the contours to 
peak slightly below the mean temperature. 

A different view of the anisotropy in the scalar 
gradients is shown in  Figs. lOa,b. This gives the 
probability densities for the two spherical angles 19 and cp 
describing the vector orientations in the gradient field 
V<(x,r). Here 19 measures the angle from the (positive) 
x-axis ofthe vector projection into the x-y plane, while rp 
measures the angle between the gradient vector and the 
(positive) z-axis, so that 

In a n  isotropic scalar field, the probability density of B 
values will be uniform at (2n)-', while the spherical 
geometry requires cp to be sinusoidally distributed as 
IRsin(rp). These isotropic distributions are also shown 
i n  Fig. IO. Figure IOushows that, forthedatarepresented 
here, the I3 distribution has peaks at 19 = 0 and 19 = n, 
suggesting slightly more gradient vector content in  the x- 
derivatives than in the y-derivatives. It is known that the 
pixel rows and columns in the array have slightly different 
characteristics. These peaks however account for only 
slightly more than 5 percent of the total probability. It is 
iilso apparent that there is a smaller peak in the direction 
of the most compressional mean strain axis, namely 
1% 41" and 139". In addition, a minimum is seen in the 
direction of the most extensional principal strain axis of 
the mean How strain field at this radial location in thejet, 
namely -4 = 49' and also diametrically opposite. Note 
iilso in Fig. IOb that the distribution of cp values shows a 
dip away from its isotropic form near n12. so that the 
gradient vector has a disproportionate tendency not to lie 
i n  the x-y plane.  It appears likely that this is a 
manifestation of the slewing between adjacent data planes. 
The slight motion of the flow between the acquisition of 
one plane and the next causes an anificial gradient to be 
produced in the z-direction if the local velocity vector 
points significantly in the direction of the local scalar 
gradient vector. Motion perpendicular to the scalar 
gradient will have little effect on the measured z-derivative 
component. 

0 '  I 
-IT -XI2 0 n12 n 

-' 
0 nl4 d2 3nI4 n 

'p 
FIG. Io. The probability densities of (a) the angle, B. mexumd from 
the positive x-axis and formed by the projection of the full threc-dimen- 
sional scalar gradient vector into the x-y plane and (h) the angle he- 
tween the scalar gradient vector and the positive z-axis. 'p. An isotropic 
arrangement of the scal31 gradient vector would lend to pdf (B)= ll(2rr) 
and pdf(q)=l/Zsin(q]. 

5. Spatial Spectra 
For locally homogeneous and isotropic turbulence at 

Reynolds numbers sufficiently high to allow an inertial 
subrange, classical turbulence theory suggests that the 
spatial spectrum of the kinetic energy field in the inertial 
range will follow a k-s/3 power law scaling. Similar 
arguments and dimensional reasoning can he applied to 
the scalar spectrum, and measurements show that this 
spectrum also follows, at least approximately, a k"' power 
law form i n  the inertial range as well (Gibson and 
Schwartz 1963; Grant, Hughes, Vogel, and Moillet 1968). 
For yet higher wavenumhers, Batchelor (1959) argued 
that, whenSca 1,owingtothedisparatedissipativescales 
h, and h~ in the scalar and kinetic energy fields, the scalar 
spectrum should follow a k-' form i n  the range of 
wavenumbers k, << k a kD where k,  s 2 x 4  and kD- 2nlh,. 
For wavenumbers on the order of k,  and higher, the theory 
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wggests an exponential roll-off as the scalar energy is 
dissipated. Batchelor's resulting theoretical function for 
the one-dimensional scalar spectrum at high wavenumbers 
can be written in the notation of Williams & Paulson 
(1977) as 

4 
Here is the measured scalar energy dissipation rate, E 
is the kinetic energy dissipation rate (here estimated from 
measurements in turbulent jets by Taulbee, Hussain, & 
Cnpp ( I  987)) and v and D are the diffusivities of the 
vorticity and the scalar, respective N(E)  is the normal 
distribution given by (2X)-'"eXP(-,B2) where 
B = (2q)"2 Wks. k, is the characteristic wavenumber of 
the Batchelor scale and q is a constant that relates the 
magnitudes of the principal rates of strain. Batchelor 
suggested that this universal constant should be two, but 
subsequent experimental investigations have suggested 
values as high as six (Williams & Paulson 1977). 

In addition to these one-dimensional spectra, the 
three-dimensional spatial nature of data such as those 
shown in Figs. 3-5 allows the full three-dimensional spatial 
scalar spectrum &(k) to be obtained. Such measurements 
have not previously been possible. Moreover, the three- 
dimensional spatial scalar spectrum then allows 
determination of the spherical spectrum E<@), obtained 
by integration over spherical shells centered around the 
origin in three-dimensional wavevector space. For 
homogeneous isotropic turbulence, the relationship 
between this one-dimensional spectrum estimation and 
its isotropic spectrum function denoted E y ( k )  is (e.g. - 

0.01 i 
0.001 F 

0.0001 t 
0.001 

v suectrum + 1 . .  

0.01 0.1 1 IO 100 
k, 

F'IG. 12. Comparison of the one-dimensional spatial spectra within n 
je t  of Re=3700 and Sc=2075 with that of the temporal spectra of 
Clay(1973). The P r 0 . 7  curve resulted from a heated air je t  of 
Re=IOO,OWand [he Pr=7,0curvecamefromtemper3turc measurements 
in the wakeofasphere.Re=27.600. Thedatais presented in Kolmogorov 
normalized coordinates 

Tennekes & Lumley 1972) 

Collapsing the three-dimensional spectrum into its three 
one-dimensional spectra allows an isotropy test through 
this equation. Note from (3) that any power law scaling 
kp in the one-dimensional spectrum will remain unchanged 
in the corresponding isotropic spectrum function E@). 

The results presented below for these various scalar 
spectra were obtained using an FFT algorithm (Press, W. 
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one-dimensional spatial spectra in these figures appearto 
asymptote to the Batchelor spectrum at the lowest 
wavenumbers, there are large disparaties between them 
in the dissipation range. Notice that the x and y spectra 
are i n  relatively good agreement with one another except 
at the very highest wavenumbers where various noise 
sm~rces dominate. Indeed, the data are known to typically 
be slightly noisier i n  the y-derivatives than in the x- 
derivatives, and this shows in the corresponding spectra. 
[Note that, while spectral results are often shown truncated 
above thcir spectral noise limit, we present the full spectra 
to allow identification of the different noise patterns 
inherent i n  them.] The z-spectrum in Fig. I I ,  however, 
contains considerably more high-frequency content. It 
appears likely that this isat least in part due to theslewing 
[mentioned previously. The artificial z-gradient this 
introduces will contain a wide range of frequencies. As 
also noted previously, it may be possible to partly correct 
for this artificial gradient, though this has not been done 
in the results presented here. Lastly, the three one- 
dimensional spatial spectra are compared with Clay’s 
(1973) temporal spectrum results for Sc = 7 and 0.7 in 
Fig. 12. The Sc = 7 spectrum is a result of temperature 
measurements in  the wake of a sphere at a Re = 27,600, 
while the Sc = 0.7 spectrum results from measurements 
within a heated air jet with a much higher Reynolds’ 
number of 100,000. The spacing between the spectra in 
Fig. 12 along the k ,  axis is slightly short of the expected 
Sc”* dependence and is being investigated. 

,c 

4’ 

The three-dimensional spectrum is estimated from 
the same three-dimensional spatial data volumes as were 
the one-dimensional spectra. However, in the interest of 
speed and consistency, the FFT algorithm with no memory 
swapping was used for the three-dimensional spectrum 
i i s  well. Limitations on computer memory required 
reduction of these calculations from nominally 2563 
volumes to 12X3 volumes. Each 2563 volume is therefore 
broken down into 8 subvolumes, and aseparate spectrum 
computed for each. The ensemble average of these three- 
dimensional spectra is shown in the color images of Fig. 
13. Each of the 64  images shown represents a slice 
through the three-dimensional k wavevector space for a 
constant kL value. Within each such slice, k, increases 
from left to right and k y  from the bottom to the top of 
each plane. The wavenumber k ,  in the out-of-plane 
direction starts at zero i n  the upper left and increases from 
left to right and then top to bottom. The color coding 
gives the value of the three-dimensional spatial scalar 
energy spectrum E<(k) throughout the wavevector space. 
The highest spectral values are color coded red, with 
logarithtnically decreasing values down to blue. 

Noise in the three-dimensional spectrum manifests 

12 

k, FIG. 14. Two independentrcalirations ofrhe onedimensional spatial 
Spectrum. calculated in the ouhvad radial dircction. a e  shown for a 
consistency check. The line represents the direct one-dimensional cal- 
culafion while the overlayed points result from integration of the full 
three-dimensional ensemble-averaged spatial scnlar energy spectrum. 
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k, HG. 15. Isotropic zcnl~aprclrum funcrion dcevcd from inregrnrion 
of the three-dimensional spectrum dong spherical shells. Oveilnycd 
x e  the owdimensional spectra for comparisons. 

itself in three minorpeaks. One is located at large k, and 
small values of the other two components, k y  and k,. The 
other two peaks occur at the corresponding points in the 
remaining directions. Noise from the photodiode array 
has essentially two components, one that causes the signal 
to valy from row to row, resulting in the peak in ky ,  and 
one that manifests itself in a column to column variation 
resulting in the peak in k,. The temporal aspects of the 
noise manifest themselves in the z-direction. This noise 
factor is introduced when the planes, acquired sequentially, 
are stacked in the z-direction as noted previously. This 
results in the peak seen in the lower left corner of the 
bottom right image, where kZ is large and k,  and ky are 
small. The source of noise that results in the minor peak 
in the three-dimensional energy spectrum that appears in 
the center of all 64 planes of constant ki  is currently under 



investigation 

The calculated one-dimensional scalar spectrum in 
any of the three directions is compared for consistency 
against the spectrum resulting from integration of the full 
three-dimensional spectrum in the other two directions. 
Good agreement between the two spectra in the outward 
rndial (or x-) direction can be seen inf Fig. 14. The 
calculated one-dimensional spectrum is twice as dense as 
the integrated one  and extends to slightly lower 
frequencies. Perfect agreement is not expected, sincedue 
to the overlap in the cubic subsets used to calculate the 
three-dimensional spectrum, scalar information from some 
points is used more than others i n  determining this 
spectrum. 

I n  addition to integration in the three orthogonal 
directions. integration of the three-dimensional spectrum 
over spherical shells in the wavevector space k is also 
possible. Since the full three-dimensional spatial spectrum 
has not previously been available to a n y  direct 
experimental measurement, this spherical spectrum has 
instead been typically calculated under the assumption of 
isotropy using (3). Here however no such assumption is 
necessary. Instead we can integrate EC(k) in Fig. 13 
directly over spherical shells in k space. This provides 
information as to the behaviour of the spectrum when the 
magnitude of the wavevector, and not merely one of its 
components, is the independent variable. As shown in 
Fig. 15 the shape of this spectrum very closely matches 
those of the individual one-dimensional x- and y-  
directional spectra. All four spectra shown have been 
normalized via (51, so that the area under each curve is 
the same and equal to the measured scalar variance. 

6. Conclusions 
The  present results show that experimental  

measurements of fully-resolved scalar fields with three- 
dimensional spatial data volumes in turbulent flows at 
moderate Reynolds numbers are possible. This in turn 
permits evaluation of the true three-dimensional scalar 
energy dissipation rate field, without any need for 
assumptions of isotropy to convert lower-dimensional 
measurements,  and without any need for Taylor 
hypotheses to convert time measurements to spatial 
gradients. The resulting data allow relatively detailed 
studies of the three-dimensional spatial structure in the 
sciilar and scalar dissipation rate fields at the small scales 
of the tlow. The pdf of scalar values shows a shape that 
differs significantly from previous Sc n I measurements 
at this radial location in the jet, and these differences 
appear to he consistent with the higher spatial resolution 
available i n  these measurements. There is a strong spike 

corresponding to near ambient tluid values, and a longer 
tail extending to higher values than previously measured. 
with an attendant increase in the true scalar variance. This 
extended tail also is apparent in the joint pdf of scalar and 
scalar dissipation. The fu l l  three-dimensional spatial 
scalar spectrum is also accessible to analyses from these 
measurements. One-dimensional spectra obtained froln 
this show an apparent asymptotic approach in  agreement 
with t h e k '  Batchelor scaling in the rangeof wavenumbers 
k, << k << kD.  

\-' 
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