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Abst rac t  

Transonic flows a r e  very  sensit ive to heat r e l e a s e  due to  
condensation, combustion or e lec t r ica l  heating. The governing 
unsteady sma l l  dis turbance equations for  such flows a r e  fo rmu-  
lated in  this paper. In par t icular  a slowly t ime varying reg ime 
in which the charac te r i s t ic  dis turbance t ime i s  much l a r g e r  than 
a character is t ic  flow t ime is  considered. In the c a s e  in which 
the unsteady heat r e l ease  is spatially homogeneous, a s imi la r i ty  
solution for  flow in a converging-diverging nozzle has  been 
found. 
heat  input has  been computed, and the ro l e  of shock waves with- 
in the nozzle is considered. 

The response  of the flow to var ious f o r m s  of unsteady 
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I. Introduction 

Unsteadiness or instability can be t r iggered in  t ransonic  flows by a 
re la t ively small r e l ease  of heat  due to such p rocesses  as  condensation, c o m -  
bustion o r  e lec t r ica l  heating. Thus, flow oscil lations induced by the heat  re- 
leased  during condensation of water  vapor nea r  the throat  of converging- 

Wegener and Cagliostro . 
tant ro le  in  determining the operating l imi t s  of cryogenic high Reynolds num-  
b e r  t ransonic  tunnels . 
the throat  of the nozzles employed in  cer ta in  a i r  b l a s t  c i rcu i t  breakers .  

diverging nozzles have been observed by Schmidt 1 , Barschdorff2p 3* ', and 
5 Transonic condensation effects a l so  play a n  impor -  

Unsteady transonic flow with heating a l so  a r i s e s  near  6 
7 

In the p re sen t  paper  the transonic s m a l l  dis turbance equations for  such  
flows a r e  formulated and a n  exact  similarity solution 
a par t icu lar  f o r m  of heat addition is presented. 

of these equations for  

c' 

Flows with p rocesses  result ing in the evolution of heat  have been the 
subject of extensive investigation a s  discussed in the review by Becker8, and 

10 flow of react ive gases  have been formulated and discussed by Napolitano 
and Prud '  Hornme''. However, a s ide  f r o m  the approximate analysis  of 
Barschdorff and Filipov", a t ransonic  theory applicable to the type of un- 
steady flows descr ibed above does not appear  to be available. 

the monograph by Zierep  9 , for  example. The equations for  s teady t ransonic  

L' 

The present  development s t a r t s  with the basic equations for  reac t ive  o r  
nonequilibrium flow f r o m  which the transonic small dis turbance equations a r e  
then derived. 
t ime TCh 
descr ibed above l ie  in this "slowly t ime varying" regime. 
equations a r e  identical  to the unsteady transonic small dis turbance equations 
derived by Adamson13 except f o r  an  added react ive te rm.  
charac te r  of such flows is provided by a se l f - s imi la r  solution of these equations 
for  flow in a converging-diverging nozzle. 

The par t icular  c a s e  in which the charac te r i s t ic  dis turbance 
>> Tf the charac te r i s t ic  flow t ime is considered s ince  the phenomena 

The resul tant  

An insight into the 

11. Basic  Formulation 

Inviscid but nonequilibrium flows will be considered, so that the equations 
for  the conservation of mass ,  momentum and energy a r e  

+ 
Dp/Dt t p V  v = 0 (1) 

DG/Dt t Vp/p = 0 (2) 

Dh/Dt - ( l /p )Dp/Dt  = \ / p  ( 3)  
d 
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He.re 4 is i h e  ra.t.c of  external h r a f i n g  per  1ini.t volume due to such p rocesses  a s  
Jou1.e hraf:i.xig or radi>?.+.i.on, and wi;+.l, in general ,  be a function of both position 
and l ime. 

In many important p rocesses  a single nonequilibrium variable,  s a y  6 ,  
is sufficient, and the present  di.scussion will  be res t r ic ted  to this case .  
a calor ic  equation of s ta te  can be wri t ten as 

Thus 

h = h(p, P , E )  (4) 

14  Combining Eqs.  (1) - (4) a d  using the relation 

RP) 1 . ( - -  a i1 ) - 61 (5) 
2 il ( - 
f a p  s,< a P  P.5 P P t 5  

for  the fro7.m speed of sound then ].rads to t.he relation 

This equation, which f o r m s  the point of depar ture  for the analysis  which follows, 
reduces to the well known gas dynamic equation i.n the case  of s teady nonreact ive 
flow. 
that discussed by Zierep9 among others .  

Tn steady non-reactive flow with external  heating Eq. (6) is identical  to 

Equation (6) is completely general  and c.an be used to t r e a t  flows with 
condensation, combustion, vibrational relaxation or Joule heating. However, 
the definition of 5 ,  the thermodynamj.c derivatives,  the f o r m  of Q and the r a t e  
law governing Dg /Dt will depend on the process  under consideration. For 
example, in the case  o f  a condensing vapor in an  ine r t  gas, such a s  wa te r  vapor 
in  air, the appropriate  choice f o r  t; i s  g,  the mass fract ion of condensate. 
F r o m  the thermodynamics of condensing flows15, it then follows that 

where  R is the universal  gas constant, p i s  the average  molecular  weight of the 
gaseous pa r t  of the mixture,  Id is the latent heat of vaporization, C 
s tant  p r e s s u r e  specific heat of the init ial  a i r  vapor mixture,  while 
vapor molecular weight. On the other hand, for  external  heating of a n  i n e r t  
g a s  De /Dt = 0, and 

is the con- 
p, i s  the 
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where  y is the ra t io  of specific heats. 

Equations (1) - (3)  and (6) can be simplified in  t ransonic  flow because only 
sma l l  per turbat ions f r o m  the sonic velocity need to be considered. 
within the t ransonic  reg ime of flow, cer ta in  res t r ic t ions  a r e  placed on the m a g -  
nitude of the react ive and heating t e r m s  in  Eq. (6) r ega rd le s s  of the p rocess  
involved. 
to t ransonic  flow. 

However, 

To make fur ther  p rogres s  the equations above m u s t  now be specialized 

111. The Transonic Small  Disturbance Equations 

The development below para l le l s  that of Adamson13 in the nonreactive case.  

The undisturbed flow 
Small  deviations f r o m  a uniform flow moving with velocity U in the x direction, 
and with density and tempera ture  p 
i s  taken close to the sonic velocity so that ( U - a  )/af << 1, and the order ing of 

the  same as i n  the case  of i n e r t  flowl3. 
two-dimensional flow. 

and To is considered. 
0 

the dependent var iables  and stretching of the in  i ependent var iables  is taken to be 
The p resen t  t r ea tmen t  is r e s t r i c t ed  to  

The velocity, densi t  temperature ,  and p r e s s u r e  a r e  made dimensionless  
a s  re ference  quantities, and for  the development be-  -3 - - 

using U, To,  To. and p o U  
low dimensional quantities will be denoted by overbars .  
sions for  u and v, the x and y velocity components and for the density p,  p r e s s u r e  
p, t empera ture  T and frozen speed of sound af  a r e  

Then appropr ia te  expan- 

E 
wkile,following the iner t  ordering, the pa rame te r  5 i s  related to E1 by 
bz = E l ( y t l ) .  Stretched < and coordinates a r e  given by 

is a sma l l  parameter  character iz ing deviations f r o m  the undisturbed flow 

v 
x = ; / s a ;  y = ; /a  (10) 
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This stretching accounts for  the different r a t e s  of change in  the x and y direct ions 
which charac te r ize  transonic flow. Since nozzle flows a r e  of p r i m e  concern here ,  
the charac te r i s t ic  length b is taken a s  the nozzle half height. I t  will be seen  l a t e r  
that Eq. (10) confines the analysis to a nar row region of the nozzle throat.  

As a l ready  mentioned above, the present  analysis_is res t r ic ted  to the 
"slowly t ime varying" regime s o  that TCh >>  Tf = i / U .  
the dimensionless t ime 

Following Adamson13 

..- 
t = k g t / ( l / U )  (1 1) 

i s  therefore  introduced. 
the Strouhal No. Str  = if/-? = kg << 1. 

Here k is a constant of O(1) .  Equation (11) implies  that 

ch 

At this point i t  i s  mos t  convenient to use  the conservation equations in their  
Substituting the s t re tched var iables  and expansions in Eq. (1) and original form. 

in the x momentum equation then yields the relations 

provided the undisturbed flow i s  uniform and steady. 
the y momentum equation then yields the resu l t  

Together with Eqs. (12) 

Hence the flow i s  i r rotat ional  to f i r s t  o rde r .  

In order  to deal with the energy equation i t  is  necessary  to specify the f o r m  
of the calor ic  equation of s ta te  (4). 
that the fluid i s  a perfect  gas with constant specific heats. 
in an iner t  gas15, Eq. (4) then becomes 

In the p re sen t  case  i t  is  reasonable  to a s s u m e  
F o r  a condensing vapor 

where g is  now the nonequilibrium variable, and the second t e r m  on the r ight  of 
this expression i s  dropped i f  only external heating is under consideration. 
ing only the l a rges t  t e r m s  the energy equation now becomes 

Keep- 

where  M 
side will be established by considering the gas dynamic equation (6). 

= Go/&o.  The order  of magnitude of the heating t e r m  on the r ight  hand 
0 

Keeping only the l a rges t  t e rms ,  the gas dynamics equation (6)  becomes 
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The left s ide  of this equation is of 0 ( 6  E ); hence, it follows that, to be cons is -  
tent with the t ransonic  approximation, d e  react ive and heating t e r m s  on the 
right can be  a t  mos t  of 0 ( 6 E l ) .  F r o m  Eq. (7) it follows that the right s ide  of 
Eqs. (15) and (16) a r e  of the same  order .  The r ight  s ide of the energy equation 
(1 5) can, therefore,  be dropped to f i r s t  order, and then one integration yields 
the relation 

The gas dynamic equation can now h e  simplified fur ther  using the resu l t s  
developed s o  far.  F r o m  Eqs. (12), (17) and the ideal gas equation i t  follows that 

- 2  U 

f In the case  of an  ideal gas substitution of the expansions (9) in Eq. (5) fo r  a 
together with Eqs. (12) and (17) yields the following expression: 

Since the flow i s  i r rotat ional  to f i r s t  o rder  i t  i s  possible to define the potential 

& = U i [  ( ; /a)  t E.1 6+ (x, y, t) t . . .]  (20) 1 

s o  that 

(21) (1) = 
+ Y  

V 

Utilizing the r e su l t  that Mz = 1 t O(E ), the gas dynamic equation can 
0 .  1 

now be reduced to the potential equation 

h 
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2 
where  x = (Mo-l j / (yt l )El ,  and the subscr ipts  denote differentiation. 

S 

The left side of Eq. (22) i s  identical  to the unsteady t ransonic  s m a l l  d i s -  
turbance equation for  iner t  f low.l3 
ther discussion and is considered below. 

The heating t e r m  on the r ight  r equ i r e s  f u r -  

Since a l l  t ranspor t  effects a r e  neglected he re  the boundary conditions a t  
13 I a solid surface will be the same  as in  the ine r t  c a s e  considered by Adamson 

Hence, with the wall  coordinate y given by 
W 

the wall boundary condition i s  

= (a I: / a x )  (1) - 
- (? ,JW W 

V 
W 

Here y. is  a constant. 
1 

IV. Application to Nozzle Flow with Heating 

As  indicated above the application of g rea t e s t  in te res t  h e r e  is t ransonic  
nozzle flow with heating f rom condensation o r  an  external  source.  
of t h e  sma l l  dis turbance equation ( 2 2 )  to such flows now requ i r e s  fur ther  d i scus  - 
sion. Distinguishing features  of this equation a r e  the heating t e r m  on the r igh t  
which l imits  the p rocesses  which can be treated,  and the res t r ic t ion  of the un-  
steady processes  to the slowly t ime varying regime.  

The relat ion 
i, 

To begin, the smal l  pa rame te r  El  will  be re la ted to the geometry  of the 
nozzle throat  where  the flow of in te res t  occurs.  
with wall radius  of curvature  i s  shown in Fig. 1. The ordinate  of the wal l  
contour is given by Eq. ( 2 3 )  f r o m  which i t  follows that 

The throat  section of a nozzle 

since 6‘ = E ( y t l ) .  Since F 
(a Z F ~ / ~  x2) ’- 0(1) .  Ilence 

x, and t, a r e  a l l  O(1) i t  follows that 
W’ 

El  - O ( i / G  

and .i relation between E and the nozzle geometry i s  thus established. 1 
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With this value of E1 i t  can he shown that physically observed flow osc i l la -  - 
tions in nozzles fall within the "slowly t ime varying" regime. 
and Cagliostro5 found that the frequency of condensation induced oscil lations 
could be cor re la ted  in t e r m s  of the dimensionless frequency f defined by 

Thus, Wegener 

a 

where  i is the actual  oscillation 
For  the data reported5 0.185 < 
using E - o(H/fi), qr = a/;':' 

1 

qf /Tch  - 0(E1"f) 1 - O ( 6 )  ( 2 8 )  

- >k 
frequency and a 
f < 0.940 o r  in  other  words f - O(1). Now 
and = ( l / f ) ,  i t  follows f r o m  Eq. (27) that  

i s  the c r i t i ca l  speed of sound. 

ch  

So that the observed r e su l t  that f - O(1) implies that the nozzle oscil lations w e r e  
indeed - within the slowly t i m e  varying regime.  
f observed in the "slowly t ime varying" reg ime are by no means small .  
nozzle with 5 = 0 .65  cm, 16 cin and with 2" ?x 300 m/sec. f requencies  up 
to 6000 Hz w e r e  observed. 
Cagliostro w e r e  a l so  found to be consistent16 with the order ing used to develop 
Eq. (22).  

The actual  oscil lation frequencies  
In a 

= 

Other pa rame te r s  reported by Wegener and 

W 

The heating t e r m  on the r ight  of Eq. (22)  cannot exceed O(1) within the 
o rde r  of t ransonic  approximation considered here .  
i t  then follows that 

F o r  purely external  heating 

If the external  heating r a t e  can be character ized by heat 4 
volume of flow in a heating t ime q 

added per  unit 
0 

i t  follows f r o m  Eq. (29) that h - -  
(3  0) 

- -  - -  
o r  wi th ;  -; 
a t  mos t  01 o(z>. 

= (Gf/6),  the dimensionless  heat addition q / p  C T can  be 
0 o p o  

If heating is f r o m  condensation alone the res t r ic t ion  becomes 

F r o m  the thermodynamics of vapor- iner t  mix tures  i t  can be shown that 
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L.' 

- 
If w 
con8ensation time, Dg/Dt  - 0 ( w O / T C ) .  Then Eq. (31) implies  the following 
relations between ; 

is the specific humidity p r io r  to condensation and T is a charac te r i s t ic  
C 

and the charac te r i s t ic  dis turbance t ime 7 
C ch  

In Eq. (33) El and depend on the geometry of the nozzle and on a* ,  
is a n  externally imposed exper i -  

C.' 

h - 
L is a physical  property oE the fluid and w 
mental  condition. The condensation t ime T on the other hand, depends on  
the physics of the condensations p rocess  and IS essentially independent of the 
other pa rame te r s  in  Eq. (33) .  
in  t e r m s  of w D, and E but s imply indicates for what o rde r  of T the 
condition (31)  is sat$ied. Wegener - 
and - Cagliostro5 and by Barschdorf fas  well  as corresponding values of E 

T ~ ,  
T and values of T ch  C -* 
these experiments a 300 m / s e c ,  D 2 11, and . 0 1  < w < 0.02. It can be 
seen  that the values of 
< - 15009 sec.  
charac te r i s t ic  t ime for  condensation l i e s  in  the range  10 < T ' < 100 p sec,  
where  the physically observed condensation t ime is denoted by a p r i m e  to 
distinguish it f r o m  the value given Isy Eq. (33) .  In the upper range ' satisfies 
condition (33) for  many of the c a s e s  given in  Table I. However, when T ' s lop sec,  
T ' << 
f o r m  of 
probably involving narrow condensation fronts  will be required.  The p resence  
of such fronts  is, in fact, indicated in in te r fe rograms of nozzle flows with con- 
densation. 

0 -  

This equation therefore  does not de te rmine  ; 
C 

0' C 
' he  dimensions of the nozzles studied by 

computed using E?. (33) a r e  presented in  Table I. 

0 
determined f r o m  Eq. (33) fa l l  in the range  9 0  < 

C C On the other hand, Wegener and Gagliostro indicate that the 

C 

c -  - 
and Eq. (31) will  be violated. 
Eq. (22) will  no longer be applicable, and a different t r ea tmen t  

The small dis turbance equa t io i  in  the 
C C 

2 

V. Similar i ty  Solution - Formulat ion 

Although solutions of the sma l l  dis turbance equation (22) for  condensation 
induced osci l la tory flows a r e  not yet available, i t  is possible to develop a n  exac t  
s imi la r i ty  solution of Eq. (22) f o r  special  f o r m s  of external  heating, 
This solution, which descr ibes  the type of flow generated by e lec t r ica l  o r  Joule 
heating, and provides valuable insight into the effects of heating upon t ransonic  
nozzle flow, i s  developed below. 

4 .  

At first, i t  is convenient to expres s  Eq. (22) in  t e r m s  of the velocity 
perturbations u(l), and to rep lace  the external  heating t e r m  by the heating 
function: 

9 



Taking Mo = 1 so that x = 0, Eq. 
S 

2ku'')xt t (u (1) u ( U X )  
X 

(22) then becomes 

= o  (1) 
YY 

- u  

Introducing the t ransformation 

2 
S = x t by t P ( t )  

U (') = Z ( S )  t 4b2y2 - 2kP' (t) 

f i r s t  used by A d a m ~ o n ' ~  reduces Eq. (35) to the following equation for  the func-  
tion Z ( S ) :  

(37) 
2 (ZZ')' t Z" - 2bZ' - 8b t Q = 0 

When Q i s  a function of t imk t alone, Qx = 0 and Eq. (37) is reduced to the o r d i -  
na ry  differential  equation 

X 

(ZZ')' - ZbZ'  - 8b' = 0 (38) 

v The function p (t) is an a r b i t r a r y  function of time, and b is a constant whose 
significance will  become evident la te r .  
me t r i ca l  with r e spec t  to the x axis ;  
x axis  can be taken a s  the wal l s  of a nozzle. 
velocity perturbation u(l) on thq ayis y =  0 and Z(S) = u ( l )  in s teady flow when 

The flow descr ibed by Eq. (36) i s  s y m -  
thus, any two s t reaml ines  m i r r o r e d  in the 

The function Z ( S )  is re la ted  to the 

p '  (t) = 0. 

Equation (38) is identical  to that considered by Tomotika and Tamada17.in 
their  study of transonic nozzle flow, and has the solution 

3 
( Z  - 4bS) (Z f 2bS) = - 2 (Y 

4b3 
(39) 

with cy a constant of integration. The t r ans  r s e  velocity, v"), determined 
from the irrotationali ty condition, u (1) = .YP, is 

Y x '  
2 3 3  

2 2 

V (') = 2byZ t 8b xy + ( 8 b  y /3) 

(40) 

It i s  significant that while the reaction t e r m  Q(t) and the function p (t) a r e  absent  

While Eqs. (39) and (40) desc r ibe  the flow in a nozzle, the nozzle wall  contour 
cannot be specified a rb i t ra r i ly ,  but r a the r  is determined f r o m  the s imi la r i ty  
solution by combining Eq. (40) with the boundary condition (Eq. (24)) and 

t y(8b p - 4k p "  t Q) 

f r o m  Eqs. (38) and (39), these t e r m s  do appear  in  the expression f o r  v (1). 

10 
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W 

13 integrating the result ing differential  equation 
nozzle walls will  not b e  stationary s ince the contour function wil l  be a function 
of both x and t. 

for  Fw(x, t). In genera l  the 

When the integration constant cy = 0 ,  it follows f r o m  Eq. (39) th t 

2 = 4bS (41) 

is a solution, and descr ibes  a flow accelerat ing f r o m  subsonic to supersonic  
velocity through a nozzle throat. Since 

(1) u (x, 0, t) = 4b 
X 

in this case,  the constant b h e r e  de te rmines  velocity gradient  on the nozzle 
axis. This simple,  though physically significant, solution will  now be con- 
s idered in detail.  

The t r ansve r se  velocity v(') now will  b e  

2 2 2 (') = 16b xy t 22. b3y3 t y(16b p - 4k p "  f a )  
3 

V (43) 

If the a r b i t r a r y  function p (t) i s  chosen to make  the coefficient of y in the last 
term equal to some constant C, both v ( l )  and the shape function Fw wil l  be 
independent of time. 
a nozzle with rigid walls, and this is the solution of g rea t e s t  i n t e re s t  he re .  
The function p (t) must  then satisfy the differential  equation 

The s imi la r i ty  solution now will  d e s c r i b e  flow through 

(44) 
2 2 

4k p "  - 16b p = Q(t) t C 

The contour of the rigid nozzle corresponding to this c a s e  has  been de termined  
by Adamson13 in the absence of any heating, i. e., with Q = 0. The constant C 
establ ishes  the or igin of the x coordinate sys t em and can be taken a s  ze ro  f o r  
convenience. 

The function p (t) is now related to the heating function through Eq. (44) 
which then establ ishes  the influence of Q(t) upon the similarity solution. 
tion (44) is a l inear  non-homogeneous ordinary differential  equation and so poses  
few difficulties. 
boundary condition fi ts  with the well  known analogy between heating and a r e a  
change in one dimensional compress ib le  flow18. 

Equa-  

The resu l t  that the influence of heating en te r s  through the 

11 



VI. Similar i ty  Solution - Resul t s  u 
Since Eq. (44) for  P( t )  is l inear,  it can b e  solved for  any Q(t) which can be 

expressed in t e r m s  of a Four i e r  s e r i e s  or integral .  
to t r ea t  the c a s e  when Q(t) is the harmonic function 

i w t j  

Hence i t  is first of i n t e re s t  

(45) Q(t) = Re(Ae 

where  the amplitude A - 0(1), and w is a dimensionless  angular frequency. 
The solution for  p (t) is then 

2b - - t  
k A 

2b 
- t  

P ( t )  = K l e  2 - R e  [ 2 t K e  
4k2w2 t 16b 

Equation ( 3 6 )  for  u( l )  then yields the r e su l t  

1 t R e [  J"-. e i ( r r tw t  -9  
4b l + q  

V (47) 

-1 
q = (Zkw)/4b; \Ir = tan rj 

This solution for  u(l) contains a t ransient  p a r t  which decays exponentially. 
The value of the constant k defined by Eq. (11) has no effect on the final r e -  
su l t s  and so will  be taken a s  unity. 

To a s s e s s  the full  meaning of this solution for  u(l), it will  b e  expressed  
in  t e r m s  of the physical var iables  x" = ( G / i ) ,  
a r e  re lated to the nozzle geometry and the c r i t i ca l  speed of sound , 
Defining the dimensionless curva ture  K = 

= ( G / i ) ,  andT  = (t/Tf)-;hich 
a . 

4'-/z, i t  is readi ly  shown13 that 

2 
K = 16Elb (48) 

The constant b thus re la tes  the sma l l  pa rame te r  E1 to K but does not affect  the 
final result .  In the present  ca se  by letting b = (1/4), Eq. (48) becomes El = K .  

The relat ion between the dimensionless  amplitude A and the actual  heating rate 
is established by Eq. (34). 

The dimensionless  f requencies  f, [Eq. ( L 7 ) ]  and w become 

12 



i 

L 

In t e r m s  of physical  variables,  the solution now becomes 

-1 
Q = tan r )  

13 The nozzle contour will  be descr ibed by the equation 

N K "  1 y = 1 t  - [ x t , d G i G J 2  2 

" 1  
f r o m  which it can be seen  that the throat  occu r s  a t  x =  -(; )- . 

(51 

Equation (50) descr ibes  the response  of the flow near  the throat  of a con- 
verging -diverging nozzle to oscil latory,  uniformly distributed, heating. This 
solution will  be consistent with the order ing in the derivation provided 
x" - O ( G  ), 7 - 0(1), The constant K2 wil l  depend on 
the init ial  conditions of the flow, but has  no fur ther  effect a f t e r  the decay of 
the t ransient  t e rm.  
e folding t ime 
and K = 0.1, this decay t ime is about 700 psec .  
the nozzles considered by Wegener and Cagliostro5 and Barschdorff a r e  shown 
in Table I. 
the fac tor  r ) ,  

phase of the velocity oscil lations induced by the heat input. 
P = 5cm, K = 0.1, the actual  f requency f will  be 2700 Hz 

f N O(1) and A c O(1). 

F r o m  Eq. (50) i t  follows that 2 ; f / m )  = 2; is the 
of the transient.  F o r  air at s tandard conditions w i t k h f  = 5 cm, 

e Values of T 

It can be seen that the dimensionless  frequency f, which de te rmines  
is a key pa rame te r  s ince  it de te rmines  both the amplitude and the 

Again, consider ing 

= (1/2)Te for  
ch 

when f = 1.0. 

(1) The sonic line, where  Eu = 0, is a parabola which is concave in  the up-  
After the decay of the s t r e a m  direct ion and osci l la tes  about the nozzle throat.  

t rans ien t  the sonic l ine sa t i s f ies  the equation 

T w o  additional examples of the heating function Q(t) will  be considered: 
a periodic square  wave and a discontinuous change in Q. 
function 

The s q u a r e  wave 

13 



A; O <  u t <  TT 

0 ;  r r <  ut< 2n 
Q =  { 

can be represented by the Four ie r  s e r i e s  

sin(2n-1)w t 1 Q = ~ t - z -  A 2A 
Ti (2n -1) 

co 

n=l  

The coefficients of the corresponding Four ie r  s e r i e s  for  f3 (t) can be found 
by substituting Eq. (54) in Eq. (44). 
determined and is now given by 

With p (t) known, u(l)(x, y, t) i s  readily 

2 2  
u(l) = 4bx t 8 b  y 

(54) 

W 
The variation of u(l) a t  the origin x =  0, y =  0 i s  shown in F i g s .  
for  values of 1.0 and 2.0 for  the frequency factor  r ) .  

the  response  of the flow to the osci l la tory heat  input d e c r e a s e s  with increasing 
r) and hence frequency f. For r) << 1, i t  i s  c l ea r  from both the s imple harmonic 
and square  wave solutions that the oscillations of u(l) will  have the s a m e  f o r m  
as  those of the imposed - heat input act) .  
-4 3 a and the actual  f r e -  
quency will  be 23 Hz. 

2(a) and 2(b) 
As is to be expected, 

As an  example for  r )  = 0.1, 
% 300 m-sec, 1 = 5 cm, i t  turns  out that f = 8 . 7  x 10- 

In the case  of a discontinuous change in Q such that 

0 ;  t <  0 

A; t >  0 
Q =  { 

The solution for  u(') for  t > 0 is given by 

(57) 
2 2 A -2bt 

U = 4bx t 8b y t lib ( e  - 1) 

Here  again the e folding t ime f o r  the flow to adjust  to the 
i s  2 ~ ~ ~ .  

sudden change in  Q - 

14 
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Generally, shock waves which may  move through the throa t  region will  
occur  in  unsteady 2ozzle flow, and a r e  p re sen t  in  the in t e r f e rog rams  of flow 
with condensation mentioned above. Such shock waves can be incorporated 
in  the s imilar i ty  solution descr ibed above 18, l9 .  
ing solutions in which the nozzle wal ls  a r e  s ta t ionary both ups t r eam and down- 
s t r e a m  of the shock. 

The difficulty l i e s  in  develop- 

18 
Adamson' s resu l t s  for  adiabatic flow can be used to d i scuss  the p re sen t  

case.  Even with shocks the solution i s  still d e s c r i b e d  by Eqs. (361, (37), and 
(38) with Z ( S )  given by Eq. (39). However, Z(S) is discontinuous a t  the shock 
which l ies  on a parabola S = S = const. The Hugoniot conditions a c r o s s  the 
shock requi re  that 

0 

where  subscr ipts  u and d re fer  to conditions ups t r eam and downst ream of the 
shock. 
a l ready  considered above, the downstream solution is given by 8q .  (39) with 
the integration constant, (Y = a d  < 0. 

Taking the ups t ream solution a s  the accelerat ing flow Z = 4bS, 

The shock condition then r equ i r e s  that 

Ups t ream of the shock the solution will be identical to that t reated above 
with pu(t)  and Q(t) related by Eq. (44). 
shock i m p l i e s  that the shock moves in  the x-direct ion with velocity 

The f ac t  that S = S o  = const. on the 

S 
given by 

The shock i s  thus "driven" by the heat input Q(t) through the function p (t). 
The problem is that since Z(S)  changes discontinuously a c r o s s  the shocx, 
the t r ansve r se  velocity v(') given by Eq. (40) a l so  changes and becomes t i m e  
dependent. 
the shock, the nozzle contour downstream will  vary  with time. 
solution with shock waves and rigid nozzle walls,  thus, does not appear  
f eas  ible. 

Thus, with p ,(t) determined f r o m  Q(t) in the flow ups t r eam of 
A similarity 
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VII. Discussion b 

Equations have been formulated for  the unsteady slowly t ime varying t r a n -  
sonic flow of a gas with external  or react ive heating. These equations a r e  iden-  
t ical  to the non-reactive o r  adiabatic unsteady t ransonic  equations except for  the 
inclusion of a heating te rm.  Consideration of experimental  r e su l t s  suggests 
that these equations a r e  appropriate  for  the analysis  of the condensation induced 
oscil lations observed in  transonic nozzles. However, the t rea tment  of such 
flows will  r equ i r e  a consideration of shock waves and condensation fronts  in  con- 
junction with the equations derived here.  

It has been possible to develop a s imi la r i ty  solution for  a uniform, but 
t ime varying, heat input as might a r i s e  in e lec t r ica l  o r  Joule heating. 
interest ing that the response of the flow to heating i s  established through a l inear  
equation which a r i s e s  f r o m  the boundary conditions a t  the walls of the nozzle. 
The unsteady flows due to both a periodic and stepwise heat  input have been d e -  
termined. Transient  dis turbances a r e  found to decay in  a t ime of the o rde r  
T = a/:”-). F o r  a periodic input with frequency F, the pa rame te r  
ri = 4 ? i i T  determines  the response  of the flow. Ch 
sense  ,, >> 

It is 

ch F o r  a l a r g e  frequency in the 
1, the response  of the flow field will  be minimal.  

Similar i ty  solutions with shock waves a r e  readi ly  determined;  however, 
i t  has  not been possible to develop such solutions with nozzle contours which W 
a r e  rigid throughout. 
descr ibed by Adamson, e t  al. l 9  is probably appropriate .  

To dea l  with such flows, a technique s imi l a r  to that 

In this paper, par t icular  emphasis  has been placed on nozzle flows with 
condensation or external  heating. 
ble in the case  of exothermic chemical reactions if 5 denotes a react ion 
p rogres s  var iable  and L is replaced by the enthalpy of reaction. 
of the process  will, of course,  be quite different. 

However, the analysis  will  a l so  be appl ica-  

The physics 
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Table I 

Dimensions and Charac te r i s t ic  Times of Nozzles 
5 

Used by Wegener and Cagliostro . 
and by Rarschdorff 2, 3 

- 
1 

c m  

- - 
0.65 

0.65 

2.55 

3.00 

3.00 - 
D z 11; 

y = 1.4 

- - 
R 

c m  

- - 
16 

18 

15  

20 

58 

0.041 

0.036 

0. 170 

0. 150 

0.052 

0.313 22 

0.294 22 

0.639 8 5  

0.600 100 

0 . 3 5 3  100 

- >k 
a 300 m/sec  

- 
T 

ch 
I-1sec I 

\ w =0.01 
I o  

- 
T 

C 

I* s e c  

w =0 .02  
0 

386 

47 2 

178 

252 

1538 
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Figure 1. Nozzle  Parameters 
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Figure  ?.(a). Square Wave Response, Q = 1.0 
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Figure  Z(b). Square Wave  Response, rj = 2.0 
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