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We report further results from our a priori assessment of a multifractal
subgrid-scale model for large-eddy simulation. In this paper, we compare the
model's ability to recover components of the subgrid-stress tensor ��ij and the
subgrid energy-production P

� �eld in low and high Reynolds-number turbu-
lence, (Re� � 160 and Re� � 2550). We �nd that in comparisons with DNS
data, the model recovers ��ij with correlations of � � 0:855 and � � 0:635 in the
lower and higher-Re cases, respectively. We also report correlations between
DNS and model values for the SGS energy-production �eld P

� of � � 0:860
in the lower Reynolds-number context and � � 0:804, in the more turbulent

ow. We further examine the model's ability to recover components of the
averaged subgrid-velocity �eld usgs, which shows correlations of � � 0:915. We
also analyze the individual terms within the decomposition of ��ij itself. These
tests in sum indicate that the present multifractal model recovers signi�cant
structural characteristics of the subgrid �eld. The comparisons also suggest
possible higher-order re�nements to the model. Finally, we set forth in some
detail a multifractal model for the Reynolds stresses in the Reynolds-Averaged
Navier-Stokes equations.

1. Introduction.

In our previous paper Burton et al (2002), we pre-
sented a fundamentally new approach to the mod-
eling of the subgrid-scale stresses for the large-eddy
simulation (LES) of turbulent 
ows based on the
multifractal structure of the subgrid-vorticity �eld in
high Reynolds-number turbulence. That paper set
forth in some detail the physical bases for represent-
ing the spatial distribution of subgrid vorticity with
a multifractal model and the derivation of an expres-
sion for the subgrid velocity �eld based on multifrac-
tal concepts. We also reported on an initial series of
a priori tests comparing DNS and model values. In
the present paper, we brie
y summarize the deriva-
tion of the model and the results of those initial a
priori tests. We then describe in some detail further
a priori tests, in which the model and DNS values
are compared in lower and higher Reynolds-number
contexts. In the �nal section, we set forth the deriva-
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tion of a multifractal model for the Reynolds stresses
in the Reynolds-averaged Navier-Stokes equation.

2. Review of Multifractal Model.

The present multifractal model is based on a rep-
resentation of the spatial distribution of vorticity
magnitudes and orientations within the subgrid �eld
of an individual LES grid-cell. These distributions
are then inserted into the Biot-Savart operator to
derive the subgrid-velocity �eld u

sgs that permits
direct calculation of the individual terms in the SGS
stress tensor

�ij = ui uj + ui u
sgs
j + usgsi uj +

usgsi usgsj � ui uj : (1)

We believe this to be the �rst LES approach in-
volving explicit calculation of each term within the
decomposition of the SGS stress tensor. The stress
tensor �ij can be further separated into resolved �Rij
and subgrid ��ij components, where

�ij � �Rij + ��ij : (2)
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The resolved component �Rij , de�ned as

�Rij � ui uj � ui uj ; (3)

concerns the resolved scales of the 
ow exclusively,
and is obtained directly from the LES 
ow solver. As
such, it is completely unrelated to the subgrid model
proposed here. By contrast, the subgrid component
��ij , de�ned as

��ij � uiu
sgs
j + usgsi uj + usgsi usgsj ; (4)

contains all of the contributions of the modeled sub-
grid �eld to the value of the full stress-tensor in
(1). By isolating all of the turbulence modeling in
��ij and removing purely resolved quantities to �Rij ,
this decomposition permits us to focus exclusively
on the adequacy of our multifractal model for the
subgrid scales. Therefore the following analysis will
be concerned solely with ��ij and the related subgrid
energy-production �eld P�, de�ned as

P� � ���ij Sij : (5)

A. Summary of Model Derivation.

The present multifractal model draws on numer-
ous computational, theoretical and experimental
studies indicating that certain gradient quantities in
turbulent 
ows, such as enstrophy 1

2! � !, display
multifractal scale-similar structure within inertial-
range scales in high-Reynolds number turbulence.
As discussed more fully in Burton et al (2002), this
multifractal structure permits the spatial distribu-
tion of vorticity magnitudes within the subgrid �eld
to be represented by a multiplicative cascade. The
total amount of enstrophy distributed within the
subgrid �eld Qsgs is determined from a Kolmogorov
spectral analysis, derived from integrating the en-
strophy spectrum Q(k) from the smallest-resolved
scale � to the viscous scale �� , where

Qsgs =
3
4
Q�

"�
k�
k�

� 4
3

� 1

#
: (6)

Thus, the spatial distribution of vorticity magnitude
can then be represented as

j!sgs(x; t)j =
24Qsgs

�=��Y
i=1

(M"(x; t))i

35 1
2

: (7)

Based on analysis of high Reynolds-number DNS
data, the distribution of vorticity orientations within
a single LES grid cell can be represented by an addi-
tive cascade describing the isotropic decorrelation of
vorticity orientations through the subgrid �eld from
the orientations at scale �. This decorrelation pro-
cess can be represented as

ê
sgs
i (x; t) = CM

�
ê
�
i (x; t) + �sgsi (x; t)

�
; (8)

where ê� represents the vorticity orientation at scale
�, and �sgsi represents the summation of decorrela-
tion angles through the subgrid scales. The averaged
normalization constant CM is de�ned as

CM � 1p
1 + 2

p
3M� + 3M�2

; (9)

whereM represents the number of scales within the
subgrid �eld and � is the r.m.s. value of the proba-
bility distribution, identi�ed from analysis of DNS
data, from which the orientation cascade is con-
structed. This factor is necessary to ensure that on
average the resultant orientation vector êsgs in (8)
is of unit length.
The multifractal magnitude cascade and the addi-

tive orientation cascade together provide a rigorous
representation for the spatial distribution of vortic-
ity within the subgrid scales. Using the Biot-Savart
operator, we now can derive an exact analytical ex-
pression for the subgrid velocity components usgsi
appearing in the SGS stress tensor, as

usgsi =
1
4�

Z
x
0

�
(CM j!sgsj ê�)�K

� � êi d3x
0

| {z }
S�: Resolved�Orientation

+
1
4�

Z
x
0
[(CM j!sgsj �sgs)�K] � êi d3x

0

| {z }
S�: Subgrid Decorrelation

; (10)

where j!sgsj is substituted for the magnitude ex-
pression in (7). The continuous integrals S� and S�
in (10) can be approximated by a discrete summa-
tion over all subgrid cells of volume �3� . Since both
summations involve stochastic quantities, they can
be analyzed using central-limit concepts, and in the
high Reynolds-number limit, the components of the
subgrid velocity �eld usgsi can be represented by the
simple functional form,

usgsi (x; t) � C(x; t) êu�i (x; t); (11)

where

C(x; t) � CM ju�(x; t)j j!
sgs(x; t)j

j!�(x; t)j : (12)

The subgrid velocity �eld u
sgs is now expressed

solely in terms of quantities available from the re-
solved scales of the 
ow. The SGS stress tensor ��ij
therefore can be represented as

��ij = ui C êu�j + C êu�i uj + C êu�i C êu�j ; (13)
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which is the �nal form of the present multifrac-
tal subgrid-scale model. Note that the remaining
portion of the SGS stress tensor �Rij de�ned in (3)
contains no subgrid quantities and is a function only
of the resolved-velocity �eld, which is available di-
rectly from the LES 
ow solver. It is thus unrelated
to the evaluation of the model examined here. For a
complete discussion of the foregoing derivation, see
Burton et al (2002).

B. Summary of Prior Validation Tests.

The prior paper also reported the results of an
initial series of a priori tests comparing model and
DNS values, in order to assess the validity of the mul-
tifractal model and the assumptions underlying its
derivation. The comparisons were made using high-
resolution (N = 5123) DNS data with an estimated
Taylor-scale Reynolds number of Re� � 168. This
data was then spatially �ltered at 16dx to create
LES resolved and subgrid-velocity �elds each con-
taining 323 data points. Multifractal analysis of the
DNS data set forth in our previous paper indicates
that the resulting subgrid velocity-�elds contain four
inertial range scales as well as additional viscous
scales. Using the relation discussed in Buch & Dahm
(1998),

��
�

= 11:2 Re
� 3
4

� ; (14)

we estimate the e�ective cell-Reynolds number of the
LES subgrid �elds examined in these prior tests to
be Re� � 160.

In these initial a priori tests, we examined the
model's ability to recover three relevant characteris-
tics of the LES 
ow: (i) the �ltered subgrid-velocity
components usgsi , (ii) the components of the subgrid-
stress tensor ��ij , and (iii) the SGS-energy produc-
tion �eld P�. The recovery of the �ltered compo-
nents of the subgrid-velocity �eld usgsi was a direct
means of assessing the accuracy of the model, which
explicitly represents the subgrid velocity �eld. Here
global correlations between the DNS and model val-
ues were calculated to be � � 0:91. The model
exhibited good magnitude as well as spatial agree-
ment, indicating its ability to recover signi�cant
structural characteristics of the �eld. We also re-
ported comparisons of DNS and model values for
the SGS stress tensor ��ij and the subgrid energy-
production �eld P�. For both �elds, we found high
correlations � � 0:85, as well as good magnitude
agreement, indicating that the model recovers much
of the true spatial structure of the subgrid-stress
tensor and subgrid energy-production �elds. For a
complete discussion of these prior tests, see Burton
et al (2002).

3. A Priori Tests at Higher Reynolds-Number.

A. Preparation of High Re DNS Fields.

Since our previous paper, we have conducted addi-
tional a priori comparisons of our multifractal model
against pre-existing DNS data. Because the present
model was derived by way of a high Reynolds-
number limit analysis, we sought to make these
additional tests in a higher Reynolds-number con-
text, where the DNS velocity �elds contain a larger
number of subgrid scales. To derive such �elds, we
�rst �ltered the same DNS dataset used in the ear-
lier studies with a spherically-symmetric spectrally-
sharp �lter to remove the viscous scales of the 
ow.
The resulting �elds were then �ltered in the spatial
domain using a three-dimensional top-hat �lter of
width � = 128dx to create the resolved and subgrid
LES �elds. This procedure produced LES resolved-
velocity �elds containing four scales and LES subgrid
�elds containing 32 scales within each of 43 LES grid
cells. As a result, the e�ective cell-Reynolds num-
ber for these �elds was estimated to be Re� � 2550,
signi�cantly higher than in the previous a priori
studies. Since four separate time realizations were
available from the DNS simulations, this permitted
DNS vs. model comparisons at a total of 256 LES
data points, an adequate number to make a statisti-
cally credible assessment of the model's performance
in the higher Reynolds-number context.

B. Numerical Implementation.

As set forth above, the model expresses the sub-
grid velocities appearing in the decomposition of ��ij
as a functions of quantities at the smallest resolved
scale �, i.e.,

usgsi � F
�
ju�j; j!�j; j!sgsj; êu�i

�
� F

�
C; êu�i

�
:

(15)
Each of these quantities represents a continuous �eld
which is sampled on the LES grid. These �elds, in
turn, appear under a �ltering operator in the ex-
pression for the SGS stress tensor in (4), which here
is taken to represent a three-dimensional spatial av-
erage over a single LES grid-cell of size �3. Thus,
calculation of each term within the decomposition of
��ij requires selecting continuous representations of
all �elds, which are combined, integrated and then
averaged in each LES grid cell. Thus a single term
in ��ij | for example, usgsi uj | can be calculated
as

usgsi uj = C êu�i uj =
1
�3

Z �
C êu�i uj

�
d3x

0

: (16)

In the present study, we employ quadratic represen-
tations of all resolved �eld quantities. The gradients
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Fig. 1 Normal components of the subgrid stress tensor ��ij de�ned in (4). The illustrated scatterplots
compare DNS vs. model values at lower and higher Reynolds numbers (Re� � 160 and Re� � 2550, left
and right columns, respectively). Correlations were found to be greater in the lower-Re context, � � 0:858,
than in the higher-Re 
ow, where � � 0:703. Mean normalized L2 error was found to be 0:826 in the
lower Reynolds-number case as compared with 1:001 in the higher Reynolds-number case.

in these representations are determined by an un-
weighted least-squares approximation based on the
twenty-six nearest neighbors of an individual LES
grid-cell.

C. The SGS Stress Tensor, ��ij .

We �rst compared the ability of the multifractal
model to recover the orientations and magnitudes of
the component �elds of the SGS stress tensor ��ij in
lower and higher Reynolds-number contexts. Our
assessment consisted of calculating correlation coef-
�cients to quantify phase agreement and L2 errors
to assess magnitude agreement of the modeled quan-
tities. The error statistics were calculated after each
�eld was normalized by the mean absolute value of
the relevant DNS quantity. In addition, we produced
scatterplots of each component, comparing DNS and
model values, in order to assess visually the perfor-
mance of the model.

Figure 1 sets forth scatterplots for the normal
components of ��ij in the lower and higher Reynolds-
number contexts (left and right columns, respec-
tively). Mean correlations between the DNS and
model values in the lower Reynolds-number 
ow
were calculated to be � � 0:858, and were somewhat
smaller in the higher-Re case � � 0:703. Examina-
tion of the mean normalized L2 error indicated that
the model produced slightly smaller global error in
the lower Reynolds-number case 0:826, than in the
higher-Re case, which produced an error of 1:001.

The model recovered the shear-component �elds
of ��ij in similar fashion. As illustrated in Figure 2,
mean correlations were determined to be � � 0:856
for the lower Reynolds-number data and � � 0:604
for the higher-Re data, slightly lower than the corre-
sponding statistics for the normal tensor-component
�elds. For the shear-component �elds, the model
produced a mean normalized L2 error of 0:849 in
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Fig. 2 Shear components of the subgrid-stress tensor ��ij de�ned in (4). The scatterplots compare
DNS vs. model values in lower and higher Reynolds-number 
ows (left and right columns, respectively). As
with the normal-tensor components, the lower Reynolds-number context exhibits higher correlations,
� � 0:856, than the higher Reynolds-number context where � � 0:604. In the less turbulent 
ow, the
model produces a slightly smaller mean normalized L2 error of 0:849, when compared with the higher
Reynolds-number 
ow, with an L2 error of 1:052.

the lower-Re case and 1:052 in the higher-Re case.
This suggests that, as with the normal components,
the model is slightly better able to recover magni-
tude characteristics of the shear tensor-component
�elds in the lower Reynolds-number context.

D. SGS Energy Production Field, P�.
We next examined the model's ability to recover

the orientations and magnitudes of the SGS energy
production �eld, P�. This is an important test for
a subgrid-scale model, since proper calculation of
the energy transfer between the resolved and subgrid
�elds is essential in any e�ective LES calculation. As
set forth in Figure 3, the model produces high cor-
relations of � � 0:860 and � � 0:804, in the lower
and higher Reynolds-number contexts, respectively,
in comparisons with the DNS data. The model cal-
culates the magnitude of P� with slightly greater

accuracy in the lower-Re context. There, the nor-
malized L2 error was determined to be 0:937, as
compared with 0:952 in the higher-Reynolds number
case. These analyses indicate that the present mul-
tifractal model is able to recover important charac-
teristics of the subgrid-stress tensor ��ij and SGS en-
ergy production P� �elds, in both lower and higher
Reynolds-number 
ows.

E. Analyses of usgs and Individual Terms of ��ij .

We next explored the model's ability to recover
the components of the �ltered subgrid-velocity �eld
usgsi as well as the three individual terms within the
decomposition of ��ij in (4). These tests provide ad-
ditional insight into the behavior of the model in
lower and higher Reynolds-number contexts.

As discussed previously, the present model draws
upon multifractal concepts to represent the subgrid-
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Fig. 3 The SGS energy-production �eld P
� de�ned in (5), comparing DNS vs. model data. The

model produces slightly higher correlations in the lower Reynolds-number 
ow, � � 0:860, than the
higher Reynolds-number 
ow, where � � 0:804. The normalized L2 error was also slightly smaller in
the lower Reynolds-number context, 0:937, when compared with the more turbulent 
ow, where the
L2 error was 0:952.

velocity �eld. A basic test of the model, therefore, is
its ability to recover the components of the �ltered
subgrid-velocity �eld usgsi . As illustrated in Figure
4, the model captures most of the orientation and
magnitude characteristics of the DNS �elds, produc-
ing global correlations of approximately � � 0:91 in
the lower-Re case and � � 0:92 in the higher-Re
case. This indicates excellent phase agreement be-
tween model and DNS values. The model produces
a mean normalized L2 error of 0:586 in the lower-
Re case. This improves somewhat in the higher-Re
context, with an L2 error of 0:486, re
ecting a 18%
reduction over the less turbulent 
ow. These re-
sults demonstrate that the model recovers signi�cant
magnitude and orientation structure of the �ltered
subgrid-velocity �eld usgsi .

We next evaluated the ability of the multifrac-
tal model to recover the two cross terms, ui u

sgs
j

and usgsi uj , within the decomposition of the sub-
grid stress tensor ��ij in (4). These terms represent
the averaged interaction of the resolved and sub-
grid velocity �elds within an individual LES grid
cell. Figure 5 (top and middle) illustrates that sub-
stantial characteristics of these �elds are captured
by the multifractal model in both the lower and
higher Reynolds-number contexts. Global correla-
tions were determined to be � � 0:88 for both terms
in the lower-Re case and � � 0:73 in the higher-Re
case. The model produced a mean normalized L2

error 0:797 in the lower Reynolds-number case, as
compared with an error of 0:963 seen in the higher
Reynolds-number context. This is consistent with
other results in which the lower Reynolds-number
cases produced the slightly smaller error.

Finally, we evaluated the model's ability to recover
the subgrid-subgrid term usgsi usgsj in the decom-
position of ��ij in (4). This term represents the
averaged value of all subgrid-subgrid interactions
within a given LES grid cell. Here we note that

the model produces lower correlations and higher
magnitude errors than for any other quantity ex-
amined. As illustrated in Figure 5 (bottom), the
correlations for both the lower and higher Reynolds-
number cases, were determined to be � � 0:361 and
� � 0:298, respectively. Similarly, the model pro-
duces normalized L2 errors of 1:460 and 1:182 in
the lower and higher Reynolds-number contexts, re-
spectively. These results suggest that in its present
form the model may not fully capture certain charac-
teristics of subgrid-subgrid interactions, and that it
is these interactions that are mostly responsible for
the slightly diminished results reported in the higher
Reynolds-number context. We are presently re�ning
our multifractal model to account more faithfully for
these subgrid-subgrid interactions in light of these
results.

4. A Multifractal RANS Closure Model.

The present multifractal model can be read-
ily extended to model the Reynolds stresses in
the Reynolds-averaged Navier-Stokes (RANS) equa-
tions,

@ eui
@t

+ euj @ eui
@xj

� �
@2 eui
@xj@xj

= � @ ep
@xi

+ � @

@xj
]u
0

i u
0

j :

(17)
Note that the averaging operator denoted by ( f� )
in (17) represents a time average at a given spa-
tial location. By contrast, the present multifrac-
tal model provides a spatial representation of the
subgrid-vorticity �eld in a single LES grid cell, from
which a representation of the subgrid velocity �eld is
derived. Using Taylor's hypothesis, which relates the
temporal and spatial gradients, through the mean

ow U as

@

@t
� � U

@

@x
; (18)

it can be shown that the spatial and temporal
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Fig. 4 Filtered subgrid-velocity components usgsi at low and high Reynolds number, comparing DNS
vs. model values. This is a fundamental test of the multifractal model, which explicitly represents
the components of the SGS velocity �eld. In both the low and high Reynolds-number cases, the
multifractal model produces correlations globally averaging � � 0:92. The model also produced mean
normalized L2 errors of 0:586 and 0:486 in the lower-Re and higher-Re contexts, respectively. These
results indicate excellent agreement between the model and DNS values.

domains are equivalent for purposes of deriving a
spatially-based model for the Reynolds stresses, i.e.
that

]u
0

i u
0

j = u
0

i u
0

j : (19)

It is now possible to extend, in a straightforward
manner, the present multifractal model for the
subgrid-subgrid stresses, usgsi usgsj in the LES equa-
tions to the Reynolds stresses of the RANS equa-
tions. This derivation makes the single simplifying
assumption that all scales between the grid scale �
and the viscous scales are inertial-range scales of the
turbulent 
ow �eld. This assumption will be approx-
imately true in high Reynolds-number turbulence.
If so, we can then use a Kolmogorov-type spectral
analysis of the enstrophy �eld to determine the total
amount of enstrophy Q

0

in the 
uctuation �eld as

Q
0

=
Z k�

k
Q(k) dk =

3
4
Q�

"�
k�

k

� 4
3

� 1

#
: (20)

We can then describe the spatial distribution of
vorticity magnitudes within the 
uctuation �eld by
way of a multiplicative cascade, like the one used
previously in our LES subgrid-scale derivation. Sim-
ilarly, an additive cascade can be used to represent
the isotropic decorrelation of vorticity orientations
within the 
uctuation �eld from the orientation of
the smallest scale within the mean 
ow. Then, the
representation of the spatial distribution of vorticity
magnitudes and orientations may be combined with
the Biot-Savart operator to obtain an integral ex-
pression for the 
uctuation velocity �eld u

0

. Finally,
by discretizing the integral, applying central-limit
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Fig. 5 Individual terms in the decomposition of ��ij de�ned in (4), comparing DNS vs. model values

in the lower and higher Reynolds-number contexts. Both of the resolved-subgrid terms (ui u
sgs
j and

usgsi uj , top & middle) produced correlations of � � 0:858 and � � 0:726, respectively. Mean normalized
L2 errors for these terms were calculated to be 0:797 and 0:963, respectively. The Subgrid-Subgrid
term (usgsi usgsj , bottom), however, exhibits lower correlations (� � 0:361 and � � 0:298) and higher L2

errors (1:460 and 1:182) in the low and high-Re cases, respectively. This indicates that the present
model may not capture completely subgrid-subgrid interactions. We are presently evaluating certain
higher-order re�nements to the model to address these issues.

concepts, and taking the high Reynolds-number
limit (i.e. the same reasoning by which our multi-
fractal LES model was derived), the 
uctuation �eld
u
0

can be represented as

u
0

i � C
M
jU j

"
Q
0

Q

# 1
2 bei; (21)

where ê represents the orientation of the velocity
�eld at the smallest scales of the mean 
ow. As a
result, the Reynolds stresses can be expressed using
multifractal concepts as

]u
0

i u
0

j � C2
M

�jU j�2 Q0

Q
bei bej : (22)

The resulting model is a simple algebraic expres-
sion, readily determined from the resolved scales of
an LES calculation. As such, its implementation
would be no more computationally burdensome than
presently-existing algebraic RANS models.

The proposed multifractal model for the Reynolds
stresses, however, represents a fundamental depar-
ture from most traditional RANS models. Prior
RANS modeling e�orts have relied largely on the
gradient-transport hypothesis and associated eddy-
viscosity assumptions to relate the Reynolds stresses
back to parameters of the mean 
ow. By contrast,
the present multifractal model makes no assumption
that the transport of u

0

i momentum is related di-
rectly to the orientation of the mean-
ow gradients
and the action of small-scale stochastic eddies within
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the turbulent 
ow �eld. As such, the model aban-
dons the traditional assumption that the orientation
of the Reynolds-stress tensor coincides with that of
the mean-strain �eld. Instead, by taking the ori-
entation of the smallest scale of the mean 
ow as a
departure point for describing an isotropic decorrela-
tion of the Reynolds stresses through the 
uctuation
�eld, the multifractal model remains more consis-
tent with the decorrelation process observed in true
hydrodynamic turbulence, discussed in our previ-
ous paper. The model also abandons the traditional
analogy between viscous stresses in Newtonian 
u-
ids and Reynolds stresses in turbulent 
ow, and
therefore is able to do away with the eddy-viscosity
construct. Instead, the present multifractal model
draws on the well-documented multifractal structure
of the enstrophy �eld at inertial-range scales in high
Reynolds-number turbulence, and the kinematic re-
lationship between the vorticity and velocity �elds
embodied in the Biot-Savart law. Thus, the present
multifractal model incorporates comparatively more
of the dynamics present in real hydrodynamic tur-
bulence than most classical RANS closure models.

5. Concluding Remarks.

The foregoing a priori analysis of a multifractal
model for large-eddy simulation suggests that, in
both lower and higher Reynolds-number contexts,
the present model recovers signi�cant structural
characteristics of the subgrid stress tensor and SGS
energy production �elds. Correlations for the SGS
stress tensor ��ij were calculated to be � � 0:855 and
� � 0:653 in the lower and higher Reynolds-number
cases, respectively. Correlations between model and
DNS values of the subgrid energy-production �eld
P� were reported to be � � 0:860 and � � 0:804
for the lower and higher Reynolds-number 
ows.
We also reported high correlations � � 0:91 and
low L2 errors for the �ltered subgrid-velocity com-
ponents usgsi , a fundamental test of the present
multifractal model, which explicitly represents the
subgrid-velocity �eld. Finally, analyses of the indi-
vidual terms within the stress-tensor decomposition
in (4) suggest that the model captures much of the
resolved-subgrid �eld interactions. Lower correla-
tions and greater L2 errors for the subgrid-subgrid
term, however, indicate that the model is less able
to recover subgrid-subgrid interactions within the

ow. These observations have suggested certain re-
�nements to the model, which we are currently eval-
uating. Finally, we have also outlined a multifractal
model for the Reynolds stresses in the Reynolds av-
eraged Navier-Stokes equations, which extends the
multifractal approach for large-eddy simulation to
turbulence-closure modeling in the RANS setting.
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