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Nomenclature

f = velocity distribution function
n = number density
R = radius for a circular or an annular exit, universal gas

constant
r, � = polar coordinate variables
U, V,W = macroscopic average velocity
u, v, w = microscopic molecular velocity
X, Y, Z = a point in front of the exit
y, z = a point on the exit
� = angle between the X axis and a segment from (0,0)

to (X,0,Z)
� = 1=�2RT0�

Subscript

0 = averaged property at the exit

I. Introduction

H IGH-SPEED collisionless, or free-molecular, gas flows
passing through small circular or annular holes are

fundamental problems with many real applications such as neutral
gas expansion out of electric propulsion (EP) devices. Usually, the
cold plume flow out of an EP device is modeled by assuming free-
molecular flows with a nonzero uniform average exit velocity U0.
Even when the average bulk velocity of gas near the orifice is zero,
the average velocity at the orifice exit plane is not zero, it corresponds
to an outflow with a half-Maxwellian distribution. In the past,
analytical studies of similar problems were concentrated on true
effusion problems with a zero average exit speed. For example,
Liepmann [1] reported the efflux of gases through circular apertures,
which is an example of a transition from the gas-dynamic to the gas-
kinetic regime; Narasimha [2] obtained the exact solutions of density

and velocity distributions for a free-molecular effusion flow and the
results for a nearly free-molecular effusion flow expanding into
vacuum through a circular orifice; and Brook [3] reported the density
field of free-molecular flow from an annulus, to study the gas leakage
effect from a spacecraft hatch. Other researchers reported many
approximate methods or numerical simulations to study rarefied
flows through a slit; for example, Rotenberg and Weitzner [4],
Hasegawa and Sone [5], Cercignani and Sharipov [6], and Sharipov
[7]. Recently, Lilly et al. [8] reported their work onmeasurement and
computation ofmass flow andmomentum flux through short tubes in
rarefied gas. For the case of free-molecular flows with a nonzero
average velocity, the problems are usually very complicated and
approximations are often made, such as neglecting the details of the
exit geometry or assuming that free-molecular flow are emitted from
a point source [9].

In our previous study [10,11], we adopted a relation between
velocity directions and geometry locations to investigate free-
molecular plume flow problems. This treatment is more general than
the solid angle treatment [2]. which was widely used in studying true
collisionless effusion flows with a zero average exit speed, but is not
applicable to collisionless flows with a nonzero average exit speed.

In this study, we further investigate collisionless flows out of a
circular or an annular exit with a nonzero average speed. These two
cases are very important, not only because of their mathematical
significance, but also because of their many direct applications,
including spacecraft propulsion.

This Note is organized as follows: Section II describes the
problems, the corresponding complex exact solutions, and also
approximate far-field solutions, which are simpler andmore accurate
than existing formulas in the literature; Sec. III compares the
analytical results with particle simulation results; and Sec. IV
summarizes this study.

II. Flow Problems and Solutions

A. Free-Molecular Problems

The problems considered in this study are the following free-
molecular gas flows expanding into vacuum from an exit: 1) a
circular exit with a radius ofR and an average exit velocityU0 that is
greater than zero and 2) an annular exit characterized by an inner
radius R1, an outer radius R2, and an average exit velocityU0 that is
greater than zero.

These two problems are closely related: if R1 in the second
problem is set to zero, then it degenerates to the first problem.
Because both problems have important applications, we discuss each
of them and provide the complete solutions.

The thermal velocity at the exits can be expressed with a
Maxwellian distribution function characterized by a number density
n0 and a temperature T0:

f�u; v; w� � n0
�
�

�

�
3=2

exp����u2 � v2 �w2�� (1)

where �� 1=2RT0. Although the plume itself is in a highly
nonequilibrium state, it is reasonable to assume that the flow is at
equilibrium before it escapes from the exit. Using T0 and n0 to
describe this equilibrium state is a natural selection, widely used by
many researchers in the past [12].
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This study adopts the following coordinate systems: Denote the
plume direction as theX-axis direction, the direction normal to theX
axis as theZ-axis direction, and the circle center/annulus center as the
origin. The objective of this study is to obtain the analytical plume
field flow solutions, especially the number density and velocities at
any point downstream of the exits.

B. Collisionless Effusion Flow Solutions

Narasimha [2] adopted solid angles to study a free-molecular flow
of gas escaping from an orifice; however, this solid angle approach is
not general enough to study effusion flowswith nonzero average exit
velocities. Instead, a relation of velocity directions and geometry
positions was recently proposed [10].

For the circular exit case with a nonzero average exit speed, the
relation between velocity direction and geometry position takes a
new format. Suppose the average velocity at the circular exit is U0,
and from any point �0; y; z� on the circular exit that is characterized
by a radius of R, only particles with the following special velocity
components can arrive at a point �X; 0; Z� in front of the exit:

X

u�U0

� Y � y
v
� Z � z

w
(2)

where X > 0, Y � 0, and Z > 0. Combined with the geometry
relations

z� r sin �� Z � Xw

u�U0

; y� r cos �� Y � Xv

u�U0

(3)

where r 2 �0; R� and � 2 �0; 2��, the integrals for the number density
and the velocities can be simplified using the following change of
variables:

dv dw� j
@v
@r

@v
@�

@w
@r

@w
@�

j dr d�� �u�U0�2
X2

r dr d� (4)

The preceding change of integral variables transfers the integral
domains from �1 and �1 for v and w to finite spans for r and �.

The final results of number density and velocities at a point
�X; 0; Z� in front of the exit are

n�X;0;Z��
Z �1
�U0

du

Z �1
�1

dv

Z �1
�1

dw

�
�

�

�
3=2

�exp����u2�v2�w2���2

�
�

�

�
3=2
Z 1
0

dt
t2

X2

Z
�=2

��=2
d�

Z
R

0

rdr

�exp����t�U0�2��
t2

X2
�r2�Z2�2rZsin���

� 1

X2

�
�

�
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3=2
Z
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d�

Z
R

0

�exp
�
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0

r2�Z2�2Zrsin�
X2� r2�Z2�2Zrsin�

�
rKdr (5)

U�X; 0; Z� � 1

n�X; 0; Z�X2

��
�

�

�
3=2
Z
�=2

��=2
d�

Z
R

0

� exp

�
��U2

0

r2 � Z2 � 2Zr sin �

X2 � r2 � Z2 � 2Zr sin �

�
Mr dr

�
(6)

W�X; 0; Z� � 1

n�X; 0; Z�X2

��
�

�

�
3=2
Z
�=2

��=2
d�

Z
R

0

Z � r sin �
X

exp

�
��U2

0

r2 � Z2 � 2Zr sin �

X2 � r2 � Z2 � 2Zr sin �

�
Mr dr

�
(7)

where

K �Q
2U0

�
exp���U2

0Q� �
�
Q

2�
�Q2U2

0

� ��������
�Q

�

s
�1

� erf�
�������
�Q

p
U0��
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3U2
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exp���QU2
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Similarly, the results for the annular case are very convenient to
obtain by replacing the integral range for the exit radius from
0< r < R in Eqs. (5–7) by R1 < r < R2.

C. Far-Field Approximations

Although the preceding exact relations are accurate and
convenient to evaluate via a computer because the integration over
the infinite span of velocity space is complete, they are rather
complex for practical usage. Hence, approximate far-field
simplifications are developed. Here, we provide far-field
simplifications for the annular exit case, because the circular exit
case can be obtained by setting R1 � 0 from the following formula.
From the preceding relations, with the far-field approximation

R1 < r < R2 	
������������������
Z2 � X2
p

, Q� �X2=�X2 � Z2�� � cos2�,
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2
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1

X2
cos3�

�
�
1 � �U2

0
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2

2
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��

�
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�

�
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0cos
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4
� �cos
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0

2

�
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����
�
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cos �U0��
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(8)
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J. SPACECRAFT, VOL. 44, NO. 6: ENGINEERING NOTE 1327



The cosine function dominates in the far-field simplifications, and
by retaining the geometry radius in the expressions, these relations
are more accurate than the results obtained by Narashima [9]. It is
also possible to estimate how far from the exit these approximations
are accurate. By comparison, the point source solutions [9] totally
neglect the exit geometry, hence their accuracy should be inferior to
the preceding approximations.

D. Centerline Property Distributions

The centerline property distributions can be obtained from the
exact solutions by setting Z� 0. The final solutions to the circular
exit case are

n�X; 0; 0� � 1

2
� 1

2
erf�

����
�
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U0� �

X

2
������������������
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(11)
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The corresponding solutions to the annular exit case are
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It is worthy to mention that to the authors’ knowledge, there were no
previous results for this problem that include the geometry factors. If
U0 � 0, the centerline results degenerate to those for effusion flow
problems [11].

III. Simulations and Discussion

Although the complete analytical results involve several integral
terms that cannot be explicitly removed, numerical evaluations are
convenient via a computer. The subroutine for the error function can
be found in many numerical computing books [13]. Because the
flows are rarefied, it is appropriate to use the direct simulationMonte
Carlo (DSMC) method [14] to validate the analytical results. In this
study, we used a specific DSMC package named MONACO [15] to
perform the simulations. The simulation domain and mesh are quite
simple, and the collision function in MONACO is turned off to

achieve the collisionless effect. Under this situation, the value of the
number density at the exit does not produce any difference in thefinal
normalized results, and exact free-molecular flows are guaranteed.

Figure 1 shows comparisons of number density contours from the
exact analytical solutions, the far-field approximations, and the
DSMC results. On the top, the contours with solid lines are the exact
analytical solutions, and the contours with dashed lines are the far-
field approximation results. The contours at the bottom are the
DSMC simulation results. The average exit velocity at the slit is set to�����������
2RT0
p

and the exit temperature is set to T � 300 K. By turning off
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the collision function in the DSMC method, the flows are exactly
free-molecular. Generally, the exact analytical results are almost
identical to the simulation results. There are some minor differences
at the near field close to the exit, because the numerical evaluation of
the exact solutions contains very small denominator terms in these
regions, especially close to the origin. It is also very clear from the
plot that the far-field approximations are not very accurate when
X < 3R, but the accuracy significantly improves when X > 3R.
Figures 2 and 3 show the corresponding results of velocity contours
normalized with the characterized thermal speed

�����������
2RT0
p

.

Conclusions similar to the density distributions can be drawn from
these two pictures. The flow patterns have a narrow zone in which
exit effects dominate, but in the far field, the contour lines are
straight.

We also perform a simulation to validate the analytical results for
the annulus case. In this simulation, the inner and outer radii of the
annulus are set to R1 � 0:1 m and R2 � 0:2 m, respectively.

Figure 4 shows contours of normalized number density. In the
whole simulation domain, the comparison shows very close results
between the exact analytical solutions and the numerical simulations,
and the far-field simplifications become very accurate when
X > 3R2. Figures 5 and 6 show the velocity contours. Both
comparisons are very satisfactory as well. In all of these three
pictures, both the exit region and the slow “cavity” region in the
center, which is characterized by negativeWz, are clearly captured.

IV. Conclusions

This study is a natural extension of the previous work [10] aiming
to seek analytical results for free-molecular plume flows from EP
devices designed for spacecraft propulsion. We reported analytical
solutions to two fundamental free-molecular flows out of a circular or
an annular exit with nonzero average speed and validations with
particle simulations. More specifically,

1) The analytical results indicate that the solutions are composed
of complex geometry factors and the average exit velocityU0. Even
though the formulas are complex, we evaluated the analytical results
and compared themwith theDSMCsimulation results. The excellent
match between the numerical results and the analytical results
indicates that the treatment in this study was correct. The accuracy of
the exact solutions provides a solid foundation for far-field
approximations and centerline property distributions.

2) The far-field solutions of number density and velocities contain
the exit geometry factors. Hence, they are more accurate than the
point source solutions obtained byNarasimha [9]. Comparisons with
numerical simulation results indicate that the far-field approxima-
tions are accurate whenX > 3R for a circular exit andX > 3R2 for an
annular exit.
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