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Abstract. 
This paper introduces a procedure to model the 

dynamics of active slender structures with embedded 
actuators and sensors. The objective is to construct a low-
order high-accuracy formulation for easy 
parameterization of the design space in nonlinear 
aeroelastic analysis. Main assumptions are small local 
strains and local rotations, large deflections and global 
rotations, quasielectrostatic behavior, linear electroelastic 
constitutive relations, and slenderness of the structure. 
The model also includes anisotropic material properties, 
electroelastic coupling, hygrothermal effects, and is 
integrated with the vehicle flight dynamics. The condition 
of slenderness is used to define a three-step analysis 
scheme based on asymptotic approximations to the 
electroelastic field, which can adequately represent the 
passive or active structural dynamics of a quite general 
class of air vehicles, including future morphing vehicle 
concepts. Two main configurations are investigated in 
this work: a rotor blade with embedded piezoceramics 
(Active Twist Rotor), and a joined-wing configuration for 
unmanned SensorCraft. On the Active Twist Rotor, a 
deformation mode for the camber bending is added to 
classical beam strain measures. Then, the response of this 
typical plate mode to the embedded actuation is studied 
and quantified within a 1-D model. On the SensorCraft, 
the structural characterization of the aircraft with joined-
wing and flexible fuselage are investigated and compared 
to detailed 3-D build-up finite-element models. 

 

Introduction 
Conventional wisdom in the design of complex physical 

systems calls for an orderly simplification of the 
mathematical models used to describe them. 
Determination of the appropriate degree of this 
simplification comes from a tradeoff between the stage 
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within the design process and the inherent complexity of 
the system, and the efficiency of this reduction becomes 
critical in terms of aggregated time and monetary costs to 
the complete design cycle. The aeroservoelastic analysis 
of aircraft is a paradigmatic case of the importance of 
these efficient reduced-order models, and a large amount 
of research is devoted to the generation of the optimum-
size models for the control, structural and aerodynamic 
subsystems. 

This work presents a systematic process of generation 
of reduced models for aeroelastic analysis of active 
structures with embedded actuators and sensors at the 
conceptual stage in the design process. Thus, it allows an 
easy parameterization of the main geometrical (type of 
airfoil, location and connection of major elements – body 
and lifting surfaces), and material characteristics (lay-ups 
of composite laminates, location and type of embedded 
actuators) of the aircraft subcomponents, upon the 
assumption of overall slenderness of each of them. This is 
the case in a quite general class of air vehicles, which 
includes high-altitude long-endurance (HALE) aircraft, 
helicopter rotors, and large transport aircraft. In the 
reduced model, the characteristics of each structural 
component are reduced into the evolution of a set of 
variables along the reference line. This analysis is 
performed with a broader characterization than in typical 
beam models, since local 3-D information is carried in 
the process to compute the electroelastic fields on the 
original structure. This also allows an arbitrary definition 
of the variables of interest in the 1-D problem, what can 
be especially effective in the design and analysis of 
variable geometry structures like the ones found in 
proposed morphing concepts1. 

Basic concepts in structural beam theory were first 
developed for the modeling of homogeneous isotropic 
structures. Classical formulations such as Euler-Bernoulli 
or Timoshenko theories are based on specific 
assumptions on the displacement field that represents the 
behavior of those particular cases. These theories are 
examples of displacement formulations: an ad hoc 
approximation of the cross-sectional displacement field 
yields the strain energy, and using energy principles 
certain beam stiffness relations can be defined, as well as 
the subsequent equations of motion. Classical 
assumptions in the displacement field, however, are poor 
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representations of the behavior of composite beams. The 
concept of warping, first developed for the Saint-Venant 
theory of torsion, is used then to quantify this mismatch2, 
and based on it, a number of composite beam theories 
have been formulated3,4. The formal way to tackle the 
mathematical problem of the dimensional reduction of a 
3-D field without ad hoc assumptions is the use of 
asymptotical expansions in the small parameters of the 
system. Its application in slender elastic solids is the 
Variational-Asymptotic Beam Sectional analysis 
method5,6, which has been successfully used for the 
modeling of composite beams. Using this formulation, 
the warping field is obtained as part of the solution 
process, which gives a superior characterization of the 
actual deformation process compared to other 
formulations of the problem. 

Beam models are also desirable in the case of active 
slender structures with distributed strain actuators (viz., 
active beams). However, distributed actuation will easily 
yield non-classical modes of deformation in the 
structure7,8. These will influence, for instance, the 
aeroelastic response of the system through their couplings 
with the aerodynamic field. Including these effects in a 1-
D model is a rather complex task, and active structures 
are conventionally analyzed using plate models, even 
when their slenderness ratio is high9. A 1-D 
representation of the non-classical deformation of active 
beams is pursued in the present work, with the ultimate 
goal of using it in the construction of a reduced-order 
model for aeroservoelastic analysis and design. 

Different approaches to the modeling of non-classical 
effects in refined composite beam analysis can be found 
in the literature. Some formulations8,10 present higher-
order beam variables as the way to keep the classical 
assumptions for the isotropic representation of the beam 
in the classical (low-order) variables. Although these 
approaches capture the approximate warping field, they 
yield artificially large systems. It can be mathematically 
shown11 that the classical variables (extension, torsion 
and bending) provide the best representation of the low-
frequency dynamics of closed-cell anisotropic beams. 

A few other models of composite beams, however, 
indeed look into a physically higher-order problem. In 
these cases the addition of non-classical variables to the 
problem brings into evidence some features of the 
system: camber deformation of thin plates under isotropic 
actuators12, or the Vlasov correction for open cross 
sections13. Previous work14 introduced the concept of 
arbitrary cross-sectional deformation modes, within the 
context of the variational-asymptotic formulation. The 
formulation finally defined an eigenvalue problem in the 
components of the cross-sectional strain energy to 
compute those modes. The original eigenvalue problem is 
substituted here by an assumed modal basis (as in the 

Rayleigh-Ritz method) for the non-classical deformation 
mode shapes. Note that, while the classical modes 
represent the possible deformations of an elastic line in 
space (zero order in the asymptotic expansion), the non-
classical effects can be associated to the finite size of the 
cross-section, called here finite-section modes. They will 
be in principle arbitrary in shape, providing the most 
general representation of physically higher-order 
components of the deformation. 

 

Active Beam Formulation with Finite-Section 
Modes 

In the process of dimensional reduction of slender 
structures through the variational-asymptotic method, the 
3-D electroelastic problem can be approximated by two 
independent problems5, as shown in Figure 1: a 2-D 
analysis at each cross section (curvilinear coordinates x2 
and x3) and a 1-D analysis along the reference line 
(coordinate x1). The final 3-D elastic and electric fields 
are recovered by combination of the results of these two 
subproblems. Previous works by the authors have set up 
the characteristics of both the 2-D7 and the 1-D15 
problems for active slender structures. A brief review is 
included here from a global perspective. 

 
Figure 1. Three-step solution to the 3-D electroelastic problem 

Cross-sectional analysis 

First, the reference line is chosen in the undeformed 
structure along the dominant dimension. Its definition is 
in principle arbitrary, and a plane cross section can be 
associated to each point x1. The cross sections do not 
need to be normal to the reference line (for instance, they 
can follow the aerodynamic airfoils in a swept wing). 

According to the variational-asymptotic method5, the 
constitutive relations in the motion of the reference line 
can be now obtained by the minimization of the electric 
enthalpy per unit arc length. Under the assumption of 
applied electric fields in the direction of polarization of 
the piezoelectrics, the cross-sectional electric enthalpy is 
given by the functional16 

( )∫ ⋅⋅−ΓΣ=
CS

dxdxEDH 32:
2
1  (1)
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where Γ is the local strain tensor, E is the local electric 
field. Σ and D are their force conjugates (stress and 
electric displacements). The domain of integration is the 
local cross section at x1. It is assumed that the local 
electroelastic problem is linear (small strains and local 
rotations, and linearized electric fields), although 
geometrical nonlinearities may appear in the global 1-D 
problem. 

The 1-D representation of the deformation of the 
reference line is chosen at this point. The baseline are 
naturally the intrinsic deformation magnitudes for the 
elastic curve (extension along x1, torsion about x1, and 
bending in x2 and x3),  given in the form of a vector of 
classical strain measures, ∈(x1)={γ11,κ1,κ2,κ3}. In 
addition to them, a set of finite-section deformation 
modes are defined using assumed distributions of 
displacements in the cross section, ψq(x2,x3). The vector 
of their amplitudes, q(x1), adds elastic variables to the 
final 1-D model. In a similar way, the electric actuation is 
defined by a set of electric modes in the cross-sectional 
distribution of electric potential ψv(x2,x3), being the 
corresponding amplitudes v(x1). The local strain tensor 
and electric field of equation (1) can then be expressed by 
the following exact (linear) relations: 

( ) ( )qwqw qwqw ′+′Γ++Γ+∈Γ=Γ ′∈ ψψ    

( )vE vψφ +−∇=  
(2)

where the Γ-operators are linear operators and are defined 
in Ref. 6. Equation (2) connects the electroelastic 
description of the 3-D solid {Γ, E} with the set of 1-D 
variables in the reduced structure {∈,q, q′ ,v}, through the 
inclusion of unknown warping and induced electric 
potential fields { φ,w } throughout the current cross 
section. Both fields are discretized using a finite-element 
representation in the cross section and are finally solved 
as a function of the 1-D variables by an asymptotic 
minimization of the electric enthalpy. The small 
parameter in the asymptotic approximation is the inverse 
of the slenderness ratio, SR-1= h/L (h, cross-sectional 
typical dimension; L, typical dimension along the 
reference line). The results of this linear optimal problem 
are, first, the warping and electric influence coefficients 
(WIC and EIC, respectively), defined as the local 3-D 
displacement field at the cross section related to each 1-D 
variable, or 

λ∂
∂

=
wWIC    and   

λ
φ
∂
∂

=EIC  (3)

with, { }TTTTT vqq ′∈=λ  

Second, using these influence coefficients, the enthalpy 
(1) can be written as a bilinear operator in the 1-D 

variables, what defines a generalized electroelastic 
stiffness matrix, S, as7 

2

2
1







+⋅⋅=

L
hOSH T λλ     (4)

The mass matrix corresponding to the selected 1-D 
description of the beam kinematics is obtained by a 
similar procedure, starting with the kinetic energy per 
unit length7. 

Geometrically-nonlinear dynamics of the reference 
line 

The dynamics of the resulting 1-D electroelastic system 
are analyzed under the following hypotheses15: 1) large 
displacements and global rotations of the reference line, 
2) small values of strains and local rotations; 3) small 
amplitudes of the finite-section modes, q; 4) prescribed 
electric potential at the electrodes. 

The kinematics of the reference line is determined by 
the geometrically-exact nonlinear description of 
Danielson and Hodges17, with a representation of large 
rotations using Rodrigues parameters, θ(t,x1). 
Differentiation in time of the generalized displacement 
variables {u(t,x1), θ(t,x1)} yields the linear and angular 
velocities, {V(t,x1), Ω (t,x1)}. The amplitudes of the finite-
section modes, q(t,x1), are then superimposed, as a 
general way to add higher-order deformations. This 
results in a 1-D description of the dynamics based on the 
variables of Table 1. 

Table 1. 1-D sets of variables 

Displacements {u, θ, q } 

Velocities {V, Ω, q& } 

Strains {γ, κ, q′ } 

This set of variables is used to construct the kinetic 
energy per unit length, T, and the work per unit length of 
the external applied forces, W, which, together with the 
electric enthalpy H of equation (4), determine the 
dynamics of the reference line. Hamilton’s variational 
principle for electromechanic systems is used for this 
purpose. For each 1-D continuous subcomponent of the 
structure, it can be expressed as follows 

   [ ] AdtdxWHT
t

t

l
δδδ =+−∫ ∫ 1

0
 )(

2

1

 (5)

where t1 and t2 are fixed times, l is the arc length of the 
reference line. Aδ  is the virtual action at the ends of the 
beam and at the ends of the time interval, and δ is the 
variational operator. Bars are used over magnitudes that 
do not correspond to the variation of a function.  
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The weak form of this variational description is used to 
construct a spatial finite-element discretization along the 
reference line on the variables of Table 1 (the actual 
implementation in Ref. 15 used the force and momentum 
conjugates of strains and velocities). In symbolic form, 
and for the case of non-follower loads, the resulting time-
domain nonlinear equations can be expressed as 

LlxxS FXXXFXXA −=⋅ == )ˆ,ˆ,()( 0
&  (6)

Here, A is the inertia matrix operator, Fs is the structural 
vector operator, and FL is the force vector operator. X is 
the state vector of the values of the 1-D variables at each 
element, being X̂  its boundary values. The variational 
formulation also yields the natural boundary conditions in 
the system: 

0)ˆ( 0 ==xXBC   and  0)ˆ( ==lxXBC  (7)

Given the external loading, the excitation to the 
embedded actuators and the boundary conditions (7), 
equation (6) describes the nonlinear dynamics of a single 
beam. In multi-beam configurations, some of the 
boundary conditions are substituted by relations between 
the boundary values of the different beams at each joint. 
Note that the boundary and joint conditions are imposed 
in displacement, rotations, and also in the finite-section 
amplitudes, as well as in their corresponding strains (or 
force conjugates). 

Recovery of the 3-D electroelastic solution 

In the last stage of this three-step solution process, the 
previous results are combined at each time step to recover 
the actual 3-D displacement and electric potential fields 
in the original active structure. Let r(t,x) be the instant 
position vector of a point x=(x1,x2,x3)  in the undeformed 
structure (which can be also moving as a rigid body), and 
let ξ=(0,x2,x3) be the position of that point in the 
undeformed cross section. Its position vector after the 
deformation is given by: 

  R(t,x)= r(t,x1) + u(t,x1)+C(θ(t,x1)) ⋅ξ + 
           +ψq(ξ)⋅ q(t,x1) + WIC(ξ)⋅λs (t,x1) 

(8)

where C is the rotation matrix corresponding to the vector 
of Rodrigues parameters, θ, and λs are the structural 1-D 
variables {∈,q, q′}. These displacements can be used 
directly in the definition of the 3-D fluid-structure 
interface for aeroelastic analysis, eliminating the need for 
extrapolations typically used by beam models (e.g. Ref. 
18). The 3-D electric field is obtained in a similar way. 

This process also yields the 3-D stress/strain fields 
corresponding to the deformation field. To avoid 
derivation of (8) at each time step, a set of stress/strain 
influence coefficients analogous to the WIC can be 
evaluated in the cross-sectional analysis. 

Applications 
The cross-sectional formulation has been implemented 

in the computer code UM/VABS, which, together with an 
in-house time-domain beam solver, is used in the 
following numerical studies. Some typical configurations 
with embedded actuators are used herein to exemplify the 
proposed configuration. The objective is to show both the 
accuracy and the flexibility of the present reduced 
structural model to describe complex deformations of 
slender structures. Note that the finite-section modes are 
so far of arbitrary shape and it is at this point where they 
have to be numerically defined for a given problem as 
displacement fields of the cross-sectional finite-element 
mesh. 

Camber-bending deformation in 1-D models of a thin 
composite strip with surface-mounted isotropic 
actuators 

This simple case illustrates a typical configuration in 
which a finite-section mode may be used to capture 
unconventional deformations. Consider a graphite-epoxy 
thin strip with constant ply angle (φ) and surface-
mounted piezoelectric (PZT) actuators on the tip region, 
as shown in Figure 2. 

t

t

L

h

L

PZT

PZT

x

x

gr-ep

1

2

3

x

x

Figure 2. Active thin strip model 

 This case was experimentally studied by Chandra and 
Chopra8, who showed the relative importance of 
including the camber bending response in the analysis 
and subsequently developed a specific formulation to 
address this non-classical beam problem. In the context 
of the present formulation, a parabolic finite-section 
mode can be defined to represent this deformation. The 
general definition of such mode is  

   ( )
T

q h
x

h
x

srxx




















+






+=
2

22
32

22
00,ψ  (9)

where x2 is the chordwise coordinate with reference to 
mid-chord. The parameters r and s are included to impose 
orthogonality of the new mode to the classical beam 
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deformations (extension, twist and bending)7, and they 
are r=-1/3, s=0 for the configuration of Figure 2. 

Table 2. Geometry definition of the active thin strip 

h 25.4 mm  LPZT 2h
tgr-ep 2.79 mm  L 40h
tPZT 0.254 mm   

The geometrical definition given in Table 2 is used in 
this example.  For a ply angle φ≠0, the strip shows 
bending/twist/camber-bending elastic coupling. In a 
previous work15, an analytical solution was found for this 
problem using a boundary field approach. Here, 
numerical analyses are carried out using the present 
reduced active 1-D formulation with a finite-section 
mode for the camber bending, and an MSC.Nastran plate-
element solution with equivalent thermal stresses. 
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Figure 3. Static response of thin strip with PZT actuators (φ=0o) 
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Figure 4. Static response of strip with PZT actuators (φ=30o) 

The static response in the 1-D variables of the reduced 
model (vertical displacement u3, twist angle θ3, and 

amplitude of the camber bending deformation qchord) to a 
PZT free strain of 240µε is shown in Figure 3 for plies 
parallel to the strip longitudinal axis and in Figure 4 for 
plies at 30o with this axis. The correlation between the 
present method (“VABS + 1-D FEM”), the analytical 
solution of Ref. 15  (“VABS + 1-D Analyt”), and the 
plate finite-element model (“MSC.Nastran”) is excellent, 
and it demonstrates the capability of the finite-section 
modes technique to capture non-classical deformations 
within a low-order formulation. 

Camber-bending deformation in 1-D models of active 
rotor blades 

Integral actuation in flexible slender wings may also 
induce non-classical deformations. As an illustration, the 
elastic response including camber-bending to embedded 
actuation in a composite rotor blade is studied here using 
the finite-section mode defined in (9). 

A configuration based on the Active Twist Rotor (ATR) 
prototype blade19 has been chosen for the analysis. The 
structural characteristics of the blade cross section are 
shown in Figure 5, and they are kept constant along its 
spanwise direction. The composite construction is built 
on E-Glass and S-Glass around a foam core of Rohacell 
711, and includes Active Fiber Composites20 (AFC) as 
embedded anisotropic piezoactuators. 

Foam Core

Rohacell 711

Wrap Joint Region

Active Region+

Web+Fairing

Trailing Region

E-Glass 0/90

Active Region

E-Glass   0/90

AFC         45

E-Glass   45/-45

AFC        -45

E-Glass   0/90

Nose

E-Glass   0/90

S-Glass   0

E-Glass   45/-45

E-Glass   0/90

Web

E-Glass   0/90

E-Glass   0/90
107.70

47.75

4.85 4.60

12.10

 
Figure 5. Layup of the ATR model blade (dimensions in mm) 

A detailed finite-element model of the cross section was 
built for UM/VABS. The finite-section mode of (9) was 
then numerically defined at the nodes of the model, 
generating the mode shape of Figure 6.  Also, for the 
coming analysis, the individual active plies of Figure 5 
are further divided in two regions of independent 
actuation, as in Figure 7. 

X Y
Z
X Y
Z

Figure 6. Finite-section mode for camber-bending deformation 



AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS 
 
 
 

Page 6

101

111

211

201

102

112

212

202  
Figure 7. Regions of independent actuation in the ATR model 

In order to set the optimum actuation scheme for 
camber-bending, the active plies are actuated one at a 
time with a given voltage. Then, the amplitude q of the 
camber-bending deformation induced by each active ply 
was computed for the interior beam solution, and is 
shown in Figure 8. Several conclusions can be extracted 
from the results: 1) camber deformation is induced with 
opposite signs of actuation in the upper and lower walls 
(the same actuation scheme that induces maximum beam 
bending); 2) rear actuators (∗∗2) are more effective for 
this deformation; 3) for this configuration of actuators, 
the maximum amplitude in camber-bending deformation 
is about 1% of the typical response in beam bending. 

0

0.2
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1

1.2

1.4

q
/V
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µm

/k
V
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101 & −(201) 102 & −(202) 111 & −(221) 112 & −(212)  
Figure 8. Camber-bending deformation amplitude induced by each 

region of actuation 

Finally, the 1-D static response to the cross-sectional 
actuation scheme for maximum camber-bending response 
is analyzed in this blade under hingeless conditions. Only 
certain active plies along the direction of the beam axis 
are actuated, as shown in Figure 9 (this differs from the 
actual ATR prototype blade, where all active plies along 
the span were connected to the same electric signal). The 
chosen actuation is 4000 Vpp, with 1.143 mm of electrode 
spacing. The ratio of electric excitation between the plies 
at the upper (1∗∗) and lower (2∗∗) skins is 2800V 
/−1200V. 

0.1L

0.3L

0.1L

0.3L

0.2L

 
Figure 9. Regions of actuation on the modified ATR blade 

Figure 10 shows the 1-D response of the reduced 
models corresponding to the classical beam analysis and 
to an extended representation with an additional finite-
section mode for camber-bending. In those results, h is 
the blade chord (107.70 mm) and L is the beam length (1 
m). Note that the presence of this new mode substantially 
modifies the twist response of the beam. However, this 
perturbation occurs locally at the actuation interfaces, and 
the twist rate outside these interfaces does not change 
(according to the variational-asymptotic theory, which 
determines the asymptotically exact solution in the 
interior of the domain for each magnitude used to 
represent the deformation). Finally, the magnitude 
variations induced by the camber bending in the 
(spanwise) bending response, which is the main 
deformation for this actuation, are negligible when 
compared with the other deformations.  

Therefore, non-classical deformations due to embedded 
actuation may be important, not only because of their 
actual contribution to the final 3-D displacement fields, 
but also because of their influence in the response of the 
main strain measures (extension, twist and bending) of 
the slender structure. 
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Figure 10. 1-D response to actuation in bending/camber bending 
(cross-sectional reduction at the midchord point)  

Joined-Wing SensorCraft Configuration 

The SensorCraft is an advanced surveillance unmanned 
air vehicle (UAV) concept currently under investigation 
by the US Air Force21. Among its characteristics, it is 
desirable that the airframe provides an appropriate 
geometry 360o sensor coverage. A possible solution for 
this requirement is a joined-wing (JW) aircraft 
configuration, with a geometry that can be defined using 
the parameterization of Figure 11. 

The aeroelastic behavior of this flexible unconventional 
configuration presents some particular characteristics 
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whose possible implications are not yet fully understood. 
Some fundamental optimization studies have been 
conducted by Blair and Canfield22. These authors have 
also presented an assessment of the response to some 
typical loading cases, identifying gust and taxi crater 
impact as critical ones23. In a JW, the aft wing is subject 
to compressive loads, and its global buckling response 
and contributions to the aeroelastic instabilities can be 
critical for the design of the structure. Thus, a 
geometrically-nonlinear structural model must be 
consider in the analysis, as it was done by Gallman and 
Kroo24 for the buckling characteristics, and Cesnik and 
Brown25 for the buckling-aeroelastic interaction. These 
works have also shown the sensitivity of the buckling 
onset to the particular design of the interface joint. In 
addition to this, Livne26 has pointed out, among other 
things, that this configuration may likely present panel-
flutter instability, and Weisshaar and Lee27 have shown 
the importance of the interaction of flexible and rigid-
body response in flutter analysis on this type of 
configuration. Summarizing, the aeroelastic analysis of a 
JW demands a geometrically-nonlinear structural model 
coupled with the vehicle flight dynamics and an accurate 
description of the deformation of the wet surfaces to 
capture local instabilities. 

Sob

Sib

cto

cracrf

A B B A

y

x z

y

ib

ob

rbz

rby

io

ib

Figure 11. Planform configuration of the Joined-Wing SensorCraft 
(after Ref. 22) 

 

Table 3. Geometric parameters of the JW 
SensorCraft configuration 

Sib 25.40 m  crf 2.50 m
Sob 8.60 m  cra 2.50 m
Λib 30o  cto 2.50 m
Λob 30o  xB 23.75 m
Γob 9o  zB 7.00 m
Γio 0o  rbz 1.00 m
   rby 1.00 m

In this example, a reduced structural model is developed 
based on the JW configuration model introduced in Ref. 
22. There a parametric finite-element model for 
MSC.Nastran and MSC.Astros was built using shell 
elements and then coupled with a panel aerodynamic 

method. The cross-sectional geometry is based on a 
LRN1015 airfoil with two spars at 15% and 85% of the 
chord. Spars and skins are made of isotropic material 
with Young’s modulus E=72.4 GPa, Poisson’s ratio 
ν=0.3, and density ρ=2770 kg/m3.  The material thickness 
is 2.54 mm, and the geometric parameters that define the 
planform are included in Table 3. 

A

B

D

C

E

F

 
Figure 12. Geometry of the reduced model 

The reduced structural model is based on the 
geometrical representation of Figure 12: segments AC, 
BD, and EF are elastic elements, while joint segments 
CD, DE, and EC are rigid connections. The elastic 
segments are located at the midchord of the wings, and 
the 1-D variables are the classical beam strains 
(extension, twist and bending). For each of the three 
elastic segments, a cross-sectional analysis was first 
carried out at the corresponding sweep angle (-300, 15o, 
and -30o, respectively). That yielded the cross-sectional 
stiffness and inertia characteristics as well as the warping 
and stress influence coefficients for each segment. Then 
the reduced model with these six 1-D subcomponents was 
solved for clamped conditions at points A and B and 
different loading cases. Finally the 3-D characteristics of 
the deformed structure where recovered by combining the 
1-D solution and the cross-sectional warping and stress 
influence coefficients. 

Table 4. Static tip displacement and rotations to unit tip loads (x1: 
outer wing axis; x2: forward flight direction) 

 MSC.Nastran Present 
(CDE rigid) 

Present 
(joint at E) 

u3/F3 0.216 m/kN 0.231 m/kN 0.251 m/kN
u2/F3 0.051 m/kN 0.046 m/kN 0.047 m/kN
θ1/M1 0.0506 o/kNm 0.0505 o/kNm 0.0602 o/kNm
u3/M1 2.933 mm/kNm 2.804 mm/kNm 2.308 mm/kNm 

The geometry defined in Figure 12 was selected to 
better represent the characteristics of the shell model of 
Ref 22. In that work, the 3-D modeling of the joint used a 
very stiff construction through multiple spars and ribs, 
which is better captured within the current context using 
rigid segments as it will be shown next (particularly when 
compared to the point connection defined in Refs. 25 and 
27). Table 4 compares the linear static response to tip unit 
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normal force and twist moment for the shell model 
(MSC.Nastran), the present reduced model with rigid 
segments (CDE rigid), and a reduced model with a point 
connection at point E between the three flexible members 
(joint at E). As it can be seen, if the rigid-segment joint is 
used instead of a point joint, the relative error with 
respect to the shell model solution is reduced from 16% 
to 7% in the tip response to vertical force (u3/F3), and 
from 19% to almost zero in the response to twist moment 
(θ1/M1). Therefore, better overall characterization of the 
joint is achieved by introducing the rigid connections, 
and this model will be used in what follows. 
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Figure 13. Von Mises stress field (in Pa)  for a 1000N normal tip load 
from the MSC.Nastran solution 
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Figure 14. Von Mises stress field for a 1000N tip load from the 
proposed reduced structural formulation 

An important feature of the asymptotical reduction 
scheme is its capability to recover the 3-D electroelastic 
fields in the original structure. As a first example, the 
stress fields associated with the linear static response of 
the JW configuration to a 1000N vertical tip load are 
compared between a shell model in MSC.Nastran (Figure 
13) and the present reduced structural formulation 

(Figure 14).  Agreement is excellent, except for the local 
effects at the joint, which are beyond the scope of the 
proposed methodology. For significant 3-D effects like 
those present at the joint region, a separate detailed FEM 
model of the region of interest should be created to 
complement the proposed method. 

Next results represent the (factorized) deformed 
structures in a linear static analysis with MSC.Nastran 
(Figure 15) and the present reduced model (Figure 16). 
The loading condition is a constant pressure on the upper 
skin of the three lifting surfaces (corresponding to 
segments AC, BD, and EF defined in Figure 12), with 
relative magnitudes 1, 2/3, and -3/2, respectively. In the 
reduced structural model, external distributed loads are 
integrated in the corresponding deformed cross section to 
yield forces and moments per unit length in the reference 
line. If finite-section modes were added to the analysis, a 
corresponding equivalent force per unit length will be 
obtain from analogous integration. 

X
Y

Z
X

Y

Z

 

Figure 15. Linear static deformation to pressure loads from the 
MSC.Nastran solution 

 

Figure 16. Linear static deformation under pressure loads using  
the proposed reduced structural formulation 

 A more quantitative comparison between the 3-D 
displacement fields obtained by the MSC.Nastran shell 
model and by the reduced model is shown in Figure 17. It 
compares the vertical displacement along the leading and 
trailing edges in the main (front+outer) and the aft wings 
for unit pressure in the front wing, keeping the ratios 2/3 
and -3/2 for the aft and outer wings, respectively. In this 
figure, S is the semispan of the main wing. Overall, the 
proposed reduced modeling technique provides a very 
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good estimation of the 3-D displacement field of slender 
configurations, which is an important requirement for its 
use in aeroelastic simulations. 
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Figure 17. Comparison of vertical displacements in linear static 
analyses for pressure loads on the leading (LE) and trailing edges 

(TE) of the joint wings. 

The decomposition of the original 3-D elastic problem 
required about 200 quadrilateral elements for each cross 
section (this problem is load-independent and needs to be 
solved only once for a given geometric and material 
configuration) and 50 1-D elements for the reduced 
structure. The shell model in MSC.Nastran has about 
2200 elements.  Although this is not a major issue for the 
static elastic analysis for a given configuration, there are 
two major advantages of the present representation: first, 
parameterization for preliminary design is enormously 
simplified, and, second, the reduced model does reduce 
significantly the complexity in nonlinear dynamic 
analysis with large deformations.  

As an example of this last statement, a model of a 
complete SensorCraft-like vehicle has been built by 
adding a flexible 1-m radius circular fuselage to the 
previous JW model. Its material properties are the same 
as for the wing skin. The resulting model represents the 
flexible vehicle including rigid-body motions (i.e., its 
flight dynamics degrees of freedom), and it can be used 
as a basic building block for nonlinear coupled flight-
dynamics and aeroelastic analysis of the complete 
aircraft. This provision is further justified because, for the 
undeformed vehicle, a fundamental first-bending linear 
vibration mode was identified at a frequency as low as 
0.19 Hz. In order to explore the behavior of this 
configuration, some nonlinear dynamic analyses were 
carried out under prescribed low-frequency loads for a 
vehicle clamped at the fuselage nose. Figure 18 shows the 
outer-wing tip displacements under a 2-Hz distributed 
harmonic load for t>0 (1000 N/m amplitude and 1000 
N/m mean value, which are values in the order of 
magnitude of the expected actual wing loadings) on all 

lifting surfaces. The excitation of the first linear vibration 
mode by the discontinuity at t=0 in the average value of 
the loading (what can be considered as a linear effect) 
dominates the response, with wing tip deflections over 
20% of wing semispan that bring significant 
geometrically nonlinear effects into play. 
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Figure 18. Tip displacements of the outer wing due to distributed 
harmonic loads normal to all lifting surfaces (S is the wing 

semispan) 

Finally, the displacements of the original 3-D structure 
are also recovered at selected time steps in the simulation. 
As an example, Figure 19 shows the structure before 
deformation and in its deformed shape corresponding to 
maximum displacements at the wing tip. Figure 20 shows 
the corresponding 3-D dynamic stress distribution. These 
results complete the description of the dynamics of the 
original 3-D structure. Although in these analysis the 
representation of the deformation has used only the 
classical beam strains (extension, twist and bending), 
additional higher-order deformation modes (finite-section 
modes) could be easily included within the current 
reduced structural description. By doing so, the model 
could, for instance, be expanded to consider plate 
motions such as the camber bending of equation (7), or 
airfoils with an adaptive trailing edge, as in Ref. 21. 

XY
Z
XY

Z

 

Figure 19. Undeformed and deformed vehicle at point of maximum 
tip displacement in the nonlinear response to the 2Hz distributed 

harmonic force 
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Figure 20. Von Mises dynamic stress field on the deformed structure 
at maximum tip displacement 

 

Conclusions 
A three-step modeling scheme for the construction of 
reduced models of active slender structures has been 
presented. It is shown how the 3-D electroelastic problem 
can be effectively solved in two independent problems. 
Higher-order deformations, as expected, for instance, in 
variable airfoil configurations or in structures with 
embedded actuation, are considered. The particular case 
of camber bending deformations induced by embedded 
actuators was studied for two configurations, and shown 
to compare well with plate/shell models. The 
methodology has been conceived for its future use in 
nonlinear aeroelastic analysis of complex, even 
morphing, configurations, and special attention has been 
given to its ability to represent 3-D displacement fields. 
This has been illustrated in the linear static response of a 
joined-wing configuration, including comparisons with 
an MSC.Nastran built-up model. A complete aircraft 
model was then built and its nonlinear response 
exemplified in an analysis with prescribed distributed 
loads. These results have shown the capability of the 
present approach to handle complex structural 
configurations within a low-order formulation. 
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