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Abstrad 1 Introduction 

A cell center, upwind biased, spatially third-order and tem- 
porally second-order finite volume procedure for solving the 
Maxwell equations in the time domain has beea ported to a 
IntelTouchstoueDeltaandaParagon multicomputer. Usinga 
one-dimensional domain partitioning scheme, the computer 
code has attased a data processing rate of 7.56 Gigaops 
on the 512 node Delta and 3.56 Gigaops on the 179 node 
Paragon x F / S  systems. The high parallel ef6ciency of the 
present computer program however is sustainable only up to 
a limited size of addressable memory (nodes x 48 x 96). 
'IBe scalable performance range of the present code is sig- 
nificantly extended by operating on the Pwagon system at 
present time. 

Nomenclature 
B Magnetic flux density 
D Electric displacement 
E Electric field intensity 
H Magnetic field intensity 
i ,  j ,  k 
J Elecnic w e n t  density 
n 
r, 8,4  Spherical coordinates 
t Time 
U Dependent variable 
V Elementaty cell volume 
s > o > c  General curvilinear coordinates 

P Magnetic permeability 
x Wave length 

Superscript 
+.- 

e 

Index of disuetized volume 

Outward normal of a surface 

Electric permittivity 

Denotes the flux vector associated with 
positive and negative eigenvalue 
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n e  numetid efficiency and accuracy of computational el=- 
tromagnetics (CEM) in analyzing refraction and diffraction 
phenomeua are still the pacing items for aircraft signature 
twbnology. In this area of endeavor, the numerical accuracy 
requirement is rather stringent and this need is not separa- 
ble from numerical efficiency. A desirable and commonly 
accepted predictive dynamic range is as high as 60 db over 
broad viewing ranges 111. Although no specific values of 
absolute accuracy for target identification and signature pro- 
cessing have been defined for air vehicle applications, the 
compatible tolerance to the dynarmc range requirement is an- 
ticipated to be very demanding. Moreover, in high frequency 
radar operation beyond X band the wavelength is reduced 
to the centimeter scale L2.31. For wave scattering simula- 
tion, the numerical resolution of wave motions at a given 
frequency is dictated by the minimal wavelength of the me- 
dia [I .4]. The con- in numerical analysis for description 
of standing waves. which require a mesh spacing to be less 
than half of the wavelength. is easily satisfied by comparison 
with the need of scattering simulations. From previous in- 
vestigations [1,4,5,6], each wavelength should be supported 
at least by ten elementmy cells for finite volume or ten nodes 
for finite diffexace schemes to attain suitable numerical res- 
olution, For dielectric media with large refraction indices. 
the required n u m b  of cells will be even greater. 
The massive volume of data processing for air vehicle sig- 
name prediction can be illustrated by the following simple 
estimate. In the case of a RCS simulation for a ten me- 
ter span airuaft being illuminating by a gigahertz (1 x lo9 
Hz) radar wave, the number of cells required will exceed 
10,OOO in each ordinate. h r  three- dimensional simulation. 
the computational domain will contain around 1 x 10l2 cells 
(le x 104 x le). The data base of this computation will be 
proportional to this 3-D may. Since the governing equations 
consist of six dependent variables and three spatial indepen- 
dent variables with nine diredon cosines in a general curvi- 
linear frame, a minimal 19 addressable memory units must 
be allocated for each individual cell. In practice, a two- step 
timeintegrationalgoritbmisfrequentlyused L4.71. Inorder to 
achieve higher vector performance, additional vector arrays 
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will have to be included in the computer program. The typical 
CBvI finite volume code will have addressable memory units 
as high as fifty per cell. Therefore for this RCS numerical 
simulation. the number of dependent variables is around SO 
trillion. The number of arithmetic operations required to pro- 
cess data at each time level will be in the hundreds of trillions 
just to advance the temporal variation by one step. If multi- 
ple viewing angles are desired. the amount of computations 
is enormous. 
At the present. high numerical efficiency of CEM simulation 
procedures can be attained either by algorithmic improve- 
ments to solve the Maxwell equations or by using scalable 
high performance computing systems. Several algorithms 
for solving the Maxwell equations in the time domain, a 
hyperbolic partial differential equations system, have been 
transition& from the computational fluid dynamics (CFD) 
to the CEM community [4.5,6,7.81. These numerical pro- 
cedures are characteristic-based methods which are derived 
from eigenvalue and eigenvector analyses. Since the char- 
acteristic formulation addresses the fundamental issues of 
numerical stability and well- posedness of initiaboundary 
value problems, drasticimprovements innumerical &ciency 
and accuracy havebeen reported inCEM simulations L1.4.61. 
The theoretical approach to the eigenvalue and eigenvector 
analyses also has limitation, in that the coefficient m a h x  of 
the governing equation can only be diagonalized one dimen- 
sion at a time. However the basically one-dimensional in 
time and space diagonalization approach does not impose a 
fundamental limit in their application to CEM [S,6.81. The 
simple fact lies in a salient feature of the electromagnetic 
wave propagation, in that the diredion of wave motion is 
always laown to be the outer product of the electric and 
magnetic field intensity, E x H [91. Therefore. a local mesh 
system can always be consmcted to align with the principal 
axis of wave motion. In principle. the inherent dilemma of 
solving an initial value problem as a boundary value problem 
on a finite memory size computer can be eliminated F5.6.71. 
In this regard the characteristic-based formulation satisfies 
the compatibility condition at the farfeld boundary ratha 
than using the approximated absorbing boundary condi- 
tions [10,111. In fact, both finite difference 161 and finite 
volume [71 have successfully simulated an oscillating elec- 
tric dipole. These numerid solutions generated by the 
characteristic-based method show no indication of reflect- 
ing waves from numerical boundaries C6.71. Particularly, the 
finitevolume computation has attained a data processing rate 
of 580 m o p s  on a single Cray C90 processor at an averaged 
vector length of 84.4 [12]. In spite of that, the rate of data 
processing is still insufficient for engineering applications. 
Another viable means of improving numerical efficiency for 
CEM is the use of scalable multicomputers. Recent progress 
in microchip and interconnect network technology has led to 
a host of high performance multipleaddress message-passing 

parallel computers. In theory, these scalable multi-computers 
or multi-processors are capable of providing essentially un- 
limited computing resources for data processing. However 
the performance limitation is intrinsically related to the nu- 
merical algorithm and the system architecture. The effective 
use of the scalable multi-computers still requires a balanced 
work load and minimal inter-processor communication. 
Successful implementations of time dependent. three dimen- 
sionalNavier Stokesequations L13.141 and three-dimensional 
Maxwell equations in the time domain US1 on multi- 
computers have been recorded. Specifically, the mapping 
of the fractional-step windward finite difference algorithm 
for solving the Maxwell equation in time domain onto the 
Intel Touchstone Delta system has attained a data process- 
ing rate of 6.6 Gigaops (1 x 1OI2 arithmetic operations p a  
second) on a mesh system of (512 x 96 x 96). The parallel 
efficiency of this implementation is also persistently main- 
tained at a value of 97.3 percent up to 512 numerical nodes. 
Unfortunately the scalable performance ceased to exist when 
the data array exceed the aforementioned dimension. Unda 
this operational condition, the message length has reached a 
sizeof36,864bytesand thefrequencyofdatatransmissionis 
4090 times per time step [151. At that time. as the diagnostic 
tool was extremely limited, it was surmised that the scalable 
performance breakdown was inmed by the message traf- 
fic contention of the communication channels. In spite of 
this observed shortcoming. the application potential is still 
worthy of further investment. 
In the present investigation, the cell center. upwind biased 
finite volume scheme design to solve the three-dimensional 
Maxwell equations in the time domain is mapped onto the 
Intel Delta and the Paragon distributed memory computers. 
The finite volume procedure has an added dimension for 
applications to scaterrers of arbitrary shape than the finite 
difference scheme that implemented earlier [151. The present 
procedure was developed on a general mi l inear  frame [71. 
and can be used to simulate a wide range of complex shape 
of scatters [121. The strategy for conment  computation is 
the same as developed by the earlier efforts [13,14,151. 
The basic approach is based on a one- dimensional domain 
partition approach outlined in our earlier effort. The present 
efp . isfocusedtoseekthelimitationofsdableperformance 
of1~ahitevolumeprocedureand toenlarge theperformance 
envelope, if at a l l  possible. 

2 Numerical Algorithm 
The time-dependent Maxwell equations for elecaomagnetic 
field can be given as [91 

2 



v D = 0 D = &  (4) 

where e and p are the electric permittivity and the magnetic 
pameablity whichrelatetheelectricdisplacemt to theelec- 
Uic field intensity and magnetic 5ux density to the magnetic 
field intensity respectively. 
n e  governing equations. (1) and (2). cast in 5wr vector 
form on a general auviliiear and body conformal coordinates 
system acquire the following form; 

v 

where6 isthetransfomeddependentvaciable. @.(?and fi 
are the contravariant components of the 5ux vectors on the 
Cartesian coordinate system, the basic frame of reference of 
the present invstigation. 

Ci=vv;j= J V ; ~ =  ( t z ~ + t v ~ + t a ~ ) ~  
& = ( ~ , F + T ) ~ G + ~ ~ H ) V ; ~ ? =  ({zF+C,G+C,H)V 

(6) 
where 

V deootes the discretized cell volume of the transformed 
coordinates and is identical to the inverse Jacobian of the 
coordioate transformation [7.12]. 
The above system of equations is solved by disaetiang the 
physical space into contiguous elemenmy cells and by bal- 
ancing all 5ux vectors on the control faces of the cell. There 
fore io discretized form, the integration proQdure degener- 
ates into computations of the sum of all fluxes aligned with 
thesurface area vectors. A cell centered, upwindbiased finite 
volume scheme based on the MUSCL approach is adopted 
for the present analysis [16.171. 

A& A F  A 6  A H  - A 0  - +-+-+---J=-+R=O (9) 
At A< A7 A{ At 

'The charactaistic formulation in finite volume approxima- 
tion is achieved by split the flux vmor according to the signs 
of eigenvalues of the coefficient matrix in each spatial di- 
mension [18.191. In essence. the numerical procedure is 

designed to honor the zone of influence of the initial value 
problem. In other words, the numerical method is constructed 
to follow the diredion of signal propagation by choosing the 
appropriate piecewise continuous data to form thedirectional 
difference for the simulated wave motion. The flux at any 
cell interface is represented by a superposition of two com- 
ponents; F+. F - .  G+, G-, IT+. and H -  according to the 
direction of wave motion [16,17.18.19]. Follow earlier ef- 
forts [7.12]. at the cell surface z + l /Z,  is obtained as; 

F,,; = F+(U;L,;) + F-(U;;) 

G,++ = G+(UA;)+G-(UEt) (10) 

Hk+$ = II+(U,tc:)+H-(u&) 

In practice. the F+, F -  etc are reconstructed by the ti 

scheme [ZO] which is capable of generating approximations 
from first-order to third order accurate. The amistent nu- 
merical m a c y  in time is obtained by a RungeKutta family 
of single-step multi-stage procedure p d t t i n g  a wide range 
of order of temporal m a c y  io one programming procp 
dure [21]. In the present effort, only a two-stage procedure 
which is second order accurate in time is used. 
The balancing of flux vectors on the transformed cell inter- 
face is greatly fadlitated by introduung locally orthogonal 
coordinates. One of the ordinates is aligned with the outward 
normal of the oell snrface. Since the rest coordinates are 
tangential components to the surface vector. they are eady  
constructed by exmting consmtive outer products between 
the outward normal and one of the cell edges in consideration. 
~~thefluxvm~ontheceil interfacearespli t intowm- 
pments parallel to the orthogonal coordinates and balanced 
locally. The necessary eigenvalue and eigenvector analyses 
required for flux splitting as well as the inverse mapping into 
the awilinear coordinates are well hown L5.61. The de- 
tailed formullation can be found in reference [71. thus will not 
be repeated in here. 
Numerical simulation of a three-dimensional, time dependint 
radiating elec&omagnetic wave is adopted for the present 
study. The initial and boundary couditioas for an OscilIating 
elechicdipolesimulation are straightforward. Thepulsating 
source is described by a sinusoidal wave with an amplitude of 
unity and the wavelength equal to the half radius of the entire 
computational domain. 'The only physically d g l i d  ini- 
tial conditionrequired is the total induaed field at the dipole. 
for which the analytic solution is known to contain singular 
behavior [9]. In order to deviate the extremely small time 
step required to resolve the b e s t  cell volume near the mor- 
dinate origin, the initial values were imposed for four cells 
immediately adjacent to the dipole. 
The farfieldboundary conditiononthetruncateddomainusu- 
ally is the most difficult numerical bound- condition en- 
countered in CEM [1,4.10.11], because the refleaed wave 
from the artiiicial boundary will produce serious distortion of 
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wave patterns. For the present characteristic-based formula- 
tion. this boundary condition is described simply by the zero 
incoming flux component. 

F-(<,Vb,<)=o.o (11) 

where qa denotes the radius of the farfield boundary. On the 
spherical coordinate, the above farfield boundary condition 
for a dipole is also the exact compatibility condition. Within 
the truncation error of numaical analysis. the spurious re- 
fl.xted wave commonly observed in CEM simulation should 
be completely eliminated L5.61. The other numerical bound- 
ary conditions in circumferential and the azimuthal directions 
merely refled a continuous field. Arrays of two overlapping 
cells are suEcient to enforce the functional continuity re- 
quirement. 

3 Description of the Multicomputers 

Both the Touchstone Delta and Paragon W/S are mesh inter- 
counectd parallel processors [22,2.324]. Themesh topology 
is based on byte-wide communication chaunels rather than 
the bit-wide hypercube topology. These two multicomputers 
consist of a large number of heterogeneous nodes to perform 
computation,framebuffer.networklink,anddiskstriogfunc- 
tions. Individual computing nodes. i860 or i860W. are con- 
nected to a Mesh Routing Chip (MRC) through a Interface 
Module. 
On message passing or distributed memory multicomput- 
ers, the paformane. of concurrent computing is closely tied 
to node-to-node and node-to-memory communication band- 
width and latency. These system peculiarities always ex- 
ist and have profound influence to parallel efficiency. par- 
ticularly, when contention of communication path becomes 
significant in concurrent operation. The ouxu~ence of con- 
tention is dictated by frequency of data movement. length of 
message. and the data transfer rate. The cmmunication time 
of a message is proportional to the length of data string. but 
there is also some discontinuity in rate of data transmission at 
some specific message size [Z]. This behavior is introduced 
by the communication protocol and operating system char- 
acteristics which can induce performance degradation. In 
applications, all message traffic may compete for passage in 
communication channels. and can lead to poor parallel com- 
putingperformance of any distributedmemory computers. 
The Touchstone Delta system used consists of 576 hetero- 
geneous nodes. Among these. 528 are i860 computational 
nodes, but only 5 12 nodes are allocated by a two-dimensional 
meshup to a (16 x 32) configuration [23]. Thei860has apeak 
rate of 80 single- precision and 60 double-precision MFlops. 
a 16 Megabytes (Mb) nodal memory, and a 8 Kilobytes (Kb) 
data cache. The UO function is carried out by a total of 32 
80386 UO nodes. and each has a bandwidth of 16 MHz. The 
complete system also includes 2 gateway nodes and 6 service 
nodes[231. For a given numerical algorithm, the data pro- 
cessing rate and scalable performance are constrained by the 

communication latency and contention, The node-to-node 
communication latency of the Delta system is dominated by 
chores of argument checking, context switch on intenupt. 
and other protocol requirements [221. Latency incurs extra 
time elapsed for multi-hop data movement between nodes 
and creates a situation for communication contention. 
The message passing in the Delta system is row biased. such 
that the node near the boundaries of two-dimensional mesh 
willhave toberoutedthroughmulti-hop toreach anodein the 
different row. A programming arrangement takes advantage 
of immediately adjacent node priority inmessage passinghas 
showna7.3percentgainedioparallelcomputingefficiencyof 
a fractional-step scheme [14,15]. However. the choke point 
of performance on the Delta system is still the node-to-node 
w&unication. AlthoughtheMRC has arated bandwidthof 
65 Mb/s, a measured peak is about 13.1 MB/s for a message 
size of 100, OOO bytes [221. 
The Paragon W/S system. contains 240 i860XP computa- 
tionalnodes, 4 servicencdes. and 16 multi-pUrposeYO nodes. 
The i860W has two CPUs and twice the size of nodal mem- 
ory than the i860. (32Mb), and a rated peak performance 
of 75 double-precision and 100 single-precision MFlops. In 
contrast tothei860usedbytheDeltasystem. theratedperfor- 
mance is 25 percent higher. The MRC of the paragon system 
has 10 unidirectional ports. and a bandwidth of 200 Mbh per 
port. The data transfer rate is 3.077 times greatez than that of 
the Delta system For a numerical algorithm dominated by 
frequent message passing and high risk for communication , 
contention. the improved data processing rate will have the 'L- 

potential to exceed 25 percent. The last major component 
of the Paragon system used is the 15 Redundant Array of 
Inexpemive Disk Drives (RAIDS). each having a capacity of 
4.8 Gigabytes (Gb) [241. 
There is no fundamental architectural differences between 
the two Intel systems, but hardware enhancements have been 
made to the computational node and MRC of the Paragon 
W/S system. It may be interesting to point out that the 
enhancement to the data shipping rate is greater than the data 
processing rate of the Paragon system. As a consequence, 
a higher performance than 25 percent may be anticipated. 
On the other hand, the operating systems are significantly 
different from each other, but the developed software is still 
transportable from one system to other. Only minor changes 
of code that was developed on the Delta system was needed 
to operate on the Paragon system. The system information 
of the two- dimensional mesh partition to take advantage of 
the immediately adjacent nodes priority on the Delta system 
is not currently available for the Paragon. 
The Paragon operating system OSF/l is Unix l i e ,  and writ- 
ten by the Open Systems Foundation (0%') and Intel [24J. 
The OSF/1 operating system provides the virtual memory 
capability that in turn also consumes considerable memory, 
and at present the performance is not necessarily optimal. 
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is not a production system. In this regard, the tuning infor- 
mation obtained from the Paragon system is still subject to 

.. continuous improvements. 

4 Domain Decomposition Strategy 

The data structure partdon is the first cntical step toward 
high parallel efficiency on distributed memoty systems. On 
themesh-connected parallel processors, thedata Bow anddata 
management lead to four different partitions of data [13.151. 
The most elementary approach of domain partition is the 
one dimensional parallelization 111 which planar data core- 
sponding to the first index of the 3-D array, I L .  is assigned 
to individual processors. As a consequence, each numeri- 
cal node is assigned to process data only containing a two- 
dimensional cross plane ( J L  x KL) .  Although the initial 
and boundary values within the two- dimensional array are 
self-contained, communication is required between contigu- 
ous planes identified by the computational node. Along the 
ordinate assodated with each node, data communication be- 
tween nodes is needed to construct the balanced flux vectors 
on cell interfaces. and to satisfy theboundary conditions at the 
edges of the computational domain. Since the data overlap- 
ping regions are sigdlcant in comparison with the total data 
base, the nodal communication is frequent during a nnmer- 
ical sweep for time advancements. The other data partition 
s c h e m  including the page stluaure. the pencil structure. 
and the block structure I151 also have some degrees of con- 
trol for data management and to meet the basic aiterion for 
parallel computing, balance the work load among all nodes, 
andkeep thedatatransferbetweennodesat theabsolntemin- 
imnm. A graphic depiction of these data partition schemes is 
giveninEgnre1. 
Only the one dimensional (1D) domain partition a w m -  
plished for now. because this approach is the most straightfor- 
ward implementation of numerical algorithms on strumred 
grids toparallelcompnters [6,12,151. Inthepresentapproach. 
the data are orgauized into equal-in-lengh and contiguous 
aoss planes which can also be viewed as a form of task 
partition. Ihe  major advantages of the 1D partition is that 
the approach can automatically achieve perfect load balanc- 
ing among nodes. The advantage is however acquired at the 
expense of a @earn amount of inter-nodal communications 
thanthatofthepage. penul, and blocksmaures [13,141.00 
the Delta system, wen full use of messagepassing priority of 
the immediately adjacent nodes still can not overcome the ba- 
sic shortcoming. The communication contention eventually 
will set the performance ceiling of the scalable operations 
forboth a finitedifference [15] andthepresent finitevolume 

The timing results of a related study of a fractional-step 
scheme L6.151 revealed that, the pencil partition has demon- 
seated a potential 37 percent higher data processing rate than 
that of the 1D partition, but the pencil partition also encoun- 

- 

algorifams. 

Y 

tered a similar ceiling of scalable performance up to a size of 
problem of (512 x 96 x 96). Nevertheless, the 1D scheme 
has achieved a scalable data processing rate of 6 55 Gigaops 
and a sustained parallel effidency of 92 7 percent up to 512 
nodesontheDelta system[l51. The scalableperformanceof 
the finite difference code developed for Carte.sian coordinata 
breaks down when the mesb system exceeds a dimension of 
(512x96~96).  Thelimitingbehaviorofperfo~ceisalso 
observed for the penul partition scheme. This performance 
limitation of a distributed memory multicomputer is closely 
tied to memory bandwidth and memory latency. and is also 
the issue to be examined here. 
In mapping the upwind biased finite volume code onto the 
Intel systems using the 1D partition. each node processes 
a grid plane containing J L  x KZ ceUs. For this partition 
scheme, numerons message passings are performed per grid 
point for each temporal step advancement. and the length of 
messageistheprodudof J L  K L  andnumbasofdependent 
variables in the formdatiod. For the baseline case of (24 x 
24 x 48), each individual message has a length of 221,184 
bytes. If the cell density of the finite volume computation is 
doubled in both diredions of the aoss sectional plane, the 
length of message will be quadrupled (884,736 bytes). The 
frequency of message passing is still linearly proportional to 
the number of nodes in use. 
Specifically for ea& time step advancement, a minimum of 
3 global synchronization operatiom were implemented for 
the directional nnmerical sweeps in each of the three ordi- 
nates. Within each global syncluonization, a total of (2 x I L )  
synchronous message receptions, an equal number of asyn- 
chronous message transmissions, as well as the bloddng of 
an asynchronous call are required. For the p r w t  analysis, 
the number of nodes is identical to the cell indar number I L  . 
5 Numerical Results 

The basic compnte program was developed on an Iris 
workstation, 4D/44OVGX. For the baseline mesh system, 
(24x 24x 48),200timestepsrequired l,507.95cpuseconds 
for a wave to travel about a quartex length of the compnta- 
tional do&. Therefore, for the electmmagndc wave to 
traverse the entire computational domain will require 800 
time step, the unit of time defined as one characteristic time, 
t,h, In spite of a short average vector length for all opera- 
tions of only 15 78. this program sti l l  can deliveed a 173 9 
m o p s  on a single processor of a Cray Y-MP8/8128 and 
229 49 MFlops on a Cray C916/16256 respeaively. On a 
single node of the Delta system without the message pass- 
ing requirement. this code processed the same data in 19 85 
MFlops. The single-ncdedata processingrate on theparagon 
systemshows a greater sensitivity tovector optimizationthan 
of the Delta system. the data rate ranges from as low as 23 82 
and up to 26 77 MFlops. 'Ihe performance variation is gen- 
erated by using different compiler options. The comparative 
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data however lacks precision, because there are modifica- 
tions made in codes for parallel computing. particularly the 
implementation of system calls. A better approach is given 
by 6rst analysing the performance difference on both com- 
puter systems for the fractional-step algorithm of which the 
number of floating point operations per time advancement is 
known [151. 
The parallel computing efficiency of the finite difference code 
is thoroughly verified, therefore is adopted for a base of com- 
parison [151. Calculations on the (node x 96 x 96 grid 
system, the largest scalable dimension. were carried on both 
the Delta and the Paragon systems. In Figure 2. a set of 
timing results from the Delta System and two sets timing 
results from the Paragon system are given. The two sets of 
the Paragon data reflect the greater sensitivity of data execu- 
tion rate to options of compiler. The slower rate (the longer 
period of computation) produced by the Paragon system was 
generated with neither vector operation nor compiling op- 
tional enhancements. yielding a data rate only 46.13 percent 
to that of the Delta system. The results from Paragon with 
vector operation enhancement indicate a significant improve- 
ment and show a data rate of 14.2 m o p s  per node. The 
recorded data processing rate is nearly identical to that of the 
Delta sytem. operating under the identical condition. From 
this comparison. a similarly scalable parallel performance of 
the fractional step algorithm is established for the Paragon 
system. The degradation of conanrent computations is 3.1 
and 3.8 percent over the full complement of nodes available 
(5 12 nodes on Delta, 179 nodes on Paragon) for both systems 
respectively. 
The issue of non-scalability of VO on distributed memory 
computers is well known [13.14,151 and is revealed by the 
presentation of Egure 3. The period of timerequired to output 
computed results on tapes and disks are given in seconds. 
only the fastest and the slowest timing data are included. For 
both systems. the UO performance degraded rapidly as the 
number of nodes in use was inaeased. and the relationship is 
almost linearly proportional to thenumber of nodes used. The 
operating system of the Paragon multicomputer is presently 
under constant upgrading. Thus the level of performance is 
not consistent. The present VO data scattering band is much 
greater than that of theDelta system. In all, the timingresults 
demonstrated that the VO  orm man^ are not scalable for 
both systems. This issue should remain as a pacing item for 
research in concurrent computing. 
The validation of numerical simulations was performed on 
a (24 x 24 x 48) and a (48 x 48 x 96) mesh systems. AU 
calculations were first carried out on the Cray C916/16256 
computer. On the higher cell density grid. the average v e -  
tor length for all operations was 34.69. and achieved a data 
processing rate of 396.36 MFlops. In order to alleviate the 
aggregated UO time required from both the distributed mem- 
ory systems and the significant slow downof thenon-scalable 

performance. only selective planes of concurrent results were 
compared with thevalidation data generated by thecray com- 
puter. However, thenumerical results generated by the Delta 
system were verified only for the coarse mesh. The finer 
mesh numerical simulations werenot obtainableon theDelta 
system, because the CPU timerequired by non-scalable com- 
putations became prohibitive. For the cases considered. all 
numerical solutions generated by both sytems are identical 
within the order of the truncation mor. 
In Figure 4, time evolution of the electric field intensity of 
an oscillating dipole is sampled at a fixed point in space. 
This point is defined by the spherical coordinates (T = 0.4. 
B = 79.5, 4 = 184) and the sampling duration is 5 . 5 t , h .  
?hreeCartesiancomponentsoftheelecrricfieldarepresented 
along with the analytic solution. At this physical location and 
instance, they component oftheelecrricfielddominatedovez 
the two others and the X component assumed the smallest 
wave amplitude. It is obsaved that. except in the initial 
transition period. the numerical simulation lags the pulsing 
radiating wave. The agreement with the classic theoretical 
result l9.121 is excellent in both wave amplitude and phase 
angle. 
The comparison with thmetical results for the magnetic field 
intensity at the same physical location and point in time is de- 
picted in Figure 5. Again, the Y component of the magnetic 
field dominated over the X component. and the 2 c o m p  
nent vanished identically. The overall agreement with the 
theoretical result is excellent. After the initial transition pe- 
riod, numerical results did not reveal any detectable wave d 
modulations due to dispersive or dissipative numerical er- 
rors. Numerical results produced by the Paragon system and 
the Cray computers are essentially identical at the selected 
data plane. 
Figure 6 presents the instantaneous distributions of the elec- 
tric field intensity of an oscillating dipole along a radius. 
The robustness of the upwind biased scheme in resolving the 
steep gradient region near the dipole center is dearly illus- 
eated. All three computed electric field components have a 
singular behavior proportional to an inverse cubic power of 
radius at the coordinate origin. T = 0 [91. The present numer- 
ical simulation is able to adequately resolve the locally rapid 
changes. Ihe most important feature is however the good 
agreement between theory and the numerical results at the 
farfield. T = 1, where only the characteristic-based numeri- 
cal algorithm can satisfy the perftxt no-reflection numerical 
boundary through the compatibility condition [5.6.7.19]. 
Figure7 gives the comparison of instantaneous magnetic field 
distributions withtheclassicresults. Asithasbeenmentioned 
previously, only two Cartesian components of the magnetic 
field intensities exist for the oscillating electric dipole. The 
singular behavior of the magnetic field is less sevexe than that 
of the electric field intensity. but is proportional to the inverse 
square power of the radius at the coordinate origin [7,8,9' 
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The direct comparison with theory indicates an excellent 
agreement. 
Now, the verification of parallel version of the computer pro- 
gram for solving the Maxwell equations in time domain is 
considered complete for the present purpose. 

6 Timing Results 

For the present investigation, the period of times needed 
for program initiation and YO function consists of a rela- 
tively a small fraction of the total computing reswce, and 
the VO problem is well known. The timing information is 
thus focused on only the time required for computations and 
recorded for the bare minimum sampling period. The op- 
aating system of the Paragon multicomputers is still in the 
shakedown stage. Althoughattentionhas been paid to ensure 
repeatable paformanes for thedatacollection procedure.the 
timing results must be regarded as p r e l i i a r y  information. 
A substantial improvement of performance is anticipated, af- 
ter operating system enhancements are installed. 
In Figure 8, the timing data of the baseline case caldatious 
(nodes x 24 x 48) by the Delta and the Paragon systems is 
presented. At ea& 2-D mesh configuration. the maximum 
and the minimum nodal CPU times are included to re5ect the 
range of total performance (computation aid node-to-node 
communication) among the most and the least &cient node. 
n e  results generated by the Delta system wex the range of 
512 nodes, and at present 180 nodes of the Paragon system 
are available to users. For the upwind biased finite volume 
a l g o r i k  the Paragon revealed a higher data processing rate 
thantheDeltasystem Overtheoverlappingnmbaofncdes, 
the Paragon o u ~ o n u s  the Delta system by 34.84 percent 
on average. The improved performance is greater than just 
the ratio of the peak CPU rates behueen i86OW and the 
i860. 1.25. The additional efficiency gain must be derived 
fromthewiderbandwidthoftheMRC. thelayersofsoftware 
implemented, and the operating system. 
Based on profiieinformationgethered from thecray compnt- 
ers, the nodal data processing rate is estimated around 19.92 
MFlops. Anothex estimate is also resched a result of 26.77 
MFlops, based on the statistic data of arithmetic operations 
from the Cray computers; In the sampling period, a total of 
1,121,277,1635oatpointoperationshasbeenexated. "he 
estimate from this statistic information is considered higher 
than actual, because the latancy and the exa t iou  rate of the 
synchronous and the asynchronous system calls was not able 
to be taken into consideration. 
T i g  results from both systems indicated a jump in CPU 
time when more than 16 nodes were employed. This pecn- 
larity is introduced by the imposition of initial and boundary 
values at the boundaries of the computational domain and is 
formulation specific. "he first four cells near the coordinate 
origin and the last two cells at the farfield are excluded from 
the computation. Therefore the realistic scalable performace 
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should adopted the timing data at 24 nodes as the base for 
normalization. Again, the scattering of the data band of dif- 
ferent nodal perfommce is greater on the Paragon than the 
Delta system The existence of commnnication hot spot may 
also ouw [ZZl, but no con6rmation to this speculation can 
be offered at the present time. 
E d y  the scalability of the Delta performance is begiMing 
to show signs of failing for the number of nodes exceeding 
256. Admittedly, a greater number of nodes were employed 
for the timing information on Delta, but even in the overlap- 
ping range of nodes in use. the degradation in pe.rformance 
b e c o m e s  noticable. As it was found later, the scalable per- 
formance of the Delta system on the r&ed cell density grid 
(nodes x 48 x 96) was not achievable beyond 8 nodes. 
The p a f o m c e  of the Paragon system for two grid systems 
(nodes x 24 x 48) and (nodes x 48 x 96) of the upwind 
finitevolume scheme is given by Figure9. The g r a t a  range 
of scalability of the upwind biased finite volume code op- 
erating on the Paragon system definitely contributed to the 
wider bandwidth of the MRC of the Paragon than that of the 
Delta sytems. Although the number of floating point opera- 
tions per node required to advance a time step is quadrupled. 
the execution time is increased by an average ratio of 2.15. 
Two factors may have contributed to the results. Fxst the 
vector length is doubled in all do loop sananres of the codes 
which enhances g r d y  the vector operations. Seumd, the 
number of messages passed remains the same for both mesh 
systems and the change is reshiaed to the message length. 
The comrrmnication latency in start-up timeis dso unaltered. 
n e  only additional communication contentions can only be 
i n m d  by the inaeased message length. Unfortunately. 
substantiation of aforementioned observations has to be aG 
quired from the detailed profile information of the Paragon, 
and it is not available at the present time. 
Figure 10 depids the scalability of the upwind biased fi- 
nitevolume scheme mapped onto the Paragon system by the 
1D do& decomposition strategy. Fw the mesh system 
of (nodes  x 24 x 48). theparallel efficiency, normalized by 
the timing data obtained from 24node computation, suffered 
a 15.6 percent degradation at 179-node configuration. Simi- 
1arly.theresultsfromtheenrichedmesh attained84.3 percent 
pardel efficiency over the full range of available nodes. Un- 
fortunately. the absolute limit of scalable performance of the 
present implementation is still undetermined at the present 
time. 

7 Conclusions 

The upwind biased finite volume scheme has been success- 
fully implemented on both the Intel Touchstone Delta and 
Paragon W/S multi- computers by a onedimensional do- 
main decomposition strategy. 

"he preliminary timing results indicate that the Paragon sys- 
temcangeoeratea34.84percenthigherdatap~singrate 



for the upwind biased finite volume algorithm than that of 
the Delta system. The data processing rate is estimated to be 
about 19.92 Megaflops per node. 
Most importantly, the wider commnnication bandwidth of 
the Mesh Routing Chip (MRC) and the operating system 
of the Paragon system permit a greater range of scalable 
performance of the present numerical scheme. The extended 
capability allows four times greater number of cells to be 
processed efficiently. 
Continuous research for a better data structure partitioning 
for parallel computing is still urgently needed. 
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