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Abstract

A cell center, upwind biased, spatially third-order and tem-
porally second-order finite volume procedure for solving the
Maxwell equations in the time domain has been ported to a
Intel Touchstone Delta and a Paragon multicomputer. Usinga
one-dimensijonal domain partitioning scheme, the computer
code has attained a data processing rate of 7.56 Gigaops
on the 512 node Delta and 3.56 Gigaops on the 179 node
Paragon XP/S systems. The high parailel efficiency of the
present compurer program however is sustainable only up to
a limited size of addressable memory (nodes x 43 x 96).
The scalable performance range of the present code is sig-
nificantly extended by operating on the Paragon system at
present time,

Nomenclature

Magnetic flux density
FElectric displacement
Flectric field intensity
Magnetic field intensity
Index of discretized volume
Electric current density
Outward normal of a surface
Spherical coordinates

Time

Dependent variable
HElementary cell volume
General curvilinear coordinates
Electric permittivity
Magnetic permeability
Wave length
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Superscript
+,- Denotes the flux vector associated with
positive and negative eigenvalue
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1 Intreduction

‘The numerical efficiency and accuracy of computational elec-
tromagnetics (CEM) in analyzing refraction and diffraction
phenomena are still the pacing items for aircraft signature
technology. In this area of endeavor, the numerical accuracy
requirement is rather stringent and this need is not separa-
ble from numerical efficiency. A desirable and commonly
accepted predictive dynamic range is as high as 60 db over
broad viewing ranges {1]. Although no specific values of
absolute accuracy for target identification and signature pro-
cessing have been defined for air vehicle applications, the
compatible tolerance to the dynamic range requirement is an-
ticipated to be very demanding. Moreover, in high frequency
radar operation beyond X band the wavelength is reduced
to the centimeter scale [2,3]. For wave scattering simula-
tion, the numerical resolution of wave motions at a given
frequency is dictated by the minimal wavelength of the me-
dia {1,4). The concern in numerical analysis for description
of standing waves, which requires a mesh spacing to be less
than half of the wavelength, is easily satisfied by comparison
with the need of scattering simulations. From previous in-
vestigations {1,4,5.61, each wavelength should be supported
at least by ten elementary cells for finite volume or ten nodes
for finite difference schemes to attain snitable numerical res-
olution. For dielectric media with large refraction indices,
the required number of cells will be even greater.

The massive volume of data processing for air vehicle sig-
nature prediction can be illustrated by the following simple
estimate. In the case of a RCS simulation for a ten roe-
ter span aircraft being illuminating by a gigahertz (1 x 10°
Hz) radar wave, the number of cells required will exceed
10,000 in each ordinate. For three- dimensional simulation,
the computational domain will contain around 1 x 1012 cells
(10* x 10* x 10*). The data base of this computation will be
proportional to this 3-D array. Since the governing equations
consist of six dependent variables and three spatial indepen-
dent variables with nine direction cosines in a general curvi-
linear frame, a minimal 19 addressable memory units must
be allocated for each individual cell, In practice, a two- step
time integration algorithmis frequently used [4,7]. In orderto
achieve higher vector performance, additional vector arrays



will have to be included in the computer program, The typical
CEM finite volume code will have addressable memory units
as high as fifty per cell, Therefore for this RCS numerical
simulation, the number of dependent variables is around 50
trillion. The number of arithmetic operations required to pro-
cess data at each time level will be in the hundreds of trillions
just to advance the temporal variation by one step. If multi-
ple viewing angies are desired, the amount of computations
is enormous.

At the present, high numerical efficiency of CEM simulation
procedures can be attained either by algorithmic improve-
ments to solve the Maxwell equations or by using scalable
high performance computing systems. Several algorithms
for solving the Maxwell equations in the time domain, a
hyperbolic partial differential equations system, have been
transitioned from the computational fluid dynamics (CFD)
to the CEM community {4,5,6,7.8). These numerical pro-
cedures are characteristic-based methods which are derived
from eigenvalue and eigenvector analyses. Since the char-
acteristic formulation addresses the fundamental issues of
numerical stability and well- posedness of initial/boundary
value problems, drastic improvements in numerical efficiency
and accuracy have been reported in CEM simulations [1.4.6].
The theoretical approach to the eigenvalue and eigenvector
analyses also has limitation, in that the coefficient matrix of
the governing equation can only be diagonalized one dimen-
sion at a time. However the basically one-dimensional in
time and space diagonalization approach does not impose a
fundamental [imit in their application to CEM [5,6.8]. The
simple fact lies in a salient feature of the electromagnetic
wave propagation, in that the direction of wave motion is
always known to be the outer product of the electric and
magnetic field intensity, £ x H [9]. Therefore, a local mesh
system can always be constructed to align with the principai
axis of wave motion. In principle, the inherent dilemma of
solving an initial value problem as a boundary value problem
on a finite memory size computer can be eliminated {5,6,7].

In this regard the characteristic-based formulation satisfies
the compatibility condition at the farfield boundary rather
than using the approximated absorbing boundary condi-
tions 110,11). In fact, both finite difference {6] and finite
volume [7] have successfully simulated an oscillating elec-
tric dipole. These numerical solutions generated by the
characteristic-based method show no indication of reflect-
ing waves from numerical boundaries [6,7]. Particularly, the
finite volume computation has attatned a data processing rate
of 580 MFlops on a single Cray C90 processor at an averaged
vector length of §4.4 {12]. In spite of that, the rate of data
processing is still insufficient for engineering applications.

Another viable means of improving numerical efficiency for
CEM is the use of scalable multicomputers. Recent progress
in microchip and interconnect network technology has led to
ahost of high performance multiple address message-passing

parallel computers. In theory, these scalable multi-computers
or multi-processors are capable of providing essentially un-
limited computing resources for data processing. However
the performance limitation is intrinsically related to the nu-
merical algorithms and the system architecture. The effective
use of the scalable multi-computers still requires a balanced
work load and minimal inter-processor communication,

Successful implementations of time dependent, three dimen-
sional Navier Stokes equations {13,14] and three-dimensional
Maxwell equations in the time domain [15] on mmiti-
computers have been recorded. Specifically, the mapping
of the fractional-step windward finite difference algorithm
for solving the Maxwell equation in time domain onto the
Intel Touchstone Delta system has attained a data process-
ing rate of 6.6 Gigaops (1 x 10'* arithmetic operations per
second) on a mesh system of (512 x 96 x 96). The parallel
efficiency of this implementation is also persistently main-
tained at a value of 97.3 percent up to 512 numerical nodes.
Unfortunately the scalable performance ceased to exist when
the data array exceed the aforementioned dimensijon. Under
this operationat condition, the message length has reached a
size of 36, 864 bytes and the frequency of data transmission is
4090 times per time step [15]. At that time, as the diagnostic
tool was extremely limited, it was surmised that the scalable
performance breakdown was incurred by the message traf-
fic contention of the communication channels. In spite of
this observed shortcoming, the application potential is stiil
worihy of further investment.

In the present investigation, the cell center, upwind biased
finite volume scheme design to solve the three-dimensional
Maxwell equations in the time domain is mapped onto the
Intel Delta and the Paragon distributed memory computers.
The finite volume procedure has an added dimension for
applications to scaterrers of arbitrary shape than the finite
difference scheme that implemented earlier [15]. The present
procedure was developed on a general curvilinear frame [7],
and can be used to simulate a wide range of complex shape
of scatters [12]. The strategy for concurrent computation is
the same as developed by the earlier efforts {13,14,15].

The basic approach is based on a one- dimensional domain
partition approach outlined in our earlier effort. The present
eff :isfocused to seek the limitation of scalable performance
of tie finite volume procedure and to enlarge the performance
envelope, if at all possible,

2 Numerical Algorithm

The time-dependent Maxwell equations for electromagnetic
field can be given as [9]
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F-D = 0, D=¢ff (4)
where ¢ and y are the electric permittivity and the magnetic
permeablity which relate the electric displacement to the elec-
tric field intensity and magnetic flux density to the magnetic
field intensity respectively.

The governing equations. (1) and (2), cast in flux vector

form on a general curvilinear and body conformal coordinates
system acquire the following form;
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where {7 is the transformed dependent variable. £.Gand H
are the contravariant components of the flux vectors on the
Cartesian coordinate system, the basic frame of reference of
the present investigation.
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V' denotes the discretized cell volume of the transformed
coordinates and is identical to the inverse Jacobian of the
coordinate transformation [7,12].

The above system of equations is solved by discretizing the
physical space into contiguous elementary cells and by bal-
ancing all flux vectors on the control faces of the cell. There-
fore in discretized form, the integration procedure degener-
ates into computations of the sum of all fluxes aligned with
the surface area vectors. A cell centered, upwind biased finite
volume scheme based on the MUSCL approach is adopted
for the present analysis [16,17].
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The characteristic for_mulangn in finite volume approxima-
tion is achieved by split the flux vector according to the signs
of eigenvalues of the coefficient matrix in each spatial di-
mension {18,191, In essence, the numerical procedure is
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designed to honor the zone of influence of the initial value
problem. In other words, the numerical method is constructed
to follow the direction of signal propagation by choosing the
appropriate piecewise continuous data to form the directional
difference for the simulated wave motion. The flux at any
cell interface is represented by a superposition of two com-
popents; I'*, F~, G*, G~, H*, and H™ according to the
direction of wave motion [16,17,18,19]. Follow earlier ef-

forts {7,12], at the celf surface ¢ + 1/2, is obtained as;

Foi = FYULO+F-WE)
Gry = GHULD+G-WUf) (10)
.Hkq-% = I+(UL1)+H (URL)

In practice, the F*, F'~ etc are reconstructed by the &
scheme [20] which is capable of generating approximations
from first-order to third order accurate. The consistent nu-
merical accuracy in time is obtained by a Runge-Kutta family
of single-step multi-stage procedure permitting a wide range
of order of temporal accuracy in one programming proce-
dure [21]. In the present effort, only a two-stage procedure
which is second order accurate in time is used.

The balancing of flux vectors on the transformed cell inter-
face is greatly facilitated by introducing locally orthogonal
coordinates. One of the ordinates is aligned with the outward
normal of the cell surface. Since the rest coordinates are
tangential components to the surface vector, they are easily
constructed by executing consecutive outer products between
the outward normat and one of the cell edges in consideration.

Then the flux vectors on the cell interface are split into com-
ponents parallel to the orthogonal coordinates and balanced
locally. The necessary eigenvalue and eigenvector analyses
required for flux splitting as well as the inverse mapping into
the curvilinear coordinates are well known [5.6]. The de-
tailed formulation can be found in reférence [71, thus will not
be repeated in here,

Numerical simulation of a three-dimensionai, time dependint
radiating electromagnetic wave is adopted for the present
study. The initial and boundary conditions for an oscillating
electric dipole simulation are straight forward. The pulsating
source is described by a sinusoidal wave with an amplitude of
unity and the wavelength equal to the half radius of the entire
computational domain. The only physically meaningful ini-
tial condition required is the total inducted field at the dipole,
for which the analytic solution is known to contain singular
behavior (9], In order to alleviate the extremety small time
step required to resolve the finest cell volume near the coor-
dinate origin, the initial values were imposed for four cells
immediately adjacent to the dipole.

The farfield boundary condition on the truncated domain usu-
ally is the most difficult numerical boundary condition en-
countered in CEM {1,4,10,11], because the reflected wave
from the artificial boundary will produce serious distortion of



wave patterns. For the present characteristic-based formula-
tion, this boundary condition is described simply by the zero
incoming flux component.

F7E,m,0=00 (11)

where 7, denotes the radius of the farfield boundary. On the
spherical coordinate, the above farfield boundary condition
for a dipole is also the exact compatibility condition., Within
the truncation error of numerical analysis, the spurious re-
flected wave commonly observed in CEM simulation should
be completely eliminated [5,6]. The other numerical bound-
ary conditions in circumferential and the azimuthal directions
merely reflect a continuous field. Arrays of two overlapping
cells are sufficient to enforce the functional continuity re-
quirement.

3 Description of the Multicomputers

Both the Touchstone Deita and Paragon XP/S are mesh inter-
connected parallel processors {22,23,24]. The mesh topology
is based on byte-wide communication channels rather than
the bit-wide hypercube topology. These two multicomputers
consist of a large number of heterogeneous nodes to perform
computation, frame buffer, network link, and disk string func-
tions. Individual computing nodes. i860 or i860XP, are con-
nected to a Mesh Routing Chip (MRC) through a Interface
Module.

On message passing or distributed memory mujticomput-
ers, the performance of concurrent computing is closely tied
to node-to-node and node-to-memory communication band-
width and latency. These system peculiarities always ex-
ist and have profound influence to parallel efficiency, par-
ticularly, when contention of communication path becomes
significant in concurrent operation. The occurrence of con-
tention is dictated by frequency of data movement, length of
message, and the data transfer rate. The communication time
of a message is proportional to the length of data string, but
there is also some discontinuity in rate of data transmission at
some specific message size [22], This behavior is introduced
by the communication protocol and operating system char-
acteristics which can induce performance degradation. In
applications, all message traffic may compete for passage in
communication channels, and can lead to poor parallel com-
puting performance of any distributed memory computers.

The Touchstone Delta system used consists of 576 hetero-
geneous nodes. Among these, 528 are 1860 computational
nodes, but only 512 nodes are allocated by a two-dimensional
mesh up to a (16 x 32) configuration [23]. The i860has a peak
rate of 80 single- precision and 60 double-precision MFlops,
a 16 Megabytes (Mb) nodal memory, and a 8 Kilobytes (Kb)
data cache. The I/O function is carried out by a total of 32
80386 I/O nodes, and each has a bandwidth of 16 MHz, The
complete system also includes 2 gateway nodes and 6 service
nodes[23). For a given numerical algorithm, the data pro-
cessing rate and scalable performance are constrained by the

communication latency and contention. The node-to-node
communication latency of the Delta system is dominated by
chores of argument checking, context switch on interrupt,
and other protocol requirements [22]. Latency incurs extra
time elapsed for multi-hop data movement between nodes
and creates a situation for communication contention.

The message passing in the Delta system is row biased, such
that the node near the boundaries of two-dimensional mesh
willhave to be routed through multi-hop to reach anodein the
different row, A programming arrangement takes advantage
of immediately adjacent node priority in message passing has
shown a 7.3 percent gained in parailel computing efficiency of
a fractional-step scheme [14,15). However, the choke point
of performance on the Delta system is still the node-to-node
communication. Although the MRC has a rated bandwidth of
65 Mb/s. a measured peak is about 13.1 MB/s for a message
size of 100, 000 bytes [22].

The Paragon XP/S system, contains 240 i860XP computa-
tional nodes, 4 servicenodes, and 16 multi-purpose IfO nodes.
The i860XP has two CPUs and twice the size of nodal mem-
ory than the 1860, (32Mb), and a rated peak performance
of 75 double-precision and 1({) single-precision MFlops. In
contrast to the 1860 used by the Delta system, the rated perfor-
mance is 25 percent higher. The MRC of the paragon system
has 10 unidirectional ports, and a bandwidth of 200 Mb/s per
port. The data transfer rate is 3.077 times greater than that of
the Delta system. For a nnmerical algorithm dominated by
frequent message passing and high risk for communication
contention, the improved data processing rate will have the ~
potential to exceed 25 percent. The last major component
of the Paragon system used is the 15 Redundant Array of
Inexpensive Disk Drives (RAIDs), each having a capacity of
4.8 Gigabytes (Gb) [24].

There is no fundamental architectural differences between
the two Intel systems, but hardware enhancements have been
made to the computational node and MRC of the Paragon
XP/S system. It may be interesting to point out that the
enhancement to the data shipping rate is greater than the data
processing rate of the Paragon system. As a consequence,
a higher performance than 25 percent may be anticipated.
On the other hand, the operating systems are significantly
different from each other, but the developed software is still
transportable from one system to other. Only minor changes
of code that was developed on the Delta system was needed
to operate on the Paragon system. The system information
of the two- dimensional mesh partition to take advantage of
the immediately adjacent nodes priority on the Delta system
is not currently available for the Paragon.

The Paragon operating system OQSF/1 is Uanix like, and writ-
ten by the Open Systems Foundation (OSF) and Intel [24].
The QSF/1 operating system provides the virtual memory
capability that in turn also consumes considerable memory,
and at present the performance is not necessarily optimal,
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is not a production system. In this regard, the timing infor-
mation obtained from the Paragon system is still subject to
contingous improvements,

4 Domain Decomposition Strategy

The data structure partition is the first critical step toward
high parallel efficiency on distributed memory systems. On
the mesh-connected paratlel processors, the data fow and data
management lead to four different partitions of data {13,15].
The most elementary approach of domain partition is the
one dimensional parallelization in which planar data core-
sponding to the first index of the 3-D array, /L, is assigned
to individual processors. As a consequence, each numeri-
cal node is assigned to process data only containing a two-
dimensional cross plane (JL x KL). Although the initial
and boundary values within the two- dimensional array are
self-contained, communication is reguired between contign-
ous pianes identified by the computational node. Along the
ordinate associated with each node, data communication be-
tween nodes is needed to construct the balanced flux vectors
on cell interfaces, and to satisfy the boundary conditions at the
edges of the computational domain. Since the data overlap-
ping regions are significant in comparison with the total data
base, the nodal communication is frequent during a numer-
ical sweep for time advancements. The other data partition
schemes including the page structure, the pencil structure,
and the block structure [15] also have some degrees of con-
trol for data management and to meet the basic criterion for
parallel computing, balance the work load among all nodes,
and keep the data transfer between nodes at the absolute min-
ium. A graphic depiction of these data partition schemes is
given in Figure §.

Only the one dimensional (1D) domain partition accom-
plished for now, because this approach is the most straightfor-
ward implementation of numerical algorithms on structured
grids to parallel computers [6,12,15). In the present approach,
the data are organized into equal-in-length and contiguous
cross planes which can also be viewed as a form of task
partition. The major advantages of the 1D partition is that
the approach can automatically achieve perfect load balane-
ing among nodes. The advantage is however acquired at the
expense of a greater amount of inter-nodal communications
than that of the page, pencil, and block structures [13,14]. Oun
the Delta system, even full use of message-passing priority of
the immediately adjacent nodes still can not overcome the ba-
sic shortcoming. The communication contention eventuaily
will set the performance ceiling of the scalable operations
for both a finite difference [15] and the present finite volume
algorithms.

The timing results of a related study of a fractional-step
scheme [6,15] revealed that, the pencil partition has demon-

strated a potential 37 percent higher data processing rate than
that of the 1D partition. but the pencil partition also encoun-

tered a similar ceiling of scalable performance up t0 a size of
problem of (512 x 96 x 96). Nevertheless, the 1D scheme
has achieved a scalable data processing rate of 6.55 Gigaops
and a sustained parallel efficiency of 92.7 percent up to 512
nodes on the Delta system [15]. The scalable performance of
the finite difference code developed for Cartesian coordinates
breaks down when the mesh system exceeds a dimension of
(512 x 96 x 96). The limiting behavior of performance is also
observed for the pencil partition scheme. This performance
limitation of a distributed memory multicomputer is closely
tied to memory bandwidth and memory latency, and is aiso
the issue to be examined here.

In mapping the upwind biased finite volume code onto the
Intel systems using the 1D partition, each node processes
a grid plane containing 77, x KL cells. For this partition
scheme, numerous message passings are performed per grid
point for each temporal step advancement, and the length of
message is the product of J L, X' L and numbers of dependent
variables in the formulation. For the baseline case of (24 x
24 x 48), each individual message has a length of 221,184
bytes. If the cell density of the finite volume computation is
doubled in both directions of the cross sectional plane, the
length of message will be quadrupled (834, 736 bytes). The
frequency of message passing is still linearly proportional to
the number of nodes in use,

Specifically for each time step advancement, a minimum of
3 global synchronization operations were implemented for
the directional numerical sweeps in each of the three ordi-
nates. Within each global synchronization, a total of (2 x 1.1}
synchronous message receptions, an equal number of asyn-
chronous message transmissions, as well as the blocking of
an asynchronous call are required. For the present analysis,
the number of nodes is identical to the cell index pumber /L.

5 Numerical Results

The basic computer program was developed on an Iris
workstation, 4D/440VGX. For the baseline mesh system,
(24 % 24 x 48), 200 time steps required 1, 507.95 cpu seconds
for a wave to travel about a quarter length of the computa-
tional domaia, Therefore, for the electromagnetic wave to
traverse the entire computational domain will require 800
time step, the unit of time defined as one characteristic time,
ten. In spite of a shott average vector length for all opera-
tions of only 15.78, this program still can delivered 2 173.9
MFiops on a single processor of a Cray Y-MP8/8128 and
229.49 MFlops on a Cray C916/16256 respectively. On a
single node of the Delta system without the message pass-
ing requirement, this code processed the same data in 19.85
MFlops. The single-node data processing rate on the Paragon
system shows a greater sensitivity to vector optimization than
of the Delta system, the data rate ranges from as low as 23.82
and up to 26.77 MFlops. The performance variation is gen-
erated by using different compiler options. The corparative



data however lacks precision, because there are modifica-
tions made in codes for parallel computing, particularly the
implementation of system calls. A better approach is given
by first analysing the performance difference on both com-
puter systems for the fractional-step algorithm of which the
number of floating point operations per time advancement is
known [15].

The parallel computing efficiency of the finite difference code
is thoroughly verified, therefore is adopted for a base of com-
parison [15]. Calculations on the (node x 96 x 96 grid
system, the largest scalable dimension, were carried on both
the Delta and the Paragon systems. In Figure 2, a set of
timing results from the Delta System and two sets timing
results from the Paragon system are given. The two sets of
the Paragon data reflect the greater sensitivity of data execn-
tion rate to options of compiler. The slower rate (the longer
period of computation) produced by the Paragon system was
generated with neither vector operation nor compiling op-
tional enhancements, yielding a data rate only 46.13 percent
to that of the Delta system. The results from Paragon with
vector operation enhancement indicate a significant improve-
ment and show a data rate of 14.2 MFlops per node. The
recorded data processing rate is nearly identical to that of the
Delta sytem, operating under the identical condition. From
this comparison, a similarly scalable parallel performance of
the fractional step algorithm is established for the Paragon
system. The degradation of concurrent computations is 3.1
and 3.8 percent over the full complement of nodes available
(512 nodes on Delta, 179 nodes on Paragon) for both systems
respectively.

The issue of non-scalability of /O on distributed memory
computers is well known {13,14,15] and is revealed by the
presentation of Figure 3. The period of time required to output
computed results on tapes and disks are given in seconds,
only the fastest and the slowest timing data are included. For
both systems, the I/O performance degraded rapidly as the
number of nodes in use was increased, and the relationship is
almost linearly proportional to the number of nodes used. The
operating system of the Paragon multicomputer is presently
under constant upgrading. Thus the level of performance is
not consistent. The present I/O data scattering band is much
greater than that of the Delta system. In all, the timing results
demonstrated that the J/O performances are not scatable for
both systems. This issue should remain as a pacing item for
research in concurrent computing.

The validation of numerical simuiations was performed on
a {24 x 24 x 48) and a (48 x 48 x 96) mesh systems. All
calculations were first carried out on the Cray C916/16256
computer. On the higher cell density grid, the average vec-
tor length for all operations was 34.69, and achieved a data
processing rate of 396.36 MFlops. In order to alleviate the
aggregated I/O time required from both the distributed merm-
ory systems and the significant slow down of the non-scalable

performance, only selective planes of concurrent results were
compared with the validation data generated by the Cray com-
puter. However, the numerical results generated by the Delta
system were verified only for the coarse mesh. The finer
mesh numerical simulations were not obtainable on the Delta
system, because the CPU time required by non-scalable com-
putations became prohibitive. For the cases considered, all
numerical solutions generated by both sytems are identical
within the order of the truncation error.

In Figure 4, time evolution of the electric field intensity of
an oscillating dipole is sampled at a fixed point in space.
This point is defined by the spherical coordinates (r = 0.4,
6 = 795, ¢ = 184) and the sampling duration is 5.5¢.5.
Three Cartesian components of the electric field are presented
along with the analytic solution, At this physical location and
instance, the Y component of the electric field dominated over
the two others and the X component assumed the smallest
wave amplitude. It is observed that, except in the initial
transition period., the numerical simulation lags the pulsing
radiating wave. The agreement with the classic theoretical
result [9,12] is excellent in both wave amplitude and phase
angle.

The comparison with theoretical results for the magnetic field
intensity at the same physical location and point in time is de-
picted in Figure 5. Again, the Y component of the magnetic
field dominated over the X component, and the Z compo-
nent vanished identically. The overall agreement with the
theoretical result is excellent. After the initial transition pe-

riod, numerical results did not reveal any detectable wave

modulations due to dispersive or dissipative numerical er-
rors. Numerical results produced by the Paragon system and
the Cray computers are essentially identical at the selected
data plane,

Figure 6 presents the instantaneous distributions of the elec-
tric field intensity of an oscillating dipole along a radius.
The robustness of the upwind biased scheme in resolving the
steep gradient region near the dipole center is clearly illus-
trated, All three computed electric field components have a
singular behavior proportional to an inverse cubic power of
radius at the coordinate origin, » = 0 [9]. The present numer-
ical simulation is able to adequately resolve the locally rapid
changes. The most important feature is however the good
agreement between theory and the numerical results at the
farfield, » = 1, where only the characteristic-based numeri-
cal algorithm can satisfy the perfect no-reflection numerical
boundary through the compatibility condition [5,6.7,19].

Figure 7 gives the comparison of instantaneous magnetic field
distributions with the classicresults. Asithasbeen mentioned
previously, only two Cartesian components of the magnetic
field intensities exist for the oscillating electric dipole. The
singular behavior of the magnetic field is less severe than that
of the electric field intensity, but is proportional to the inverse
square power of the radius at the coordinate origin [7,8,9"
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The direct comparison with theory indicates an excellent
agreement.

Now, the verification of paraliel version of the computer pro-
gram for solving the Maxwell equations in time domain is
considered complete for the present purpose.

6 Timing Results

For the present investigation, the period of times needed
for program initiation and I/O function consists of a rela-
tively a small fraction of the total computing resource, and
the I/O problem is well known. The timing information is
thus focused on only the time required for computations and
recorded for the bare minimum sampling period. The op-
erating system of the Paragon multicomputers is still in the
shakedown stage. Although attention has been paid to ensure
repeatable performances for the data collection procedure, the
timing results must be regarded as preliminary information,
A substantial improvement of performance is anticipated, af-
ter operating system enhancements are installed,

In Figure 8, the timing data of the baseline case calculations
(nodes x 24 x 48) by the Delta and the Paragon systems is
presented. At each 2-D mesh configuration, the maximum
and the minimum nodal CPU times are included to reflect the
range of total performance (computation and node-to-node
communication) among the most and the least effcient node.
The results generated by the Delta system cover the range of
512 nodes, and at present 180 nodes of the Paragon system
are available to users. For the upwind biased finite volume
algorithm, the Paragon revealed a higher data processing rate
than the Delta system. Over the overlapping number of nodes,
the Paragon outperforms the Delta system by 34.84 percent
on average. The improved performance is greater than just
the ratio of the peak CPU rates between i860XP and the
1860, 1.25. The additional efficiency gain must be derived
from the wider bandwidth of the MRC, the layers of software
implemented, and the operating system.

Based on profile information gethered from the Cray comput-
ers, the nodal data processing rate is estimated around 19.92
MFlops. Another estimate is also reached a resuit of 26.77
MFlops, based on the statistic data of arithmetic operations
from the Cray computers; In the sampling period, a total of
1,121,277, 163 float point operations has been executed. The
estimate from this statistic information is considered higher
than actual, because the latancy and the execution rate of the
synchronous and the asynchronous system calls was not able
to be taken into consideration,

Timing resuits from both systems indicated a jump in CPU
time when more than 16 nodes were employed. This pecu-
larity is introduced by the imposition of initial and boundary
values at the boundaries of the computational domain and is
formulation specific. The first four cells near the coordinate
origin and the last two cells at the farfield are excluded from
the computation. Therefore the realistic scalable performace

should adopted the timing data at 24 nodes as the base for
normalization, Again, the scattering of the data band of dif-
ferent nodal performance is greater on the Paragon than the
Delta system. The existence of communication hot spot may
also occur [22], but no confirmation to this speculation can
be offered at the present time.

Finally the scalability of the Delta performance is beginning
to show signs of failing for the number of nodes exceeding
256. Admittedly, a greater number of nodes were employed
for the timing information on Delta, but even in the overiap-
ping range of nodes in use, the degradation in performance
becomes noticable. As it was found later, the scalable per-
formance of the Delta system on the refined cell density grid
(nodes x 48 x 96) was not achievable beyond 8 nodes.

The performance of the Paragon system for two grid systems
(nodes x 24 x 48) and (nodes x 48 x 96) of the upwind
finite volume scheme is given by Figure 9, The greater range
of scalability of the upwind biased finite volume code op-
erating on the Paragon system definitely contributed to the
wider bandwidth of the MRC of the Paragon than that of the
Delta sytems. Although the number of fioating point opera-
tions per node required to advance a time step is quadrupled,
the execution time is increased by an average ratio of 2.15.
Two factors may have contributed to the results. First the
vector length is doubled in all do loop structures of the codes
which enhances greatly the vector operations, Second, the
number of messages passed remains the same for both mesh
systems and the change is restricted to the message length.
The communication Jatency in start-up time is also unaltered.
The only additional communication contentions can only be
incurred by the increased message length. Unfortunately,
substantiation of aforementioned observations has to be ac-
quired from the detailed profile information of the Paragon,
and it is not avaiiable at the present time.

Figure 10 depicts the scalability of the upwind biased fi-
nite volume scheme mapped onto the Paragon system by the
1D domain decomposition strategy. For the mesh system
of (nodes x 24 x 48), the parailel efficiency, normalized by
the timing data obtained from 24-node computation, suffered
a 15.6 percent degradation at 179-node configuration. Simi-
larly, the results from the enriched mesh attained 84.3 percent
parallel efficiency over the full range of available nodes. Un-
fortunately, the absolute limit of scalable performance of the
present irplementation is still undetermined at the present
time,

7 Conclusions

The upwind biased finite volume scheme has been success-
fully implemented on both the Intel Touchstone Delta and
Paragon XP/S multi- computers by a one-dimensional do-
main decomposition strategy.

The preliminary timing results indicate that the Paragon sys-
tem can génerate a 34.84 percent higher data processing rate



for the upwind biased finite volume afgorithm than that of
the Delta system. The data processing rate is estimated to be
about 19.92 Megaflops per node.

Most importantly, the wider communication bandwidth of
the Mesh Routing Chip (MRC) and the operating system
of the Paragon system permit a greater range of scalable
performance of the present numerical scheme. The extended
capability allows four times greater number of ceils to be
processed efficiently.

Continuous research for a better data structure partitioning
for parallel computing is still urgently needed.
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