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INTEGRALS OF THE MOTION FOR OPTIMAL

TRATJECTORIES

IN ATMOSPHERIC FLIGHT*

N. X. Vinh™*
The University of Michigan

Ann Arhor,

Absiract

The problem of optimizing the flight trajec-
tory of a rocket vehicle moving in a resisting me-
dium, in a general gravitational force field, is
considered. Optimal laws for the medulation of
the aerodynamic and propulsive forces arce formu-
jated in terms of the primer vector, the vector ad-
joint to the velocity., Relations for flight along an
intermediate-thrust are, and integrals of the mo-
tion for several cases of practical interest are
derived.

I, Introduction

The problem of determining optimal trajec-
tories for a rocket powered lifting vehicle flying
ingide the atmosphere of a planet has received
considerable attention in recent years, General
control laws for the lift and the bank angle, and
for the thrusting program have been obtained in
terms of the primer vector, the adjoint vector as-
saciated to the velocity vector Y. In this paper we
modify the results in Ref. 1 to apply to the case
when the thrust direction is constrained to align
with the velocity vector. This is the case when
the engine is mounted fixed with respect to the ve-
hicle and the flight is effectuated in the dense lay-
er of the atmoesphere and at small angle of attack
to validate the assumption!®. From the gencral
theory, solutions for optimal maneuvers for flight
in a uniform gravitational field will be obtaincd by
canonical transformations,

II. The Optimal Controls

Consgider the motion of a powered, lifting ve-
hicle in a general gravitational force field, Af the

time t, the staic of the vehicle is defined by
T{t) = position vector
\*.;(t) = velocity vector
mt) = instantancous mass.

The flight is controiled by a thrusting force T
and the aerodynamic force A (Fig.1). It is as-
sumed that T is aligned with the velocity, and its
magnitude is bounded by

0s=T=T (1}

max

Furthermore, we assume that the vehicle has a
plane of symmetry, both the thrust and the acro-
dynamic force are applied at the center of mass
and, in coordinated flight, the aerodynamic force
and the velocity are contained in that plane of sym-
metry. It ig customary to decompose A into a
drag force D , always opposite to V and a 1ift

"the Reynolds number,
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force T, orthogonal to it. We shall usc the usual

assumptiion

1. = —1,pSVZCI

D =-w§psvzc[)

{2)

where p is the atmospheric mass density . function
of v, S is a reference area. In hypersonic flight,
the 1ift cocfficient Cy,, and the drag coefficient ),
are assumed independent of the Mach number and
For simplicity, we shall
assume a parabolic drag polar, defined by

S =G+ kEE

CD C])o k¢ L (3)
where CDo and k are constants, It is convenient
to define a 1lift control parameter A such that

K .
N =JE . (4)

Dy

Then, when i =1,
drag ratio,

the flight is at maximum lift-to-

The motion of the vehicle, flying in a general
gravitational force field, and subject to aerodynam-
ic force and thrusting force, is governed by the

equations
dr _ o
— =
dt
aV T V A
G Tm VW ey &
dm . T
dt C

where c is the constant Oxhaust velocity of the gas
ejected from the engine and g is the accoleration
of the gravitational field. The optimal transgfer
problem is defined asg follows.

At the initial time, t - 0, T =T, V=V, m =
mg. 7The vectors rg, Vyand the scilarwmo are pre-
scribed, At the final time, t = t¢, r =g, V = V¢
and m = myg. The problem is to find the time his-
tory of At) and T{t) such that some scalar function
of the final state is a minimum.

Using the maximum principle, we introduce the
adjoint elements q, p and p,, to form the Hamilton-

ian.
mp
__E] (©)

oeqeve (S ) [‘PV -

where E, 35 and p,, are defined by the adjoint equa-
tions
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The following general results for optimal trajec-
tories have been obtained in Ref. 1,

1. 1If the direction of the thrust can be taken arbi-
trarily, whenever the engine is operating, the
thrust must be directed along the vector p, called
the primer vecfor, This is the extension of the
classical result obtained by Lawden for transfer
in a vacuum.

2, The thrusting program is governed by thec
switching function, which, for the case considered
in this paper when the thrust is always aligned
with the velocity, is defined by

v c

(8)

IHK>0, we select T = Ty a4 (boosting phasc)
K<0, we gelect T =0 (coasting phasc)
K =0, for a finitc time interval,
we seclect T = variable {sustaining phase)

3. The optimal 1ift modulation is such that Cy, =

Cy, ,or, for variable lift program
“max
ac
|9 .
tan e = o {9
L

where ¢ is the angle between V and p.

4. The optimal bank angle is such that the vectors
V D and A are coplanar, that is

(VXPy-A =0 (10)

5. For optimal flight constantly at maximum 1ift-

to-drag ratfio, ﬁ is orthogonal te A, that is
B.A =0 (11)
6. Along a variahle-thrust arc, we have
- mp
Lgvﬂ - (12)

By taking the derivative of this equation, and using
(5}, (6} and (7) together with (12) and rearranging,
we have

H}(pK(V)

The variable thrust magnitude control will be ob-
tained upon taking the derivative of this equation.

VA)

+ (V- g£| 2(p- 2 (13)

“

These results are valid for a general gravita-
tional force field. In particular, when g is time
invariant, the Hamiltonian given by (b) is constant.

III. Application to the Case of a
Uniform Gravitational Field

Consider the case where § is a constant vec-
tor. In Cartesian rectangular coordinates, let

T = {1 ,%z ,% ) with x5 alongig'

v: (V1:VZ;V3)
q = (g1 ,92,03)
P = (P1.pPz, )
K= (A,,Az A

We shall use the transformation
vy =V cos y cos
vy =V cos vy sin g (14)
vy =V siny

It is seen that v is the flight path angle, and y the

heading. We consider an exponential atmosphere
of the form

P = Po CEpP (-fx%3) {15)
where B is the constant height scale. For the trans
formation (14) to be canonical, while conserving
the same Hamiltonian

Pidvy #P2dvz tpydvy =p Vi p dytp dy

This gives the linear transformation for the adjoing
components of the primer vector

gin vi ypi} (P
cosy| ip.d® va (16

CoS yeos §  cosysiny

-sinycos ¢ -siny siny

-cosysin g cosSycosy 0 P (e /V

Reversing the matrix equation

. o X _sind
P cesy cosy -sinycosy P N pv
. . i . Cos
P cosy sind -sinysindg o Y p\!;'V (17}
P3 sinvy COs y 0 p!f’V
o/

In particular, we can verify the following reclations
2 z

P p
2.2 2y 2 2y Y v
PUoE Pttt ey T ey ozt g oo y {18)
and
PV T v Dt vy - VPV (19}

For the transformation of the aerodynamic forces,
we define the bank angle ¢ as the angle betwecn the
plane of symmetry of the airplane ia_pd the vertical

plane passing through the velocity V (Fig.2). Then,
from the geometry of the figure

(Aycosy+ Aysinyg) cosy + Aysiny = -D

(A cosy + Azsing) siny - Aycosy = -Lcosd (20}

Ay sind - Aycosd =-L sing

Thercfore, we have for the Cartesian components
of the aerodynamic force

Ay=-Dcospcosy - L{coesdcosysiny+singsind)
Ay=-Dsinbcosy-Licos ¢sindsiny- sing cos ) (21)
Az =-Dsiny+Lcos dcosy.

The aerodynamic optimal controls can be obtained
directly from the general theory, Using formula



(9), with relation (3), we have for the optimal

variable 1ift control

= 2kC

tan
¢ L

(22)
For the bank angle, by expanding the determinant
(10) using (14) and (17) for the compeonents of v
and p we have

P
A sind - A, cos .
p, LA, sing - Azcos ] -

(A cos bt A sinydsiny - Ascosy] = O

By reclations (20), we have for the optimal variable

bank angle

P
tand = m— L (23)
p cosy
A
We can rewrite relation (22) by observing that
PV T pVcose - Ve,
Therefore
2
p = ——rpv (24)
o=
On the other hand, from (18), and using the opti-
mal law {23}
2 2
b P 2
L2y . ytan® ¢
ot g vy L
or
pZ
2o pF byl 25
P* TP, T esTy {25}
By climinating p° between (24) and {25}, we have
P
y
ta T e 26
ar € vacosrb 26

The optimal lift control, expressed in terms of the

adjecint variables, is then
p
ZKC, F e (27)
L vacosqﬁ

We ser that the acrodynamic controls are govern-
ed by the adjoint components pv,p\( and p

M
1v. The Integrals of the Motion

A number of the integrals of the motion,
mostly associated with a flight at maximum Qift-to-
drag ratio, has been displayed in Ref. 1. Here we
shall derive them directly, and furthermore ob-
tain some additional integrals. The equations of
the motion, written in components form, and using
the velocity transformation (14), are

ds;

prallie V cosy cosy
dX}_ B .
el V cosy sing
dx, ,

Tl V sinvy

av (e
dt m g siny

d 1. cos )
a{‘ = -y L0859 -gcosy (£8)
dy _ Lising

dt mV cosy

dm T

dt c

The Hamiltonian (6) becomes, with new variables,

in a uniform gravitational field

H = (grcosy+qesing)Veosy +q; V siny

L_cos_mgcos\a

- P (P_+g Siﬂ‘()"‘P mv v

"o

Along an optimal trajectory, with variable lift and
hank controls given by {23) and (27) we have

Lsing

meVLosy (>9)

0= (qeosdtqsind)V cosy + g,V siny

P
*ﬁ(PVSiny + TY CGSY) +
E( -
m Py

We notice that, if the flight is at maximum lift-to-
drag ratio kCj,- Cp, = 0, and the constant Hamil-
tonian is freec of acrodynamic components. This
result has been shown to be valid for a general
gravitational force field in Ref. 1 The switching
function is secn to be

SVE/ .
gm (kci, ) ("1)0) pv

(30)

K=p_- {(31)

The adjoint equations, with optimal variable liftand

bank controls, are

dg; = 0
dt
9
a O
2
dg, _ BpSV 2
at - zm o WO - Cp e
dp
v . .
—at (Q, cosytqgzsing)cosy - gy siny
g pSVCD

- . + 0 2

T2 COSY t by (32)
dp
—dz s {gycosptgpsind)Veiny - V cosy

pY p Lsing

+ I .

8(pv cosy - ¥ sinvy) e YSlny
dp
FTa {dysind - g, cosd}V cosy
dp g2 Tp

m A% 2 v
—_— = -E-ﬁ— kC*® - 1
at C Zme KO Cphe T T



\

We first have the integrals

¢, = a, = constant

(33)

gz = a; - constant

If the longitudinal range and the lateral range are
free, these constants are acre, 1t is seen that o
is also constant if the flight is at maximum 1ift-to-
drag ratio. Next, using (33) we have
dp
d .
grlnxe ~dex) = ‘a*{g

Hence

1%z - daXy = pq)'* constant (34)
For free longitudinal and lateral ranges

p, = ag - constant (35)

"

If the final heading is not prescribed, this con-
stant is zero, and from (23}, ¢ = 0. The flight
is effectuated in a vertical planc containing the
initial velocity.

Now consider
m

P
d\/ pPSVES 2 I( m)
m — e - -
dt pm_) 2m x( 1. ('l)o) pv m pv C (26)

First, along a ceoasting arc, T = 0, or along a sus-
taining arc, K= 0, and if the flight is at maximum
lift-to-drag ratio

mpm = constant (37)
For flight at variable lift coefficient, and along a
coasting arc or a sustaining arc, by eliminating
the time between (36) and the equation for g; , we
have

dgz = pd (mp, )

By intcgrating, wc have

a = pmp ta (38)
where a, is a new constant of integration.
Consider the derivative of Vp,,
p -
d g( . N
= =-H-2 - +
at va> H pv&.m\{ v cos \()
mp_
T/ m
+ =f2n - 3
Siee, - ——) (39)

Along a coasting arc, T= ¢, and using Eggers
assumption by neglecting the gravity compared to
aerodynamic force'’,an assumption generally valid
for a skip or pull-up maneuver, we have, upon
integration

va = -Ht + a, (40)

where a, is a constant of integration. In particu-
lar, when the final time is free, H = 0, and

= 4
Vb, 7 ay (41)
We write the Hamiltonian for the case of free
longitudinal and lateral range, and free time,
along a coasting arc or a sustaining arc, Relation
(30) becomes

pSVEy

2
TGS CDO/)p

v

P
T -qy Vsin~{+§g1.(Jv siny + —a—cos y\ (423

7
With this integral we can delete the differential
equation for by Using (42) we write the equation
for g

das
dt

p
©-pus Vsiny+ Pglp siny+ <f cosy)
The equation can be integrated if skip trajectory
assumption is used. We have

dX3

Bas at

dt
Upon integrating

- -Pg; Vsiny

s - const, X exp{-§x,;) ~const. X p {43

By the change of variable from x; to p, using the
exponential law (15), a canonical transformation
requires
s dx; = qup = -ﬁpquX3
Hence
g = -5pqp
and therefore

Al

q constant

4
0 (44)

This shows the advantage of using the atmospheric
mass density as the altitude variable.

The Eggers assumption, in the free range and
free time case, gives explicit laws for the modula-
tion of the lift and the bank,

First, along a coasting arc, we write (43)

43 = bsp (45}

where b, is a constant,
42} gives

The Hamiltonian relation

Vp = 2bam siny

v S(CD0 -kCY)
Since in this case va =a,, we have
k 2
CL

_ ¢ _ 2bym siny

CD0 Sa, CD0

That is, by observing that m is constant along a
coasting arc

2% = I +asiny (46)

where a is a constant., We have the classical re-
suli, first obtained by Contensoul®) and later ex-
tended to three-dimensional cagse by Griffin and
vinh®) and Speyer and Womble®), We now rewrite
the law for the bank angle

Pkp a4

tand = pY cos Y ) Zka4CLcos¢cosy

or

(47)



where b is a constant., The constants a and b in
the optimal lift and bank laws are determined by
gpecifying terminal conditiong at the ends of a
coasting arc.

Next, along a sustaining arc, we have the re-
lations (12) and (13), which for a constant gravity
field, become

mp_
p,-—— =0 (48)
and
PSVZP ;
v \'% v 2
Zm Kc +1>CDO (c I)I{CLJ
Zgp

{49)

Y :
= H + +
H v cosy+tgp siny

For a free time problem, H = 0, and neglecting
gravity, we have the following simple law for opti-
mal variable 1ift conirol aleng a sustaining arc

(Vicy+ 1

W1 o)

ME =
An interesting fact is that variable lift control for
sustaining flight is only optimal for high velocity,
V > ¢, and for vehicle with high lift performance,
LN

Finally for the boostin‘gr arc, by eliminating
the time between the equations for V and m, we
have

ul

v e, c [D
dm m T m @ BF YJ
max
with Ty, ™ @ (impulsive approximation) the

equation can be integrated to give

- (V
m--mexpf-?:—)

where 1 is a constant mass.,

V. Conclusions

General control laws for the modulation of the
lift and the bank angle, and for the thrusting pro-
gram along the optimal trajcectory of a rocket
powered, lifting vehicle, flying inside the atmo-
sphere of a planet, with the thrust aligned along
the velocity vector, have been obtained in terms of
the primer vector, the adjoint veclor associated
to the velocity vector, From the general theory,
solutions for optimal maneuvers for flight in a uni-
form gravitational field are obtained hy canonical
transformations. The problem is completely
solved for the free range and free fime case, using
Lggers assumption for skip trajectory. It should
be noted that this last stringent condition can be
removed by using Loh's second order theory 7)) as
applied by Speyer and Womble for frec flight tra-
jectory () loh's sccond order thecry which also
includes the curvature of the flight path has also
been applied successfully to the case of thrusting
flight by Griffin and Vinh(®.
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Figure 1., State and Control Variables

Figure 2. Aerodynamic Forces Transformation




