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A bs t ra i: t 

T h o  problem of optimizing the flight t r a j r c -  
tory of a rocket vchicle moving in a resis t ing nic-  
d ium.  in R gcncral  gravitational force f i e ld ,  is 
considered.  
the aerodynamic and propulsivc forccs  a r c  formu- 
lated in t c r m s  of the pr imervector ,  the vector ad-  
joint to the velocity. ltrlations for  flight along a n  
intermediatc- thrust  a r c ,  and integrals of thii mo- 
tion for s e v e r a l  cases of pract ical  interest  a r e  
derived 

Optimal laws for  the modulation of  

1. Introduction 

'The problem of determining optimal t r a j ec  

f o r c c  i: orthogonal to i t .  
assumption 

W e  shal l  use th r~  u s u a l  

w h z r r  p is the atmosphuric  m a s s  densi ty ,  function 
of r ,  S is  a r e fc rence  a r e a .  In hypersonic fl ight,  
thc: lift coefficient C L ,  and thc d r a g  coefficicnt C,) 
arc  assumed indi!pcndent of the Mat:h numher and 
thc Reynolds number.  F o r  s implici ty ,  we shal l  
assumc! a parabolic d r a g  po la r ,  defined by 

C,, = C I), + kC2 L (3)  

t o r i e s  fo r  a rocket powcrcrl lifting vehicle flying whc,.c cDo and a rc  constants, It  i s  convrnient 
inside the atmosphere of a planet has received 
ronsidcrablc attrintion in recent years .  

to ripfine a l if t  control p r a m e t r r  A s u c h  that 
General  

f o r  tlir thrusting program havc been obtained in X=jkC I ~ ,  (4 1 
control laws f o r  the lift and th r  bank angle,  2nd 

t e r m s  of the p r i m e r  vec to r ,  the adjoint vect.or as-  
sociated to the velocity vectorf').  In this papcr w c  
modify the r e su l t s  in Ref.  1 to apply to the case 
when the thrust  direction i s  constrained i.o align 
with the vclocity vector .  This i s  the r a s e  when 
the engine is mounted fixed with respect  to thc vc- 
h i c k  and the flight is  effectuated in the dcnsc lay- 
er of  thc atmosphere and a t  sma l l  angle of attack 
to validate the assumption('). 
theory,  solutions for optimal maneuvers for  flight 
in a uniform gravitational f ie ld  will be obtained by 
canonical t ransformations.  

11, The Optimal Controls 

Thcn, when h = 1 ,  th? flight i s  a t  maximum l i f t - to-  
d rag  rat io .  

'The motion of the vchiclc,  flying in a gcn r ra l  
gravitational force field,  and subjcct to aerodynam- 
ir force and thrusting fo rce ,  i s  govcrncd !hy the 
eqaations 

- < dy 
dt 

d V - T  ? A ++ 

F r o m  the general  

- - 
(5) dt v +  m + g ( r . t )  

T -~ d m - . -  
Consider the motion of  a powered, lifting vc- dt c 

hicle in a general  gravitationa~t force field.  
t i m e t ,  the state of thc vehicle is  defined by 

At the w h r r r  c i s  the constant cxhaust velocity of the gas 
ejected f r o m  the engine and; i s  the accolcration .. r ( t )  position vector 

V( t )  = velocity vector 

of thc gravitational Ticld. 
problem is defincd as follows. 

The optimal t ransfer  

- -  - - .  , 
At the initial time, t ~ 0 ,  r = To, V = Vo, m = m(t )  2 instantaneous m a s s .  + - mo. The vectors  ro. Vo and the sra+lar4mo~rrprc- 

The  flight is controlled-hy a thrusting force T scr ibed.  At thc final t ime ,  t = t f ,  r = rf. V ~ Vf  
and the aerodynamic force A (Fig.  1). It is a s -  
sumed that T 
magnitude is hounded by 

o Z T  z T 

and m = m f .  
to ry  of B(t)  and T( t )  such that s o m e  s c a l a r  function 
of thc final s t a t e  i s  a minimum. 

T h e  problem is to k n d  the t ime his-  
i s  aligned with the vcloeity, and its 

Using the maximum principle,  we introduce the  
adjoint clements q ,  p and pm to f o r m  the Hamilton- 

- -  (1 ) max 

F u r t h e r m o r e ,  we a s s u m e  that thc vehicle has  a ian 
plane of s y m m e t r y ,  both the th rus t  and the aero-  
dynamic force a r e  applied a t  the center  of m a s s  
and,  in coordinated fl ight,  the aerodynamic force 
and thc vclocity a r e  contained in that p k n e  of sym-  
me t ry .  It i s  customary to decompose A into a 
d r a g  force D , always opposite to V and a lift 
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T (p.V) - - m p m ]  (6) (2 +) m i  v c 
- + -. H = q.V-1. p .  t g + -  - - - 

- +  
whcrc q ,  p and pm a r e  defined by the adjoint cqua- 
tions 

W. 



The following general  resul ts  for  optimal t r a j ec -  
t o r i e s  have been obtained in lief. I .  

I .  I f  the direction of the thrus t  can be takcn a rb i -  
t r a r i l y ,  whenever the engine is operating, the 
thrus t  must  be directed along the vector:, called 
the p r imer  vector.  
c lass ica l  r e su l t  obtained by Lawdcn for t r ans fe r  
in a vacuum. 

2 .  
switching function, which, for  the case  considered 
in this  paper when the thrus t  i s  always aligncd 
with the velocity,  is rlcfined by 

This  is the cxtension of thc 

The thrusting program is governcd by thc 

If K > 0 ,  w c  select  T = Tmax (boosting phase) 
K < 0 ,  wc selcct  T = 0 
K = 0 ,  f o r  a finitr t ime intcrval ,  

(roasting phasc) 

w e  selcct  T = variable [sustaining phasc) 

3 .  
C 

The optimal lift modulation i s  such that CI, = 
o r ,  f o r  variable lift program 

1.Nlax' 

'19) 
11 tan e ~~ - 

B c 

aCL 

where e is  thc angle bctween 9 and -6 
4, _The Eptimal bank angle is such that the vc,ctor> 
V , p  and A a r e  coplanar,  that is  

(I; XT;, .A' I: 0 (10) 

z . ; i = o  (11) 

5. 
to -drag  rat io ,  % is orthogonal to A", that is 

F o r  optimal flight constantly a t  maximum lift- 

6. Along a var iab le- thrus t  a r c ,  w e  have 

By taking the derivative of this equation, m d  u s i n g  
(5) ,  (6) and (7) tocether with (12) and r ea r r ang ine ,  

The var iab le  thrus t  magnitude control will be ob- 
tained upon taking the derivative of this  equation. 

These  resul ts  are valid f o r  a general  gravita- 
tional force liuld. In par t icu lar ,  when 2 is time 
invariant,  the Hamiltonian given by (6) is constant. 

Uniform Gravitational Field 
111. Application to the Case of a 

Consider thc case w h e r e 2  i s  a constant vec- 
In Cartesian rectangular coordinates,  let  t o r .  - - 

r = (x, , x~ , x, ) with x3 along g 

v2 = V cos  y s i n  + (14) 

v, = V s i n y  

It is seen  that y is the flight path angle,  and + the 
heading. We consider an exponential a tmosphere 
of the form 

whcre 
formation (14) to be canonical,  while conserving 
the s a m e  Hamiltonian 

P = Po exp ( k P X 3 )  (151 
i s  the constant height s ca l c .  For the t r a n s  

Pi dv, + Pz dV2 + ~3dv3 pvdV 4 PydY + P,)d+ 

This  gives the l inear  transformation f o r  thc adjoint 
components of the p r imer  vector 

cos v cos + cos y sin + 

sin 1 [] - s i n y c o s  + - s h y  s i n +  c o s y  p2 = py/V (16) 

- c o s y s i n  c!- c o s y c o s y  0 ] P,,!" 

l teversing the mat r ix  cquation 

In par t icu lar ,  w e  can verify the following rclations 

and 
-> - 
p .  v = PlV,  +PlV, + mv3 ~~ VP" (1 9)  

For the t ransformat ion  of the aerodynamic fo rces ,  
we define the bank angle $ as the angle between the 
plane of symmetry  of the a i rp lane  5nd thc vertic.ai 
plane passing through the velocity V (Fig.2) .  Thnn, 
f rom the gcometry of the figure 

( A , c o s + i  A,s in+)  c o s y ~ l  A,siny = - D  

( A I c o s ~ r i A L s i n + )  s i n y  - A 3 c o s y ~  - I , c o s +  

A, s i n +  - A,cos = - Id  s i n $  
( L O )  

Thercfore ,  we have f o r  the Car tes ian  components 
of the aerodynamic force  

A, 7 - D  cos $ c o s y  - I.(cos + c o s +  s iny  4~ s i n +  s i n + )  

A, - D s i n $ c o s  y - y c o s  + s i n + s i n y -  s i n $  cos b) (21) 

A, = -1Isiny +~ LCOS + c o s y .  

The aerodynamic optimal controls can be obtained 
directly f rom the general theory ,  Using formula 



( 9 ) ,  with relation ( 3 ) .  we havc for  thc optimal 
var iable  l if t  control 

tan c 2kCL ( 2 2 )  

For the  bank nnglc,  hy rxpanding the dcterminant  
( I O ) ,  using ( 1 4 )  and ( 1 7 )  f o r  the components of 9 
and p,  we havr! 

p [A, s i n +  - A,cos $ 1  -A 
Y cos  Y 

L. 

1 

P 

. [ (A,  cos ++A,s in$ ) s iny  - A ,  c o s y ]  0 

Hy relations (20). we have for thc optimal variable 
hank anglo 

W e  can rpwritu relation ( 2 2 )  by observing that 

p . v  ~ pvc .osr  ~ v p  
.> - 

Thcrc-forc 

On th? other  hand, f r o m  ( l a ) ,  and using the opt, 
mal  l a w  (23) 

0 L' 

P L  
(25) 

Y 

By eliminating p' between (24) and (25) ,  we hnvc 

'The optimal lift control ,  cxpresscd in t c r m s o f  the 
adjoint var iables ,  i s  thcn 

LkC = PY (27) I, vi' c o s +  
V 

Wc sei! that the acroclynainic controls a r e  govrrn- 
ed by the adjoint components p and p 

v ' P y  41 

1V. The  l n t e p a l s  of the Motion 

A numbcr of  the integrals of the motion, 
mostly associatcd with a flight a t  maximum l i f t - t i t  
d rag  rat io ,  has been displayed in Ref .  1 .  
shall  derive them direct ly ,  and fu r the rmore  oh- 
tain some additional integrals.  
lhc motion, written in components f o r m ,  and using 
the velocity transformation ( 1 4 j ,  are  

Here w e  

The  equations of  

d r ,  
dt 

- dxz 

2 v cosy  cos* 

v c o s y  s in  4 

- 

it t 

The Hamiltonian (6) becomes, with ncw variahlct;,  
in a uniform gravitational field 

€1 = ( q l c o s + + q z s i n + ) V c o s y  t q 3 V  s i n y  

(29) 

Along an optimal t ra jcctory,  with variahlc lift and 
bank controls given by (23) and (27) we have 

13 ~ (q ,cos$.I .q2sin+)V cosy  I g V  s i n )  

We notice that ,  if the  flight is a t  maximum lift- to- 
d rag  rat io  kCf, - Cu, = 0 ,  and the constant Hamil- 
tonian i s  f r e e  of aerodynamic components. 
r e su l t  has  been shown to he valid fo r  n general  
gravitational forcc field in Ref. 1 
function is seen to hc 

This  

The switching 

The  adjoint equations, with optimal variable l i f t and  
hank controls,  a r e  

Y 



W c  f i r s t  have the integrals 

q l  = a ,  ~ constant 

q, ~ a L  ~ constant 
(33) 

I f  Ih r  longitudinal rangc and the l a t e r a l  rangc a r c  
fi.c<r, thcsc constants arc  zcco. It i s  secn that <b 
i s  a l so  constant if thc flight i s  at  maximum l i f l - t m  
d r a g  ra t io .  Next, using (33) we havc 

IIcncc 
'1, x2 ~ q,xl = p ~1 constant ( 3 4 )  * 

For f r u c  longitudinal and l a t e r a l  ranges 

p ~ a b  = constant (3 5) 'I, 
If the final hrading i s  not prcscr ihed ,  this  con- 
stant i s  z e r o ,  and from ( 2 3 ) ,  + : 0 .  The  flight 
i s  effectuated in a ver t ica l  planc containing the 
initial vrlncity.  

Now rons idr r  

F i r s t ,  along a coasting a r c ,  T = 0 ,  or along a s u s -  
taining a r r ,  K ~ 0 ,  and i f  thc flight i s  at  maximum 
lift- to - d r a g  rat io  

mpm = constant (37) 

F o r  flight at  var iable  lift coefficient, and along a 
coasting a r c  or a sustaining a r c ,  by eliminating 
thc t ime between (36) and the equation for q, , we 
have 

~ 1 %  ~ pd(mpm) 

% = PmPm + a3 

By intcgrating, wc have 

(381 

where a, i s  a new constant of integration. 

Consider the der ivat ivc of Vp,, 

Along a coasting a r c ,  T =  0 ,  and using Eggcrs  
assumption by neglecting the gravi ty  compared to 
aerodynamic fo rce r t an  assumption generally valid 
for a skip o r  pull-up maneuver ,  we have,  upon 
integration 

Vpv = - H t  + a4 (40) 

where a 4  is a constant of integration. 
l a r ,  when the final t ime is f r e e ,  I1 = 0 ,  and 

In particu- 

Vp = a 4  (4 1 ) V 

We wri te  the Hamiltonian f o r  the case  of f r e e  
longitudinal and lateral range,  and free t ime,  
along a coasting a r c  o r  a sustaining a r c .  
(30) becomes 

Relation 

P 

V 1 
~~ -9, v s i n y  +p'p s iny  $cosy )  ( 4 ~ )  

With this intcgral  we can delete the diffcrcntjal 

for q3 

v 
equation for  py.  Using (42) w e  writc the cquation 

The equation can be integratcd if sk ip  trajectoi 'y 
assumption i s  u s e d .  We havc 

Upon integrating 

9, = const.  X exp(-px,)  =cons t .  X p (43) 

By the change of variable f rom xg to p, using thr: 
exponential law (15), a canonical t ransformation 
requi res  

Qdx, = q dp = -ppq  dx, 
P P 

Hence 
Qi = - P P q P  

and therefore  

9 = constant (44) 

This  shows the advantage of using the atmospheric  
m a s s  density as the alt i tude var iable .  

The  Eggers  assumption, in the f r e e  range and 
f r e e  t ime case,  gives explicit l a w s  for the moduia- 
tion of the lift and the bank. 

F i r s t ,  along a coasting a r c ,  we wri te  (43) 

P 

U' 

9, = b 3 ~  (45) 

where b, is a constant. The Hamiltonian relation 
(42) gives 

2b3 m s i n y  
"v = S(CD, - k C L )  

Since in this c a s e  Vp = a 4 ,  we have 
V 

k C t  2b, m s i n y  -~ - 1 -  
Sa, C 

Do Do 
That is, by observing that m is constant along a 
coasting a r c  

where a is a constant,  We have the c lass ica l  re- 
su l t ,  f i r s t  obtained by C ~ n t e n s o u ( ~ ) a n d  l a t e r  ex- 
tended to three-dimensional c a s e  by Griffin and 
V i r ~ h ( ~ )  and Speyer and Wornble('). 
the l aw for  the bank angle 

A' = 1 + a  s i n y  (46) 

We now rewr i te  

p* = a6 tan+ = py cosy 2ka C c o s + c o s y  
4 L  

o r  

(47) Lj 
b s i n +  = ~ 

A c o s y  

4 



wherc b is a constant. The constants a and I) in 
the optimal lift and bank l a w s  a r e  detcrmined by 
specifying t e rmina l  conditions a t  the ends of a 
coasting a r c  

Next, along a sustaining a r c ,  we have the r e -  
lations (12) and ( 1 3 ) ,  which for a constant gravity 
field. hccome 

-. 

and 

F o r  a f r e e  t ime problem, H 
gravity,  we havr the following s imple law f o r  opti  
m a l  var iable  lift control along a sustaining arc 

0 ,  and neglecting 

(501 

An interest ing fact is that variable lift control for 
sustaining flight is only optimal fo r  high velocity, 
V 7 c, and for  vchiclc with high lift performance,  
x >  1. 

Finally f o r  the boosting a r c ,  by eliminating 
the t ime  hetwcen the equations f o r  V and m ,  W E  
have 

d V .  c [g + g s i n J  
Tmax dm m 

v with Tmax -* rn (impulsive approximation) the 
equation can he integrated to give 

wherc 7% is a constant m a s s  

V. Conclusions 

t i ene ra l  control l a w s  for the modulation of the 
lift and thc hank anglc,  and for  the thrust ing pro- 
gram along the optimal t ra jcctory of a rocket 
powered, l if t ing vehiclc,  flying inside the a tmo-  
s p h e r e  of a planct, with the thrust  aligned along 
th r  velocity vcctor ,  have been obtained in t e r m s  of 
the p r i m e r  vector,  the adjoint vector associated 
to the velocity vcc.tor. From the general  thcosy,  
solutions for  optimal maneuvers for  flight i n  a uni- 
form gravitational field a r e  ohtained hy canonical 
t ransformations.  The problem is completely 
solved for  the f r e e  range and f r c c  t ime c a s c ,  using 
Eggers  assumption fo r  skip t ra jectory.  It should 
he noted that this l a s t  str ingent condition can be 
removrd hy using Loh's second o r d e r  theory('), as 
applicd by Speyer and Womble for f r e e  flight t r a -  
jectory(6). 1,oh's sccond o r d e r  theory which also 
includes the curvature  of the flight path has  a lso 
heen applied successfully to the casc  of thrusting 
flight by Griffin and Vinhi8). 
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Figure  1. State and Control Variables 

Figure 2. Aerodynamic Forces  Transformation 
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