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Time-Optimal Attitude Control Scheme for a Spinning Missile

E. Jahangir* and R. M. Howet
University of Michigan, Ann Arbor, Michigan 48109

The problem of minimum-time attitude control of a spinning missile is addressed. The missile is modeled as
a rigid body that is symmetric about its spin axis. A single reaction jet provides the necessary transverse
moments. The missile is assumed to have some arbitrary initial transverse angular velocity, and it is desired to
take it to some final attitude in minimum time while reducing the transverse angular velocity to zero. A scheme
to generate thruster firing times as functions of the initial and desired states of a spinning missile is described.
This scheme involves transforming the state variables and integrating the transformed state and costate
equations backward in time and generating the control history using the properties of the optimal control. The
control history, given in terms of the thruster firing times, is stored as a function of the boundary conditions.
A feedback control law based on function generation is then proposed that uses only the first thruster turn-on
and turn-off times. This proposed control scheme can be implemented in real time with good accuracy.

I. Introduction

O VER the past three decades many papers and reports
have treated various aspects of homing schemes and

trajectory control associated with these schemes. Most of
these papers consider surface-to-air or air-to-air missiles that
use aerodynamic forces for trajectory control. With the ad-
vent of the strategic defense initiative, much attention has
been focused on the interception of satellites or intercontinen-
tal ballistic missiles outside the sensible atmosphere. Hence,
aerodynamic forces cannot be generated for vehicle control.
Instead, the thrust of a rocket engine is used to provide the
necessary maneuver forces, with vehicle attitude control em-
ployed to point the thrust in the desired direction. Conven-
tional thrust vector control systems tend to add both weight
and complexity, and as a result counter the objective of mini-
mizing the weight of the guided warhead. The simplest control
involves a single thruster at right angles to the spin axis of the
missile. In this scheme the missile is given a large roll rate and
the thruster is turned on for a fraction of each revolution in
the roll and at the right time during each roll cycle so that the
desired attitude changes are achieved. Meanwhile the main
thruster, by producing a thrust component perpendicular to
the flight path, provides the necessary trajectory changes.

The problem of attitude control of spinning rigid bodies has
not received much attention recently, although some research
had been reported on this topic in the 1960s. Athans and Falb1

considered the problem of time-optimal velocity control of a
rotating body with a single axis of symmetry. However, they
did not mention the complete attitude reorientation problem.
Howe2 proposed an attitude control scheme for sounding
rockets that uses a single control jet. The control jet is fired
for a fixed duration whenever certain conditions on direction
cosines or transverse angular velocity are satisfied. This results
in the alternate reduction of attitude error and transverse
angular velocity, finally ending in a limit cycle. References
3-11 discuss the problem of reorienting a rotating rigid body
that has no initial transverse angular velocity. Windenknecht3

proposed a simple system for the sun orientation of spinning
satellites. In this scheme the desired attitude is achieved by a
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succession of 180 deg precessional motions, each resulting in a
small attitude change (small-angle approximations are as-
sumed valid), until the spin axis arrives at an attitude corre-
sponding to the dead zone of the sun sensors. Cole et al.4
prescribed the desired attitude change and solved for the nec-
essary torques, but gave no details on mechanization. Other
papers that have proposed active attitude control systems for
spin-stabilized vehicles have been published by Adams,5
Freed,6 and Grasshoff,7 but none of these has explicitly dis-
cussed the reorientation problem. Grubin8 used the concept of
finite rotations to mechanize a two-impulse scheme for reori-
enting the spin axis of a vehicle. If the torques are ideally
impulsive, then the scheme is theoretically perfect. However,
in the case of finite-duration torquing, considerable errors can
result. Wheeler10 extended Grubin's work to include asymmet-
ric spinning satellites, but the underlying philosophy is the
same. Porcelli and Connolly11 used a graphical approach to
obtain control laws for the reorientation of a spinning body.
By assuming small angles and small angular velocities, they
linearized the system equations and proved that a two-impulse
control scheme is fuel-optimal. Two suboptimal control laws
were then derived for the case of limited thrust based on the
two-impulse solution. Most recently, Jahangir and Howe12

have proposed a time-optimal scheme that does not require
solving a two-point boundary-value problem (TPBVP). This
scheme can be used for the specific case when only two
thruster firings are sufficient to complete the time-optimal
attitude change maneuver. If the boundary conditions happen
to lie outside this subset of the state space, the algorithm given
in Ref. 12 fails to converge, since a two-pulse time-optimal
solution does not exist for such a case. If a control law is
desired for boundary conditions that require more than two
thruster pulses, we must solve a TPBVP involving 10 nonlin-
ear differential equations.

Both the two-pulse and the multiple-pulse solutions require
iterations and, therefore, can be costly in terms of the com-
puter time required for the solution to converge and also in
terms of the complexity of the iterative update scheme. Hence,
an online iterative procedure does not appear to be practical
for a real-time control algorithm. One possible alternative is to
precompute the thruster firing times by solving a TPBVP for
discrete values of the desired boundary conditions. These
thruster firing times can then be stored as a table in an on-
board computer and the control scheme implemented in real
time by a table look-up and interpolation.

Since we must store the control history as a function of the
boundary conditions, we look for ways to generate a set of
boundary condition points for which the thruster firing times
are known without solving an iterative problem. To this end a
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Fig. 1 Axis systems.

We also define the — operator as differentiation with respect
to the dimensionless time T. The equations of motion can now
be written as

(1)

(2)

(3)

(4)

(5)

\l/ = (Qy sin </> + fiz cos </>)sec 6

6 = toy cos </> - Oz sin </>

> = 1 + (toy sin </> + Oz cos </>)tan 6

where \l/, 0, and 0 represent the Euler angles corresponding to
yaw, pitch, and roll, respectively.

To write a state variable description of the system, we define
the state x of the system as

new state vector is introduced in Sec. Ill that is related to the
original state vector by transformation. We will show in Sees.
IV and V that we can generate a trajectory on the boundary of
the set of reachable states by assuming a set of final conditions
and integrating the transformed state and costate equations
backward in time. Since the boundary of the set of reachable
states defines all of the minimum-time trajectories, we can
obtain all of the desired boundary conditions and associated
time-optimal control histories by varying the final conditions
over the range of their possible values. Finally, in Sec. VI we
present a control scheme based on function generation. In this
scheme table look-up followed by interpolation is used to
determine the required thruster firing times. It is shown that
this proposed control scheme can be implemented in real time
with good accuracy.

II. Equations of Motion
Figure 1 shows the orientation of the moving body axes Xb,

yb, Zb relative to the inertial reference axes */, yt, zt, and also
the Euler angles i/s 0, <£ relating the two axis systems. The body
axes origin is at the missile's center of gravity (e.g.), with the
xb axis assumed to be the axis of symmetry; the yb and zb axes
lie in a plane perpendicular to the longitudinal axis xb. The
missile is modeled as a rigid cylindrical body. We also assume
that the control jet is located in the xb-Zb plane and pointed in
the direction of the Zb axis. When fired, the control jet gener-
ates a constant positive moment about the yb axis.

We have assumed no disturbances such as aerodynamic
forces, gravity, solar radiation pressures, or structural damp-
ing. Because of the short flight times, these disturbances have
a negligible effect on the dynamics of the missile. Since no
moment is applied about the xb axis and Iy = Iz (the moments
of inertia about the yb and Zb axes are equal for a missile that
is axially symmetric about its xb axis), it turns out that cox, the
missile angular velocity component along the xb axis, is a
constant equal to the initial spin velocity of the missile. We
then obtain a set of five state equations: two dynamical equa-
tions involving the transverse angular velocities and three
kinematical equations giving the rates of change of Euler
angles.

We let cox, coy, and coz denote the angular velocities about the
xb,yb, and zb axes, respectively. Also, Ix, Iy, and Iz denote the
moments of inertia of the missile about its xb,yb, and zb axes,
respectively. The moment applied about the yb axis is repre-
sented by My. We define the following dimensionless vari-
ables:

and the control u as

OJy

Wv

_My
Av — ~——^

'T* T =

u = Av

Equations (1-5) can now be written in standard form

x=f(x) + gu
where

/(*) =

Ax2

— Ax\
(xi sin x5 + x2cos x5) sec x4

x\ cos x5 — Jt2 sin #5
+ (*isin x5 + jc2cos ;t5)tan j

g = [i o o o or

(6)

(7)

(8)

We assume that at the initial time, the missile-body axis system
coincides with the inertial axis system. The initial transverse
angular velocity of the missile, however, is nonzero. We thus
obtain the following initial condition:

0 0 (9)

We want to find a control that will take this initial state to a
desired state, described by some nonzero desired yaw and
pitch angles and zero final transverse angular velocity, in
minimum time. The desired final state vector xd can be written
as

= [0 0 4>d free]r (10)

We also assume an upper bound wmax on the control u. Thus,
the constraint on the control can be written as

0< u (U)

The numerical values for the two parameters A and wmax,
which will be used later in examples, are

A = 0.9, wmax = 0.02

This value of A corresponds to a length-to-diameter ratio of
3.775 for a cylindrical body of uniform density. A missile
weighing 10 Ib and having a uniform mass density of alumi-
num would have the following dimensions:

length = 12.30 in., diameter = 3.26 in.

If the moment arm is half the length and the spin velocity 50
rad/s, wmax = 0.02 corresponds to a thrust of 2.79 Ib.
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III. Time-Optimal Control Formulation
It can be shown that the solution of the time-optimal prob-

lem, as given in Sec. II, involves a TPBVP. The solution of a
TPBVP requires iterations and, therefore, is difficult to imple-
ment in real time. For this reason, the missile thruster firing
times are computed offline and stored as a table in an onboard
computer. Function generation is then used to compute the
thruster turn-on and turn-off times online as functions of the
boundary conditions.

Instead of obtaining the thruster switch times by solving this
iterative problem, we consider a different approach. An alter-
native optimal control formulation in terms of a new state
vector is given. It is shown that, by assuming a set of final
conditions and integrating backward in time, we can generate
time-optimal trajectories in the state space.

We define a new reference axis system. This axis system is
fixed in the target and its x axis points along the desired
direction of the missile xb axis. The orientation of the missile
with respect to an observer fixed in the target is given by the
Euler angles j>3, y4, and y5t which correspond to yaw, pitch,
and roll, respectively. We also define y\ = x\ and y2 = x2.
Thus, we can write a new state vector

The two state vectors x and y are related to a transformation
(see Sec. V.C for the transformation formulas). The equations
of motion can be written in terms of this new state vector and
are given by

y=f(y) + gu (12)

We assume the initial and final conditions, respectively, to be

.V (?0) = yo = [^1,0 ^2,0 ^3,0 ^4,0 y5,0\T (13)

y(Tf)=yf = [ 0 0 0 0 free]r (14)

A time-optimal control problem can be formulated for this
system. We want to minimize the maneuver time so that we
can write the performance index as

J= Id /
r0

(15)

under the constraints of Eqs. (11) and (12).
This is one specific case of a general Mayer problem. Filip-

pov13 gives a theorem and proves the existence of an optimal
control for a Mayer problem. At this time, no general theo-
rems are available on the uniqueness of optimal solutions for
the one-sided controls, i.e., 0 < u < wmax. Therefore, we can
only give necessary conditions for w* to be an optimal control.

Proceeding with the derivation of the necessary conditions
on the time-optimal control, we write the Hamiltonian

= qTy-l (16)

dR(tytf)

where q is the costate vector. The necessary conditions for «*
to be an optimal control are

*\ T_T

—dq

u* =
0

(17)

(18)

(19)

where H(y) = -df/dy. Equations (17) and (18) are the dif-
ferential equations for the state and costate vector and Eq.
(19) is derived from the optimality condition, i.e., maximizing
the Hamiltonian H with respect to the control u.

The boundary conditions on the state variables are given by
Eqs. (13) and (14). The boundary conditions on the Hamilto-
nian and the costate variables are derived from the transversal-
ity conditions

H(Tf) = 0 (20)

q(T0) = q0= [free free free free free]7 (21)

q(Tf) = qf= [free free free free 0]r (22)

We note from the theory of necessary conditions that

dH(y*,q*,T) dH(y*,q*9T)
dT dT = 0

Fig. 2 Set of reachable states for a two-dimensional system.

This, in addition to Eq. (20), shows that

H(y*,q*,T) = 0 for all T G [T0, Tf]

We observe that this formulation still results in a TPBVP. If
the initial state vector y(TQ) is specified, an initial costate
vector q(T0) must be determined that results in the desired
final state and costate vectors. However, the state and costate
vectors at the final time have some simple features. Each of
the components of these vectors is either zero or free. There-
fore, it is worthwhile to examine the system characteristics if
the state and costate equations are integrated backward in
time starting at 7/.

In the next section we discuss a two-dimensional system in
terms of some simple sets in the state and costate space. By
looking at the problem from a geometric point of view, we
show for this two-dimensional system that the origin can be
connected to all points in the set of reachable states in mini-
mum time by varying the costate vector over (R2 and integrat-
ing the system equations backward in time.

IV. Set of Reachable States for
a Two-Dimensional System

In this section we examine the characteristics of the follow-
ing two-dimensional system:

z = h(z,u)

where z is a 2 x 1 state vector and u the scalar control. The
desired final condition is assumed to be the origin, i.e.,
z(tf) = 0. If we subject the system with final state z(t/) = 0 to
all control histories and integrate the system backward in time
starting at //, we obtain a set of states that are reachable from
the origin at time t - //, or simply the set of reachable states.
We denote the set of reachable states as R (t - //) in Fig. 2. In
the figure the boundary of the set of reachable states at time
tj - tf is denoted by dR (ti - //). It is well known from the
geometric properties of the optimal control that the boundary
of the set of reachable states defines all of the minimum-time
solutions. We, therefore, conduct the following experiment.
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Let umin(z,s) be the optimal control that is obtained by
minimizing the Hamiltonian with respect to the control, where
s is the 2 x 1 costate vector. Hence, if z* is an optimal motion,
it satisfies

where s* is a solution to the related costate equations. Clearly,
**('/) = 0.

To obtain a specific time-optimal trajectory, we need to
assume some final conditions on the costate vector. We let
s(tf) = Sf , where s/is an arbitrary constant vector. The system
equations z = h [ ( z , wmin(z, s)] can now be integrated back-
ward in time starting from the final time //to obtain a trajec-
tory z(Sf,t — tf) shown in Fig. 2. The trajectory z(Sf, t - tf)
represents the fact that it is a function of the specified final
costate vector Sf and time parameter t — tf. This trajectory
connects all points along its path to the origin in minimum
time. Also, as mentioned earlier, this minimum-time trajec-
tory lies on the boundary of the set of reachable states. By
storing z f y , t - tf) at discrete points in time, we can obtain a
set of points in the state space for which the time-optimal
control history is known. If we assume a different initial s/,
another time-optimal trajectory is obtained. By varying fyover
(R2 and integrating the system for each Sf back ward in time, all
trajectories on the boundary of the set of reachable states can
be generated. In this way, all of the reachable states can be
obtained at discrete intervals and the associated control his-
tory stored as a function of these states.

In the next section we apply the technique just described to
the complete nonlinear minimum-time attitude control prob-
lem of a spinning missile. By using the procedure analogous to
this section, all minimum-time trajectories can be generated.
By storing the state vector at discrete points in time along the
minimum-time trajectories, we are able to generate a set of
points for which the thruster firing times are known.

V. Examination of the y System
We use here the idea of backward integration and examine

the system behavior. In an example similar to that in Sec. IV,
we conduct the following experiment.

Four of the final state variables are zero, as given in Eq.
(14). We assume that ys(Tf) = ysj, where ysj is an arbitrary
constant. Similarly, we assume an arbitrary value for the final
costate vector q(Tf) = #/, where q5j = 0. The expression for
the time-optimal control is given in Eq. (19). Once all of the
final conditions on the state and costate variables are speci-
fied, we start the integration at Tf and integrate the state and
costate equations backward in time. At each numerical inte-
gration step, we obtain a y(T'), where T' = T - Tf. This
trajectory connects all points along its path to the specified
final state in minimum time. By varying the first four compo-
nents of the final costate vector qf over (R4 [the fifth compo-
nent is zero as given in Eq. (22)], the entire boundary of the set
of reachable states is generated, starting from the specified yf.
We note here that the only nonzero component of the state
vector is y5j, which corresponds to the roll angle of the
missile. This angle can take on values in the range [ - TT, TT]. By
varying y5>f in this range and following the aforementioned
procedure of generating the boundary of the set of reachable
states, all the time-optimal solutions can be generated. During
the integration, the state vector y and corresponding thruster
switch times can be stored at discrete points in time. Hence,
this procedure gives a set of y points for which the control
history, given in terms of the thruster firing times, is known.

The control scheme can then be implemented in real time by
using the thruster switch times which are stored at discrete
values of the transformed state vector y. However, in the
actual missile the desired attitude is measured with respect to
the moving missile frame, whereas the vector y gives the
orientation of the missile with respect to an observer fixed in
the target. Hence, it is desirable to store the boundary condi-

tions in terms of the original state vector x. The boundary
conditions in terms of the JC vector are given in Eqs. (9) and
(10). The state vector y(T') can be transformed back to our
original system to obtain the corresponding boundary condi-
tions *i;0, x2,o» *i,d, and x4td.

The procedure to generate the control history as a function
of the boundary conditions can be summarized in the follow-
ing way:

1) Initialize yf and qf.
2) Integrate the y and q equations backward in time and at

each TV = nAT obtain y(Tfi, where AT is the time interval
chosen to give desired data point spacing between y(TJ) and
y(Tfl+i)9 and n is a positive integer. Note that the numerical
integration step can be a submultiple of AT.

3) Transform y(T£) to obtain the boundary conditions in
the original form jc1>0, *2,o> *s,rf> and *4,</- Store the thruster
switching times as functions of these four variables. Note that
if <?i > 0, then Tl = 0, and similarly if ql < 0 then T{ > 0,
where T\ is the first turn-on time of the thruster.

Each of these steps is discussed in the following sections.

A. Initialization of y/ and qf
As indicated earlier, five of the variables at 7} are zero

y\j = = o
The other five variables at 7} are free. These must be varied
over all possible values to obtain the optimal control history as
a function of the boundary conditions. The variable^/ corre-
sponds to the roll angle and, thus, is confined to

[-TT, TT]

The space over which q\j, <?2,/, #3,/» and #4)/must be varied
is a subset of the costate space. We refer to this subspace as Q,.

Definition : The space Q, is defined as

= ( q ( T f ) : q s ( T f ) = 0 , < ] i ( T f ) = ±1,

ij = 1,2, 3, 4J*i]

[-1, +1],

An algorithm to vary these variables over the range of their
possible values is given here

do

do

= — TT, TT, 6

,
do qjtf = - 1 , + 1 , A

where 5 is the desired
spacing between values
of y5,f

where y = 1, 2, 3,4,
j ^ /, and A is the de-
sired spacing between
values of qjtf

During the implementation of our scheme to generate time-
optimal solutions, we observe that a constant A (uniform
spacing in qjtf) does not result in a uniform span of the entire
desired space of time-optimal solutions. We find that when
#/,/is close to zero, very small A is needed to span the set of
desired time-optimal solutions. Conversely, when qjtf is not
close to zero, A need not be small.

B. Integration of State and Costate Equations
A practical issue in the implementation of the scheme given

in this section is the choice of a numerical integration al-
gorithm and the handling of discontinuities that occur when
the control switches from on to off or vice versa.

The RK-4 fixed-step algorithm is used to integrate the state
and costate equations. We utilize the fact that analytic solu-
tions for yi and y2 can be obtained from Eq. (12). Thus, the
equations for y± and y2 do not have to be integrated numeri-
cally. The analytical solutions for y{ and y2 are also used to
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Table 1 Transformation relations between x and y

x\,o
X2,0

X3,d

X4,d

tan~

y\

-sin ̂ 3 cos y5 +
COS.)>3COS>>4

- sin- l (sin y3 sin y5 + cos y3 sin .y4cos y5)

/

obtain the half- and full-frame derivative estimates of the
remaining state and costate variables, as required in the RK-4
integration algorithm.

There is a discontinuity in these derivatives when the appli-
cation of the control u starts or stops. This switching time is a
function of q\, the first component of the costate vector, as
given by Eq. (19). If this discontinuity occurs within an inte-
gration step, it can cause large errors in the numerical solu-
tion. To reduce these errors, the step size must be chosen small
enough to meet some integration error criterion, which can
result in excessive computational time. Several papers have
been written suggesting special methods to circumvent this
difficulty. We choose the method proposed by Howe et al.14

for its accuracy and ease of implementation. In this scheme, at
each successive time step, q\ is tested to see whether it has
switched sign. If it has not, the integration proceeds to the
next step. If switching has occurred, the time of its occurrence
is computed by combining a fixed-point simplified Hermite
interpolation with a continued fraction formula. Hermite in-
terpolation is also used to compute the state and costate vari-
able values at the crossover time. The RK-4 algorithm is then
used to integrate through the remainder of the fixed-time step.

C. Transformation Relations Between jc and y
Let us consider a vector r originating at the missile e.g. We

let { r m } represent the components of the vector r in the
missile-body axis frame; [rt] the components of the same
vector in the frame 3; and {// ) the components of the same
vector in the frame 5\ The frame of reference 3 is an arbitrary
axis system whose x axis coincides with the desired direction of
the missile xb axis. The frame of reference ^ is defined to be
the missile axis system at the end of the maneuver. Previously,
we have defined x^jd and x4yd to be the yaw and pitch angles
describing the orientation of the desired direction of the mis-
sile xb axis with respect to the missile-body axis system. In
addition, we define x5td to be the roll angle of the frame $ with
respect to the missile-body axis system. It should be borne in
mind that x5yd is free in the description of the optimal control
problem in Sec. II. Thus, we can write

{rf} = [C(x3td9x4)d,x5>d)] [rm] (23)

Finally, the frame ^ is obtained by rotating the frame 3 about
its x axis. This rotation is given by the angle y5j = y$(Tf) and
we get

where

i r t ]

1 0 0
0 cos ys>f sin y5tf
0 -siny5>f

(26)

(27)

Comparing Eqs. (28) and (23), we finally get

4td,x5itl)] = [*](C(y39y49 y5)]T

where [C] is the direction cosine matrix and is defined in the
following way:

The matrices [C] and [$] are both direction cosine matrices;
therefore, each is an orthogonal matrix. Hence, the inverse of
these matrices is obtained by merely transposing them.

Equations (25) and (26) can be combined to write

(28)

(29)

By equating the entries of the matrices on the left- and right-
hand sides of Eq. (29), we can obtain expressions for xlj0, *2,o>
*3)d, and x4jd in terms of y(T - Tf) and y$(Tf) without any
ambiguity in the quadrants.

Table 1 summarizes the transformation relations between
the boundary conditions, given in terms of the state vector jc,
and the new state vector y at time T — Tf.

VI. Mechanization of the Control Scheme
The thruster switch times 7;, / = 1, 2, ... ,/i, can be ob-

tained from the approach given in Sec. V for the desired set of
boundary conditions, where 7/ is the time when control
switches and n is the total number of switches required to
complete the attitude change maneuver. To implement this
scheme in real-time, the switch times r/, / = 1, 2, . . . , n , must
be stored in an onboard computer. We propose a control
scheme that only needs to store T\ and 72, the first turn-on
and turn-off times, respectively.

In this scheme table look-up followed by interpolation is
used to compute T\ and T2. The thruster is then turned on
from 7! to T2. After this first thruster firing has been com-
pleted, we can measure the state variables at 72. The switch
times TI and T2 can now be recomputed based on this mea-
sured state. These new T\ and 72 correspond to the old 73 and
74, respectively, for the previous Tl and 72. Thus for the
two-pulse case, the new 72 = 7}, the time at which the target
is reached in the ideal case. In the presence of interpolation,
modeling, and measurement errors, there will still be a finite
error in the state at 72. For reasonable modeling and measure-
ment errors, it is felt that this final state error will be small
enough to fall within the target tolerance for switchover to a

cos \l/ cos 6
- sin \l/ cos (f> + cos \l/ sin 6 sin
sin \l/ sin 4> + cos \l/ sin 0 cos (/>

sin \l/ cos 8 - sin 6
cos \l/ cos </> + sin i/' sin 6 sin </> cos 6 sin </>

- cos \l/ sin </> + sin \l/ sin 0 cos </> cos 6 cos <j>
(24)

We have already defined y3=y3(T- 7/), y4 = y4(T - 7/),
and y$ = y5(T - T/) to be the Euler angles describing the mis-
sile orientation relative to an observer fixed in the frame 3.
Therefore, we can write

l r m ] = [ C ( y 3 , y 4 , y 5 ) ] [rt] (25)

linear control law, perhaps using pulse-width modulation. If
the state error at 72 is outside the linear control-law region,
table look-up based on the state at 72 will compute 73 and T4
(actually a new TI and 72) with 74 - 73 small, such that the
target state is more closely realized after the T3, T4 pulse. The
process will continue to converge until the error in terminal
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state becomes small enough to switch over to the linear control
law. When more than two pulses are required initially in the
ideal case, the time-optimal control will eventually reach the
two-pulse solution region in state space, after which the fore-
going convergence argument applies.

When we store the thruster times at discrete points in time
while integrating the state and costate equations backward in
time, a function with randomly spaced input values is ob-
tained. However, it is desirable for real-time function genera-
tion to have equally spaced function input variables. The
function table of equally spaced input values can be obtained
by interpolation across the randomly spaced input values. The
most widely used interpolation method in the flight simulation
industry is piecewise multilinear interpolation.15 However, this
method cannot be used when the input values are randomly
spaced. Instead, piecewise linear interpolation16 must be em-
ployed to obtain a function with equally spaced inputs from a
function with unequally spaced inputs. Once the function with
equally spaced inputs is created, table search and multilinear
interpolation can be carried out in real time, as described by
Gilbert.15

Function values are stored at discrete values of the input
variables x1>0, x2io, x3>d, and x4>ci. When using these "rectangu-
lar" coordinates as the input parameters, the grid size remains
constant, independent of the distance from the origin at
*i,o = *2,o — X3,d — X4,d — 0. However, as we move away from
the origin, the accuracy requirements decrease. Thus, we need
not use a closely spaced grid when far away from the origin.
To satisfy this requirement, we introduce "spherical" coordi-
nates in the following way:

0.8

R =

|S = tan- ' [^)
\*2,0/

, ,f =tan-
X4,d

(30)

(31)

(32)

(33)

These relations are derived from a simple extension of the
three-dimensional spherical coordinates. The transverse angu-
lar velocities are multiplied by 2ir so that they are the same
order of magnitude as the angles.

The spherical coordinates /3, 7, and f have the desired
variable spacing. As we get farther away from the origin
(increasing R), the spacing between the breakpoint values in /3,
7, and f increases. It is desirable to have the same kind of
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spacing between discrete values of R. To this end, we store
function values at equally spaced discrete values of ^R instead
of R. Thus, close to the origin the function values are stored
at small intervals to satisfy the higher accuracy requirements.
When R becomes relatively large, the accuracy requirements
decrease and this is reflected by increased spacing between the
stored function values.

Instead of storing T{ and T2, the first turn-on and turn-off
times, we store T{ and A7\ = T2 - TI. The variable T\ is the
first turn-on time as before and A 7^ the duration of the
thruster firing. This choice results in a smoother behavior of
TI and AT{ as functions of the independent variables.

We can now write TI and AT{ as functions of the four input
variables as follows

where

y =

(34)

(35)

The functions/! and/2 are stored at the breakpoint values w/,
Xj, yk, and z/, which are, respectively, /, 7, K, and L in
number and Aw, AJC, Ay, and Az apart.

In our working example, we find that

Aw =2~5 = 0.03125

Ax = Ay = Az = —

give satisfactory results. In addition, we choose w0 = 0.03125.
We are only interested in a subset of the state space within

which the time-optimal control is to be used. We define this
subset by the requirement that during the maneuver R cannot
be greater than 1 rad. In practical situations, if the total error
in R is greater than 1 rad, it is improbable that the guidance
scheme of the missile can home in on the target. The integer 7
can now be computed and is the following:

A w / 0.03125

The integers /, K, and L can be obtained from the fact that x,
y,zt (0, 2v). Thus,

2ir
= 30

The size of the array is determined from the integers 7, /, K,
and L as follows:

size of array = 7 x J xK xL = 864,000
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Table 2 Boundary conditions for the examples shown in Figs. 3-7

R
0
7r
*1,0
X2,0
X3,d
X4[d

Example 1

0.720006£ + 00
0.371007£ + 01
0.231071£ + 01
0.197411^ + 01

-0.419044^-01
-0.655966^-01
-0.446497^ + 00
-0.282582^ + 00

Example 2

0.903172^ + 00
0.543 167£* + 01
0.882395E + 01
0.232395£ + 01

- 0.60923 \E - 01
0.533560^ - 01
0.418599£ + 00

-0.617718^ + 00

Example 3

0.720303£ + 00
0.139682^ + 01
0.100043^ + 01
0.989696E + 01
0.794368£ - 01
0.13961 1^-01
0.325083.E + 00
0.395406£ + 00

Table 3 Attitude errors at the end of three pulses when function
generation is used to compute the thruster firing times

R(Tf)
a(7»
Q(Tf)
Tf

Example 1
0.367250£ - 02
0.311947^-02
0.308455^ - 03
0.139966^ +02

Example 2
0.189528^-02
0.441320^-03
0.293352E1 - 03
0.140026^ + 02

Example 3

0.397519^-08
O.OOOOOO.E' + 00
0.994821£ - 10
0.140100^ + 02

The precision associated with 16-bit fixed-point words
should be more than adequate to represent the data in the
function tables for T\ and A TV For the foregoing array size of
864,000, this translates into a total storage requirement of less
than 4 megabytes, which can easily be accomplished using
eight currently available 16 x 256 kbit static ROM microchips.
With any of a number of current microchip processors, the
time required to calculate each pair of four-variable functions
will be well under 100 /AS. Thus, the control law as proposed
can be mechanized at a 10 kHz sample rate using computer
hardware of negligible weight and cost.

VII. Example Trajectories
We consider three examples here. The initial conditions and

desired final conditions for the three examples are given in
Table 2. In the exact solution the desired attitude is obtained
at Tf = 14 and requires three control pulses. We simulate the
system using the proposed control scheme and compare the
conditions at the end of three thruster firings with the exact
solution.

Figure 3 shows the total error R, as defined in Eq. (30), as
a function of dimensionless time T. We see that the attitude
change maneuver is completed in about the same time as in the
exact solution. As the missile xb axis moves toward the target
direction, the angles x3fd and x4>d change with time. We define
a = cos~l(cos xucos x4td) as the total angular distance of the
target direction with respect to the missile xb axis. Figure 4
shows this angle a. as a function of the dimensionless time T.
In Fig. 5, the position of the target direction relative to the
moving missile-body axis system, as given by the yaw angle
x3td and pitch angle x4td> is plotted as the maneuver proceeds.
An observer fixed in the missile body will see the target move
in this fashion. The attitude change maneuver is completed
when x3td = x^d = 0.

The total transverse angular velocity 12 = Jx? +*2
2 is plotted

as a function of the dimensionless time Tin Fig. 6, where we
recall that x\ = tty and x2 = &z. Figure 7 shows the trajectories
of xi and x2 in the Xi-x2 plane. When the radius given by 12 is
constant, the missile coasts. Conversely, when the radius 0
changes, it means that the thruster is on.

In the exact solution three thruster firings are needed to
bring the missile to its desired attitude. Table 3 summarizes the
final attitude errors at the end of the third thruster firing when
multivariable function generation is used to compute the
thruster turn-on and turn-off times after each firing has been
completed. In all three examples the final attitude is very close
to the desired one. Once the error in attitude has been forced
close to zero, it may be desirable to switch to some other
control scheme. Frequently, when bang-bang control is em-
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Fig. 5 Path of the target in the x$,d-X4,d plane, where x^j and X4,d are
the yaw and pitch angles, respectively, of the desired pointing direc-
tion with respect to the moving missile-body axis frame.
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ployed for error control, a linear control law is used close to
the origin to avoid chattering. For the same reason, a linear
control scheme can be used when the initial attitude of the
missile is close to the desired one.

VIII. Conclusion
In this paper the problem of minimum-time attitude control

of a spinning missile has been considered. Traditionally, this
class of problems is handled by solving a two-point boundary-
value problem. Instead, we have taken an alternative ap-
proach. This approach is based on offline computation of the
thruster firing times, which are then stored in an onboard
computer. Table look-up and interpolation are then used to
determine the switch times online, with the thruster fired in
accordance with the switch times thus obtained.

In the approach discussed in this paper, the state vector is
transformed such that both the final desired attitude and
attitude rate are zero. Then, for specific values of the final roll
angle and costate vector, time-optimal solutions can be gener-
ated by numerically integrating the state and costate equations
backward in time. Each set of final conditions yields a differ-
ent time-optimal control. By varying the final conditions over
the range of their possible values, all of the desired optimal
control solutions can be generated. The boundary conditions
and associated control history are stored at discrete points in
time along the time-optimal trajectories. This set of points can
be transformed to obtain a function table with equally spaced
inputs. This procedure for generating a table of thruster turn-
on and turn-off times as functions of the boundary conditions
results in a considerable reduction of the offline computa-
tional load.

Instead of storing all of the firing times, only the first
thruster turn-on and turn-off times are saved. Based on the
measured state after completion of this first pulse, new
thruster turn-on and turn-off times are determined for the
next pulse. Constant update of the state measurements used to
determine the next thruster turn-on and turn-off times consti-
tutes a feedback process that insures convergence to a near
time-optimal solution, even in the presence of modeling and
measurement errors. By employing standard search and inter-
polation routines, the required thruster firing times can be
computed in real time. We also show that the final errors in
attitude can be made very small if the spacing between the
input-variable data points in the function table is chosen ap-
propriately.
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