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Abstract 
Numerical simulations of high-density ratio, 
incompressible, multi-fluid flows are presented. 
The simulations are done using the front 
tracking scheme of Univerdi and Tryggvason (,” 
J. of Camp. Phys., Vol. 100, pp. 25). To 
facilitate simulations of density ratio flows, the 
governing equations are discretized using 
second-order accurate upwind differencing. 
Also, a modification to the time stepping scheme 
used in earlier work is introduced that also 
improve the capability of the scheme to handle 
high density-ratio flows. Results are presented 
for density ratios as high as 10,000 to one. 

Introduction 
In recent years, significant advances have been 
made in numerical simulations of multi-fluid and 
multi-phase flows. Recent applications of 
general interest include collisions of droplets, 
breakup of droplets, droplets or non-deformable 
objects falling into liquid under gravity, a 
multitude of bubbles rising through liquid under 
gravity, and flow of a multitude of non- 
deformable particles in liquids. 

One category of multi-fluid flows of interest is the 
atomization of liquids. Atomization is the break- 

‘up of bulk liquid into a vast number of small 
droplets. It requires energy input as the total 
amount of surface energy in a spray of droplets 
is significantly higher than that of the bulk liquid. 
The required energy is imparted to the liquid, for 
example, by accelerating it through a small 
orifice to form a jet that subsequently breaks up 
due to interaction between the liquid and air; or 
by blasting a liquid sheet with high-speed air. 
The fluid mechanics of the break-up of jets and 
liquid sheets are complicated, not thoroughly 
understood. The breakup is extremely hard to 
study experimentally and not yet predictable by 
any numerical method. The ultimate goal of the 
current research is to develop the capability to 
study such break-up by using numerical 
simulations. 
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Several numerical methods have been 
developed to simulate multi-fluid flows. The 
earliest ones are the classical Marker-in-Cell 
(MAC) method, where marker particles, 
identifying each fluid, are advected with the flow, 
and the Volume-of-Fluid method (VOF) where a 
marker function (the volume fraction) is 
advected with the flow. These methods are still 
popular and improvements are still being 
developed (see e.g., Brackbil, et al., 1992). The 
VOF method is available for use in engineering 
flow simulations in commercial codes such as 
Fluent (Fluent Inc., 1998) and CFX (AEA 
Technology, 1998). Various applications of the 
VOF method have been reported in the 
literature. A method that is related to the VOF 
method is the recently introduced level-set 
method (Sussman, et al., 1994). Another 
approach is to use Lagrangian methods, such as 
the Arbitrary Lagrangian Eulerian (ALE) method 
(Hit-t, et al., 1970) where a grid system follows 
and deforms with the fluids. This method has 
the advantage that the interface, between two 
fluids is always sharp and well defined. One 
characteristic of the method is that only a limited 
amount of deformation .of the computational grid 
can be tolerated before re-gridding is needed. In 
addition, automatic handling of changing 
interface topology is difficult. Nonetheless, this 
approach is attractive for certain types of 
problems. An impressive example of the use of 
ALE method that was reported recently is the. 
simulation of a multitude of arbitrary shaped, 
non-deformable particles flowing suspended in a 
liquid (Hu, 1998). One additional class of 
methods are “interface fitting” methods, where a 
grid is modified to align with the interface while a 
stationary grid is otherwise used. Glimm and 
co-workers (Glimm, 1991,) have investigated 
these types of methods. 

In this paper, we focus on a method that can be 
considered a hybrid between the interface 
capturing methods and the interface fitting 
method. This method has been called a “Front 
Tracking method.” It was developed primarily by 
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Tryggvason and co-workers (Univerdi and 
Tryggvason, 1992, Nobari and Tryggvason, 
1994). This method uses a single fluid 
formulation, similar to the VOF method but uses 
a chain or a network of marker particles to mark 
the location of the interface between two fluids. 
This method has primarily been used in highly 
resolved simulations of flows involving bubbles 
and droplets at moderate density ratios. It has 
proved capable of producing accurate results on 
relatively coarse grids. The method has also 
been applied to other types of interface 
problems such as dendritic solidification and the 
suction of a single biological cell into a 
microscopic pipette. Here we will demonstrate 
the application of a modified version of the 
method to high density-ratio flows such as 
encountered in the atomization of liquids. The 
test case we consider is the interaction between 
a liquid sheet and surrounding air. Results for 
density ratios of 1000 and 10000 are presented. 

Simulations of high density-ratio multi-fluid flows 
on fixed grid systems are difficult primarily for 
the reason that the interface between two fluids 
represent a discontinuity in density, viscosity 
and other fluid properties and that this 
discontinuity must be captured on a grid system 
with finite resolution. More succinctly, the 
discrete grid system can only support a finite 
number of frequencies or Fourier modes 
whereas an infinite number of modes are 
required to represent the discontinuity. When 
the discrete solution is advanced in time, the 
discontinuity gives rise to high frequency modes 
that get “aliased” to low frequency modes that 
are supported by the grid system. Gradually, 
this gives rise to errors that contaminate the 
computed solution. With sufficient mesh- 
resolution the physical viscosity damps all 
unphysical high frequency errors before they get 
aliased to the lower frequencies. For less 
resolved simulations, we must address the 
difficulty more directly. First, we can attempt to 
use some type of a discretization that is capable 
of “capturing” the discontinuity without producing 
high frequency errors. Second, we can attempt 
to spread the. discontinuity over a handful of 
cells rather than attempt to capture it as a 
discontinuity. In this paper, we focus on the first 
approach. In particular, we test the abilities of an 
upwind scheme that we proposed in earlier work 
in simulations of high-density ratio flows. We 
introduce a modification to our earlier method 

that significantly enhances its capability to 
simulate high-density ratio flows. 

In the remainder of this paper we first review the 
governing equations used to describe the multi- 
fluid flow and briefly explain the ideas behind the 
front tracking scheme of Tryggvason and co- 
workers. Thereafter, the discretization of the 
governing equations and the current solution 
algorithm are reviewed. Finally, the results from 
tests are presented and discussed. 

Governing Equations and the Front 
Tracking Method 

The flow of two immisicible fluids is taken to be 
incompressible. Here only axisymmetric flows 
are considered. The governing equations are 
cast a single set of equations (one fluid 
formulation) using a variable density and 
viscosity as follows: 

~+~~(pr”2)++puv)-~ = 
r 

dp 1 d du --+-- 2pr- 
dr t-Jr i 1 dr 

+$[$+$j]+L 

The equations are complemented by the 
incompressibility condition 

l~ru; %() -- 
r dr dz 
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The forcing term, 

arises due to surface tension at the interface 
between two fluids or two phases. It can be 
written as an integral over a Dirac delta-function 
(Nobari and Tryggvason, 1994b), i.e., 

where o is the surface tension, F is the unit 
tangent to the front and t is a unit vector in the 
radial direction. 6,, is the two dimensional 

delta-function, 7 = (r,z) and ?f is a point on 

the front. The integration is over the interface 
between the two fluids. Note,’ due to the 
assumption of axisymmetty, no surface tension 
force acts in the azimuthal direction. For further 
details on the one-fluid formulation, see Ref. 17. 

The density, p, and viscosity, t.~, are taken to be 
constants for each fluid. Thus, the evolution of 
the density and viscosity fields can be described 
by 

DP - = 0 and - DPg= 0 
Dt Dt 

where 
9 QJ 
Dt =dt+“-vq 

represents the total or “material” derivative. The 
two equations simply state that the density and 
viscosity of a fluid particle is constant. 

tnstead of attempting to solve Eq. (3) 
everywhere, as in the VOF method and the 
level-set method, it is sufficient to track the 
interface between the two fluids or phases 
across which the properties change. The 
interface moves with the local fluid velocity,, i.e., 

fif - 
-=u 
dt 

(4) 

where rf is a point on the interface and u’ is the 
local fluid velocity. This is the approach taken in 
the Front Tracking Method of Univerdi and 
Tryggvason (Ref. 17). In essence, this 
approach is equivalent to tracing the 
characteristics in order to update the density and 
viscosity fields. Here it is only noted that one of 

the strengths of the front-tracking scheme of 
Unverdi and Tryggvason is that it automatically 
captures interactions between neighboring (non- 
intersecting) fronts without any special 
treatment. For more details on the mathematical 
formulation of the one-fluid approach and the 
Front Tracking Method, see Ref. 17. 

Discretization of Governing 
Equations 

The governing equations, Eq. (I), (2) and (4) 
are discretized in space using a staggered mesh 

‘and integrated in time using a four-stage Runge- 
Kutta-based projection method. An interface 
between two fluids is represented by a linked list 
of points (an unstructured triangular mesh in 
three-dimensions) that is called the front (see 
Fig. 1). The front is continuously adapted to 
ensure appropriate resolution at all times. 
Adaptation involves adding and deleting nodes 
from the front when the distance between nodes 
becomes too large or too small, relative to the 
grid spacing. 

Spatial Discretization: Two types of 
discretization schemes have been used with the 
front tracking scheme for the convective terms of 
the governing equations. The first is a central 
differencing scheme that has been used 
successfully in simulations of various flows of 
bubbles and droplets. The second is a second- 
order accurate, Godunov type upwind scheme. 
The upwind scheme is based on a Godunov 
type scheme suggested by Bell et al. (1989) 
known as the BCG scheme. The upwind 
scheme was adapted for use in staggered 
meshes and multi-stage time-stepping schemes 
by Steinthorsson et al. (1997) and was found to 
perform well on relatively coarse grids. In this 
work, which focuses on high density-ratio flows, 
we consider only the upwind scheme. 

To describe the upwind schemes we consider a 
conservation cell for the r-momentum and write 
out the fluxes through the left and bottom 
boundaries of the cell. In the staggered mesh 
the r-momentum cell resides at, say, (i+1/2,j), 
with the left and bottom faces of the cell 
centered at (ij) and (i+1/2,j-l/2), respectively. 
Fluxes through other conservation cells are 
formulated in an equivalent manner. Recalling 
that in the staggered mesh, p resides at (i,j), u 
resides at (i+7/2,i) and v .resides at (i,j+1/2), the 
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upwind-weighted r-momentum flux through the 
cell face at (i,j) is computed as 

F,;, =pi,, @ ;.,I2 
where 

uii = 

i 

uL if uL 20, uL+uR 20; 
0 if uL<O,uR>O; 

UR otherwise 

The “left” and “right” states, uL and uR are 
extrapolated from the cells on either side of the 
cell face using “centraldifferenced limited 
slopes” (see Bell, et al., 1989) for an overall 
second-order accurate scheme. The r- 
momentum flux through the cell face at (i+1/2,j- 
I/2) is computed as 

q:i  j-i = + (‘i j-’ + ‘,+1,,-1. )Pi+f,j-f"i+f,j-f 
2' 2 ' 2 2 

where Pi+! ,J and u~+~ j-L are computed by first 

extrapolatrng * from “lee” gnd “right” to the cell 
boundary and then choosing the right or left 
state based on the sign of (vi j-L + vi+, j-- 

’ 1 , :). 

-The scheme, as written, is not a pure upwind 
scheme since the density that is used in the 
computation of the r-momentum flux through the 
constant-r face of the conservation cell resides 
at the cell face. In the current work, this density 
is the average density in a cell centered at the 
boundary face. This can negatively impact the 
stability characteristics of the scheme. A better 
approach is to extrapolate the density from the 
upwind side. This has not yet been implemented 
in our computer codes. However, the front 
tracking scheme allows an easy way to 
accomplish this as point and average values of 
density can be computed for any point or region 
in the domain. This will be addressed in future 
work. 

Time Stepping Scheme: The governing 
equations are integrated in time using a four 
stage Runge-Kutta scheme. Both the 
momentum equations and the front are 
advanced using the same scheme and the in- 
compressibility constraint is enforced in every 
stage using a projection method. Before writing 
out the multi-stage scheme, we consider an 
Euler-explicit discretization using a one- 

dimensional momentum equation to illustrate the 
details of a single stage. 

Using Euler-explicit time stepping, the 
discretized one-dimensional momentum 
equation can be written as 

where F“, is the flux through the cell face at (i). 
The velocity at the new time step (or new stage 
in a Runge-Kutta scheme) is then computed as 

Here, the density at the new time level can be 
obtained from the values in the “density cells” 
that are computed based on the location of the 
front at the new time level, i.e. 

This approach has been used with the front 
tracking scheme in earlier papers. It has been 
found to work well for low to moderate density 
ratios. However, with this approach, there is a 
disconnection between the density field and the 
velocity field. As a result, for instance, a uniform 
velocity field and a discontinuous density field at 
time level n will produce a non-uniform velocity 
field at time level n+l. The perturbation in the 
velocity field is proportional to the jump in 
density and the time step size. For high density- 
ratios, the time step required to keep the 
perturbation sufficiently small becomes 
unacceptable for all but the smallest simulations. 

To overcome this disconnection between the 
density and velocity fields, we introduce a 
temporary density field that is used only for 
updating the velocity at the new time level. The 
temporary density field is computed by utilizing 
the continuity equation and discretizing it in the 
same manner as the momentum equation. Thus, 
we compute the new density in the r-momentum 
cell (centered at i+1/2) as 

P,T+J=+(P” + P::,)-+cP:A+, - Ph ) 
‘ LLsi+l 1 

where uj is evaluated the same way as for the 
momentum equation. Note that the temporary 
density field is “co-located” with the velocity field 

4 
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and that, on a staggered mesh in two 
dimensions, two such fields are computed; one 
for each velocity component. Using this 
approach, a uniform velocity field at the new 
time level is ensured, regardless of the density 
field (in the absence of surface tension). The 
restriction on the time step that was produced by 
the earlier approach is removed. In a sense, the 
overall scheme is’ now closer to schemes that 
advect a volume fraction or a color function. 
However, the density field will remain sharp at 
all times (as sharp as desired) and the front is 
still used to evaluate source terms due to 
surface tension. 

The time stepping scheme can be written as 
follows: 

u. = U”, x0 = X” 
X, = X,, + a,AlR,(&-, ,u,-,) . 

U, = P(U, + a, At&, (X,-, , u,-, )) 

fork=1 ,...,4; a =(+ $ 1 I) 

4 

X”+’ = X0 + At 
c P&(&_,,II,-1) 
k=l 

U ‘+’ =P U, +Atf:P,R,(X,+&-,) 
k=l 1 

P=( 

where Xand U represent the solution vectors for 
the nodes on the front ‘and the velocity field, 
respectively, and Rx and Ru represent the 
residuals of the respective governing equations. 
The superscript “n” denotes the time level. The 
operator P is the projection operator that is used 
to ensure that the velocity field is divergence 
free (see Ref. 1 for a review of the ideas behind 
projection methods). Note that in every stage of 
the time stepping scheme the velocities of the 
nodes of the front need to be evaluated. This is 
done using linear interpolation in the cell in 
which the node resides. 

Reconstruction of density field: After the front 
has been advanced in time, it is necessary to 
reconstruct the density field. For the vast 
majority of cells, ‘this is trivial since most are 
located far from the interface where the density 

does not change. For cells in the immediate 
neighborhood of the front, the density field is 
reconstructed in a special manner. In essence, 
the jumps in density and viscosity, as well as the 
forces due to surface tension, are distributed in 
a conservative manner to cells within a narrow 
interval .around the front. This produces an 
interface that has a finite thickness. The 
thickness is proportional to the grid spacing and 
is constant in time. The reconstruction of the 
density field is accomplished by constructing a 
special indicator function on cells surrounding 
the front. Once the indicator function has been 
constructed, it is used to determine the density 
and other fluid properties in the neighborhood of 
the front. Due to the method used to construct 
the indicator function, interactions between 
neighboring (non-intersecting) fronts are 
handled automatically. No special treatment is 
needed. 

Description of Test Problem 
A special prototypical flow is used in this study 
that has relevance to atomization. The flow 
consists of an infinite annular sheet of high- 
density fluid and of finite thickness surrounded 
by a high-speed low-density fluid (see Fig. 2). 
For convenience, we refer to the high-density 
fluid as “liquid” and the low-density fluid as “air”. 
For most of the test cases, the initial flow field is 
perturbed by introducing a body force that varies 
sinusoidally in the axial direction. After a short 
time, the body force is turned off and the flow 
field is allowed to evolve unforced. In one case, 
a periodic disturbance in the air is introduced at 
time zero. The disturbance in the air produces a 
disturbance in the liquid sheet. 

The problem being simulated can be described 
in terms of the non-dimensional parameters 
defined by Liao, et al (1998 a,b). In their work, 
the non-dimensional parameters that are 
relevant for the current test problem are defined 
as 
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gi =pi, g, A, 
P/ P/ 

k = kRb 
COR liJ=b ,, 
“I 

density raCo= l/g 

where (I, and iJ, are the axial velocities of inner 
and outer air, respectively, U, is the velocity of 
the liquid, pi and p,, are the densities of the inner 
and outer air, respectively, R, and Rb are the 
inner and outer radii of the annular liquid sheet. 
The initial disturbance of the interface is 
characterized by a non-dimensional wave 
number, k, and by an amplitude, a. In the 
present work, we also have Reynolds number, 
defined in terms of Rb, air properties and 
velocity; and viscosity ratios, as only viscous 
flow is considered. For all the cases considered, 
the inner and outer air velocities are equal. 

Results 
Results from two simulations of the prototype 
flow described above are presented. In one, a 
density ratio of 1000 is used and surface tension 
is assumed to be zero, corresponding to infinite 
Weber number. In the second case, the density 
ratio is taken to be 10000 and the Weber 
number, based on the air density and air 
velocity, is 2.0. In both cases, the velocity of the 
liquid is UL=O.l414U,i,, where tJ,ir is the initial 
velocity of the air that is also used as a 
reference velocity in the non-dimensionalization 
of the equations. In both cases, the liquid sheet 
is perturbed using a sinusoidal body force that 
acts for a short time. Both simulations are 
performed on a 256x256 grid system. 

In the first case, the aerodynamic forces that act 
on the liquid sheet are destabilizing since the 
restorative effects of the surface tension forces 
are absent. Thus, we expect the aerodynamic 
forces to drive the deformation of the sheet after 
an initial transient where the initial disturbance of 
the sheet dominates. This is seen in Figure 2, 
which shows the deformation of the liquid sheet 
at several instances in time. The amplitude of 
the deformation continually increases as 
expected. Initially, the deformation is nearly 
sinusoidal. Quickly, however, a “cusp” starts 
developing in the outer interface, where high- 
speed air impinges on the sheet. As the 
amplitude of the deformation grows, the shape 
of the sheet becomes more complicated. The 

sheet thins as it deforms and it becomes more 
easily distorted by the low-density but high 
velocity air. 

For the second case, the density of the liquid is 
higher than in the first case and surface tension 
acts at the interface. Based on the Weber 
number, the effects of aerodynamic forces are 
comparable to the surface tension effects. 
However, the inertia of the liquid sheet is an 
order of magnitude larger than in the first case. 
Thus, we expect any initial disturbance of the 
velocity of the liquid phase to completely 
dominate the deformation of the sheet. 

Figure 3 shows the deformation of the sheet. As 
the figure shows, the shape of the sheet remains 
more or less sinusoidal to the end of the 
simulation. The surface tension eliminates any 
formation of a “cusp” in the interface that was 
seen in the earlier case. 

As a final figure, we show a close-up view of the 
velocity field near the liquid sheet in case shown 
in Fig. 2d. This is shown in Figure 4. In the 
figure, the relative velocity between the sheet 
and the air is shown. The figure shows the air 
recirculating in the troughs formed by the 
distorted sheet. It illustrates the capture of high 
velocity gradients that naturally occur near the 
high-density sheet. The figure also shows the air 
impinging on the sheet and causing local 
deformation of the interface as well as the 
formation of boundary layers on the air-side of 
the liquid-air interfaces. 

Summary and Conclusions 
In this paper, we have demonstrated the use of 
the Front Tracking scheme of Univerdi and 
Tryggvason in simulations of high density-ratio 
multi-fluid flows. In this work, we used an upwind 
scheme to discretize the advective terms of the 
governing equations, coupled with a four-stage 
Runge-Kutta scheme to advance the computed 
solution in time. Compared to earlier 
applications of the Front Tracking scheme, a 
modified approach is used to advance the 
velocity field from one time level to the next. In 
earlier applications, the velocity field was 
computed as follows: First, the density field at 
the new time level was computed by advancing 
the front in time. Then a momentum field at the 
new time level was computed from the velocity 
field and density field at the old time level, using 
the discretized momentum equations. Finally, 
the new velocity field was computed from the 

6 
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new momentum field and the new density field, 
averaging as needed in the staggered mesh. In 
the current approach, the density field at the 
new time level is computed by advancing the 
front in time as before. Likewise, the momentum 
field is computed as before. However, a 
temporary density field, that is co-located with 
the velocity field, is computed by advancing the 
continuity equation in time and using the same 
differencing scheme as in the momentum 
equations. This density field is used solely to 
compute the velocity field at the new time level. 
With this modification, the overall scheme is less 
sensitive to high-density ratios than the original 
scheme. Simulations of flows with density ratios 
of 1000 and 10000 have been computed. 
Further improvements in the differencing 
scheme are possible and have been identified. 
These will be pursued in future work. 
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Figure 1: Schematic of an annular liquid sheet. 
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Figure 2. Deformation of an annular liquid sheet (axisymmetric); ~l~~i,=lOOO, pL/~i,=lOOO, 
UljU,i,=O. 14 14, Re=8333, no surface tension (l/We=O): (a) t=O.Ol, (b) t=l .O, (c) t=2, (d) t=3, (e) t=4. 
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Figure 3. Deformation of an annular liquid sheet (axisymmetric); pL/pair=lO,OOO, /LL/hi,=lOOO, 
U~/U~i~=O.1414, Re=8333, We=2, at non-dimensional times of 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, 
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Figure 4. Vectors of relative velocity near liquid sheet 


