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Mistuning changes the vibration of bladed disks dramatically. Various aeroelastic models have been used to

investigate the free vibration and forced response problems of mistuned bladed disks. Most of these models used

simplified structural and/or aerodynamic models. The traditional way to incorporate the aerodynamic coupling in

the high-fidelity structuralmodels is to use the cantilever-blade normalmodes to calculate the unsteady aerodynamic

forces. In this paper, a new reduced-order modeling approach is developed by using the tuned system modes to

calculate the unsteady aerodynamic forces directly. This new approach is applied to an industrial rotor. The results

show that aerodynamic coupling has significant effects on the vibration of bladed disks for the case studied. Also,

constraint modes are needed to yield accurate results if cantilever-blade normal modes are used to calculate the

unsteady aerodynamic forces. However, using the tuned systemmodes to calculate the unsteady aerodynamic forces

saves a significant amount of computation time compared to the method using both cantilever-blade normal modes

and constraint modes.

Nomenclature

A = aerodynamic stiffness matrix
C = speed of sound
E = complex Fourier matrix
f , F = physical and modal forces
h = height of stream tube
j = imaginary unit
K, M = stiffness and mass matrices
NB = number of blades
P, Q = modal transformation matrices
p = flow pressure
Q = flow mass flux at the boundary
q = generalized (modal) coordinate
s = distance along the boundary
T = period of flow unsteadiness
U = blade normal and constraint modes
�K, �M = physical mistuned stiffness and mass matrices
� = structural damping
�c = ratio of specific heats
� = flow density
� = interblade phase angle
� = system and blade mode shapes
� = velocity potential of the flow
� = blade constraint mode shape
! = complex frequency

Subscripts

T = total flow density and pressure
� = blade part of mode shape

Superscripts

a = aerodynamic quantity
CB, S = cantilevered-blade modes and system modes
M, T = mistuned and tuned
n = steps of iterative calculations
syn = in the synthetic modal space
0 = structural-only quantities
� = Hermitian of a complex matrix

Introduction

R EDUCING vibrations, and in particular the resonant forced
response of bladed disks, is an important concern for the

turbomachinery industry. Cyclic symmetry is a convenient
assumption for the analysis of (tuned) bladed disks. However,
cyclic symmetry does not hold for mistuned disks, which exhibit
small differences among sectors. Mistuning is unavoidable in
practice due to manufacturing tolerances and in-service wear and
tear, and can cause a drastic increase of the forced response. Hence,
the effects of mistuning on the vibration of turbomachinery rotors
have been extensively investigated (e.g., Tobias and Arnold [1]).

In early work, simplified models with only several degrees of
freedom (DOF) were used to study the dynamics of mistuned bladed
disks [2–4]. Although such simplified models, like lumped
parameter models, are convenient and insightful to investigate the
effects ofmajor system parameters (such asmistuning, structural and
aerodynamic coupling), they are not accurate enough to study real/
practical bladed disks. Models based on the finite element method
(FEM) can represent the actual bladed disks accurately. However,
the large number of DOF (usually several millions) of the FEM
models makes the computation time practically not affordable.
Hence, different reduced-order models (ROM) have been developed
[5–12]. Current high-fidelity structural models reduce the
computation time greatly compared to the original FEM model.
Moreover, various fluid dynamic models have been developed to
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calculate with high speed the unsteady pressure on the blades [13–
17] by (usually) assuming linearity of the unsteady pressure with
respect to the displacements of the blades.

Severe mode localization and excessive vibration amplitude of
bladed disks are major detrimental effects of mistuning. Previous
work has shown that interblade structural coupling is a critical factor
affecting the dynamics of mistuned bladed disks. In operating
conditions, bladed disks are always interacting with flows, and
hence, bladed disks exhibit both structural and aerodynamical
coupling. Thus, aeroelastic calculations are necessary for accurate
predictions. Although compact and accurate structural reduced-order
models have been developed, only a few studies of the dynamics of
mistuned bladed disks have been conducted with considerations of
aerodynamic forces. Traditionally, the aerodynamic stiffness matrix
was calculated using the blade normalmodeswith/without constraint
modes. For example, Kaza and Kielb [18,19] used a beam structural
model and a two-dimensional aerodynamic model to study the
vibrations and flutter of mistuned bladed disks. Pierre and Murthy
[20] and Pierre et al. [21] developed a perturbation method to
investigate the aeroelastic mode localization and eigenstructure
transformations. Sadeghi and Liu [22] studied the phase mistuning
and frequency mistuning effects on two-dimensional cascade flutter.
Gerolymos [23] calculated the tuned aeroelastic modes using an
iterative process over frequency-dependent unsteady aerodynamic
forces for a shroudless bladed disk. Moyroud et al. [24] developed a
similar iteration process using different structural and aerodynamic
computer codes, and calculated the aeroelastic tuned eigenvalues for
bladed disks with and without shrouds. In these latter two methods
[23,24], the aerodynamic code used the tuned system modes to
calculate the unsteady aerodynamic forces. During the iterative
process, Gerolymos [23] used a mode modification technique to
update the new eigenvalues and eigenvectors, and Moyroud et al.
[24] solved the eigenvalue problem directly. Seinturier et al. [25]
adopted the structural model developed by Bladh et al. [6,7] to
calculate the forced response of mistuned bladed disks. Because that
structural model is substructured into blade and disk components,
cantilever-blade normal modes and constraint modes were used to
calculate the unsteady aerodynamic forces [25]. The constraint
modes are obtained by enforcing unit displacements on interface
DOF successively. Kielb et al. [26,27] used the fundamental
mistuning model (FMM) developed by Feiner and Griffin [11] to
investigate the flutter and forced response problems of mistuned
bladed disks. Although FMM uses the tuned system modes as the
modal basis, cantilever-blade normalmodes are still used to calculate
the unsteady aerodynamic forces [26,27].

Distinct from these previous studies, the current paper discusses a
new method to incorporate the aerodynamic coupling into a high-
fidelity structural reduced-order model by using the tuned system
modes directly to calculate the unsteady aerodynamic stiffness
matrix, and by employing iterations over the eigenvalues of the
system to obtain accurate results. A new fluid-structure coupling
method in the modal space is developed to incorporate the
aerodynamic effects into a compact and accurate ROM. The
component mode mistuning (CMM) method [8] is used for the
structural model, and a quasi-3-D unsteady aerodynamic code is
employed to calculate the unsteady aerodynamic forces. Tradition-
ally, the cantilever-blade normal modes (and the constraint modes)
have been used to calculate the aerodynamic stiffness matrix
[20,21,25–27]. However, in the CMM model, the tuned system
modes are used as the modal basis. Herein, the tuned system modes
are used to calculated the aerodynamic stiffness matrix iteratively
over the eigenvalues of the system. The results using the traditional
method and the new method are compared. It is found that, for the
case studied, there are notable differences between the results using
the new model and the traditional method with cantilever-blade
normal modes only. To achieve accurate results, constraint modes
are necessary. However, the inclusion of constraint modes in the
aerodynamic calculation increases significantly the computation
time compared to using the tuned system modes directly.

This paper is organized as follows: In the next two sections, the
CMM structural model and the quasi-3-D aerodynamic model are

introduced. The methods to incorporate the aerodynamic coupling
into the CMM model using the cantilever-blade normal modes and
the tuned system modes are presented in the following section. The
two methods are applied to an industrial rotor. Results and
discussions are presented in the following section. Finally, the last
section summarizes the conclusions of this work.

Structural Reduced-Order Model

The common method for bladed disks is to conduct FEM analysis
for only one sector based on cyclic symmetry. However, when the
cyclic symmetry is destroyed bymistuning, the analysis of the whole
model is needed if FEMmethod is employed.Herein, an efficient and
precise reduced-order modeling method developed by Lim et al. [8]
formistuned bladed disks is used.Agroup of tuned systemmodes are
used as the modal space of the whole (mistuned) system. The major
advantage of this reduced-order model is the projection of the
deviation of cantilever-blade stiffness onto the tuned system modal
space. For brevity, only the synthesized equations in the reduced
modal space are presented here. The details of the reduced-order
model can be found in the original paper (by Lim et al. [8]). The
hybrid-interface component mode synthesis (CMS) method is
employed in thismodel. As shown in Fig. 1, themistuned bladed disk
is partitioned into two components: a free-interface component (the
tuned bladed disk) and a fixed-interface component (the blade
mistuning). The fixed-interface component is a virtual component
instead of a physical component because it is the difference between
the mistuned system and the nominal tuned system. Under the
assumption that the mistuned modes for a system with small
mistuning can be captured by the tuned systemmodes alonewhen the
tuned systemmodes have close frequencies (within a small range [8–
10]), the ROM can be constructed by using only the tuned system
modes (which are obtained by conducting cyclic symmetry analysis
of one sector). The synthesized equations for the eigenvalue problem
and (separately) the forced response problem can be expressed as [8]

��1� j��Ksyn �Ka � !2Msyn�qS� � 0 (1)

��1� j��Ksyn � Ka � !2Msyn�qS� ��S;0�
� f (2)

where matrices Msyn and Ksyn are given by

M syn � I��S;0�
� �M�S;0

� ; Ksyn ����S;0�
� �K�S;0

�

Frequency Domain Unsteady Aerodynamic Model

A quasi-three-dimensional model of a cascade operating in an
inviscid, irrotational, and isentropic flow is employed based on the
full-potential equation using a Galerkin formulation [13] and by
considering the variation of stream tube heights [28]. Consider the
flow between two neighboring stream surfaces. The velocity vector
may be expressed as the gradient of the scalar velocity potential �̂.
The conservation of mass can be expressed as

@��̂h�
@t

�r 	 ��̂r�̂h� � 0 (3)

Fig. 1 Substructuring of a mistuned bladed disk.
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where ^ denotes the full solution, including steady and unsteady
components. For an isentropic flow, the density and the pressure can
be expressed as

�̂� �T

�
1 � �c � 1

C2
T

�
1

2
�r�̂�2 � @�̂

@t

��
1=��c�1�

;

p̂� pT

�
1 � �c � 1

C2
T

�
1

2
�r�̂�2 � @�̂

@t

��
�c=��c�1�

where p̂ is the (complete steady and unsteady) pressure. Equation (3)
can be transformed by applying a variational principle [13,29].
Namely, the velocity potential, which satisfies Eq. (3) in a simple-
connected domainD, renders extremumof the functional� given by

�� 1

T

Z
T

ZZ
D

p̂h dx dy dt� 1

T

Z
T

I
Q̂ �̂ h ds dt

where Q̂ is the prescribed mass flux on the boundary.
The steady flow in each stream tube is calculated first. Then, the

unsteady flow is linearized about the steady flow under the
assumption that the unsteady flow induced by the motion of the
blades is a small perturbation to the steady flow. Only one passage
between two neighboring blades is solved by assuming that the flow
is periodic along the circumferential direction. Hence, the velocity
potential can be expressed as the sum of a steady potential� and the
real part of an unsteady periodic potential �, i.e., �̂�x; y; t��
��x; y� �R���x; y�ej!t�, with �
 � andR denoting the real part.

Fluid-Structure Coupling Models

Fluid-Structure Coupling Using Blade Modes

In previouswork (Lim et al. [8]), the stiffnessmistuning projection
is implemented by using the following modal transformation:

� S;0
� � I� ��CB�CB� qCB�

qCB 

� �
� �I� UCB�qCB (4)

where � denotes the Kronecker product [30], and

U CB � �CB �CB
� �

; �qCB�� � �qCB� �� �qCB ��� �
The constraint modes are obtained by enforcing unit displacements
on eachDOF at the interface successively, while keeping otherDOFs
at the interface fixed. The purpose of �CB is to describe the
displacements at the boundaries between components of the bladed
disk, such as blade-disk boundary and shroud-to-shroud boundary.

The projection used in Eq. (4) can be used to calculate the
aerodynamic stiffness matrix Ka also. First, the aerodynamic
stiffness coupling coefficients in the complex cyclic constraint and
cantilever-blade normal modal coordinates ~A are calculated. The
modal transformation between ~A and the aerodynamic stiffness
coupling coefficients in the physical coordinatesA can be expressed
as [8]

~A� �I� UCB���E� � I�A�E� I��I� UCB�
� �E� � I��I� UCB��A�I� UCB��E� I� (5)

Therefore, the aerodynamic stiffness coupling matrix in the tuned
structure-only system modal coordinates can be expressed [using
Eqs. (4) and (5)] in the following form:

Ka ��S;0�
� A�S;0

� � qCB��I� UCB��A�I� UCB�qCB

� qCB��E� I� ~A�E� � I�qCB (6)

For every mode shape UCB
m (i.e., for every columnm of UCB), the

unsteady pressure distribution on the blade pCB
m;i is calculated for

every interblade phase angle �i of index i, which is given by
�i � 2�i=NB (for i� 0; 1; . . . ; NB � 1). Note that �i and �NB�i
correspond to the same interblade phase angle. Hence, ~A is a block

diagonal matrix where each block relates to a specific interblade
phase angle index, and

~A�
~A0

~A1

. .
.

~ANB�1

2
6664

3
7775 (7)

The elements ~Ai
mn of the diagonal block ~Ai can be obtained by

integrating the dot product of the mth mode UCB
m with the nth

corresponding force in the direction of the local normaln as follows:

~A i
mn �

Z
A

UCB�
m 	 pCB

n;in dA; m; n� 1; 2; . . . ; NU (8)

where NU is the number of modes in UCB
m . The number of constraint

modes are usually much larger than the number of cantilever-blade
normal modes retained in UCB

m . Hence, for bladed disks without
shrouds, the constraint modes are usually neglected [8]. In this
scenario, the dimension of ~Ai

mn in Eq. (8) is the number of
cantilevered-blade modes selected NCB, and the modal trans-
formations shown in Eqs. (4–6) successively become [8]

� S;0
� � �I��CB�qCB� (9)

~A� �I��CB���E� � I�A�E� I��I��CB�
� �E� � I��I��CB��A�I��CB��E� I� (10)

Ka ��S;0�
� A�S;0

� � qCB�� �I��CB��A�I��CB�qCB�
� qCB�� �E� I� ~A�E� � I�qCB� (11)

Fluid-Structure Coupling Using System Modes

A natural other choice for calculating the aerodynamic stiffness
matrix is to employ the same projection as the one used for
mistuning, i.e., by using the approach shown in the preceding
subsection. However, for the cases where the constraint modes are
needed to calculate the aerodynamic stiffness matrix (e.g., bladed
disks with shrouds), the computation time is likely to become
formidable because the unsteady pressure distribution has to be
calculated for every constraint mode and every interblade phase
angle index. Moreover, the aerodynamic calculation is sensitive to
the blade motion, and consequently the small errors caused by the
modal projection [similar to the one shown in Eq. (9)] may lead to
large errors in the resulting aerodynamic stiffness matrix (expressed
in the structure-only tuned systemmodal coordinates). To overcome
these difficulties, tuned (structure-only) system modes are used
directly to calculated the aerodynamic stiffness matrix. Because
thesemodes are structure-onlymodes, iterations over frequencies are
needed because the aerodynamic stiffness matrix Ka in Eq. (1) is
dependent on the frequencies. From Eq. (1), the aeroelastic system
modes can be expressed as

� S;n
�;i �

XNS
r�1

QS;n
�;ri�

S;0
�;r; i� 1; 2; . . . ; NS (12)

or in the matrix form as

� S;n
� ��S;0

� QS;n
� (13)

where the superscript n denotes results after n steps of iteration,NS is
the number of tuned structure-only system modes used in the
component mode mistuning model, and the matrix QS;n

� is given by

Q S;n
� � qS;n�;1 qS;n�;2 . . . qS;n�;NS

h i
(14)

For a tuned system, the aeroelastic modes have constant interblade
phase angles, whereas no constant interblade phase angle exists in
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the mistuned aeroelastic modes. However, the aerodynamic
calculation requires periodic boundary conditions. To address this
issue and calculate the converged aerodynamic stiffness matrix, two
different methods are proposed: one for tuned systems and the other
formistuned systems. In thefirst step of bothmethods, structure-only
mode shapes and (complex) eigenvalues !0 are computed. Then, at
every iteration step n, the aerodynamic stiffness matrix (expressed in
the tuned structure-only modal coordinates) Ka;n is obtained using
the eigenvalues !n�1 calculated in the previous iteration step, and
new eigenvalues !n are computed using Ka;n. Iterations are
performed until convergence in the aerodynamic stiffness matrix is
achieved. This is distinct from classical flutter calculationswhere, for
example, iterations are needed to determine the flutter speed. Here,
the aeroelastic eigenvalues and eigenmodes for a particular flow
condition (which is before flutter) are of interest. The iterations
needed are performed over the eigenvalues (of unconverged
aeroelastic system) because the aerodynamic stiffness matrix is
dependent on these eigenvalues.

Tuned Case

Because every tuned aeroelastic system mode has a specific
interblade phase angle, the corresponding unsteady pressure
distribution on a blade has the same interblade phase angle also.
Hence, the aerodynamic stiffness matrix in the tuned aeroelastic
system modal coordinates ÂT;n may be expressed in the form of a
block diagonal matrix as

Â T;n �
ÂT;n

0

Â
T;n
1

. .
.

ÂT;n
NB�1

2
6664

3
7775 (15)

Unlike Eq. (7), the dimensions of the blocks ÂT;n
i in Eq. (15) can be

different for different i, and depend on the number of tuned structure-
only system modes used in the CMM model that relate to the ith
interblade phase angle �i. The aerodynamic stiffness matrix in the
tuned structure-only system modal coordinates Ka;n can be
calculated by using themodal transformation shown in Eq. (13). One
obtains

K a;n � Pn�ÂT;n
Pn (16)

where Pn � �QS;n
� ��1 is the modal transformation from the tuned

aeroelastic system modes to the tuned structure-only system modes.

Mistuned Case

Because of the linearity of the unsteady aerodynamic model, the
unsteady aerodynamic forces exerted on the blade due to the ith
mistuned aeroelastic system mode �S;n

�;i can be expressed as

F S;n
i �

XNS
r�1

QS;n
�;riF

S;0
i;r ; i� 1; 2; . . . ; NS (17)

Note that the mode �S;0
i;r is vibrating with the ith mistuned system

natural frequency related to the forceFS;n
i . Hence, the forcesFS;0

i;r are
different for distinctFS;n

i . The elements of the aerodynamic stiffness
matrix (in the mistuned aeroelastic system modal coordinates) ÂM;n

can be obtained as

Â
M;n
ij ��S;n�

�;i FS;n
j �

�XNS
r�1

QS;n�
�;ri �

S;0�
�;r

��XNS
t�1

QS;n
�;tjF

S;0
j;t

�

�
XNS
r�1

XNS
t�1

QS;n�
�;ri �

S;0�
�;r Q

S;n
�;tjF

S;0
j;t (18)

Because of the orthogonality of eigenvectors with different
interblade phase angles, only terms in which �S;0

�;r and F
S;0
j;t have the

same interblade phase angle will be nonzero in Eq. (18). The

aerodynamic stiffness matrix in the tuned structure-only system
modal coordinates can be derived in the same way as Eq. (16). One
obtains

K a;n � Pn�ÂM;n
Pn (19)

One may note that the tuned system can be calculated using the
same method as for the mistuned system described earlier, by setting
the mistuning to zero. However, each tuned mode shape �S;0

�;r is
related toNS different frequencies [in Eq. (18)], whereas every tuned
mode shape �S;n

�;i is related to only one frequency in the method
shown in Eqs. (15) and (16) for the tuned case. Thus, the method
based onEqs. (15) and (16) saves a large amount of computation time
compared to themethod based onEqs. (17–19), but it is valid only for
tuned cases.

Case Study

The structural ROM model has been validated by comparing the
results with MSC-NASTRAN [8], and the aerodynamic code has
been validated by comparing the results with several other unsteady
CFD codes and experiment results [16,31,32] for cascade flows. An
industrial bladed disk with 26 sectors shown on the left in Fig. 1 was
investigated. The complete FEM model has 1,306,500 DOF, and
each blade has 21,582 DOF, with 990 DOF at the interface between
the blade and the disk. The large number of interfaceDOFmakes this
case study challenging because the inclusion of the boundary
constraint modes is practically impossible. Figure 2 shows the
natural frequencies vs nodal diameter numbers for the tuned system.
The frequency range from 1300 to 1700 Hz was studied. The
frequency range investigated covers the second group (first torsion:
1T) of system modes. The rotation speed of interest is determined
using the Campbell diagram shown in Fig. 3, and 15 layers are used
for the aerodynamic calculations. The upstream far-field steady
Mach number near the hub is 0.4, and the reduced frequency (based
on half chord and inlet velocity near the hub) is approximately 1.45
near the hub. For brevity, the method using the cantilever-blade
normal modes is referred to as the blade mode method. The method
using the system modes is referred to as the system mode method.
Finally, the uncoupled and the coupled results using the systemmode
method are referred to as one-step results and converged results.
Small mistuning of Young’smodulusE of every blade is considered.
Table 1 shows the employed mistuning patterns (�en) and the
corresponding blades. The standard deviation of �en is 2.7% and the
mean value is close to zero. The structural damping � is 0.001. The
number of DOF of the CMM model is 28. Finally, five cantilever-
blade normal modes and 990 blade-disk boundary constraint modes
are used for the mistuning projection, but only the corresponding
cantilever-blade normal mode (1T) is used for the aeroelastic

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4

Nodal Diameter

N
at

u
ra

l F
re

q
u

en
cy

 [
kH

z]

1F

1T

2F
1S

2S

1.3kHz

1.7kHz

Fig. 2 Natural frequencies vs nodal diameter numbers for the tuned

bladed disk.

HE, EPUREANU, AND PIERRE 555



calculation in the blade mode method (where not stated otherwise).
As discussed in the following section, the bladed disk studied herein
has relatively strong aerodynamic coupling, which may not be the
case for a variety of other blisk operating conditions. Also, a strong
sensitivity of aerodynamic forces to interblade phase angle is
observed for the bladed disk studied.

Free Vibration Problem

Figure 4 shows the tuned andmistuned eigenvalue locus of the 1T
system modes of the system in the complex plane (�� j!=!ref ,
where !ref is a reference complex frequency). The imaginary part of
an eigenvalue represents frequency, and the real part represents
damping. A positive real part indicates that the damping is negative
and that the system is unstable for the corresponding mode shape.
The aeroelastic eigenvalues are distinct from the structure-only
eigenvalues. The aerodynamic coupling is strong for this case study,
as indicated by the fact that the largest aerodynamic damping value is
close to 0.03. Note that the regular pattern of the tuned aeroelastic
eigenvalues is destroyedwhenmistuning is introduced. Compared to
the tuned aeroelastic eigenvalues, the range of the real part of the
mistuned aeroelastic eigenvalues narrows down, and the range of the
imaginary part expands, which means that the mistuned frequencies
spread out, and mistuning stabilizes the system. These results are in
agreement with the well-known beneficial effect of mistuning on
flutter (Pierre and Murthy [20], Pierre et al. [21]). For most of the
tuned eigenvalues, the one-step results and converged results are
almost identical for frequencies, but show notable differences in
damping, which agrees with Gerolymos [23]. However, for the
eigenvalue corresponding to the interblade phase angle index 3, the
converged result and the one-step result exhibit significant
differences in both frequency and damping (as shown in Fig. 4).
This indicates that for this traveling wave, the dependence of the
unsteady aerodynamic force on the eigenvalue is complex. For the
mistuned eigenvalues, the one-step and converged results show
similar differences. The results using the blade mode method are
close to the one-step results, whereas some of the tuned andmistuned
eigenvalues have notable differences. In the following, a tuned
system mode with a positive interblade phase angle corresponds to a
traveling wave in the same direction of rotation.

Pierre et al. [21] showed that the aeroelastic mode shapes transit
from constant interblade phase angle (or extended) modes to
localizedmodeswhenmistuning increases. Also, there are numerous
mode crossings in the transition region, which are caused by the
frequency switching for different mistuned modes. This is
demonstrated in Fig. 5, which shows the fourth and fifth mistuned
aeroelastic modes. Themodes on the left column are the results using
the blade mode method. The modes on the middle column are the
one-step results using the system mode method. The modes on the
right are the structure-only modes. Interestingly, the fourth mode on
the left column is similar to the fifth mode on the middle column.
Also, the fifth mode on the right column is similar to the fourth mode
on the middle column. This indicates that the mistuned aeroelastic
mode crossings are very complex in the transition region. For these
two sets of results, although the fourth and fifth mistuned modes are
similar, the mistuned mode crossing patterns are different because
the frequency orders of these two modes are switched. However, the
mistuned structure-only modes are totally different from the
mistuned aeroelastic modes. In fact, for some structure-only modes,
no similarmodes can be found in the aeroelasticmodes. For example,
Fig. 6 shows themodal assurance criterion (MAC) numbers between
the third structure-only mistuned mode and the aeroelastic mistuned
modes using the blade mode method and the system mode method.
The MAC number MACcd shows the linear dependence of two
different modes �c and �d, and is defined as [33]
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Table 1 Mistuning pattern in E for the

case study rotor

Blade �en, %

1 5.06
2 2.68
3 2.30
4 �3:84
5 4.27
6 �2:74
7 �4:29
8 �1:71
9 0.81
10 0.65
11 1.20
12 �0:92
13 �3:17
14 2.93
15 �1:67
16 �0:60
17 �3:65
18 �3:50
19 0.03
20 0.15
21 3.27
22 2.76
23 �0:62
24 �2:06
25 0.91
26 �3:65
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Fig. 4 Eigenvalues of the 1T system modes with structural damping � of 0.001.
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MAC cd �
k��c�� 	 ��d�k22
k�ck22 	 k�dk22

(20)

The range of theMACnumber is from0 to 1, and aMACnumber of 1
corresponds to two modes that are linearly dependent. As shown in
Fig. 6, the highest MAC number is only about 0.3, which confirms
the clear difference between structure-only and aeroelastic modes.

The aeroelastic mistunedmodes are less localized compared to the
structural mistuned modes. Wei and Pierre [2] showed that not only
themistuning level, but also the interblade coupling is important for a
mistuned mode to be localized. In this case, the additional
aerodynamic interblade coupling affects the severity of mode
localization. For example, Fig. 7 shows the MAC numbers between
the 10th converged aeroelastic mistuned mode and the mistuned
modes using other methods. The 10th and 11th one-step aeroelastic
modes, as well as the 11th mode using the blade mode method, have
the largest MAC numbers close to 0.6 with this mode. Also, there is
no similar structural mode for this aeroelastic mode. Figure 8 shows
the magnitude of this mode (Fig. 8a) and the 10th (Fig. 8b) and 11th
(Fig. 8c) one-step aeroelastic modes. Although the MAC numbers
between the 10th mistuned converged mode and these two one-step

modes are the largest ones, there are significant differences between
the blade amplitude patterns of these three modes.

Forced Response

The tuned and mistuned forced responses of the system in the 1T
system mode frequency range, subjected to an engine order 29
excitation, are shown in Fig. 9. The applied forces are unit loads on
one of the nodes at the tip of each blade. The aeroelastic peak
frequencies are smaller than the structure-only peak frequencies,
which can be predicted from Fig. 4a because an engine order 29
excitation corresponds to the same interblade phase angle as
interblade phase angle index 3. In general, the aerodynamic stiffness
matrix should be recalculated for every excitation frequency;
however, only one aerodynamic stiffness matrix, calculated for the
eigenvalue problem, was used herein. The fluid-structure coupling
introduces additional damping into the system, so that the tuned and
mistuned aeroelastic peak forced response amplitudes are also
smaller than those observed for the structure-only system. Also, the
additional aerodynamic coupling leads to the disappearance of
several mistuned forced response peaks. The results using the blade
mode method are similar to the results using the system mode
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method. Nonetheless, it is interesting to note that the resonance
frequency where themaximummistuned aeroelastic forced response
occurs is different for the results using the blade mode method and
the system mode method.

The amplification factor, defined as the ratio between themistuned
and tuned peak values, is 1.12 for the structure-only case, and it is
1.87, 1.93, and 1.94 for the one-step result, converged result, and the
result using the blade mode method. The large increase of the
amplification factor due to the inclusion of aerodynamic coupling
can be predicted from Fig. 4. As shown in Fig. 4a, the tune mode
corresponding to interblade phase angle index 3 has the largest
aerodynamic damping. A mistuned aeroelastic mode can be viewed
as a linear combination of tuned aeroelastic modes. Therefore, the
damping of a mistuned aeroelastic mode can also be viewed as a
linear combination of the damping of tuned aeroelastic modes.
Hence, the beneficial effect of mistuning on flutter (as shown in
Fig. 4b) is observed because the range of the mistuned aerodynamic
damping is smaller than the range of the tuned aerodynamic
damping. Thus, all the values of the mistuned aerodynamic damping
are smaller than the tuned aerodynamic damping corresponding to
the interblade phase angle index 3. Hence, the amplification factor is
larger because the mistuned aerodynamic damping is smaller.

The 95 percentile response levels shown in Fig. 10 are calculated
using Monte Carlo simulations to determine statistically the likely
maximum forced response amplification factor due to mistuning. A
number of 1000mistuning patterns are used for eachmistuning level.
Note that the Monte Carlo simulations here assume that the
aerodynamic stiffness matrix is the same as the one obtained using
the mistuning pattern shown in Table 1 (�en). In general, the
aerodynamic stiffness matrix may be different for distinct mistuning
patterns if the systemmode method is used. As shown in Fig. 10, the
aeroelastic 95 percentile response levels are smaller than the
structure-only response when the mistuning level is small. This
indicates that the sensitivity of the amplification factor to mistuning
is decreased by the aerodynamic coupling.When themistuning level
becomes larger, the aeroelastic 95 percentile response levels
overpass the structure-only response and increase to a larger value,
around 3. This is consistent with Fig. 9. To demonstrate the effect of
different damping values for different tuned system modes (as in the
case of aerodynamic damping), two 95 percentile response levels are
also plotted in Fig. 10. The first one is referred to as the varied
structural damping case and the second one is referred to as the very
large structural damping case. In the varied structural damping case,
no aeroelastic coupling is considered and the structural damping �
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Fig. 8 Mistuned aeroelastic mode shape amplitudes.
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related to nodal diameter 3 modes is 0.003, whereas the structural
damping � is 0.001 for the other modes. In the very large structural
damping case, the aeroelastic coupling using the system mode
method with converged results is included, and the structural
damping � is set to 0.02. Compared to the structure-only result with
fixed � � 0:001, the sensitivity of the amplification factor to
mistuning does not change significantly in the varied structural
damping case. However, for this case, when the mistuning standard
deviation becomes larger than 0.5%, the amplification factor
becomes larger than 3. Compared to the aeroelastic results with
� � 0:001, the amplification factor is always smaller than 2 in the
very large structural damping case because the very large structural
damping decreases the relative difference between the mistuned
aeroelastic damping and the tuned aeroelastic damping correspond-
ing to the interblade phase angle index 3. Note that in the very large
structural damping case, the sensitivity of the amplification factor to
mistuning from the aeroelastic calculation is still smaller than the
structure-only results.

Accuracy of the Blade Mode Method

For brevity, the cantilever-blade normal modes are referred to as
the blade modes in this section. As shown in the preceding
subsection, the results using the blade mode method has notable
differences compared to the results using the system mode method.
There are at least two possible reasons for these differences: one is the
difference in the vibration frequencies used in the aerodynamic
calculation (system natural frequencies are used in the system mode
method, and natural frequencies of cantilever-blade normal modes
are used in the blade mode method), the other is the difference in the
mode shapes. To account for the difference in the vibration
frequencies, a similar iterative process to the system mode method
can be developed. To account for the difference in the mode shapes,
the neglected constraint modes can be included. However, the
inclusion of the constraint modes using the modal projection similar
to Eq. (11) is practically formidable for the aerodynamic calculations
because of the large number of constraint modes. For example, for
this case study, the required computation time is about 4.7 s on a
SunBlade-1000 machine for a single passage of a layer with respect
to a specificmode shape and eigenvalue. Then, using the blademode
methodwith just one blademode requires about 0.5 h of computation
time because there are 15 layers and 26 different interblade phase
angle for every blade mode. Usually, the computational time for
numerical simulations cannot be estimated using a simple
multiplicative relation. However, here that is possible because the
unsteady code used in this paper is a frequency domain code, and the
computation time of the structural ROM code as well as the
computation time of the steady aerodynamic calculation are
negligible compared to the computation time of the unsteady
aerodynamic calculation. Hence, using the blade mode method with
one blademode and 990 constraint modes would cost approximately

500 h. Using the system mode method with 26 tuned system modes
consumes about 0.5 h per iteration step for the tuned system, whereas
the required computation time is about 13 h per iteration step for the
mistuned system (because the unsteady calculation is needed for 26
different eigenvalues for every tuned system mode).

To investigate the effect of neglecting the constraint modes, some
artificial blade modes are generated to calculate the aerodynamic
stiffness shown in Eq. (7). These artificial blade modes are either the
systemmode related to the nodal diameter zero, or the corresponding
combined blade modes with or without the constraint modes [shown
in Eqs. (4) and (9). For example, for the 1T system mode frequency
range, these generated artificial blade modes replace the original 1T
blademode to conduct the aerodynamic calculation, and then use the
modal projection shown in Eq. (11) to calculate the aerodynamic
stiffness matrix. Figure 11 shows the resulting aerodynamic stiffness
coefficients [the diagonal elements of ~A in Eq. (7)] using these
artificial modes generated from the system mode and using the
second, the first two, the first four, and the first ten blade modes. The
MAC number between the system mode and the corresponding 1T
blade mode is 0.992, which means that they are very close to linearly
dependent. However, the results using the second blade mode
without the constraint modes are different from the results using the
system mode. The inclusion of other blade modes changes the real
part of the aerodynamic stiffness matrix, but does not change the
imaginary part. Nonetheless, the results with the constraint modes
are in good agreement with the results using the system mode,
especially when other blade modes are also included. Note that in
Fig. 11, a strong sensitivity of aerodynamic stiffness coefficients on
the interblade phase angle is observed, particularly for interblade
phase angle index 3. It is believed that a fluid instability exists in this
region for the case studied. The difference between the one-step and
converged results shown in Fig. 4 can be caused by such a fluid
instability, which is sensitive to frequency. Figure 12 shows the
tuned forced responses to the engine order 5 excitation. The
aerodynamic stiffness matrices are obtained using the artificial
modes generated from the systemmode and thefirst two blademodes
(with and without the constraint modes). Significant differences in
the peak forced response values and the resonance frequencies are
observed between the results using the system mode and the first
blade mode without the constraint modes. The inclusion of the
constraint modes yields almost identical results with the results
obtained using the system modes.

In principle, the blade mode method with all the constraint modes
would be more accurate than the system mode method because the
constraint modes represent all the physical coupling at the interface,
whereas only the modal coupling between the select tuned system
modes is considered in the system mode method. That would be the
case only if all the constraint modal coordinates are kept in the final
ROMmodal space. However, the size of the final ROMmodal space
and the required time for the aerodynamic calculation would become
extremely large. Hence, the systemmodemethod combined with the
CMM model is a very good compromise between accuracy and
computation time.

Conclusions

In this study, the effects of aerodynamic coupling on the vibration
response of bladed disks were investigated. An iterative method
using the tuned systemmodes to calculate the aerodynamic coupling
was developed. The results were compared with structure-only
results and the results using the blade-alone normal modes. A bladed
disk and aeroelastic configuration that exhibits relatively strong
aerodynamic coupling was found in the case study herein. Also, the
aerodynamic stiffness forces are strongly sensitive to interblade
phase angle for the bladed disk studied.

For the case studied, it was shown that aeroelastic coupling may
change the tuned andmistuned forced responses. Also, the statistical
95 percentile response levels are affected significantly by
aerodynamic forces. Furthermore, the mistuned mode shapes
change when aeroelastic coupling is introduced.
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Mistunedmode crossing patterns are different for the results using
the blade and system mode methods for the cases studied. Also, the
one-step and converged aeroelastic coupling using the system mode
methods yield similar results for the cases studied. However, when
aeroelastic eigenvalues and mode shapes are of critical interest,
multiple iterations and converged results should be used.

The constraint modes are necessary for obtaining accurate results
when using the blade mode method for the case studied. However,
the large number of constraint modes makes the computation time
much larger than that of using the system mode method.
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