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Real Structured Singular Value Synthesis Using
the Scaled Popov Criterion

Andrew G. Sparks* and Dennis S. Bernstein'
University of Michigan, Ann Arbor, Michigan 48109-2118

The scaled Popov criterion is used to derive an upper bound for the worst-case H> norm over a set of linear,
time-invariant, norm-bounded, block-structured parameter perturbations. This upper bound provides the basis
for a robust controller synthesis procedure that minimizes the upper bound and guarantees asymptotic stability of
the closed-loop system for all real parameter perturbations in the specified set. Numerical examples demonstrate
the tradeoff between achievable H, performance and guaranteed robustness to real parameter perturbations as
well as the reduction in conservatism due to the scaling matrix. Controllers designed for flexible structures using
this technique are shown to have similarities to maximum entropy controllers designed for the same examples.

Nomenclature
By, Cy = fixed matrices characterizing the structure of
uncertainty
w(t) = zero-mean white noise with unit intensity
x(t) = state vector
z(t) = performance variables
A = set of block-structured matrices

I. Introduction

IME-INVARIANT perturbations of a nominal plant can be

modeled conservatively as complex, time-varying parameters
or more precisely, although with greater difficulty, as real, time-
invariant parameters.!'? The difference between a complex, time-
varying model and a real, time-invariant model of time-invariant
perturbations becomes evident in Lyapunov stability analysis. Us-
ing conventional Lyapunov functions, stability can be guaranteed for
time-varying perturbations in the plant since the Lyapunov deriva-
tive need be negative only for each fixed value of time. When the
perturbations are actually constant, however, modeling uncertain
parameters as time-varying quantities leads to conservatism.

The positivity criterion, which guarantees stability for time-
varying nonlinearities in the feedback loop, is based on a fixed
Lyapunov function and, thus, is conservative in the case of time-
invariant nonlinearities. Alternatively, conservatism can be re-
duced by using parameter-dependent Lyapunov functions, where
a family of Lyapunov functions depends on the constant uncer-
tain real parameters.? The multiplier in the Popov criterion, which
is based on a parameter-dependent Lyapunov function, restricts
the nonlinearities to be time invariant and, hence, yields less
conservative resuits.

In recent work, the positivity and Popov criteria were special-
ized to the case of a nominal plant in a feedback interconnection
with a linear perturbation representing parameter uncertainty.>* To
further reduce conservatism, the multivariable Popov criterion was
generalized to include scaling matrices.? The resulting scaled Popov
criterion yields a frequency domain upper bound for the structured
singular value,® which is shown to be equivalent to the mixed-p
upper bound of Fan et al.2 specialized to real parameter uncertainty.
Then, using a generalization of the positive real lemma, the scaled
Popov criterion is rewritten in state space form using linear matrix
inequalities (LMIs).
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The goal of the present paper is to apply the scaled
Popov criterion>S to the problem of robust controller synthesis.
Specifically, the state space form of the scaled Popov criterion is
used to derive an upper bound for the worst-case H, norm over the
set of real parameter perturbations. Necessary conditions are derived
for the control gains such that this upper bound for the worst-case
H, norm is minimized. The resulting controller guarantees that the
closed-loop system is asymptotically stable and that the H, norm of
the closed-loop system is bounded by the optimum worst-case H,
norm for all real parameter perturbations in the specified set. The
necessary conditions are then used with a quasi-Newton optimiza-
tion algorithm to obtain robust controllers, and a numerical exam-
ple is presented to demonstrate the reduction in conservatism due
to the scaling matrix of the scaled Popov criterion. Finally, scaled
Popov controllers are obtained for a flexible structure with collo-
cated and noncollocated sensor/actuator pairs. These controllers are
then compared with maximum entropy controllers obtained for the
same examples.’

II. Problem Statement
Consider the linear, time-invariant uncertain system
x(t) = (A+ ByACo)x(t) + Dw(t) )]
z(t) = Ex(¢) 2)

where x(¢) € R*, w(t) € R%, z(t) € R?, By € R™™, and C €
R™", The uncertain matrix A is assumed to be an element of A,
the set of real, norm-bounded perturbations defined by

A, ={AeA:ou(d) <y}

In Sec. IV, the model (1) and (2) will represent the interconnection
of a plant and a controller, where the nominal dynamics matrix A is
asymptotically stable. For controller synthesis, consider the worst-
case H, norm from w(¢) to z(¢) given by

J(y) = sup IGa(®);

AcA,

where Ga(s) = ElsI — (A + BoACy)17'D and where A + ByAC,
is assumed to be Hurwitz for all A € A, . It follows from standard
results that

J(y) = sup tr PADDT
AcA,

©)]
where P, is the unique, nonnegative-definite solution to the
Lyapunov equation

0=(A+ BoAC)TPo+ Po(A+ BoACy) + ETE  (4)
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HI. Scaled Popov Criterion

In this section we review the scaled Popov criterion for norm-
bounded, block-structured uncertainty. This criterion, whichis given
in the form of a Riccati equation, is then used to derive an upper
bound for the worst-case H, cost given by Eq. (3). We first give
specific structure to the set A of block-structured perturbations by
letting A denote the set of real, symmetric, block-diagonal matrices
given by

A = {A: A = block-diag(l, ® Ay,..., I, ® A)

A = AT e Rmmi i:l,...,r}

where the dimension m; and the number of repetitions /; of the
uncertain block A; are given. Note that Z m;l; = m.

To state the scaled Popov criterion, define the set./\/ of Hermitian
matrices N that commute with every matrix A € A by

N = {N: N = block-diag(Nl Qlpy.. ., N ® I,,,,)

Ni=N;eC™ i=1,..,r}

and the set Q of positive-definite matrices Q that commute with
every matrix A € A by

Q={QeN:Q>0)

Note that if A € A, N € N, and Q € Q, then NA =
AN = block-diag(N; ® A1,..., N, ® A,) and Q"'12AQ? =
AQ-12QY% = A Hence, forall A € A and Q € Q, the asymp-
totic stability of the feedback interconnection of G(s) and A is
equivalent to the asymptotic stability of the feedback interconnec-
tion of Q'2G(s)Q~'7? and A.

We now state the scaled Popov criterion in the form of a Riccati
equation and derive an upper bound for the cost Eq. (3).

Theorem 1:Lety > 0and assume that A—y ~! ByCyis Hurwitz. If
there exist positive-definite matrices P and R and matrices N € N
and Q € Q suchthat y Q@ — NCyBy — BYCIN > 0 and

0=(A—y'ByCo) P+ P(A -y " ByCo)
+[BIP + QCy+ NCy(A —y™'BoCo)]’
x (yQ = NCyBy - BICIN) "' (BI P + 0Cp

+NCy(A—y~'BoCo)) + R ®)

then the feedback interconnection of G(s) and A is asymptotically
stable for all A € A, If, in addition, R > ETE, then

J(y) <t (P+2y 'CINCy))DD" (6)

IV. Robust Controller Synthesis
We now use the upper bound for the H; cost given by Theorem 1

to synthesize robust controllers. Consider the nth-order uncertain
plant
x() = (A + BoACy)x(t) + Bu(t) + Dyw(t)
y(@) = Cx(t) + Dyw(t)
z(t) = Eyx (1) + Equ(t)

where the n th-order dynamic compensator, where n, < n, is of the
form

xc(t) = Acxc(6) + B.y()
u(t) = Cex (1)
The closed-loop system can be written as
(1) = (A + BoAC)E(t) 4+ Dw(r)

2(6) = Ex(0)

where
- x(t) i A BC
Tl B.C A
~ B -
By = l:on(_:m] s Co= [CO OmxnL ]
p-| P E=[E EC
=\BD, |’ =[E 2Cc ]

If A + ByAC, is Hurwitz for all A € A, then the closed-loop H,
cost is

J(y)= sup tr P,DDT
AcA,

where P, is the unique, nonnegative-definite solution to the
Lyapunov equation
- ~ ~ T ~ -~ - ~ ~ ~ o~
0= (A + ByACy) Po+ PA(A+ ByACy) + ETE

Now, applying Theorem 1 to the closed loop system with A = A,
By = By, Cy = Cy, E = E,and R = ETE, it follows that if A —
1B0C0 is Hurwitz and there exist a positive-definite matnx P and

magrlcesN € Nand Q € Qsuchthaty Q—NCoBy—~BICIN > 0
ano = (A~ y~'BoCo) P+ B(A—y™'ByCo)
+[BI P+ QCo+ NCo(A -y BoCo)|”
x (yQ — NCoBo— BICIN) ' [BI P + Gy
+NCy(A—y7'BoCo)| + ETE )

then the closed-loop system is asymptotically stable forall A € A,
and

Jy) < (P+2y~'CyNC,) DDT

To synthesize robust controllers, we minimize this upper bound for
the worst-case Hj cost. To formalize this approach, we define the
auxiliary cost J (v, A, B., C., N, Q) by

J¥,Ae, B.,C., N, Q) =t (P +2y7'CJNC)DDT  (8)

and pose the following auxiliary minimization problem:

Find controller matrices A,, B,, and C, and matrices N € N
and Q € Q such that the auxiliary cost J(y, A, B., C., N, Q) is
minimized, where P satisfies the Riccati equation (7) and yQ —
NCoBy — B; CTN > 0.

For convenience, partition the matrices 2 and Q as

15_—_[1); P12:|, Q:[er Q12:|

P, P gn O

where Py, 0, € R*" and P,, 0, € R"*", The following theorem
provides gradients of the auxiliary cost 7 (y, A., B, C., N, Q) for
controller synthesis.

Theorem 2: Suppose A., B, C., N, and @ solve the auxiliary
minimization problem. Then yQ — N COBO — BTCO N > 0 and
there exist positive-definite matrices P and Q, where P satisfies
Eq. (7), O satisfies

0= (A—y~ Bolo) B+ O(A — v~ BoCo)”
+ Q[EOTI; +0Co+ Néo(zi - )’_léoéo)]*
x (yQ — NCoBy — B{CIN) Bl

~ ~1
+Bo(yQ — NCoBy — Bj Cy N)

x [BY P+ QCo+NCy(A~y~'BoCy)| @+ DD )
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and
0=PL0u+ PQ, (10)
0= (PLQ: + P,QL)C" + (PB.D2 + PLD,
+y~'C{NCyDy) D] (11)
0= BT(PiQ12+ Pi2Q2) + E} (E2C.Q2+ E1 Q1)
+BTCIN(y Q@ — NCoBy — BICIN)™'
X [ngl +QCy + NC()(A - V—lBoCO)]Qu
+BTCIN(yQ — NCoBy — BICIN) ™
x (Bj Pz + NCoBC.)Q, 2
0=(yQ— NCoBy— BICIN)™'

x [Bf P+ QCo+ NCo(A—y~'BsCo) |0

67
< [BTB + 0+ NCo(A — vy~ BoCy) |
x (yQ — NCoBy — BICIN) ™' BICT
+CoBo(yQ — NCoBy — BICIN) ™
x [BI P + 0Cy + NCo(A — v~'BoCo) |0
< [BI B+ 0G0+ NEo(A -y~ BoCo)]'
x (y@ — NCoBy — BICIN) ™
+(yQ — NCoBy— BICIN)™'
x [By P+ QCy+ NCo(A — y~'BoCo)]
x O(A =y BoCo)" CT + Co(A — v~ BoCo) 0
< [BIP + 0G0+ NEo(A -y~ BaCo) |
x (yQ = NCoBy— BICIN) " +y~'CoD,DTCI  (13)
0=(yQ - NCoBy ~ BICIN) ™'
< [BT B + 0Co + NCo(A -y~ Bolo) |OCT
+ CoB[BT B + 0+ NEo(A -y BuCo)]"
x (yQ — NCoBo — BICIN)™
—y(yQ — NCoBy — BICIN) ™
< [BI B + Co+ NEo(A -y~ BuCe) |0
< [BI P+ Co+ N (A -y~ BalCo) |
x (yQ — NCoBy — BICIN)™ (14)

Remark 1: The controller gains A, B, and C,, the multiplier
matrix N, and the scaling matrix Q can be found by means of a
quasi-Newton optimization algorithm that uses the partial deriva-
tives of the Lagrangian. These partial derivatives are given by the
necessary conditions (10~14), and where P and Q satisfy Egs. (7)
and (9), respectively. Section V includes several numerical examples
to illustrate this optimization procedure.

Remark 2: The robust controller procedure presented here allows
the controller gains A., B, and C,, the multiplier matrix N, and the
scaling matrix Q to be found simultaneously. This procedure s, thus,
distinct from the D-K iteration procedure of w synthesis and the
D, G-K iteration procedure of mixed p synthesis, where alternate
steps are used to find the controller gains and the multiplier and scal-
ing matrices. The idea of computing the gradient of the Lagrangian
with respect to the multiplier matrix N presented in Haddad and
Berstein® is extended here to include the scaling matrix Q.

Remark 3: Robust controller synthesis using a generalized version
of the Popov criterion for real, diagonal uncertainty was studied
in How et al.® and Haddad et al.” with a multiplier of the form
H + sN, where H is a diagonal, positive-definite matrix and N
is a diagonal, nonnegative-definite matrix. The controller presented
in Theorem 2 utilizes the scaled Popov criterion for real, block-
diagonal uncertainty® with the Popov multiplier 7 + sN, where
N is a Hermitian, block-diagonal matrix that may be indefinite. In
addition, the positive-definite, block-diagonal scaling matrix Q used
in Theorem 2 to reduce conservatism does not appear in How et al.?
or Haddad et al.’

V. Numerical Examples

In this section we present several numerical examples to demon-
strate the use of Theorem 2 for solving the auxiliary minimiza-
tion problem. We use the necessary conditions (10-14) from Theo-
rem 2 with the quasi-Newton optimization algorithm uncmnd.f from
Kahaner et al.'® and Dennis et al.!! to compute the controller gains
A, B, and C,, the multiplier matrix N, and the scaling matrix Q
that minimize the auxiliary cost in Eq. (8) subject to the Riccati
equation (7) of the scaled Popov criterion.

In Theorem 2, the necessary conditions (10-14) correspond to the
gradients of the Lagrangian with respect to the controller parameters
A., B, and C_, the multiplier matrix N, and the scaling matrix
Q, respectively, whereas the Lyapunov equation (9) arises from
the gradient of the Lagrangian with respect to P. These gradients
can be computed at each iteration by solving Egs. (7) and (9) and
using Eqgs. (10-14). It follows from Proposition 1 of Wang and
Bernstein!? that if Egs. (7) and (9) are satisfied, then the gradients
of the Lagrangian £L(A,, B., C., N, Q) are equal to the gradients of
auxiliary cost J(A,, B., C., N, Q).

A. Three-Mass System

Consider the dynamic system in Fig. 1 consisting of three masses
and two springs.> The control force acts on the third mass, whereas
the disturbance force acts on the first mass. In addition, there is white
noise corrupting the measurement y = x; + x, + w. Assume that
my=my=m3 =1,k =1,and ky = ky nom + 8, where ks pom, = 1
and é represents the uncertainty in the stiffness of the second spring.
The equations of motion are given by

[ o 0 0 10 0]
0 0 0 01 0
= 0 0 0 0 0 1 .
—ky/my ky/my 0 0 00
ki/my —(ky+ky)/my  ka/ma 0 0O O
B 0 kz/m3 —kz/m3 0 0 0_
0 0] o0 |
0 0 0
+ 0 0 wi 0 u
1/m; O 0
0 0 0
Lo o] | yms]

_[rro000] o
““looooool""|1]"

y=[1 1 0 0 0 0Jx+[0 1w
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W Ky k u
m, m, my

Fig.1 Three-mass system.
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Fig.2 Auxiliary cost vs =y for the three-mass system.

whereas to represent the stiffness uncertainty 8, the matrices By and
Cy are given by
By=[0 0 0 0 —1 117 Cy=[0 1 =1 0 0 0]

The quasi-Newton optimization algorithm was used to com-
pute full-order (r, = 6) controllers that minimize the auxiliary
cost J(y, Ac, B., C., N, Q) for different values of y. The lin-
ear quadratic Gaussian (LQG) compensator, which corresponds to
y = 00, was used to initialize the controller parameters A, B., and
C.. To demonstrate the effect of the scaling matrix Q on the con-
servatism of the controller, we first set O to be the identity matrix
and performed the optimization with respect to the control gains
A,, B., and C, and the multiplier matrix N. A large initial value of
y, which corresponds to a small amount of parameter uncertainty,
was chosen for the first iteration. The initial value of the multiplier
matrix N was computed by using Schur complements to write the
Riccati equation (7) as an LMI and finding a feasible matrix N
that satisfies it.!3 This guarantees that the Riccati equation (7) has a
positive-definite solution. The gradient optimization was performed
until the gradient became small, indicating that a solution near an
extremal had been found. The value of y was then reduced, and the
previous solution was used to initialize the next iteration.

To improve performance, the auxiliary cost was also optimized
with respect to the scaling matrix Q. To guarantee that the Riccati
equation (7) has a solution, the multiplier and scaling matrices N
and Q were initialized by finding feasible matrices N and Q that
satisfy the corresponding LMI. The synthesis proceeded as before,
by reducing y at each step and using the previous solution to ini-
tialize the gains for the next iteration. The auxiliary costs vs the
uncertainty bounds y for each controller with and without the scal-
ing matrix @ are shown in Fig. 2. As can be seen, the upper bound
for the worst-case H, norm of the closed-loop system increases as
y decreases, that is, as the allowable set of perturbations increases.
Furthermore, it can be seen from Fig. 2 that the scaling matrix Q
reduces the conservatism of the controllers, since a lower auxiliary
cost is obtained for a given y.

Finally, the actual H, performance of the closed-loop system was
computed for a range of the uncertain stiffness k, = 1 + & for each
of four different controllers, namely, the LQG controller and three-
scaled Popov controllers with y = 20, 9, and 7. These controllers
are given in Appendix B, and the H, costs of the closed-loop sysiem
are shown in Fig. 3. Since the H, costis guaranteed to be less than the
auxiliary cost for all k, € [1 —y !, 1+ y~!], a robust performance
bound given by the auxiliary cost is guaranteed a priori in that range.
As y decreases, the H, norm of the nominal closed-loop system with
ky = kynom = 1 increases, whereas the H, norm of the perturbed

28 T T T T T

26+ b
LQG

ko

Fig.3 Dependence of the H; cost of the closed-loop three-mass system
on kz.

k Py K 42
u-» m
| = 1 =1 m2
€y Cs

Fig. 4 Two-mass system.

closed-loop system remains close to the nominal value for a range
of perturbations &.

B. Collocated Two-Mass System

Consider the dynamic system shown in Fig. 4 that represents
a flexible structure with uncertain high-frequency dynamics. This
example was used in Friedman and Bernstein’ to demonstrate the
properties of maximum entropy controllers on collocated and non-
collocated systems. The equations of motion for this system are

migy +cigr — ealqe — 41) tkigi — ka(q2 — 1) = u
maga + c2(g2 — 1) t kalga — 1) =0
We first consider the case of a collocated sensor and actuator pair,
where the output is given by y.q = 4. Letting m = 1, mp = 10,

ki =k, =1, and ¢; = ¢, = 0.01 and transforming to real normal
coordinates yields the plant state space realization

m-0.0002 02208 O 0
| —02208 —00002 0 0
= 0 0  -00103 14320
0 0  —14320 —0.0103
—0.1439
0.2168
1 00426 | *
1.1890

Yoo = [—0.0545 0.0819 —0.0352 0.8181]x

The matrices Dy, D,, E;, and E, are chosen to be’

00
1o 1000
D, = s D,=[0 1], E,=
“lo o =101 1[oooo]
0 0
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Fig. 5 Frequency responses of scaled Popov controllers for collocated
two-mass system.

so that the LQG compensator places a notch at the second modal fre-
quency. Uncertainty in the damped natural frequency of the second
mode w,, = 1.432 is modeled by choosing

00
00 0010
Bo=1 9 1| C°=[0001]
-1 0

Hence, the perturbed dynamics matrix is A + ByACy, where A =
diag(é, &) and & represents uncertainty in wg,.

The quasi-Newton optimization algorithm was used as before to
compute full-order controllers (n. = 4) that minimize the auxil-
iary cost for several values of y. The frequency responses of the
LQG controller and the two scaled Popov controllers with y = 7
and y = 1 are shown in Fig. 5. The LQG controller is unstable and
achieves closed-loop stability and nominal performance by placing a
notch at the nominal damped natural frequency w,; of the uncertain
second mode. Hence, closed-loop performance degrades consider-
ably when the damped natural frequency of the second mode is
perturbed. The scaled Popov controllers with y = 7and y = 1
are asymptotically stable, but the controller with y = 7 has only
a shallow notch near the damped natural frequency of the second
mode, whereas the controller with ¥y = 1 has no notch near that
frequency. Hence, these controllers sacrifice nominal performance
for improved robust performance over a larger range of the un-
certain damped natural frequency. As y decreases, the controllers
guarantee robust performance over a larger range of 5. Note that
the controller obtained with ¥ = 1 is positive real. Since the plant
is a model of a flexible structure with a collocated sensor and ac-
tuator pair, it is also positive real and, thus, the closed-loop sys-
tem is asymptotically stable for all values of the uncertain damped
natural frequency.

The actual H, cost was computed for a range of values of the
damped natural frequency of the second mode for the LQG con-
troller and for the three scaled Popov controllers corresponding to
y = 15,7, and 2. These controllers are given in Appendix C, and
the cost dependence is shown in Fig. 6. As y decreases, the H,
cost of the nominal closed-loop system increases whereas the H,
cost of the perturbed closed-loop system remains near the nominal
value for a larger range of perturbations. The LQG controller sta-
bilizes the closed-loop system for only small perturbations in the
damped natural frequency of the second mode, whereas the scaled
Popov controllers stabilize the closed-loop system and provide per-
formance close to the optimal level even for large perturbations.
Hence, robust performance over a large range of the uncertain pa-
rameter is achieved for only a small increase in the H, cost above
the optimal.

It is interesting to compare the scaled Popov controllers with the
maximum entropy controllers given in Friedman and Bernstein.” As

40 T v

\ 1

\ 1

\ t
35F ) 5,=013 [V=15||LQa 1

\ [

A Yy =7 |

\ 1
30t \ ! ]

\ I

2 V8, =0.10 !
O 25+ \ { 4

o N 1

T y=2 \\\ :
20 N I 1

S —
151 |— scaled Popov ]
— - Max Entropy
10 . +

0.5 1 1.5 2

Second Mode Damped Natural Frequency

Fig.6 Dependence of H, cost on the damped natural frequency of the
second mode for the collocated two-mass system.
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% o
S22k < ]
<o o
§2o - X o 1
= 0
ERLL X x y ]
1B o o o e e e :
14} .
12} 1
10 . : \
0 5 10 15 20

ki

Fig.7 Auxiliary cost vs -y for scaled Popov controllers for the collocated
two-mass system.

discussed in Friedman and Bernstein’ and Bernstein and Hyland, '
this technique also yields robust controllers for flexible structures
with uncertain damped natural frequencies. Furthermore, as shown
in Friedman and Bernstein,” as the uncertainty level is increased,
the maximum entropy controllers tend to become positive real. Until
now, the maximum entropy method was the only technique known
to yield positive real controllers for positive real plants as a direct
consequence of uncertainty. As this example shows, however, scaled
Popov synthesis also yields positive real controllers for positive real
plants. The gains of the maximum entropy controllers in Friedman
and Bernstein’ for 8, = 0.3 and 10 were obtained from the authors
and are given in Appendix C. The actual H, costs for the maximum
entropy controllers are shown in Fig. 6 with the actual H, costs
for the scaled Popov controllers. Although the parameter 6, is not a
bound on the uncertainty &, it can be seen from Fig. 6 that increasing
8, in maximum entropy controller synthesis has the same effect as
decreasing y in scaled Popov controller synthesis.

The scaled Popov synthesis technique was also used to com-
pute reduced-order controllers (n, = 2) for the flexible structure
with the collocated sensor and actuator pair. A reduced-order con-

troller that stabilizes the two-mass system is required to initial-

ize the gradient search. Although the balanced truncation of the
LQG controller did not stabilize the two-mass system, the balanced
truncation of the full-order scaled Popov controller with y = 10
was found to be stabilizing and was, thus, used to initialize the
reduced-order controller gains. The numerical optimization pro-
ceeded as before, with decreasing y and with each solution used
to initialize the next iteration. The auxiliary costs vs the robustness
bounds y for each reduced-order controller are shown in Fig. 7 with
the auxiliary costs vs the robustness bounds y for each full-order
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Fig.8 Frequency responses of reduced-order scaled Popov controllers
for the collocated two-mass system.
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Fig. 9 Frequency responses of scaled Popov controllers for noncollo-
cated two-mass system.

controller. Clearly, the costs obtained for the full-order controllers
are lower than the costs for the reduced-order controller for the cor-
responding values of y. The frequency responses of the reduced-
order scaled Popov controllers with y = 100, 10, and 1 are shown
in Fig. 8.

C. Noncollocated Two-Mass System
Next we consider the two-mass system of Fig. 4 with a noncol-
located sensor and actuator pair by choosing ynoncol = §2. SO that

Ynoncol = [—0.1063  0.1597 0.0018 —0.0419]x

We increase the matrix E, by a factor of 10 to enhance the notching
characteristics of the LQG controller.”

The scaled Popov controller synthesis technique was used as be-
fore to compute full-order controllers (n, = 4) that solve the aux-
iliary minimization problem for this uncertain plant for a range
of y. The frequency responses of the LQG controller and the
scaled Popov controllers with y = 10 and y = 2 were com-
puted and shown in Fig. 9. Since the plant is not positive real, ro-
bust performance cannot be achieved by positive real controllers,
as in the collocated case. Instead, as seen in Fig. 9, the con-
trollers widen and deepen the notch at the nominal frequency of the
uncertain mode.

The actual H, cost was computed for a range of the damped
natural frequency for the LQG controller and for three scaled Popov
controllers corresponding to y = 15, 4, and 2. These controllers are

1050 ; ' -
H | 1 |
1 1 | '
1000+ t 8, =0;2 ! ] :
i
8,=1.0 bl '8, =05
{ | 1 |
950+ \ X | | 4
- ' i ! i
2 ! l ! !
[&] L " t 1
900 y=12 " : | }
T ' | ! |
! | i |
850 t 1 ! ! b
\
~ ! ! t
Yy=4 il
i
800 |— scaled Popov Y= 155= L =~ - 1
- -~ Max Entropy LQE;
750 . .
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Fig. 10 Dependence of H, cost on § for controllers for noncollocated
two-mass system.

given in Appendix D and the cost dependence is shown in Fig.
10. In the noncollocated case, the LQG controller stabilizes the
plant only for a narrow range of the uncertain parameter. In fact,
the LQG controller for the noncollocated plant stabilizes the plant
for a smaller range of the uncertain parameter than the unstable
LQG controller for the collocated plant. The maximum entropy
controllers from Friedman and Bemnstein’ with §, = 0.2, 0.5, and
1.0 are given in Appendix D. The actual H, cost was computed for a
range of the damped natural frequency for these controllers and also
appears in Fig. 10. As in the collocated case, the increasing 8, with
the maximum entropy controllers has the same effect as decreasing
y with the scaled Popov controllers.

V1. Conclusions

A robust controller synthesis procedure for plants with linear,
time-invariant, norm-bounded, block-structured uncertainty and a
numerical algorithm for its solution were presented. The worst-case
H, norm over the set of allowable real perturbations was written in
terms of the observability Gramian of the uncertain closed-loop sys-
tem. Then, using the scaled Popov criterion, an upper bound for the
worst-case H, norm was derived. The gradients of the Lagrangian
with respect to the control gains, the matrix multiplier, and the scal-
ing matrix were then used with a quasi-Newton optimization al-
gorithm to find controllers that minimize the upper bound for the
worst-case H, norm. The quasi-Newton optimization algorithm con-
verged at each iteration when the gradient vector was sufficiently
small. The number of optimization steps varied with problem size
and the amount that y is decreased and was generally between 50
and 300 steps. Hence, the controller could be efficiently computed at
each iteration.

The numerical examples demonstrated the robust performance
achieved using these controllers. For positive real plants with suffi-
ciently large real parameter uncertainty, the synthesis procedure was
shown to yield positive real controllers, thus guaranteeing closed-
loop stability for all perturbations such that the plant remains posi-
tive real. Until now, maximum entropy controller synthesis was the
only procedure that was known to yield positive real controllers for
positive real plants as a direct result of model uncertainty.

There are several possible directions for future work in this area.
First is a refinement of the scaled Popov criterion to reduce conser-
vatism of the robustness bound. This would entail more general mul-
tipliers and scalings than the ones presented here. Second, the actual
H, cost, rather than the auxiliary cost, could be minimized. Either
of these directions would lead to a controller synthesis procedure
with improved robust performance for real parameter uncertainty.
Finally, motivated by the similarity of scaled Popov controllers and
the maximum entropy controllers for positive real plants such as
flexible structures, the framework used here to derive scaled Popov
controllers could be used to obtain a rigorous framework for maxi-
mum entropy controller synthesis.
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Appendix A: Proofs of Theorems 1 and 2

Proof of Theorem 1
Since y @ — NCyBy — B CIN > 0 and

0> (A—y 'BeCo) P+ P(A—y ' ByCo)
+[BIP+QCo+ NCo(A ~ y~'BoCo) |’
x (¥Q — NCyBy — BICIN)™

x [B({P + 0Cy + NCO(A - y‘lBOCO)] — R

it follows using Schur complements that

(A - )/‘IB()C())TP + P(A — y_lB()C())
BI P + QCo+ NCo(A —y ™' BoCo)

Asymptotic stability of the feedback interconnection of G(s) =
Co(sI — A)~'By and A for all A € A, follows from Eq. (A1) and
Theorem 2 of Sparks and Berstein.® Hence, A + BgACy is Hurwitz
forallA € A,

Next, rewriting Eq. (5) by adding and subtracting (BoACo)” P +
PB()AC() yleldS

0= (A + BoyACy)T P + P(A + ByACy)
+ [BOTP + 0Cy + NC()(A - )/AIB()CO)]*
x (¥Q = NCyBo— BICIN) ™
x [BJ P+ QCy+ NCo(A — y~' ByCy)

T
+R—~[Bo(A+y ' DCy] P~ PBy(A+y ™' Gy

Furthermore, adding and subtracting (A + BOACO)Tcg (A +
y ' DNCy + CT (A +y ' I)NCo(A + ByACy) yields

0= (A+ ByAC) [P+ CJ (A +y ' DNCy|
+[P+CJ(A+y ' DNCy|(A+ BoACo) + R+ A (A2)
where
A =[BIP+0Cs+NCy(A —y™'BoCo)]’
-1
x (yQ — NCyBy — Bi C N)
x [BJ P + QCy+ NCy(A =y~ ByCy)]
T
—[Bo(A+y™'DCy] P — PBy(A+y™' DGy
—(A+ ByACy)TCH A +y'DNCy

—CI(A 4y DNCy(A + ByACy)

Adding and subtracting y "1CI (A + y"HNCy BoCo + y7'C]
BICIN(A + y~1)Cy to and from A and rearranging yields

A =[BfP+ QCy+NCo(A~y ' ByCo)]’
x (yQ — NCoBy — BICIN)™

x [Bf P+ QCy+ NCo(A — y ™' ByCo)]

—[Bota + ™' DDCo]" P = PBy(A + ' D)Cy

—Ci(A+y ' DNCy(A — y ' ByCy)

—(A=y'ByCy) CIN(A + 7' DG

—CH{A+y ' DNCyBy(A + ¥ )Gy

—Ci(A+y '"DBICIN(A+y~'DC,
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whereas adding and subtracting 2CT Q(A + y~H)Cy + yCl (A +
¥y HQ(A + y~1)Cy to and from A yields

A=[BIP+QCy+NCy(A—y ' ByCy)|’
x (yQ = NCoBy— BICIN)™

x [BI P+ QCo+ NCo(A — v BoCo)]

~CEA+y™'D[BI P+ 0Co+ NCy(4 — ™' ByCy)]

— [BgP + QC() + NC()(A - )/MIB()C())]*(A + V_II)C()

-1 T 1
PBy+CJQ+ (A~ y™'ByCo) C()Nil <0 (A1)

NC()B() + BOTC({N - }/Q

+Ci (A +y ' D(yQ — NCoBo — BiCqN) (A +y ' DGy
+2CT 03 (A +y ' DOIG

—yClOI(A+yT QG

=[Bj P+ QCo+ NCo(A -y ™' ByCo)

—(vQ - NGBy — B{CIN)(A +y™' DGy’

x (yQ = NCoBy — BICIN)'[BY P + QC,

+NC0(A - }’*IBOC()) - ()’Q ~ NCyBy — B()TC(?N)

x (A+y ' DG +2CT Q2[(A +y'D)

~y@a+yinteic
Next, note that for all A € A, omax(A) < ¥y~ so that —y 1T <
A<y 'Tand0 < A+ y~'] <2y~'I. Thus, forall A € A,
0<iy(A+y ' <I,sothat0 < (A+y~'D—iy(A+y D)2
Hence, since y @ — NCoBy — BT CI' N > 0, it follows that A > 0.
Now, subtracting Eq. (4) from Eq. (A2) yields

0= (A+ByAC) [P+ C(A+y ' I)NCy — P4
+[P+Cl(A+y ' IDNCy — Ps](A+ BoACy)

+A+R-—ETE

Since A + ByAC, is Hurwitz for all A € A,, R > ETE, and
A > 0, it follows that P + CI (A + y"' I)NCy — Pa > 0 for all
A e A, sothat J(y) < tr [P+ CI (A + y~'I)NCy]1DDT for
all A € A,. Finally, since A + '] <2y~'Iforall A € A,,
it follows that J(y) < tr (P + 2y ~'CI NCo) DD, which proves
Eq. (6). a
Proof of Theorem 2

Forming the Lagrangian by appending the Riccati constraint (7)
with Lagrange multiplier { to the auxiliary cost (8) yields

L(Ac» Bc, Cc, N, Q) =1r (13 -+ 2)/*165.NC~‘0)5DT
~ ~ ~ T ~ -y~ i~ o~
+tr Q{(A—y~'BoCy) P+ P(A -y ' ByCy)
+ETE+[BIP + 0Co+ NCo(A -y BCo) ]’
P ~ -1
x (y@—NCyBy— Bj C{N)
X [Bgﬁ -+ Qé() =+ Né()(A - yiléoé())]}
Differentiating the Lagrangian with respect to A., B., C,, N, and
Q and setting the derivatives to zero yields the necessary conditions

(10-14), whereas differentiating the Lagrangian with respect to P
yields the Lyapunov equation (9). |
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Appendix B: Controllers for Three-Mass System

Linear quadratic Gaussian:

~—0.9305 -0.9305  0.0000 1.0000  0.0000  0.0000| 0.9305
—0.5829 -—0.5829  0.0000  0.0000 1.0000  0.0000| 0.5829
-0.1517 —-0.1517  0.0000  0.0000  0.0000 1.0000{ 0.1517
—1.4820 05180  0.0000  0.0000  0.0000  0.0000| 0.4820

0.3368 —2.6632 1.0000  0.0000  0.0000  0.0000| 0.6632
—0.1744  0.7588 —2.2940 -—1.8337 —1.5650 —1.6087|—0.1452

| —0.3196 -—-0.3864 —1.2940 —1.8337 —1.5650 —1.6087] 0.0000 ]
Scaled Popov with y = 20:

r—0.9613 —0.9570 —-0.0039  0.9961 -0.0166  0.0035]| 0.96917
-0.5942 -0.6179  0.0134  0.0107 0.9869 —0.0013{ 0.6546
-0.1862 —-0.1558 —0.0487 —0.0174 —-0.0234 1.0074; 0.1423
—1.5180 0.5231 —0.0101 -0.0328 —0.0541 0.0071| 0.4955

0.2924 —2.6634  0.9908 —0.0217 —-0.0649  0.0215| 0.6674
—0.1995 0.7648 —2.3033 —1.8521 —1.5808 —1.6438;—0.1464

L —0.3156 —0.3912 —1.2942 —1.8515 -—1.5435 —1.6616 0.0000_J
Scaled Popov with y = 9:

r—1.0043 —0.9911 —0.0095 0.9906 —0.0442  0.0054| 1.01817
—0.6129 —0.6676  0.0360  0.0240  0.9658 —0.0039| 0.7447
—0.2247 —0.1577 —0.1160 —0.0439 -—0.0446 1.0089| 0.1251
—1.5610  0.5323 -0.0246 —0.0787 —0.1150  0.0093| 0.5028
0.2364 —2.6639  0.9767 —-0.0527 -—-0.1464  0.0485; 0.6628
—0.2245 0.7725 -2.3156 —1.8757 —1.5906 —1.6993|—0.1500

| —0.3086 —0.3977 -—1.2895 —-1.8694 —1.5216 -1.7263] 0.0000 ]
Scaled Popov with y = 7:

m—1.0285 -1.0102 -0.0125  0.9873 —-0.0617 0.0062| 1.04457
—0.6254 —0.6952  0.0494  0.0306  0.9530 —0.0050| 0.7928
—0.2431 -0.1578 —0.1534 —-0.0593 -—0.0534 1.0063| 0.1144
—1.5828 0.5383 —0.0332 —-0.1041 —0.1461 0.0082| 0.5029

0.2067 —2.6642  0.9682 -—-0.0709 —0.1890  0.0621| 0.6565
-0.2354  0.7769 -2.3219 —1.8879 —1.5928 —1.7323|-0.1527

| —0.3042 —-0.4011 -1.2853 -1.8778 —-1.5110 —1.7605| 0.0000 |

Appendix C: Controllers for Collocated Scaled Popov withy = 7:
Two-Mass System
Linear quadratic Gaussian:
—1.1079 0.1093 0.0925 —0.1214}-0.0777

—0.0672 0.4099 —0.0213 0.4953 | —0.6054 —1.9348 —2.5865 —0.1292 —0.8626| 2.4788
—~0.1266 —0.2751 0.0278 —0.6465| 0.7902 —0.8748 —1.3756 0.6558 0.1956| 0.9374
—0.0101  0.0413 —0.0103  1.4322]—0.0000 29296  0.8243 —0.9960 —0.1035]|-0.4055
0.2808 —1.1530 —1.4322 -0.0103{—-0.0000 2.5086 —0.7869  0.5753 —0.5182| 0.0000

0.2361 —0.9695 -—0.0000 -—0.0000{ 0.0000

) Scaled Popov with y = 2:
Scaled Popov with y = 15:

—0.3455 0.5062  0.0811 0.67051—0.1048 —-0.9997 —-0.2945 —0.0132 —0.1500| 0.2396
—0.0065 —0.9223 -0.4018 —0.3755] 1.2492 —1.6555 -3.8219 —-0.7282 —0.7672| 2.5397
-0.0729 —-0.0702 -0.2974 1.0072| 0.0536 -0.7780 —-1.5166  0.5321 0.1679} 0.7929

0.0663 —1.0102 —0.9249 —0.3736| 0.0336 3.0180  0.3567 -—1.1395 —0.2423|-0.0796

0.9461 —0.8372  0.2545 —0.2629| 0.0000 24895 —0.9438 0.4749 —0.3643| 0.0000
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Maximum entropy with 8, = 0.3:

SPARKS AND BERNSTEIN

—0.1892  0.5358  0.0188  0.5838|—0.5061
—0.0082 —0.6511 —-0.2465 -0.6252; 0.9351
—-0.0775  0.0623 —-0.3564  1.3261| 0.0458
02745 —1.2288 —1.3404 -0.4076| 0.0324
0.3819 —0.9673 —-0.0621 —0.3439| 0.0000
Maximum entropy with §, = 10;
—4.7356 44517 —5.5583 6.2827|—-0.4490
3.8619 —13.1740 —5.5323 —11.9357| 1.9659
—5.8266 —4.8516 —18.6345 1.3889( 1.3625
6.5993 —11.8794 1.3062 —13.2871| 0.1713
1.3888  —1.4322 1.1212  —0.8335| 0.0000

Appendix D: Controllers for Noncollocated
Two-Mass System

Linear quadratic Gaussian:

- 0.3077 1.7122  0.0012 —0.0273|-0.6525]
—-0.7089 —2.2107 -0.0014  0.0316| 0.7543
0.1117 0.4107 —0.0103 1.4322}-0.0000
—3.1174 -—-11.4642 —1.4322 —0.0103|—0.0000
L —2.6215 —9.6403  0.0000 —0.0000| 0.0000 |
Scaled Popov with y = 15:
™ 0.2047 1.6389 —0.1243 —0.0050|—0.5692 ]
—0.6805 —2.6373 —0.0657  0.0478| 0.6687
0.1126 0.4115 -0.1831 1.4803| 0.0394
—3.0944 -—-11.4614 —1.5199 -0.1868( 0.0010
L —2.5934 —-9.6228  0.1072 —0.2978} 0.0000 |
Scaled Popov with y = 4:
~ 0.2579 1.6139 —0.4487 —0.1016]|—-0.3647 ]
-0.7378 —2.8287 —0.1025 —0.2842| 0.1810
0.2062 0.3518 —0.6588 1.7986 | —0.0788
—3.1272 -11.4576 —1.7151 —0.7245(-0.2143
L —2.5079 —9.5863  0.3542  0.1859| 0.0000 |
Scaled Popov with y = 2:
™ 0.3594 1.5881 —~0.4578 —0.1128]|-0.3585"7]
—0.7681 —2.8158 —0.1151 -0.2956| 0.0866
0.2285 0.3421 —0.6905 1.8138| 0.0544
—-3.1243 —-11.4611 -1.7124 —0.74659|—-0.3359
| —2.4880 —9.5837  0.3553  0.2164] 0.0000 |
Maximum entropy with §;, = 0.2:
[ 0.2655 1.6802 —0.0315 —0.0196|—0.6877 ]
—0.6794 —2.3378 —0.0133  0.0522| 0.7758
0.1295 0.4054 —0.0491 1.4531| 0.0426
—3.0704 —11.4790 —1.4465 -0.0708|—-0.0675
L—2.6677 —9.6280  0.0146 —0.0871| 0.0000 j

Maximum entropy with §; = 0.5:

0.3804 1.5182 —0.1677 -—0.0712|—-0.9465
—-0.8107 —-2.6761 —0.0287  0.0783( 0.8425
0.2708 0.3717 —0.1846 1.6222( 0.4701
—2.7997 —11.5855 —1.4875 —0.3952(—0.4084

—2.9434 —9.5884  0.0603 —0.2656| 0.0000
Maximum entropy with §;, = 1.0:

0.3018 1.3856 —0.4658 —0.4377|-0.8796
—0.8640 —3.4153 -0.2048  0.0205] 0.5153
0.4862 0.2629 —0.4180 1.9616( 0.7647
—2.7855 —11.5444 —1.9418 -—1.2260(—-0.2143

—2.8143 97742  0.7496 —-0.2716| 0.0000
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