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The nonequilibrium neutral atom excited state
densities, electron densities, electron and heavy
particle temperatures are computed for a fully dis-
sociatsd partially ionized nitrogen plasma expand-
ing in a nozzle starting from equilibrium in the
settling chamber. The degree of excitation non-
equilibrium at the exit of a convergent-divergent
nozzle having an area ratio of 22 is systematically
investigated for chamber pressures between 0.01
and 1,000 atm and chamber temperatures between
6,000 and 18,000°K. Thermal nonequilibrium at
the exit rises to a maximum in the chamber pres-
sure range between 1and 10atm, while excitation
nonequilibrium is smallest in this pressure range,
due to the competing effects of the three-body re-
combination and collisional coupling terms in the
electron energy equation. Increasing chamber
pressure above 10atm produces increasingly
severe and unexpected departure from excitation
equilibrium.

List of Svmbols
A cross-sectional area of nozzle
Al, i) radiative transition rate
B, (Bij) matrix whose elements are Bij in
Eq. (4)
b2-bg constants specifying the nozzle shape
C, (€Y vector whose elements are Cj in
- Eq. (4)
D, (D;) vector whose elements are D in
Eq. (4)
Ey ionization potential
E(i) energy level of ith state measured
from ground state
g(i) statistical weight of ith state
H enthalpy, see Eq. (14)
h Planck constant
i,]j dummy indices
K(i, j) collisional transition rate coefficient
k Boltzmann constant
kp ionic recombination rate

mg, mp electron and heavy particle mass,
respectively
m mass flov rate through nozzle

N(i) population of ith state

Na, Ne atom and electron density

Ny atom density under equilibrium

NE (i} population of ith state under equilibrium

Ne, coll rate of change of electron density by
collisional process

Ne, rad rate of change of electron density by
radiative process

Nh heavy particle density = Ny + Ne

p pressure

Qrad radiative power loss

r nozzle radius

s constant specifying pressure variation

Te, Th eleetron and heavy particle temperature

u plasma velocity

Ve electron thermal velocity

X distance along nozzle

Za, Z+ atom and ion partition function

o degree of ionization = Ne/Np,

oy radiative recombination rate coefficient

Veh electron-heavy particle collision
frequency

X chemical and excitation nonequilibrium
parameter in Eq. (7)

(i) dimensionless population of ith state

Subscript

a atom

c characteristic value

cham settling chamber

E equilibrium value required by the local
nonequilibrium Te and Ng

EQ complete equilibrium value

e electron

h heavy particle

* throat

+ ion

Introduction

Previous studies of electron-ion recombination
in expanding plasma flows!s 2: 3 have shown that
significant departures from equilibrium can be
expected in typical wind tunnel nozzles in the fol-
lowing three ways;
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L the electrons and heavy particles are at
different temperatures (thermal non-
equilibrium),

2. the electron density does not satisfy the
Saha equation (chemical nonequilibrium) ,
and

3. the bound electronic states of the atoms
are not populated according to the
Boltzmann distribution law (excitation
noneguilibrium).

Whether or not any of these deviations from equi-
librium are of importance in practice depends, of
course, on the application or use to which the flav
is put. For example, the excited population dis-
tributions are crucial for spectroscopic diagnosis
of plasma flow and the possible generation of
stimulated emission, although they are of little
consequence to aerodynamic forces and moments.

Although the fundamental physical principles
that govern the relaxation of these nonequilibrium
phenomena are known, the effects of the inter-
coupling between them are not well understood,
particularly in a high speed fluid flow. The pur-
pose of the present study is to systematically
investigate the consequences of the intercoupling
among the three nonequilibrium processes and the
fluid conservation equations, by numerical com -
putation. An ionically recombining flow of nitro-
gen expanding through a converging-diverging
nozzle is studied, starting from equilibrium stag-
nation conditions. The nitrogen plasma is assum-
ed to be fully dissociated and partially ionized
throughout the nozzle. The evolution of the non-
equilibrium flow properties have been system-
atically calculated as functions of the chamber
pressure and temperature. The study focuses on
the unusual interaction between the thermal and
chemical nonequilibrium, and also on the very
large effects these two nonequilibrium phenomena
have upon the atomic excited state distributions.

Derivation of Equations

Assumptions

In order to simplify the analysis, the follow-
ing assumptions are made:

(i) The electrons and heavy particles each
have a Maxwellian velocity distribution
at temperatures Te and Ty, respectively,
since the self-collision times for each
species are very much smaller than
other characteristic times. As a corol-
lary, the continuum Flaw concept is
assumed to hold.

(ii) The flaw is steady and quasi-one dimen-
sional, radial variations being neglected.

(i1i) Thereare noimposed electric and mag-
netic fields. As aresult, the electrons

and ions have a common directed velocity.
(iv) Viscous diffusion and thermal conduction
effectsare neglected.
(v) The plasma is neutral and consists of
neutral atoms, singly charged ions and
electrons. Molecular recombination is
neglected .
The radiative power loss is approximated
by a simple expression, see Eq. (15).

(vi)

Electronic State Population

Because diffusion is neglected in (iv) above,
the rate of change of the electronic state population
of the ith state, N(i), is controlled only by the
chemical rates; that is, it is the difference between
the sum of the rates of all incoming electronic
transitions and that of all outgoing transitions% 9,
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Here, x is the distance along the nozzle, pandu
are the density and velocity of the plasma, my and
Ny, are the mass and the number density of the
heavy particle, respectively, and Ng is the elec-
tron density. X(i, j) is the coefficient of the rate
of electronic transitions of an atom from an initial
state i to a final state j as a result of a collision
with an electron. The state corepresents the ion-
ized state; thus K(i, « and K(eq i) denote the colli-
sional ionization and recombination rate coefficients.
Likewise, A(i,]) is the electronic rate coefficient
for radiative transition from an initial (upper)
state i to a final (lower)state j, A{«x i) being the
radiative recombination rate coefficient. In addi-
tion, there is a relationship connecting N(i)'s to
the atom density Ng,

0

Na = Z N(i) (2)

i=1
It is convenient to express the electronic state
population N(i) in terms of the dimensionless
quantity ¥(i)

w(i) = N(i)/NE(i) (3)

where Ng(i) is the equilibrium population required



by the local electrgn density and temperature
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Here, g(i) and Z are the statistical weight of the
ith state and the on partition function, respec-
tively, h is the Planck constant, mg the electron
mass, E(i) the energy level of the ith state meas-
ured from the ground state and E, is the ionization

potential. Interms of the dimensionless popula-
tion ¥(i), Bqg- (M)and (2) can be combined symboi-
ically® in the form
B-¥=-C+xD @)
where B is the matrix whose elements Bi] are
functions only of Te and N as follows;
For i=1,
. 2 .
By; = Ng()/Ng” (= function of T, alone)
For i>1, j=1i,
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¥ is a vector with component ¥(i), and D is a
vector whose components D;'s are all zero except
Dy which is

- 2 —_ H
D, = NaE/Ne (= function of T, alone)

where Ny g is the equilibrium atom density re-
quired by the actual electron density and tempera-
ture, i.e. Saha equilibrium value

2 1.5
h ) exp Lw- 5
T m KT, kT, (5)

in which Za is the atom partition function. C is a
vector with component C; which is zero for i = 1,
and for i > 1,

i N

. N, wi) d
C. =-K(i,9 —WA&O’“ + - u&{ln (i),

i>1 (6)
Also x is the ratio
X = Na/NaE (= function of N, N, and T_)(7)

which s a measure of the degree of chemical non-
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When the property of the plasma varies slowly
along the nozzle, one can neglect the last term in
Eg. (6) in comparison with the preceding two terms
in the same equation. When such conditions exist,
Eq. (4) becomes a system of algebraic equations,
and the solution to Eg. (4) can be obtained by the
simple matrix operation

- = . - =2 -1 -

T-[8)1-¢+x[B]!-D

= function of Te and Ne
+ X function of T, and N, (8)

Thus the populations of allelectronic states are
uniquely determined once the macroscopic flav
quantities Te, Ne and the degree of nonequllibrium
X (or equivalently Ny because x is related to Ny
through Eq. (7)) are specified. The condition under
which the last term in Eq. (5) can be neglected is
normally referred to as the quasi-steady condition
for the electronic state distribution4. Based on

the available information on the rate parametersS:7,
one can show that such quasi-steady conditions exist
in the nozzle flow under consideration. Because the
numerjcal values of the solution, Eq. (8), are
known®, it is necessary only to find Te, Ne and x
(or Ny) to determine the nonequilibrium excited
state populations.

Flow Equations

The flow properties T,, Ne and x are com-
puted by integrating a system of differential equa-
tions. The analytical model adopted here is simi-
lar to that of Ref. 1through 3. From Ref. 8, one
can write the conservation equations as follows:

(overall continuity) puA =m (9)
du=_-4dp
pu P Py P g e
(overall momentum) i Ix (10)
dH
(overall energy) M3 = " Orad (11)

(electron energy)

d|5 _.d
Neu~[—-k Te]-u——(NekTe)

dx} 2 dx
Mg 3
+ 2N, —=veh 2k (T, =T,
N
-fE +5kT Nu—d—fg-_Q (12)
x 2 e] h dx Nh rad
(electron continuity)
N
d e :
Ny wax ﬁl; = Ne,rad ¥ Ne, coll (13)

Here, A = A(x) is the cross-sectional area of the
nnemla A tha maac flaw rate through the nozzle.



p the pressure given by p =Ne K Te + Ny K Th,
and H is the total enthalpy per unit mass of plasma
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In Eg. (14), the energy contained in the excited
states [ N(i) E(i)/p] is neglected as being small
compared with other forms of energy. The radia-
tion power loss per unit volume Qrad is assumed
to be given by

(14

. 2
Quagq =% N Eg (15)
where ay. is the overall radiative recombination
coefficient for free-bound electron-ion recombina-
tion. The radiative recombination coefficient used
for nitrogen was

10

1.76 x 10~ 3

-1
cm’” sec

(16)

% 0.71
Te

which iits the value for nitrogen given at 250K by
Bates etal’. The temperature dependence wes
chosen to be the same as that of hydrogen'.  When
a similar procedure is adopted for hydrogen, the
resulting radiative power loss of the form, Eq.
(156), is found to give the correct values to within
a factor of order 2 as compared to the exact calcu-
lation+mwhich the detailed radiative transport
of optically thick lines is included. Thus, while
the mechanism of the actual radiation loss is not
due only to an optically thin continuum, the simple
expressions, Eg. (15) and (16), are used throughout
although a more detailed calculation is possible.

The electron-heavy particle collision fre-

qguency is given by
Yen = Ve Ny Qg * Ne Q)

where ve = V8kTe/(mmyg) is the mean electron
thermal velocity. Qeg iS the electron-atom elas-
tic collision cross-section which is taken from
Ref. 10as 5 x 10-16 cm?2, Q; is the collision
cross-section for ion-electron elastic energy ex-
change, suitably averaged over a Maxwellian ve-
locity distribution, which is taken from Ref. 11.

Ne,rad is the net radiative rate of electron
recombination per unit volume, given by

N 2

e,rad - "% N (17)
Since the plasma is optically thin, photo-ionization
has been neglected. The collisional electron-ion
reaction rate Ne, cojy 1S obtained from Ref. 12 as
3

Ne, coll = ¥R Ng~ (X - 1) (18)
where x is the nonequilibrium parameter defined
by Eq. (7). Generally the right-hand-side (RHS)

of Eq. (13) cannot be separated into the sum of
separate overall radiative and collisional rates™,
but for the optically thin case with quasi-steady
excited state distribution, such a separation is
validl2. One should note that since most atoms
are still found in the ground state, the ground state
number density N(1) is approximately equal to the
atom density and hence ¥(1) = N(1)/Ng(1) ~ X, ex-
cept at very high temperatures, e. g. Te 225, 000°K.
Thus the present analysis is quite similar to that of
Ref. 4 in which ¥(1) takes the role of x. The col-
lisional recombination rate coefficient kg wes cal-
culated in Ref. 12 for nitrogen as

27 6

cm 1

k. =1.15x 1028 (T_/10, 000) . sec”
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which wes also verified experimentally!3. The
nitrogen atom and ion partition functions Z5 and Z,
were evaluated from the tables given by Drellishakl4
through an empirical curve fit.

The basic flow equations (Eg. (9) to (13))are
first made dimensionless by dividing by appropri-
ate characteristic values. The equations are then
transfornied into a form suitable for machine com-
putation. The details of these steps are similar to
those in Ref. 1and 2. The conservation equations
can be written in two forms, an area-specified
form! or pressure -specified form%. The examina-
tion of the area-specified form shows two numer-
ical difficulties. First the nonequilibrium solution
cannot be started from rest where u = 0, because
the slopes of the varia“les become indeterminate.
To overcome this difficulty we initially solve the
nozzle flow equations assuming CTE (complete
thermodynamic equilibrium) in the very early part
of the nozzle flowl using temperature as the inde-
pendent variable. After the equilibrium solution
has yielded a {inite velocity, these equilibrium
values are introduced as the initial condition for
the nonequilibrium equationsd The switch over
occurs at a temperature 100°K below the chamber
temperature.

The second difficulty in the area-specified form
lies in the critical point singularity which is often
referred to as a saddle point19, At the saddlepcint,
the denominator of a term in a differential equation
becomes zero. Physically the numerator at this
point is also zero and so there is no real difficulty,
but the coinputational difficulty remains. The sad-
dle point singularity is removed only by adopting
the prtssure-specified form2. In the pressure-
specified form, only the starting singularity exists
which can be overcome as described above. The
pressure -specified form has a disadvantage, how-
ever, because in most cases the pressure distri-
bution is not known a priori; it is the area change
that is known, at least approximately, rather than
the pressure distribution. Thus, a compromise is
necessary between the two forms.



In the present work, the nonequilibrium solu-
tion was initiated specifying the pressure distribu-
tion and calculating the resulting nozzle profile.
After passage of the saddle point, the nonequilib-
rium solutiocn was continued by solving the area-
specified version. At ihe switch point between the
pressure-specified and area-specified versions,

the nozzle contour and slope were made continuous.

The pressure distribution assumed for points up-
stream of the switch pcint was taken to be

B/Bpa = X0 [ (0,%)°

where the parameters b, and s were found by trial
and error so as to generate a nozzle having afixed
chamber-to-throat distance of 3.0 cm. The initial
area ratio downstream of the switch point was a
hyperbolic contour

]

A/A, =1 +by x-x)°

where x, is the value of X at throat. For values of
x = x, larger than 9.15 cm, this contour Wes joined
smoothly to a parabolic shape in which the nozzle
radius was described by

r=b, (x ~x)% +bg (x-x,) +1g
where the parameters were so chosen to give zero
slope at X = 18.3 cm at which point the area ratio
became = 22 if the initial parameters bg and s
were appropriately chosen. The maximum half -
angle of divergence of this nozzle wes 11. 6° which
occurred at the junction between the hyperbolicand
parabolic shapes. A constant area was assumed
downstream  of the 18.3 em station. The mass
flow was adjusted to give a throat diameter of
1.27 em. The resulting nozzle shape is shown in
Fig. 1.

Numerical Solution

The dimensionless form of the flow equations,
together with the equilibrium starting solution
was programmed for solution on the 1BM 360/67
computer. The standard Rungc-Kutta or Adams-
Moulton methods for integrating a set of simultan-
eous differential equations proved unsuitable for
the solution of these equations except at low pres-
sures, i.e. below 0.1 atm chamber pressure. In
the early part of the nozzle flaw, very large nu-
merical instabilities are encountered which re-
quire a vanishingly small step size. This is
commonly referred to as "stiffness"15. Far down-
stream in the parabolic and constant area sections,
however, the standard Adams-Moulton method was
satisfactory.

The numerical difficulty arises in the present
problem for two reasons. First, the chemical re-
laxation time associated with the third term in the
RHS of Eq. (12) and the second term in the RHS of

Eqg. (13) and the thermal equilibration time (second
term in RHS of Eq. (12)) 48 much smaller than the
flow transit time; that is, the chemical and thermal-
ization Damkohler numbers are both much greater
than unity. The ratio of the largest to smallest
eigenvalues which is a measure of the stiffness wes
typically of the order of 108 for a chamber pres-
sure ot 100 atm and greater for higher pressures.
This difficulty is the same as that encountered in
the problem of other chemical relaxations ,97uch as
vibrational16 or molecular recombination!” relax-
ations, except that the rates associated with plas-
mas are typically several orders of magnitude
greater and hence more "stiff'.

Secondly, the elastic thermal equilibration and
the ionization relaxation are opposing processes,.
which is unique to the relaxing plasma. In Eqg.
(12), the second and the third terms on the RHS
oppose each other in determining Te. The second
term represents the effect of thermalization and
tends to lower the electron temperature; the third
term signifies that in recombination the ionization
energy Is given solely to the electron gas and tends
to raise its temperature. For instance, let us
imagine that the rate of recombination is increased
resulting in a closer approach to chemical equilib-
rium. Because the degree of ionization always de-
creases in an expanding nozzle, such an increase
in the recombination rate leads to a reduction inthe
slope (i.e. less negative), dTe/dx, driving Teaway
from Th. In an extreme case, the equilibration
process in one mode forces the other mode to de-
viate further away from equilibrium, resulting in
positive values of the normally negative character-
istic eigenvalues of the differential equations (see
appendix).

In order to obtain satisfactory solutions with
reasonably large step sizes, an "implicit™ integrat -
ing scheme'? was required with double precision
for pressures above 100 atm. The implicit inte-
grating scheme results in a solution which oscil-
lates slightly, the local mean value of which is
considered to be the correct solution.

Result and Discussion

Flow Property Variation

Because the bound state populations are con-
trolled entirely by the flow quantities Te, Ne and
the nonequilibrium parameter x, the variation of
these flow properties is examined first. Table |
compares values of various parameters of interest

for the following flow models for a represeatative
case:

(a) An ideal frozen flow calculated using the
adiabatic isentropic perfect gas equations
with ¥ = 1.667.



(b) A hypothetical CTE expansion satisfying
the Saha equation everywhere with Tg =T,
including the recombination energy but
disregarding radiative losses.

A nonequilibrium expansion satisfyingthe
complete nonequilibrium equations as
described in Flow Equations.

Same as (c) except that the radiative loss
terms in Eq. (11),, (12), and (13), were
arbitrarily reduced by a factor of 10.

(©)

(d)

The chamber conditions fog each model were
p =10atm and T = 14,000 K, the nozzle shape
being the one described in Flow Equations and
shownin Fig. 1.

As seenin Table I, the nonequilibrium solu-
tions (c¢) and (d)differ greatly from either the froz-
en Flow(a) or equilibrium flav (b) solutions, indi-
cating the need for a nonequilibrium calculation.
Nevertheless, the pressure distribution and heavy
particle density are not affected greatly by which
model is assumed.

Comparisdn of cases (c) and (d) reveals some
interesting effects of radiation. Decreasing the
radiation increases both the electron and heavy
particle temperature due to decreased radiative
cooling. The lower temperature in case (c) allows
a higher recombination rate and hence lower values
of Ne. For this case note that this effect has come
about because the radiative cooling effect has a
larger effectindecreasing Te thanthe increased re-
combination rate has in increasing Te. At the exit
the value of x in case (d) is nearer to unity pri-
marily because Te is larger in (d); the exponential
dependence of x upon Te has outweighed the square
dependence upon Ne.

To illustrate the numerical results, the cases
(b)and (c) are exhibited in Fig. 1land 2. Figure 1
shows at the bottom the nozzle contour used for
all the results reported here. In the top of Fig. 1
the values of Te and Ty for the nonequilibrium
case (c) are compared with the equilibrium tem-
perature TEQ Of case (b). Figure 2 shows Ny, Ne
and the parameter x obtained from two solutions.
By definition, x = 1in the equilibrium flow and so
X is shown only for the nonequilibrium case. In
this example x reaches 2.37 X 10-6 at the nozzle
exit indicating a significant deviation from equi-
librium,

Excited State Populations

To illustrate the interrelation between the
flowv quantities Te, Ne and X and the electronic
state populations, we show a schematic excited
state Boltzmannplot in Fig. 3 in which the value
of log [N(i)/g(1)] is shown on an energy level dia-
gram. If all the excited states were in colligional

equilibrium with the free electrons, then the re-
sulting CTE value of log [ Ng(i)/g(i)] would liealong
the straight line having slope -1/kTe. Inthe re-
combining nonequilibrium case, the actual valuesof
N(i)/g(i) = w(i) Ng(i)/g(i) are smaller than the equi-
librium value because (i) < 1. AS one approaches
the ionization limit, however, collisional recombin-
ation-ionization processes with the free electrons
dominate the excited state transitions and ¥(i) = 1
asi - o, i.e. the highly excited states are in
Saha-Boltzmann equilibrium with the free electrons.
For the limiting case as one approaches the ioniza-
tion limit the combination of the Saha and Boltzmann
equations results in

2
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(nly in the limit i = <« does the slope of the non-
equilibrium distribution approach = I/k Tg. AS
mentioned earlier, the nonequilibrium parameter
X is approximately equal to ¥(1) = N(1)/Ng(1), and
so the difference between log [ N(1)/g(1)] and log
[Ng(1)/g(1)], or equivalently the difference be-
tween log [N(e)/g()] and log [Ng(w)/g()], ap-
proximately equals log x. As X decreases, the
population distribution must deviate further away
from the equilibrium Boltzmann distribution. Thus
x Is not only a measure of chemical nonequilibrium
but a measure of excitation nonequilibrium, so that
it may be called a chemical-excitation nonequilib-
rium parameter.

The distributions ofelectronic state populations
for the cases shown in Fig. 1and 2 and Table lare
shown in Fig. 4 at three points; in the stagnation
chamber, at the throat and at the exit of the nozzle.
The plots in Fig. 4 are obtained by applying Eq.
(8), the numerical values of which are found in
Ref. 6, using the computed values of Te, Ne andX.
Figure 4a shows the case of nonequilibrium corres-
ponding to the case (c) in Table I, and Fig. 4b is
for the equilibrium case (b) in Table I. As seen
here the nonequilibrium population distribution
does not differ greatly from the equilibrium dis-
tribution in the early part of the nozzle flow. At
the exit of the nozzle, however, the distribution
deviates significantly from the equilibrium distri-
bution, and shows the feature exhibited qualita-
tively in Fig. 3. At the exit, if a spectroscopist
were to calcalate the total (or ground state) density
based on measurements of the excited state den-
sities N(i), Ne and Te, extrapolation downward
along the line whose slope is = I/k Te on a E(i) vs
log [N(i)/g(1)] plot, he would overestimate the
total (or ground state) density by a factor of |/X
which is approximately 0.4 x 106 in this case. On
the other hand if a gasdynamicist were to estimate
the excited state density from N4 even knowing the
nonequilibrium value of N(I)or N, together with



Ne and Te, he would underestimate the upper state
density N(i) by a factor x. An even more severe
discrepancy would result if the flov were assumed
to be completely in equilibrium. When the com-
plete equilibrium is assumed, one imagines the
electronic state populations to lie on the straight
line through the ground state at siope - I/k TE(%
where TEQ is only 2589 K as compared to 4727°K
in the nonequilibrium case. The discrepancy in
the upper state populations between the nonequi-

librium and %%uilibrium in these cases is approxi-
mately 2 x 1018.

Effect of Chamber Conditions

As seen in this example, x is a second order
nonequilibrium parameter dependent on the non-
equilibrium values of T, and Ne as well as the
atom density N, (see Eq. (5) and (7)). Because of
the highly nonlinear appearance of Te in the nor -
malizing density Ny, a relatively small change
in Te can produce a very large change in x. For
example if one asks what is the order of nonline-
arity of the function exp (- E/k Te) for a typical
temperature concerned, say 8400°K, then by
matching the slopes of exp (- Eq/k Te) and Te™
one finds the order of nonlinearity n to be approx-
imately n > E,/k Te = 20. Thus the magnitude of
the chemical (and excitation) nonequilibrium pa -
rameter x is controlled implicitly by the degree of
thermal nonequilibrium (Te = Th)/Th to a great
extent. For this reason, the degree of thermal
nonequilibrium at the end or the nozzle wes calcu-
lated systematically as a function of the chamber
pressure for various chamber temperatures over
the range 0.01 < peham < 1000atm and 6000 <
Tcham < 18,0000K. The results are shown in
Fig. 5. At lowpressures, very little recombina-
tion energy is available to force T and Ty apart,
the result being that Te and T are close together.
As the pressure increases the recombination rate
in Eq. (12) initially dominates over the thermal-
ization term, resulting in a relatively large ther-
mal nonequilibrium. This increasing departure
from thermal equilibrium in the range .01 to
latm occurs despite the increase in the corres-
ponding Damkohler number for the thermalization
process. At very high pressures, the elastic col-
lision term in EQ. (12) becomes most important,
dominating the recombination term and forcing
the electron and heavy particle temperature back
together. This unique feature is a direct conse-
quence of the opposing nature of the chemical and
thermalization processes, which leads to the
occurrence of a positive eigenvalue in the differ -
ential equations (see appendix).

The chemical -excitation nonequilibr ium pa-
rameter X is calculated also over the same range
of conditions. The contours of constant log x at
the nozzle exit are shown in Fig. 6 as functions

of the stagnation chamber pressure and tempera-
ture. For a fixed chamber temperature, say

14, 00609K, increasing the chamber pressure has
the expected effect of forcing the excitation non-
equilibrium parameter toward unity only for pres-
sures below about 1atm. Further increase of the
chamber pressure results in a rapid decrease of X
with no suggestion over the range of conditions ex-
amined here, that x can be forced to return to its
equilibrium value of unity. Thus, contrary to in-
tuition, increasing the chamber pressure, and
hence the Damkohler number, can drive the flov
further away from excitation equilibrium at cham-
ber pressures greater than approximately 10 atm.
This unforeseen situation is also a result of the
two competing effects described earlier. The
closest approach to chemical -excitation equilibrium
occurs in the chamber pressure range between 1
and 10atm. However, 'Fig. 5 shows that in this
regime the thermal nonequilibrium is the largest.
Thus, one sees that the two types of equilibrium
(thermal and chemical) and hence excitation equi-
librium, cannot be attained simultaneously under
any condition in a fixed nozzle similar to the one
under consideration regardless of the magnitude
of the associated Damkohler number. Indeed, the
Damkohler numbers are typically in the order of
unity at the chamber pressures below 0.1 atm for
both processes, and extend to 1012 at the highest
pressure and temperature computed.

The exceedingly small values of x seen in Fig.
6 do not imply any failure of the conservation of
total atoms; even at high temperatures only a small
number of the atoms are in excited states, and
although there may be 1092 times too many atoms
in the upper excited states, as one would expect
from an equilibrium expansion, the absolute num -
ber is still a small fraction of the total.

Discussion

It is seen above that the two types of equilib-
riumprocesses donot reach equilibrium simultan-
eously even when the associated Damkohler num-
bers are very large. It is interesting also to note
that the Damkohler numbers associated with the
excitation relaxation process are equally large
even though the excijtation process is far out of
equilibrium as shown above. The Damkohler num-
ber for the excitation relaxation of ith electronic
state is the ratio of the flow transit time to the
time scale of change of the pOpulation18 of the ith
state 7(i)

© i-1

'rli) = Ne{K(i, o) + Z K(i, j)}+ Z A, j)
=1 p=l
i#i

The largest 7(i) occurs for the ground state i =1



which is obviously not in equilibrium. The next
slowest process is for the first excited state which
is the 3s state for nitrogen (the two low lying
states in nitrogen 2p3 2p and 2P equilibrate very
rapidl'yl with the ground state and therefore need
not be considered) which corresponds to the

n (principal quantum number) = 2 state in hydro-
gen. Calculation at x = 4.36 cm for the i4,000°K,
10 atm case shows 7(2) = 2.9 X 10-10 sec while
7(1) = 1. 3 x 10~4 sec for hydrogen. Considering
the fact that these values would hold for nitrogen
within an order of magnitude, one concludes that
all excited states have relaxation times verymuch
smaller than the flow transit time. Because the
excitation is shown to be always in nonequilibrium
at the nozzle exit, the Damkohler number criteria
do not apply in excitation relaxation. Implicitly,
however, a large Damkohler number for the exci-
tation process ensures the existence of the quasi-
steady distribution as assumed in the derivation.

The main features of the plasma flaw that
cause such an unusual behavior are:

1. The large Damkohler numbers;

2. The opposing nature of the chemical and
thermalization processes;

3. The very small electron-heavy particle
mass ratio; and

4. The extreme nonlinezr dependence of the
recombination rzce and Saha function on
Ten

We should like to stress that the very large
excitation nonequilibrium has arisen here as a
straight-forward consequence of widely accepted
physical principles, without introducing special,
ad hoc assumptions as to the existence of meta-
stable atgms, resonance radiation trapping,
etc. 20-29 'gych phenomena will need to be in-
cluded in a complete theory, but apparently are
not required to produce the rather large non-
equilibrium excitation as has been experimentally
observed in argen?0-2¢4, ana to a lesser degree,
in nitrogen3, 20. Also we note that here the flow
is assumed to start from complete equilibrium.
The nonequilibrium is induced as a result of the
competing factors in the expansion process. In
actual situations, the starting conditions for the
nonequilibrium expansion may not be CTE due to
such processes as nonequilibrium excitation in
passage through an electric arc.

By combining the calculated x and T values
in Fig. 5and 6 with Eq. (8) or Ref. 6, one can
determine whether an absolute population inver-
sion is achieved that would lead to laser action.
Between two levels i and j < i, stimulated emis-
sion is possible provided

NG

NG)
g(i)

e(j)

w(i) > W(j) exp [(EG) - E(}))/k T ]

The most promising levels in nitrogen are i = 4,

j = 3 (Ref. 5). Now ¥(3) ~ X, here and ¥(4) is
very nearly a functjon only of T, for the usual
case of w(1) <1073, Evaluating ¥(4) from Ref. 6
shows that laser action might be expr cted if at any
peint

X < 4.8 exp (- 101800/Te)

for 2000 < T, < 14, 000°K. Evaluating this ex-
pression for x using values of T, at the nozzle exit
gives the dotted curve shown on Fig. 6. Laser
action appears possible at the nozzle exit for cham-
ber conditions yielding Xexit 1€ss than those on the
dotted curve.

Conclusions

A systematic computer study reveals that the
three modes of relaxation phenomena in plasma,
i.e. thermal, chemical and electronic excitation,
are greatly out of equili»rium in a typical wind
tunnel nozzle. An extremely large deviation from
equilibrium is predicted for the electronic excita-
tion at high pressures. The Damkohler number
criteria do not apply to the nonequilibrium plasma
processes. The thermal nonequilibrium is largest
in the chamber pressure range between 1and 10
atm and the cherical excitation nonequilibrium is
weakest in the same range.
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Table I. Calculated Flow Parameters Expanding from Peham = 10 atm Tc

a) Ideal Frozen Flow, m = 30.48 gm/sec

ham

= 14, 000°K,

b) CTE Flow, m =27.62 gm/sec

Chamber ‘Throat Exit Chamber Throat cﬂ(rjlke Exit
Te, °K 14000 10447 862 X, cm 0 2.014 2.372 24 9
Th, °K 14000 10447 882 Te, °K 14000 12900 12600 2599
p. atm 10 4.811 9.421 x 103 | Tp,°%K 14000 12900 12600 2509
Ntot,cm'3 5,243 x 1018 3.380 x 1018 8,018x 1016 [ p, atm 10 5.479 4.589 1.888 % 1072
u,cm/sec 0 3.247 x 105 6.244 X105 | Ng,em™3 | 5.807 x1017 2700 x 1017 2.127 x 1017 7. 452 x 10%
A.cm? @ 1.267 27.78 Np,em-3 | 4. 662x 1018 2.847x 1018 2460 x 1018 5.330 x 1016
Ne/Nh , 1248 . 09482 . 08641 1.398 ¥ 10712
u, em/sec 0 3.268 X 105 3.600 x 105 7.965 x 109
A, cm? © 1.268 1.300 27.80
X 1.00 1.00 1.00 1.00
¢) Nonequilibrium Flow, m = 29. 37 gr/sec d) Nonequilibrium I;:ozv,ﬂr%d;agtjg/nsggcreased by factor 10
Chamber Throat Bt Exit Chamber Taroat NLioaid Exit
X,em 0 2.002 2322 24.92 X, cia 0 1.983 2.303 24.921
Te, °K 14000 12175 11879 4247 Te, °K 14000 12835 12528 5476
Ty, °K 14000 12090 11744 1888 T}, °K 14000 12778 12437 2753
p, atm 10 5. 510 4. 708 1.581x 102 | p, atm 10 5.508 4.583 2.000 X 1072
Ne,em™ [5.807x 1017 . gs2x 1!7 1.467x1017 1742x 1014 | N_,cm=3 | 5807 x 1017  2.635x1017 2,059 x 1017 2,779 x 1014
Nt ,em™ |4.662x 1018 3. 156x 1018 2.794x 1018 6.102 £ 1016 | Ny, em-3 [ 4.662 x 1018 2.899 x 1018 2497 x 1018 5 277 x 1016
Ne/Np .1246 . 05965 ,05252 . 00285 Ne/Nh 11246 ,09089 , 08248 , 00527
u,cm/sec 0 3.136x 105  3.489x10° 7.225x10% | u,cm/sec 0 3.226x105  3.658x 109 7,748 X 105
A. cm? o 1.268 1.287 27.70 A, cm? o 1.267 1.298 28.22
X 1.00 1.000 . 9981 2.366 x108 | x 1.00 ,9992 L9993 1.301 x 10~4
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APPENDIX
Occurrence of a Positive Eigenvalue in a
Relaxing Plasma

In most nonequilibrium chemical processes?
the relaxing quantities approach equilibrium mono-
tonically in an exponential decay. That is, the
change in a relaxing quantity y during a small time
interval At can be described typically by

y - ¥g =C exp (- t/7) (A1)
where yy is the equilibrium value of the quantity
y and 7 is the characteristic relaxation time. For
plasmas, the relaxation of electron temperature
and degree of ionization does not necessarily obey
this general rule because of the opposing effect of
the two relaxation processes. Under a certain
condition, the equilibration of one process causes
a departure from equilibrium in the other. To
illustrate this peculiar behavior mathematically,
one can assume a uniform, motionless plasma
confined in an adiabatic container, which is in
chemical equilibrium but thermal nonequilibrium
attime t =0. The degree of ionization is so
gmall that the energy content of electron gas is
considered not sufficient to affect the heavy par -
ticle temperature appreciably during the relaxing
period t > 0. The radiation is neglected alto-
gether because it is not essential in describing
the competition between the two processes. " he
relaxation process for this plasma for t > 0 can
be described approximately by two simultaneous
differential equations

3 m

d e
dt{ [2 6e+1]} Hl:veha(e - 00
» 1.5
do i o2
5= kR Nh a{ 1 -a —en—exp(- 1/8,) -a” |
is the dens 1tg normallz%d by the ch racteristic
of ionization , 9 are hea partlc e and elec-
tron temperature normallzed by E./k.
During the small time span 0 < t < At, the

above equations can be linearized as follows
do
— _ (6, -6)+a ., (@-a.
dt - all e 0 12 E
do _ -3
dt ~ 291 O = 0g) * 29 (@ rap)  (A2)

Here the coefficients a;j are

:-([ %()_

(A3)
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a,=-2a, I

E 'r

The subscripts 0 and E refer to t = 0 and equilib-
rium, respectively. InEq. {A3), I, and I'; are
the rate parameters for collisional (i.e. thermali-
zation) process and chemical reaction, respectively,

defined as me
e =25 Yen
h
l‘.r E kRNhZ

and can be considered as the reciprccals of the
characteristic times of the processes concerned.
In deriving Eq. (A2), the terms of the order 8¢
and o are neglected in comparison with unity. The
general solutionto Eq. (A2) is

6 = 6, = Cqexp () + C, exp (1))

a—aE:CBexp ()tu)+C4 exp (Azt) (A4)

where Ay and 23 are the eigenvalues of the matrix
ajj of Eq. (A2)

1
A=alaggt

I a 4
4
" Ylagy rag) -4y, s ay2 ) ]
1
PRI TR (A9)
2
* ‘/(311 tay)" - dlagjan, ~ag,0) ]

On substitution of Eq. @A3) into (A5), one finds that
the two eigenvalues A7 and x5 are always real, and
that they can have the following two sets:

(a) both are negative if

e <a I,
,\2 becomes positive while xp is negativeif
IC>a I

In case (a), both thermalization and chemical re-
laxationprocesses approach equilibrium exponen-
tially with time as in ordinary chemical processes,
e.g. Eq. (Al). That is, when the chemical equi-
libration rate is faster than the thermalization
rate, the rlasma relaxes into equilibrium mono-
tonically €or both processes. In case (b),1.e€.
when the thermalization process is dominant over
the chemical relaxation process, there is a com-
ponent in Eq. (A4) that tends to drive a relaxing
quantity away from equilibriumn. Depending on the
initial condition, this component containing the
positive eigenvalue may become apparent in thr
overall solution, thereby resulting in a departure
from equilibrium.

(b)

The step size in numerical integration must
be reduced inversely with the magnitude of the

ﬂl‘\QH’lvp purnnvrﬂnn and thorofors o 12:‘;(‘ poait iti



eigenvalue results in a long computation time.

Inboth cases (a) and (b) above, alarge nu-
merical error can be introduced in evaluating Ag
if lag1agg -~ agqasgl is small. As seen from Eq.
(A5), when lajjagg - agqaqgl is small, Ay isa
difference between two almost identical nun.bers.
An example of this case is shown in Fig. 7, which
shows the variation in eigenvalues quite early in
the expansion for one of the cases computed in the
present study. The case considered corresponds
to the cohamber temperature and pressure of
14,000"K and 1,000 atm. The figure shows the

smallest, i. e. most negative, eigenvalue, which
corresponds to A1 in Eq- (A5). The full-lined
curves are obtained with single precision compu-
tation by I3M 360/67 while the dotted curves are
from the double precision calculations. As seen
in the figure, the smallest eigenvalues are the
same between the single and double precision
calculations, but the largest eigenvalues are quite
different between the two computations, thereby
indicating the sensitivity of the eigenvalue on the
degree of precision.






