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Abstract

A previously developed flexible body dynamic formulation for
simulating beam structures undergoing large overall motion,
restricted to two-dimensional prescribed motion, is extended to
the study of both three-dimensional prescribed motion and non-
prescribed motion. The formulation, called the Augmented
Imbedded Geometric Constraint (AIGC) approach, is restricted
to small elastic deformationsof the beam structure. The overall
motion is characterized by six degrees of freedom, while the
elastic deformation is characterized by the superposition of a
number of assumed global shape functions, developed using
substructuring techniques. This extension allows the approach
to be applied to the study of a broader spectrumof problems
involving systems with applied forces/ torques where the
overall motion is not known. Thus, the formulation can be
used to study the two-way interaction between overall motion
and local deformation which is fundamental to a general
purpose flexible body dynamic formulation. The AIGC
approach describes the elastodynamic behavior with a set of
differential equations linearized in terms of the deformation
degrees of freedom (but not in the degrees of freedom
describing the overall motion), and a number of, possibly
nonlinear, constraintequations describing the physical
attachments of the ends of the beam. The beam characterization
is extended to include the effectsof torsion, rotatory inertia,
and an offset between the centroid and shear center of the beam
(eccentricity). Transverse shear deformation is neglected as it
is generally not of importancein flexiblebeam dynamics. The
validity of the extended formulation is demonstrated by
comparison of solutions for two validation problems to
independently obtained solutions.

Introduction

Interest in flexible body dynamics, the coupling between large
overall motion and local deformation in structural dynamics,
has increased significantly since the early 1960's. Initially
motivated by problems seen in the aerospace industry, the
interest has spread to other industries, includingrobotics and
ground transportation. Efforts to develop general purpose
analysis tools to address flexible body dynamics can be broken
into two general classifications, nonlinear finite element
approaches, and rigid body dynamic approached modified to
allow local flexibility. The former strategy is used by Simo and
VU Quoc! and Christensen and Lee?, while the later is the
approach adopted by Kane, Ryan and Banerjee3, In the work
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in reference [3], the authors discussed the need to develop
element-specific approaches in order to include
interrelationships between the components of local
deformation. They developed a beam specific formulation,
often referred to as the Imbedded Geometric Constraint (IGC)
approach. A similar formulationwas developed by Yoo#,
referred to as the Nonlinear Strain Displacement (NSD)
approach, to overcome the inability of the IGC approach to
accurately solve problems where the lateral deformation of the
beam structure is dominated by membrane stiffness. However,
the NSD approach does not reliably solve problems where the
lateral deformation of the beam structureis dominated by
bending stiffness. The inability of these two approaches to
accurately solve both classes of problems prompted the
authors® to develop another formulation, which is capable of
accurately solving both classes of problems. This new
formulation is referred to as the Augmented Imbedded
Geometric Constraint (AIGC) Approach.

In this paper, the AIGC approach is extended to the solution of
general beam dynamics problems, with the assumption of small
elastic local deformation. This is accomplished by allowing for
three dimensional motion and deformation, and also allowing
the overall motion to be unknown. The removal of the latter
restriction allows the AIGC approach to study the two-way
interaction between overall motion and local deformation,
which is a fundamentalissue in flexible body dynamics. Asin
the two-dimensionalprescribed motion work in reference [5],
the development presented in this paper involves the dynamics
of a single beam. The extension of the AIGC approacl
presented in this paper closely follows the original IGC
developmentin reference {3}, and a subsequentextension® of
that work to non-prescribed motion. As a result, this paper will
concentrateon the major differences between the two
approaches, and will leave out many of the details covered in
references [3] and [6]. Interested readers can also obtain a
detailed presentationin the Ph.D. Dissertation of Haering?,
which covers the work presented in this paper and in reference
[5].

As discussed in reference 5], the primary difference between
the AIGC and IGC approach is that the differential equations of
motion from the IGC approach, referred to as the system
differential equations in the AIGC approach, have constraint
equations added to enforce the physical boundary conditions
for the beam structure. This set of differential equationswith
algebraic constraintsforms the equations of motion for the
AIGC approach. In addition, a set of general modal functions
is employed in the AIGC approach to ensure the ability to
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satisfy any boundary conditions and prevent inadvertently
imposing boundary conditionswhich are not correct for any
given problem.

The plan of the paper is as follows. First, the physical system
to be studied is introduced, the basic mechanics of the problem
are introduced, and the system differential equations are given.
Second, a discussion of the constraintequationsand choice of
modal functions is presented. Third, the equations of motion
are presented and the technique for their solution is discussed.
Finally, solutions for two verification problems, obtained with
the AIGC approach, are presented and compared with
independently obtained solutions.

Physical Model and System Differential Equati

The three-dimensionalbeam model is shown in Figure 1. A
flexible beam B is attached to a rigid base A at point O. The
mass of body A is given by ma, and the center of mass is

located at a point, A* (not shown in Figure 1). A dextral set of

unit vectors, a1,a2,a3, is fixed in A, with the &; direction
aligned with the undeformed elastic axis of the beam.
Following Kane et a/ [3], a5 and a3 are aligned with the
principal area moment of inertia axes of the beam. Priorto
deformation, a point on the elasticaxis contained within a
generic cross section, dB, is located at point Co, at a distance x
measured along the undeformed elastic axis. After
deformation, that point on the elastic axis within cross section
dB, is located at point C, at a distance of x-+s measured along
the deformed elastic axis. An additional set of dextral unit

P
vectors, b1,ba,bs, are fixed in cross section dB and are aligned

with, 21,82,23, respectively, when the beam is undeformed.
The centroid of section dB is defined by point P which is offset
from the point C on the elastic axis by the eccentricity vectors
given by

= @by +e3M (1)

Allowing general three-dimensional deformation, the position
vector from the attachment point, O, to the centroid P of the
generic sectiondB is given by

EOP=(X+U1)§1+U2§2+U3§3+ 6232+e333 2)

where uy a1, uy a5, and us a3 represent orthogonal
componentsof the beam deformation.

The orientation of section dB relative to body A can be
described by three successiverotations of amounts84, 63, and

63 about lines parallel to unit vectors a1, 82, and a3,
respectively. It is one of 24 possible descriptions,and is
chosen to facilitate the introduction of beam torsion, and
rotatory inertia. The relative orientation of dB and A is
described by the following direction cosine matrix

CyC3 818203 -s3Cy cr 8503 +s35;

ACB=icysy sysys3tosc;  crsesy-casy | (3)
-8y $1 02 C16
where
ACP =i . by, (j=1,23) O
and

s; = sin 6;

¢i=cos 6;

i=1,2,3 (5,6)

Rigid Body (B) X
Figure 1 - Three-Dimensional Beam Model

The angular measure 81 is introduced to account for twist, and

8, and 63 complete the description of the arbitrary orientation
of dB with respect to body A. The latter two angular measures
allow shear deformationto be introduced (see Kane, et al [3]
or Haering [7]).

Shear deformation is generally negligible in long beams and it
will not be included in this development. With shear deflection

neglected, the angles 89 and 63 can be related to the spatial
derivativesof the deformationsus and u3 as

du3 _ W _g
- g, | =2 - 03 (7.8)

Thus the symbolss; and ¢; (i=2,3) are now given by

8o =-sinuj §3 =sinuz 9,10

Cy =COS U3 €3 =COS Uy (11,12)

where a prime denotes a derivative with respect to x.
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The deformation measures s, us, u3 ,and 81 are represented as
follows:

u = oy g  (13,14)

=1

5=, 015(x) g
j=1

Vv v

u3 = ', 03 (x) gy 0 0=, ¢4 g (15,16)
j=l , j=1

where ¢;;(x) (i=1,...4 | j=1,..., v) are modal functions, the

selection of which will be discussed|later. The

qQi's, (g5 , j=1,2,...,v ) are the firstV generalized coordinates.

The system differential equationsare developed using Kane's
approach. The contribution to the generalized active force from
internal forces acting in the beam, can be obtained from the
following strain energy function, VV, which takes into account
axial stretching, transverse bending, and torsion:

L
L
2
_L Rk 1291_}
vet [ea & e ox[ 2]
0 0
pL pL \

92u; |2 9%, |2
+ EIZ[ - 2} act | BI| 2| ax (17)

X
0 0

Where E, Ag, G, k' ,I5, and I3 are the modulus of elasticity,
cross sectional area, shear modulus, effective torsional

constant, and the area moments of inertia about the 32 and 33
axes, respectively.

Four measures of the beam deformation have been introduced,
s, U1, Uy, and us , but due to the nature of beam deformation,
only three are independent. The followingrelationship exists
between the four deformation measures (see references [4 or 7]
for details):

- duy ? _B_uz)z
x+s—([(l+ac)+(ac +

Jo

Bl

Jo

where ¢ is a dummy variable of integration. This relationship
can be reduced to the following more useful form [see reference
(7D.

v \4
ur = 045 4; ;— > (B§2)jk qj gk
= =1 k=1
v v
%‘ 2 (B§3)jk qj dk (19)
=1 k=1

where (Blﬁm)ij is defined as

(Blﬁm)u = f q)lki ¢Imj do— ’ i1j=112’~--1v > k1m=2’3 (20)
]

Note that (B}):m)ij {1,j=1,2,....,v , k,m=2,3) are indefinite
integrals. For the shape functions that will be introduced latter,
they can be determined explicitly.

In this paper, only external forces applied to body A will be
considered. It should be noted that reference [6] contains a
development including external forces applied to the beam
structure itself and gravitationalforces, and that development is
directly applicable to the AIGC approach.

Forces and torques applied to body A can be replaced by an
equivalentset, Including a force acting through the mass center,

(fi)A‘, and a torque, (T’)A as follows

= A‘ - - -

(R) =Rjaa;+ Ropas +Riaas (21)
VA - - —

(T) =Tiaay+ Toaay +Tap a3 (22)

The discussion above highlights the essential mechanical
ingredients of the theory. The derivation of the system
differential equationsis quite lengthy and details will not be
given here. As discussed earlier, the detailscan be found in
references [3] and [6] (transverse shear deformation included),
and also in reference [ 7] (both with and without transverse
shear deformationincluded).

The system differential equationsfor non-prescribed motion are
given by the form

V+6 — N v+6 - . v+6 ~
2 My + 3 Gyl +3, Ry
j=1 j=1 j=1
=F |, i=1,2,..v+6 (23)

The fiistv gj's, ( gj , j=1,2,...,v )were discussed above. The

last six gj's, (9qj , j=V+1,....v+6 )are angular and translational
measures used to describe the orientation and location of the
rigid base, body A, in the Newtonian reference frame. The first

V generalized speeds(u}k , =2,V ) are the time

derivativesof the correspondinggeneralized coordinates. The
remaining six generalized speeds(u;-’ , j=v+1,..,v+6 )
describe the overall motion of the beam. The v+6 unknowns

i, (uf , j=1,2,...,v+6 )are the time derivatives of the

generalized speeds. The matrices M , G, and K contain, in
addition to constants (resulting from integrals over the domain
of the beam), terms involving the generalized coordinates

andlor generalized speeds. The column matrix E contains
additional nonlinear terms in the generalized coordinates and
generalized speeds. It should be noted that because of the

nature of the matrices M, G, K, and F the set of differential
equationsin equation 23 are nonlinear.

nstraint E ions an Function Sel

The use of constraintequationsto enforce the beam boundary
conditions, and proper selectionof the correspondin%global
shape (modal) functions, are the primary differencesbetween
the AIGC approach and the IGC and NSD approaches
(references[3,4,and 6]. As demonstratedin reference (5], the
use of constraints and proper modal function selection,allows
the AIGC approach to accurately solve beam dynamics
problems where the lateral deformations of the beam are
dominated by either bending or membrane stiffness. This
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stems from the ability of the AIGC approach to enforce
boundary conditionswhich cannot be explicitly definedin the
deformation measures chosen.

In particular, the IGC approach uses the s, uz, and us
deformation measures and can only ensure satisfaction of
boundary conditionsexplicitly defined in those deformation
measures. As aresult, the IGC approach fails to accurately
solve beam problems where the lateral deformations are
dominated by membrane stiffness, which includes a boundary
condition explicitly described in terms of the u; deformation
measure. Conversely, the NSD approach uses the uj, uz2, and
us deformation measures and therefore can only ensure
satisfaction of boundary conditions explicitly defined in those
deformation measures. Thus, the NSD approach fails to
accurately solve some beam problems where the lateral
deformations are dominated by bending stiffness, which
includes boundary conditionsexplicitly described in terms of
the s deformation measure. The AIGC approach overcomes
these limitations by enforcing boundary conditions which are
not explicitly defined in terms of the chosen deformation
measures through the use of constraint equations.
Furthermore, the general nature of the AIGC approach allows
the solution of problems where the dominantelastic effects are
not known before hand.

The physical boundary conditions for the beam can be related to
the deformations at the beam ends; this is accomplished directly
with the relationships in equations 13-16,or 19for deformation
conditions, or with spatial derivativesof those relationshipsfor
force or moment conditions.

Specifically,consider a beam cantilevered to arigid mass, as
the one shown in Figure 1. The boundary conditions for that
beam are those for a cantilever beam with the built-in end
located at x=0, and the free end at x=L, and are given by the
following equations.

Slop=0 no axial deformation at the built-in  (24)
end
Uzl_0=0 no lateral deformationin the a, (25)
direction at the built-in end
Uz lyoo=0 no lateral deformationin the a3 (26)
direction at the built-inend
0, |X=0 =0 no twist at the built-in end 27
duz =0 no bending slope in the a3 (28)
ox x=0
direction at the built-in end
aU3 q q -
S =0 no bending slopein the a, (29)
X k=0
direction at the built-in end
gl 0 no axial load at the free end (30)
ox x=L
duy . D mo e
= =0 no shear forcein the a; direction  (31)
ox3 x=L
at the freeend
duy =0  no shearforcein the a3 direction (32)
ox3 x=L

at the freeend

991 = no axial torque at the free end (33)
aX x=L

2 =
Py =0 no bending moment in the a3 (34)
aX2 x=L

direction at the free end

?.221 =0 no bending moment in the &, (35)
ox? x=L

direction at the free end

Correspondingto these 12 boundary conditionsare 12
constraint equations relating the deformation generalized

coordinates, 4j(® (3=1,..., V)

i dK50) g =0 , k=1,2,34 (36)
=

i 310 q=0 , k=2,3 (37)
=

V I

> 0k qj=0 , k=1,4 (38)
j=1

\%

Y o) g =0 , k=23 (39)
j=1

v "

Y $%L) =0 , k=23 (40)
=1

For simplicity, the 12 constraintsexpressed in equations 36-40
are represented as

O =0 , k=12,.,12 (1)

The modal functions, ¢(x) (=1,...,4 ,j=1,..,, V), are
developed using the substructuring techniquesdeveloped by
Craig and Bampton® and are discussed in depth in references [4
and 7). This technique subdividesthe modal functionsinto two
subsets called dynamic and static modal functions. For the
sake of completeness, that procedure will be briefly discussed
here.

The same modal functionsare used to describe the lateral
deformation measures, us, and us. On the other hand, the axial

stretch, s, and the twisting deformation, 81, are described by a
different single set of modal functions The same modal
functionsare used for the axial stretch and twist, because for a
simple rod axial and twisting behavior is governed by wave
equations of the same basic form.

The lateral dynamic modal functions, the dynamic functions

are developedfrom an eigenanalysis for lateral vibration of a
non-rotating beam with boundary conditionsof zero
displacement and zero slope at both ends. The lateral static
modes are obtained by applying unit displacements ( or
rotations) in the directionsheld fixed in developing the dynamic
modes. While enforcingeach unit displacementor rotation, the
other displacementsor rotations are held fixed. For example,

one such shape function satisfiesthe conditions¢(0) = 1, and
$(0) =¢ML) = (L) =0.
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For the stretch/twist modal functions, the dynamic functions

are developed from an eigenanalysis for axial vibration of a
non-rotating rod with boundary conditions of zero displacement
at both ends. The static modes are obtained by applying unit
displacements at each end while holding the other end fixed.

This method of selecting the modal functionsservestwo
purposes. First, the set of modal functionsare general enough
to satisfy any boundary condition. Second, they do not satisfy
any particular end condition, thus they prevent satisfying any
boundary condition which is incorrect for the problem at hand.

. f . | Solut .

The final equationsof motion are obtained by combining the
system differential equations (equation 23) with the constraint
equationsdescribing the appropriate boundary conditions
(equation41 for the bending stiffnessdominated problem being
considered) to form a set of DAEs. Thus, for the case being
considered (non-prescribed motion and bending dominated
lateral deformations),the equations of motion are

Vib6 V+6

v+6
Z' f\/\[u u; + 2' GU u}‘ +_24| Kl) qj :Fi ) i=1,2,...,V+6
1= 1= 1=

O =0, k=1,2,...,12 (42)

Reference [7] describesthe development of equations of motion
for the case of prescribed motion, which for the same boundary
conditionsyield the followingequations of motion:

v A4
My s+ Y, Gy gy + Y (K + K5 gy
i=1 j=1 j=1

V<

=F+F" |, i=1,2,.,V
O =0 , k=1,2,..,12 (43)

Note that there are six less system differentialequations for the
prescribed motion case because the overall motion is assumed
to be known. It is also worth noting that the systemdifferential
equations are linear (but with time varying coefficients) for the
case of prescribed motion.

For the results which are about to be discussed, the equations
of motion were solved using Baumgarte's!0 approach. The

values of the constraint stabilization parameters a,and § were
chosen such that no significantconstraint drift was noticed over
the range of simulation.

Verificati

The validity of the equations of motion just presented will be
demonstrated by comparing simulations for two distinct
problems. First, a three-dimensionalprescribed motion
problem for a beam with an offset of the shear center and
centroid, commonly referred to as non-compact, will be
investigated. This will demonstrate the ability to capture the
multi-axial coupling not present in the two-dimensional work in
reference[5), and describe the coupling introduced by the
offset of the shear center and centroid. Second,anon-
prescribed motion problem will be investigated, thus
demonstrating the ability of the AIGC approachto capture the
two-way coupling between overall motion and local
deformation associated with this type of problem.

The three-dimensional prescribed motion problem is illustrated
in Figure 2, and the constants characterizing the beam are given
in Table 1. Links L and L are assumed rigid (length of 8 m),
link Ls (undeformedlength 8 m), possessing a channel section,
is characterized as a flexible beam with the AIGC approach.
The motion of the joints is characterized by the following
descriptionsof their respective angles of rotation.

n-L[t ; (I-) sin(Z—TM—)] (rad), if0 <t <T

vi() = 2T 2n 44)
—725(rad) ,if t>T
30 (¢ - (L) sin(2BL)| (rad), if O<t< T
W2(t)= T 4T [t (271',) Sln(T)] ra -| (45)
%(fﬁd) Jdft>T
m-% |t - (L) sinf[2&L)| (rad) ,ifOSt<T
- Hle- G s3] o

0 (rad) Jft>T

where T = 15 seconds.

Figure 2 - Physical System for the Three-Dimensional
Prescribed Motion Problem

This problem, similar to one studied by Kane, et al [3], was
simulated using the AIGC approach (Equation 43) and a
discrete ADAMS!I model. Theresults for the axial, twisting,
and lateral deformationsof the beam tip are given in Figures 3,
4,5, and 6. The solutions are similar, although some
differences (primarily peak magnitudes) exist. As no additional
independent solutions are available, the differencesare
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accepted. Thus, this simulation demonstrates the ability of the
AIGC approach to accurately solve a three-dimensional
problem involving torsion and eccentricity.

0.4

N
i

Mass per Uit Length p —2.02 kgjy
{ I = 4.8746x 109 m¢

Area Moments of Inertia

w2 D flect o)
o
o

I=82181x10? m*

A Legend
Length Ly=8 m Aloc
Cross Sectional Area Ag=7.3x105 m? —04 et 2O
0 3 10 15 2
Elastic Modulus E=10x10" N/, Time (Sec)
Shear Modulus G=5x10° N/
- ) e=0 Figure 5 - AIGC and ADAMS Lateral (u3) Deflection
Sl I { e3=0.0185m Solutionsof the Beam Tip for the Three-
i Dimensional Prescribed Motion Problem
Effective Torsional Constant ¥ =2.446x 101 m*
0.4
Table 1 - Flexible Beam Characterizationfor the Three-
Dimensional Prescribed Motion Problem _
é 0.2
s
3
g
0.000 0.0
— ~0.005-
E 02
€ 0 B ] 10 15 20
§ ~0.010 Time (Sec)
= Figure 6 - AIGC and ADAMS Lateral (u3) Deflection
-0.018 ¥ e Solutions of the Beam Tip for the Three-
cgen Dimensional Prescribed Motion Problem
~0.02v . ADAYS
0 s 1 5 20 - . . .
Time (Sec) The ability to accurately describe non-prescribed motion
problems is demonstrated by simulatingthe system shown in
. . ) . Figure 7. This problem was studied by Ryan [6], and is
Figure 3 - AIGC and ADAMS Axial Deflection Solutionsof  analogousto ones arising for some satellites. The mass and
the Beam Tip for the Three-Dimensional inertia properties of the rigid base, and the characteristics of the
Prescribed Motion Problem beam are given in Table 2. The applied torque (defined in
equation 22) is given by the followingrelationship:
0.1 Nm ,0<t<5((sec)
Tap = { 47)
0 Nm ,if t>5 (sec)
0.5
=
E
T ot
.;
E —-0.5-
k7
& Legend
Aec
_ ApaMs |
‘0 5 10 15 20
Time (Sec)
Figure 4 - AIGC and ADAMS Axial Twist Deflection Figure 7 - Physical System for the Non-Prescribed Motion

Solutionsof the Beam Tip for the Three-
Dimensional Prescribed Motion Problem

Problem
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Mass of Rigid Base my =120 kg
J11 =100 kg m?
Jop =50 kg m?
Jaz= 130 kgm?
Jiz=li3=Jy =0

Mass Moments of Inertia of Base

FlexibleBeam Length L=20m

Mass per Unit Length p =02 kgl
Elastic MocLilus E=10x10" Nf.,
Cross Sectional Area Ap=9.30x 102 m?
Area Moments of Inertia L=I=5x1010 mt
Effective Torsional Constant K=12x10° mt
Shear Modulus G=5x 109 Njp2
Eccentricity Measures e2=¢3=0

Table 2 - Rigid Base and Beam Characterizationfor the Non-
Prescribed Motion Problem

The results of Ryan's work (reference[6]) are compared to
simulation results from the AIGC approach ,generated using

equation 42. The @3 measure of the angular velocity, is shown
in Figures 8 (AIGC) and 9 (Ryan's IGC solution). The local

deformation, described by the lateral (&5) measure of the tip
deflection, is given in Figures 10 (AIGC) and 11 (Ryan).
Excellent agreement is seen between the AIGC and IGC
(Ryan's) approaches. Also the effect of the local deformation
on the overall motion is clearly seen by comparison of the rigid
and flexible beam results for the angular velocity. This second
simulation demonstrates the ability of the AIGC approach to
accurately solve simultaneously for overall motion and local
deformation when forces/torgues are applied.

o
o
1

b
in
_‘ —-

w3 Ang Vel (rad/sec) s10°

1
]
[}
i
1
[l
«
1
[
1
1
1
[

4
1
\
v
kY
1
4
(]
0.0 T
1
]
: h
0 [
¢ [l
g «
L}
g 1

0 100 200
Time (Sec)

Figure 8 - AIGC Solution of the Overall Beam Angular
Velocity for the Non-Prescribed Motion Problem

5.0
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[
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v ¥ ¢

_2.5_
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Figure 9 - Ryan's IGC Solution of the Overall Beam

Angular Velocity for the Non-Prescribed Motion
Problem

AN
A

u2 D i ectioo (M)

-1

0 100 200
Time (Sec)

Figure 10 - AIGC Solution of the Lateral Beam Tip

Figure

1123

Deflection for the Non-Prescribed Motion

Problem

1_
0.5+
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[
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o 0
it 190 2do
I
N _05-

_1_
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11 - Ryan's IGC Solution of the Lateral Beam Tip
Defkl)tlectlonfor the Non-Prescribed Motion
Problem



Addition

All problems that have been addressed in this paper and in
reference[5] have beam boundary conditions which are time
invariant,and are explicitly zero. The AIGC approach could be
easily adapted to problems where the above restriction does not
apply. Consider the system shown in Figure 12;in this case,
neither the bending moment, transverse shear load, nor the
axial strain are zero at the right hand end, but are related to the
accelerationand angular acceleration (time varying) of the
attached mass. The mass at the right hand end has to be treated
differently from the one at the left (rigid base), because of the
coordinate systememployed. The AIGC approach could be
extended to such problems by rewriting the constraintsused to
enforce the boundary conditions.

Flexible Beam

Rigid Base

Figure 12 - Non-Constant, Non-Zero Boundary Condition:
Beam With Attached Mass

Summary

In this paper, the AIGC approach has been extended to three-
dimensional motion and deformation, and the overall motion is
no longer restricted to a known function of time. This extended
capability has been demonstrated by investigating the following
two problems: 1) a three-dimensional prescribed motion
problem with torsion and eccentricity, 2) a problem with an
applied torque (non-prescribedmotion), exhibiting two-way
coupling between local deformation and overall motion.

This paper, in combination with reference[5], has shown that
the AIGC approach can be applied to general flexible body
dynamic problems involving beam structures (restricted to
small elastic local deformations). Reference [5] demonstrated
the ability of the AIGC approach to solve problems where the
lateral deformation of the beam is dominated by either bending
or membrane deformation, which no other known approach,
using assumed global shape functions, is capable of. The
development in reference [5] was limited to two-dimensional
problems with known overall motion as a function of time.
That restriction has been removed through the developmentin
this paper.
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