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Abstract there was a local preconditioning matrix that removes 
the spread among the characteristic speeds as much as 

The effect of a recently derived local preconditioning possible. It achieves what can be shown to be the 
matrix [I] on discretizations of the spatial Euler opera- 
tor is a strong concentration of the pattern of eigenvalues 
in the complex plane. This makes it possible to design 
multi-stage schemes that systematically damp most high- 
frequency waves admitted by the particular discrete oper- 
ator. 

The resulting schemes are not only preferable as 
solvers in a multi-grid strategy, they are also superior 
single-grid schemes, as the preconditioning itself already 
accelerates the convergence to a steady solution, and the 
high-frequency damping provides robustness. 

In this paper, we describe the optimization tech- 
nique, use it to  obtain the optimal sequence of time-step 
values for upwind Euler discretizations, and present some 
convergence results for numerical integrations performed 
with the new schemes. Furthermore, the extension to  dis- 
crete Navier-Stokes operators is treated. 

1 Introduction 
Explicit marching schemes for the Euler and Navier- 

Stokes equations must feature effective high-frequency 
damping in order to  be suited for use in multi-grid march- 
ing. Multi-stage schemes offer the flexibility to achieve the 
desired smoothing properties. Until recently, however, the 
design of optimally smoothing multi-stage schemes was 
based entirely on the scalar one-dimensional [2, 31 or two- 
dimensional [4] convection equation. 

optimal condition number for the characteristic speeds, 
namely, 1/J1 - min(M2, M - 2 ) ,  where M is the local . . 
Mach number. This is a major improvement over the 
condition number before preconditioning, which equals 
( M  + 1)/ min(M, IM - 11). 

The effect of the preconditioning on discretizations 
of the spatial Euler operator is a strong concentration of 
the  pat tern of eigenvalues in the complex plane. This, fi- 
nally, makes it possible to  design multi-stage schemes that 
systematically damp most high-frequency waves admitted 
by the particular discrete operator. The design technique 
is an extension of the techniques used in [3, 6, 41. 

The resulting schemes are not only preferable as 
solvers in a multi-grid strategy, they are also superior 
single-grid schemes, as  the preconditioning itself already 
accelerates the convergence to a steady solution, and the 
high-frequency damping provides robustness. 

In this paper we describe the optimization technique, 
use it to obtain the optimal sequence of time-step val- 
ues for upwind Euler discretizations, and present some 
convergence results for numerical integrations performed 
with the new schemes. Furthermore, the extension to dis- 
crete Navier-Stokes operators is treated. The Euler pre- 
conditioning matrix on which this research is based is an 
improvement over the matrix presented in [I]; the Navier- 
Stokes preconditioner is new. Both are presented in a 
companion paper on preconditioning, simultaneously sub- 
mitted to this conference [7]. 

In [5] we presented, for the first time, a design ap- 
proach for Euler schemes in which the Fourier trans- 
form of the full spatial operator is used. This ap- 

2 Previous scalar analysis 
proach has become possible owing to a breakthrough Tai's [3] procedure for optimizing the high-frequency 
in preconditioning algorithms [I], reported at the 10th damping in a one-dimensional convection scheme is a ge- 
AIAA CFD Conference, Honolulu, June 1991. Presented ometry exercise in the complex plane: putting the zeros - 
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Computation of the Fourier transform - the "Fourier footprint" - of the 
t Professor, Associate Fellow AIAA discrete spatial operator. This can be achieved for one 
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Magnitude of Amplification Factor for a = 1/3 Four~er Footprtnt of n = 1/3 
I Six-Stage Scheme 
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Figure 1: Fourier footprint (dashed line) of the third- 
order upwind-biased spatial discretization of the one- 
dimensional convection operator, and level lines (solid) of 
the amplification factor of Tai's optimal six-stage scheme. 

specific value of the time-step, the finding of which is part 
of the design process. An example of the result of this 
procedure is shown in Figures 1 and 2. 

Catalano and Deconinck [4] relaxed the condition 
that the zeros must lie exactly on the Fourier locus, 
thereby achieving a further reduction of the maximum 
amplification factor for the high frequencies. 

For a two-dimensional discrete convection operator 
the Fourier footprint no longer is a single curve, but covers 
an area; the location and shape of this area vary greatly 
with the convection direction. Figures 3 and 4 show the 
locus for the first-order upwind-differencing operator, for 
convection directions of 10" and 45". The frequencies in- 
cluded in the footprint are @, € [O, T I ,  & E [O,T]. High- 
frequency damping by a fixed multi-stage scheme (coef- 
ficients independent of flow direction) is easily achieved 
for modes propagating in the physical convection direc- 
tion, but is fundamentally difficult for modes varying in 
the normal direction, especially if the convection is almost 
in the grid direction. This is what we may call the single- 
grid alignment problem; its solution lies beyond the scope 
of this paper. 

The alignment problem is evident in Figure 3 from 
the low-high frequency combinations found near the ori- 
gin. To damp these, zeros must be put close to  the origin; 
to  benefit from these zeros, a large time-step would be 
needed; this works against numerical stability. 

For two-dimensional convection Tai as well as Cata- 
lano and Deconinck use a one-dimensional optimization: 
they only consider high-frequency plane waves moving 
in the flow direction. Tai accepts the optimal sequence 
of time-step ratios for one-dimensional convection and 
merely adjusts the final Courant number; the latter de- 

Figure 2: Modulus of the amplification factor as a function 
of spatial frequency, for the case of Figure 1. 

pends on the flow angle. Catalano and Deconinck repeat 
the optimization for each flow angle; this makes all param- 
eters dependent on the flow angle, which is less desirable. 
Moreover, the alignment problem causes the the parame- 
ters to vary strongly when the flow angle becomes small. 

We have redone the optimization for two-dimensional 
convection using the full two-dimensional footprint. For 
small flow angles, though, we excluded the low-high fre- 
quency combinations which would render the optimiza- 
tion meaningless. The optimal coefficients derived using 
spatial operators associated with the two-dimensional con- 
vection equation are very close to  the coefficients obtained 
with the Modified Roe operator for the preconditioned Eu- 
ler equations. Figure 21 shows the Fourier footprint of the 
first-order upwind discretization (high-frequency compo- 
nent) for the two-dimensional convection equation super- 
imposed upon level lines of the multi-stage scheme based 
upon the modified Roe operator for the preconditioned 
Euler equations. As can be seen in the figure, these coef- 
ficients are close to  optimal for the two-dimensional con- 
vection discrete operator as well. It is important to make 
an appropriate choice of the length scale used in defining 
the Courant number v (cf. Section 5).  

3 Euler equations: effect of pre- 
conditioning 

For the two-dimensional Euler equations the situa- 
tion gets even worse, because there now are different kinds 
of physical signals propagating in all possible directions at 
different speeds; these are more or less accurately repre- 
sented by the discrete operator and produce different con- 
centrations of eigenvalues in its Fourier footprint. Figures 
5 to  8 show the Fourier footprint of the first-order up- 
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Figure 3: Fourier footprint of the first-order upwind ap- Figure 4: Fourier footprint of the first-order upwind ap- 
proximation of the two-dimensional convection operator; proximation of the two-dimensional convection equation; 
convection angle 4 = 10'. convection angle 4 = 45'. 

wind scheme for the Euler equations, based on Roe's [8] step values a d k ) ,  k = 1, .., m, of an m-stage algorithm. 
upwind-biased flux formula, for a range of Mach numbers. When updating the solution of 
All figures are for the case when the flow speed is aligned 
with the grid. Ut = Res(U) (1) 

The different sizes of the different concentrations in 
from time level tn  to tn+' = tn  + At,  the method takes 

the footprint make it impossible to  place the zeros of 
the form a multi-stage amplification factor a t  fixed locations in 

the complex plane and still achieve good high-frequency ~ ( 0 )  = u n ,  

damping for all Mach numbers (even disregarding flow an- (2) 

gles) . u ( ~ )  = u ( O )  + A ~ ( ~ ) R ~ s  (u(~-')) , k = I,  .., m,(3) 

The next sequence of figures, 9 to 12, show the 
Fourier footprint of the preconditioned first-order upwind 
scheme for the Euler equations, again based on Roe's flux 
formula, for a range of Mach numbers. The frequencies 
included in the footprints are /?, E [0, n], By E [O, TI. The 
preconditioning matrix is the one presented in [I]. A com- 
parison with the previous sequence shows that removing 
the variation among the characteristic convection speeds 
has resulted in a thorough clean-up of the footprint. Espe- 
cially impressive is the job it does for small M. For M T 1 
a growing separation of two regions of concentration of 
eigenvalues is observed; this corresponds to the growing 
disparity between the acoustic speeds in the flow direc- 
tion (= q d m ,  q flow speed) and normal direction 
(= q). For M > 1 the footprint starts looking very much 
like one for scalar convection (cf. Figure 3); this is because 
all signals in supersonic flow move downstream. 

with At = adrn). According to linear theory, one step 
with the full scheme multiplies each eigenvector of the 
operator Res(U), with associated eigenvalue A ,  by a factor 
of the form 

m 

where 
z = AAt 

generally is complex. The m - 1 coefficients crk relate to 
the time-step ratios a k  = a t ck ) / a t ;  the actual time step 
At is the mth parameter. 

The optimization procedure starts out by computing, 
for a fixed combination of M and 4 (Z flow angle), a 
discrete set of eigenvalues for wave-number pairs (P,, Py) 
in the high-frequency range, i.e. 

4 Optimization procedure 
The procedure for optimizing high-frequency damp- 

ing aims a t  minimizing the maximum of the modulus of Assuming a set of starting values for the m-stage scheme, 
the scheme's amplification factor over the set of high- for instance Tai's values, the value of I P(z)l is computed 
frequency eigenvalues. The input parameters are the time- for all eigenvalues previously obtained, and its maximum 



Fourier Footprint of First-Order Roe Scheme 

M = 0.1,  4 = oO, v = 1 
Fourier Footprint of First-Order Roe Scheme 

M = 0.9,  4 = 0°, v = 1 

0.90 

I Figure 5 :  Fourier footprint of the first-order upwind ap- Figure 7: Fourier footprint of the first-order upwind ap- I 
I proximation of the spatial Euler operator, for M = 0.1, proximation of the spatial Euler operator, for M = 0.9, I and flow angle 4 = 0'. The time-step chosen corresponds and flow angle 4 = (10. I 
I to a Courant-number value of 1. 
I 

Fourier Footprint of First-Order Roe Scheme 

2,10, M = 0.5,  4 = 0°, u = 1 , Fourier Footprint of First-Order Roe Scheme 

M = 2.0, 4 = 0°, u = 1 
2 . 1 0 1  1 

Figure 6: Fourier footprint of the first-order upwind ap- Figure 8: Fourier footprint of the first-order upwind ap- 
proximation of the spatial Euler operator, for M = 0.5, ~roximation of the spatial Euler operator, for M = 2, and 

and flow angle 4 = 0'. flow speed aligned with the grid. 



First-Order Modified Roe Scheme 

M = 0.1, q5 = 0°, v = 1 

2'100 

Figure 9: Fourier footprint of the preconditioned first- 
order upwind approximation of the spatial Euler operator, 
for M = 0.1, and flow angle 4 = 0'. 

First-Order Modified Roe Scheme 

M = 0.5, q5 = 0°, v = 1 
2.10 i 

First-Order Modified Roe Scheme 

Figure 11: Fourier footprint of the preconditioned first- 
order upwind approximation of the spatial Euler operator, 
for M = 0.9, and flow angle 4 = O O .  

First-Order Modified Roe Scheme 

Figure 10: Fourier footprint (symbols) of the precoxidi- Figure 12: Fourier footprint of the preconditioned first- 
tioned first-order upwind approximation of the spatial Eu- order upwind approximation of the spatial Euler operator, 
ler operator, for M = 0.5, and flow angle 4 = 0'. for M = 2, and flow angle 4 = 0'. 



is found. This is our functional a (Adl ) ,  .., Adrn); M ,  4); it 
must be minimized by varying the m parameters. (Depen- 
dence on M and 4 will be considered later.) The optimal 
(in the L, sense) m-stage scheme may hence be obtained 
as the solution to the following minmax problem: 

The optimization procedure that appeared to be most ro- 
bust is Powell's method (see, e.g., [9]). 

The optimization procedure is not without its prob- 
lems. Specifically, there are two points of concern: 

1. The alignment problem makes the optimization 
meaningless for flow angles near 0 (or ~ / 2 ) ,  since 
the amplification factor for low-high (or high-low) 
frequency combinations tends to 1. Our solution is 
to filter out these frequency combinations, e.g. for 
q5 = 0 we optimize only over the eigenvalues with 

1 5 IP, I ,  a wedge-like region in the frequency 
plane. When 4 increases the wedge rotates with the 
flow angle and opens up, until for 4 = ?r/4 the en- 
tire domain (Eqn. 7) is used. When 4 increases fur- 
ther, the optimization domain shrinks again, until for 
4 = 1r/2 only those frequency pairs are included sat- 
isfying !@, I < I/?y ( As said before, the alignment 
problem has to be dealt with separately, for instance 
by semi-coarsening [lo]. 

2. The functional has many local minima, so the opti- 
mization procedure frequently comes up with a sub- 
optimal solution. It is important to inspect the solu- 
tions and see if they make sense; if not, the optimiza- 
tion algorithm must be provided with a fresh set of 
initial values. 

To show what this technique can accomplish we 
present the sequence of Figures 13 - 16. These include 
the Fourier footprint of the spatial operator, plotted on 
top of the level lines of the amplification factor of the 
multi-stage scheme that has been optimized for use with 
this operator. The size of the footprint scales with At; 
optimal high-frequency damping is achieved only for one 
particular value of At .  Figure 13 shows, for M = 1, 
4 = 45O, how well the level lines can follow the outline 
of the footprint of the first-order upwind Euler operator 
when 3 stages are used. The kidney-shaped outline is due 
to  the high-frequency entropy/shear eigenvalues; the claw- 
shaped feature is the locus of the high-frequency acoustic 
eigenvalues. The value of the functional is 0.3523, i.e., 
all high-frequency combinations are reduced at least by 
this factor. When adding one more stage (Figure 14), the 
attenuation is even better, namely, a factor 0.2362; the 
five-stage scheme (Figure 15) yields a = 0.1652. 

Figure 16 shows how the footprint changes when the 
flow angle is reduced to zero: it becomes more transparent, 
but the outline stays the same. The level lines are those 

of the 4-stage scheme of Figure 14; the only change in the 
scheme is the adjustment of the time step (see Section 5). 
It is seen that the functional hardly changes ( a  = 0.2386); 
there is no need for further optimization. 

Level lines of the amplification factor in the (P,, ,fly) 
plane are shown in Figures 17 - 20 all for M = 0.1. 
Data in the central square are suppressed: this is the 
low-frequency region. It  must be understood that each 
frequency combination creates four eigenvalues: two are 
acoustic in nature, the other two correspond to entropy 
and shear. Each of these generates its own amplification 
factor. In Figure 17, with 4 = 45O, for each combina- 
tion of frequencies the maximum of the four amplification 
factors is plotted. In Figure 18 only the acoustic eigenval- 
ues are included, while in Figure 19 only the entropy and 
shear-related eigenvalues are included. Finally, Figure 20 
is for 4 = 0°, illustrating the alignment problem. Only the 
entropy/shear-related amplification factor is plotted; the 
level lines show independence of Py . For @, = 0 the ampli- 
fication factor equals 1 regardless of the PY -frequency. In 
the optimization procedure these frequency combinations 
are excluded, as explained earlier. The wedge-shaped op- 
timization region is indicated by the dashed lines. 

Finally, Figures 22 - 24 show results of optimizations 
of schemes based on higher order upwind discretizations. 
Figure 22 shows the result of an optimization of a 4-stage 
scheme for the third-order upwind-biased Euler discretiza- 
tion (a K-scheme with K = [ll]).  The functional value 
is 0.6641, which may seem rather high. However, it must 
be pointed out that similar functional values are obtained 
with the footprint of the equivalent discrete operator for 
the two-dimensional convection equation. Most analy- 
sis done so far was based on one-dimensional convection, 
which yields lower functional values for these minmax op- 
timal solutions. 

5 Dependence on the flow angle 
As explained above, the optimization procedure gen- 

erates a time-step value for which the optimal high- 
frequency damping is realized. For a given spatial opera- 
tor and number of stages, this Atopt depends on the Mach 
number and the flow angle. The variation with the flow 
angle is similar to that of the maximum permitted time 
step At,,, for explicit convection schemes: on a square 
grid the stability limit drops a factor 4 when the flow 
angle varies from O0 to 45'. This variation can be removed 
by redefining the Courant number. 

For the preconditioned Euler equations, with the 
characteristic speeds equal to or close to q, we define the 
Courant number as 

where 1 is a typical cell-width that may depend on the 
flow direction. Figure 25 shows the typical variation of 



1st order Modified Roe Scheme, M = 0.1, $ = 45' 
1st order Modified Roe Scheme, M = 0.1, 6 = 45' Optimal %stage, o ( 3 ,  v )  = oopt = 0.3523 

3.50 
1 0.1 Optimal 5-stage, o ( B ,  v )  = uopt = 0.1636 
n m . ,  

5.25 , 

top of the level lines of the amplification factor of the as- 
sociated optimal 3-stage scheme. Flow angle 45'. 

Figure 16: As Figure 14, but for flow angle 0'. 
Figure 14: As Figure 13, but for optimal 4-stage scheme. 

1st order Modified Roe Scheme, M = 0.1, #J = 0' 
1st order Modified Roe Scheme, M = 0.1, $ = 45' Optimized 4-stage, u ( 3 ,  v )  = 0.2386 
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Contour plot of IP(z(P,,P,,v), S))I, M = 0.1, 6 = 45' 

Figure 17: Level lines of the maximum amplification factor ~i~~~~ 19: ~i~~~~ 17, but for shear/entropy waves only. 
in the (0, , 0,) plane over the high-frequency domain. 1st 
order 4-stage scheme, 4 = 4s0. 

Contour plot of IP(z(Pr,Py, v), 8))1, M = 0.1, 4 = 45' 

1.00 
waves 

1 0.022 
2 0.043 
3 0.065 
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Figure 18: As Figure 17, but for acoustic waves only. 

Contour plot of JP(t(PZ,Pg, v ) ,  8 ) ) ( ,  M = 0.1, 4 = 0' 

Figure 20: As Figure 19 but for flow angle 0'. The dashed 
line outlines the portion of the domain considered. 



Fourier Footprint, 2-D scalar advection 

4-stage, First-order upwind 
5.25 I 

Modified Roe Scheme with n = -1 ,  M = 0.1,  4 = 45' 

Optimal 4-stage, o ( d ,  v )  = oopt = 0.5146 
5.25 I 1 0.1 

Figure 21: High-frequency Fourier footprint of the first- ~i~~~~ 23: ~ i ~ h - f ~ ~ ~ ~ ~ ~ ~ ~  Fourier footprint of the pre- 
order upwind 2-D scalar advection operator plotted on top conditioned second-order ( K  = -1) upwind Euler operator 
of the level lines of the amplification factor of the 4-stage plotted on top of the level lines of the amplication factor 
scheme optimized using the Modified Roe operator for the of the associated optimal 4-stage scheme. 
Euler equations. Convection angle 45'. 

Modified Roe Scheme with n = 113, M = 0 .1 ,  6 = 45' 

Optimal 4-stage, o ( 6 ,  v )  = oopt = 0.6641 
5.25 

Figure 22: High-frequency Fourier footprint of the precon- 
ditioned third-order upwind Euler operator plotted on top 
of the level lines of the amplication factor of the associated 
optimal 4-stage scheme. 

Modified Roe Scheme with n = 0 ,  M = 0.1,  4 = 45' 

Optimal 4-stage, o ( d ,  v )  = oopt = 0.6126 

5.251 

Figure 24: High-frequency Fourier footprint of the pre- 
conditioned second-order (PC = 0) upwind Euler operator 
plotted on top of the level lines of the amplication factor 
of the associated optimal 4-stage scheme. 



uOpt with the flow angle for a square grid, using a fixed 
1 = Ax = Ay. For small q!~ the optimal value of the 
Courant number is dictated by the size of the acoustic 
footprint; between 10' and 15' the entropy/shear foot- 
print takes over. (This feature is a function of the wedge 
filter in the frequency domain, described in the previous 
section.) The curves for different Mach numbers are very 
close, except when M approaches 1; for comparison we 
have also plotted the function cos 4 + sin 4, which repre- 
sents the length of the projection of the cell diagonal on 
the streamline. For general rectangular cells we find that 
defining 

I = Ax1 cosdl + A91 sin41 (10) 

takes away most of the variation of v,,t with the flow 
angle, so that a single value can be recommended. 

6 Dependence on the Mach num- 
ber 

Figures 26 and 27 show the result of optimizing the 
4-stage scheme for higher Mach numbers than before, viz. 
M = 0.5 and M = 0.9; the flow angle is 0". The acoustic 
footprint bears evidence of a growing disparity among the 
characteristic speeds: acoustic waves traveling in the flow 
direction only move a t  a speed qv/m, while normal to 
the flow direction the propagation speed still equals q .  The 
smaller speed moves a group of high-frequency eigenvalues 
toward the origin, causing higher functional values for a 
given number of stages. In comparison to  Figure 27 it 
is seen that a is increased only slightly (to 0.2604) for 
M = 0.5, but significally (to 0.4100) for M = 0.9. 

It  was our goal, given the spatial differencing opera- 
tor and the number of stages, to  produce a single set of 
multi-stage parameters that yield effective high-frequency 
damping for any flow angle or Mach number. As explained 
in the previous section, the influence of the flow angle is 
minor, once the alignment problem has been removed. By 
the same token, the influence of the Mach number is minor 
once we recognize there is no remedy for the deterioration 
of high-frequency damping as M approaches 1, other than 
using more stages. If we give the multi-stage parameters 
a weight dl - min(M2, M-2),  the sonic problem is re- 
moved, and a useful set of parameters can be chosen. 

7 Optimal multi-stage schemes 
We have computed optimal multi-stage schemes (Ta- 

bles 1 - 4) based on the Modified Roe discrete operator for 
the preconditioned Euler equations. Though these coeffi- 
cients have been computed based on this specific operator, 
it is expected that they will be useful with other discrete 
spatial operators for the preconditioned Euler and Navier- 
Stokes equations as well. 

These schemes are not only preferable as solvers in 
a multi-grid strategy, but are also superior single-grid 

Number of Stages 

Table 1: Multi-stage Coefficients for Optimal First-Order 
Scheme. 

Number of Stages 

Table 2: Multi-stage Coefficients for Optimal K = 0 
Scheme. 

Table 3: Multi-stage Coefficients for Optimal K = -1 
Scheme. 

Number of Stages 

a1 

4 

0.0884 

5 

0.0567 

2 

0.4222 

3 

0.1597 



Number of Stages 

Variation of Courant number with flow angle. 
1st order Modified Roe spatial operator 

Table 4: Multi-stage Coefficients.for Optimal K = 113 
Scheme. 

schemes, as the preconditioning itself already acceler- 
ates the convergence to  a steady solution, and the high- 
frequency damping provides robustness. 

8 Multi-grid convergence studies 
With reference to the convergence plots (Figures 28 

- 35), the key prec refers to  the use of the Modified Roe 
discretization along with coefficients derived in this pa- 
per. no prec refers to  Roe's scheme along with Tai's 
coefficients. mg indicates that the line is the result of 
using 4 grid levels. (A Sawtooth-FAS cycle was used in 
these multi-grid calculations.) A work unit is defined as 
the work required for a single stage relaxation sweep (up- 
date) on the fine grid. Since the relaxation schemes vary, 
this would seem inconsistent. However, if coded properly, 
the preconditioned scheme is comparable in cost to the 
regular scheme. 

A first test case was the computation of steady flow 
over a NACA 0012 airfoil a t  Mach number 0.63 and an- 
gle of attack 2' on a 32x16 0-grid. Residual convergence 
histories, with and without preconditioning on single- and 
multi-grids, are presented in Figure 35. It is seen that pre- 
conditioning and multi-grid marching accelerate the con- 
vergence independently. The multi-grid technique is more 
effective for the preconditioned scheme than for the stan- 
dard scheme because of the superior damping properties 
of the preconditioned scheme, i.e. the speed-up should 
be greater for the preconditioned scheme. This has been 
demonstrated by Tai [6] for one-dimensional Euler com- 
putations (see Table 5). Evidence of this speed-up in the 
two-dimensional case is demonstrated in Figure 35. A 
speed-up factor of 2.73 over the standard scheme is ob- 
tained by using multi-grid with the standard scheme and 
the corresponding speed-up factor with multi-grid over the 
preconditioned scheme is 3.21. The corresponding gain 
by using multi-grid with preconditioning over traditional 
multi-grid is a speed-up factor of 1.6 for this case. The 

Figure 25: Variation of the optimal Courant number with 
the flow angle, for the first-order upwind 4-stage scheme. 

two-dimensional case is qualitatively different because of 
the appearance of stagnation points, which cause trou- 
ble in the preconditioning step. In order to reap the full 
multi-grid benefits it is necessary to  make the precondi- 
tioning scheme more robust near flow singularities; this is 
the focus of a parallel research effort. 

Another test case considered was the propagation of 
a small pressure disturbance (Euler) in a square domain. 
Figures 28 to 34 give the convergence histories for the cal- 
culation of the propogation of a 2.0% pressure disturbance 
on a square 32x32 mesh domain. The multi-grid compu- 
tations made use of 4 levels. In these cases, the damping 
capabilities of the multi-stage schemes can be more easily 
observed, since it is not necessary to employ smoothing at 
the problem "points" for the preconditioning step (M + 0 
and M I' l), something that may affect damping. 

A pressure disturbance decomposes into acoustic 
waves and an entropy wave (a  nonlinear disturbance). 
The condition number for local time-stepping equals (M+ 
l)/min(M, IM - l l ) ,  and has a theoretical minimum at 
M = 0.5. Indeed, as Figure 29 shows, local time-stepping 
performs best at this Mach number and multi-grid con- 
vergence with local time-stepping is as good as with char- 
acteristic time-stepping for this case. 

In general, however, multi-grid with matrix precondi- 
tioning is observed to be the most efficient of the schemes 
compared, both for first-order and second-order upwind 
discretizations. As expected, there is a Mach number de- 
pendence in the speed-ups observed. Large speed-ups with 
the preconditioned schemes are observed where the con- 
dition number for local time-stepping is high (Figures 28, 
30, 32 and 34). 



Number of stages 

Table 5: Work required for convergence for the calctilation of shockless transonic flow in a converging-diverging . . 

channel. The basic grid has 256 cells, the spatial discretization is third-order upwind-biased. IJsing Tai's multi-stage 
parameters, the preconditioned scheme not only accelerates c,onvergence on a single grid, but also yields a greater 
multi-grid benefit than the standard scheme, which merely uses a local time step. The unit used here is the number 
of iterations needed to reduce the residual norm from around to around 10-lo. 
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5,25,0ptimized 4-stage, u ( 3 ,  u )  = 0.2604 , 1 0.1 
2 0.2 

Figure 26: High-frequency Fourier footprint of the pre- 
conditioned first-order upwind Euler operator plotted on 
top of the level lines of the amplification factor of the as- 
sociated optimal 4-stage scheme. Flow angle 0°, M = 0.5. 
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1st order Modified Roe Scheme, M = 0 .9 ,  + = 0' 

Optimized 4-stage, u ( d ,  u )  = 0.4100 
5.25 . I 1 0.1 

Figure 27: High-frequency Fourier footprint of the pre- 
conditioned first-order upwind Euler operator plotted on 
top of the level lines of the amplification factor of the as- 
soc,iated optimal 4-stage scheme. Flow angle 0°, M = 0.9. 
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(!onvergence history. Point disturbance 
2.0% pressure disturbance. M = 0.1, 4 = 45' 

- 5 . 0 0  

-11.0 ! 1 I I I I 

0. 300. 600. ! 
Work Units 

Convergence history. F'oint disturbance 

2.0% pressure disturbance. M = 0.9, 9 = 45' 
-5.0 , 

-11.0 I I I I I 

0. 300. 600. 
Work I.Jnits 

Figure 28: Convergence histories for calc,ulations of the Figure 30: Convergence histories for calculations of the 
propagation of a pressure disturbance. The optimal first- propagation of a pressure disturbance. As in Figure 28, 
order upwind %stage scheme is used with local time- but with M = 0.9. 
stepping (Tai) or matrix preconditioning (new coefi- 
cients), in single- or 4-grid relaxation. 
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Figure 3 1 : Convergence histories for calculations of the 
Figure 29: Convergenc.e histories for calculations of the propagation of a pressure disturbance. As in Figure 28, 
propagation of a pressure disturbance. As in Figure 28, with = 
but with M = 0.5. 



Convergence history. Second order 
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Figure :32: C:onvergence histories for calculations of the Figure 34: Convergence histories for calculations of the 
propagation of a pressure disturbance. The optimal propagation of a pressure disturbance. As in Figure 32, 
second-order upwind ( K  = -1) :]-stage scheme is used with but with M = 0.9. 
local time-stepping (Tai) or matrix preconditioning (new 
coefficients), in single- or 4-grid relaxation. 
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9 Optimization of Navier-Stokes 
schemes 
If the proper preconditioning is used (see the com- 

panion paper [7]), Navier-Stokes discretizations do not of- 
fer any extra difficulty - in theory. With decreasing c,ell 
Reynold-number the footprints get more and more concen- 
trated near the real axis, where damping rates are exc,el- 
lent anyway; the natural visc,osity causes high frequency 
eigenvalues to  move away from the origin along the neg- 
ative real axis, which is helpful. T h e  influence of the cell 
aspect-ratio is removed by appropriate scaling of elements 
in the preconditioning matrix. 

Thus, it appears that  for a given spatial Navier- 
Stokes discretization and a given number of stages, a set 
of multi-stage parameters can be produced that  provide 
superior high-frequency damping for all flow angles, Mach 
numbers, cell Reynolds numbers and cell aspect-ratios. 

10 Concluding Remarks 
In this paper, we have describe an optimization tech- 

nique that  can be used to  obtain multi-stage schemes 
that optimally damp high-frequency waves admitted by a 
particular preconditioned Euler or Navier-Stokes discrete 
operator. We have also tabulated a set of these coeffi- 
cients based on a first-order upwind discretization and 
some higher order ( K  = 0, -1, 113) upwind discretiza- 
tions of the Euler equations. Though these coefficients are 
based or1 a particular discrete operator (Modified Roe), i t  
is expected that they will be useful with other discrete op- 
erators for the preconditioned Euler and Navier-Stokes as  
well, for use in both a multi-grid and single-grid context. 

Results have been presented for some test cases. 
These results indicate that  multi-grid with matrix pre- 
conditioning is more efficient than multi-grid with local 
tirne-stepping, in general, and that  multi-grid and matrix 
preconditioning accelerate t,he convergence to  a steady so- 
lution individually. 

Further work is required to  make the airfoil code (rna- 
trix prec,onditioning with Modified Roe scheme) more ro- 
bust. We are also beginning multi-grid studies of Navier- 
Stokes cases. 
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