
Keystone Colorado, August 21–24, 2006

AIAA-2006-6399
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A nonlinear semi-analytic filtering method to sequentially estimate spacecraft states and
their associated uncertainties is presented. We first discuss the state transition tensors that
characterize the localized nonlinear behavior of the spacecraft trajectory and illustrate the
importance of higher order effects on orbit uncertainty propagation. We then present the
semi-analytic filtering method by implementing the state transition tensors to sequentially
update the information with contributions from each measurement, which requires no in-
tegration once the tensors are computed. A Sun-Earth halo orbit about the L1 point is
considered as an example with realistic orbit uncertainties, and the results are compared
with the extended Kalman filter and unscented Kalman filter.

I. Introduction

Orbit uncertainty propagation plays an important role in various space-related applications, such as orbit
determination,1–3 parameter estimation,4–9 maneuver design,10–12 small-body collision/encounter analysis,13

etc. In practice, it is usually assumed that the true state (in a statistical sense) is within a boundary where
the linear assumption sufficiently approximates a trajectory dynamics and the covariance matrix is mapped
using the Riccati equations. In some cases, however, the linear assumption fails to provide an accurate
realization of the local trajectory motion, and in such cases, a different method, which accounts for the
system nonlinearity, must be implemented.

The best known technique is a Monte-Carlo (MC) simulation, which approximates a nonlinear transfor-
mation by averaging a large set of nonlinearly propagated random samples. However, because of intensive
numerical computation and challenging implementation, the Monte-Carlo technique is often not suitable
for orbit uncertainty propagation in filtering applications. Recently, a simple method called the unscented
transformation14–18 was proposed by Julier et al., which deterministically chooses the sample sigma points to
capture the second order effect while keeping the computational cost at the same order as the linear method.
As pointed out by Julier et al., the unscented transformation is based on the idea that, for a given system, it
is easier to approximate the probability distribution than the nonlinear function.16,17 However, it is also true
that if such approximations of the nonlinear function are feasible, they would provide a significant advantage
over approximating the probability distribution.

For deep-space missions, one is usually given a reference (nominal) trajectory with precise ephemerides.
The objective of trajectory navigation and spacecraft control is to follow the reference trajectory while
minimizing some pre-defined optimality constraints, such as number of trajectory correction maneuvers,
flight time, fuel, etc. The basic underlying concept of such a process is to stay within the linear region
by taking sufficient number of measurements and linearly map the deviation and statistics via the state
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transition (fundamental) matrix with respect to the nominal trajectory. It is, however, not obvious to say if
the true (in a statistical sense) trajectory is within the linear regime.

Conventionally, the extended Kalman filter (EKF) is used for spacecraft navigation and the batch least-
squares filter (LSF) is used for trajectory reconstructions.1–3,19,20 Except for a very few cases, these methods
have provided sufficient accuracy for mission operations and science requirements. However, both the EKF
and LSF are based on the linearized dynamics model, and when the nonlinearity is significant or when only
a limited number of measurements are available, the filter solutions are often overestimated and the linear
models become insufficient for precision analysis or robust navigation. For example, the orbit uncertainties
are often believed to be overestimated for deep space missions and the covariances are arbitrarily increased
(based on experience) to compensate for potential solution errors. Moreover, as technology advances, high
accuracy measurements will be available, and hence, need for nonlinear filters will become more critical to
level the filter performance with the measurement accuracy.

There exist various nonlinear filtering methods, such as the particle filter,21–23 unscented Kalman/particle
filter (UKF/UPF),14–18,24 Gaussian sum filter,25,26 divided difference filter,27 finite dimensional filters,28–33

and higher order filters.1,34 This paper discusses the significance of nonlinearity on spacecraft navigation and
introduces a sub-optimal nonlinear semi-analytic method that sequentially estimates a spacecraft trajectory.
The idea of the present paper is to extend the function of the state transition matrix (STM) by including the
higher order effects,35,36 which we call the state transition tensors (STTs),10,11 and develop a higher order
semi-analytic filter which requires no online integration.

The Sun-Earth halo orbit about the L1 point based on the circular restricted three-body problem
(CR3BP) is chosen as an example since the overall nonlinearity is small, but the trajectory is unstable
and when the spacecraft is not sufficiently observed, the nonlinear effect can become significant. The pro-
posed semi-analytic filter is compared with the extended Kalman filter and unscented Kalman filter with
realistic orbit uncertainties.

II. Higher Order Perturbation Analysis

The motion of a spacecraft can be modeled with first order ordinary differential equations, given in tensor
notation:

dxi(t)
dt

= gi[t;x(t)] (1)

where g[t;x(t)] represents the system dynamics vector with a dimension n and x = {xi | i = 1, · · · , n}
represents the spacecraft state vector with initial conditions xi

0 = xi(t0). For the given x0, the solution flow,
which maps the initial state to the current time tk, is defined as

xi(tk) = φi(tk;x0, t0) (2)

The solution flow is governed by

dφ

dt
= g[t, φ(t;x0, t0)] (3)

φ(t0;x0, t0) = x(t0) (4)

and the flow of a phase volume can be stated as

B(tk) = {x(tk) | x(tk) = φ(tk;x0, t0) ∀ x0 ∈ B0} (5)

The inverse solution flow, which maps the current state to the epoch, can be obtained by applying a similar
approach, and to distinguish between the direct and inverse flows, we define the inverse flow as

xi
0 = ψi(tk,xk; t0) (6)

which is an integral of motion since dx0/dt = 0. Combining the definitions of the forward and inverse
solutions, an obvious, but important, identity exists

x0 = ψ[tk, φ(tk;x0, t0); t0] (7)
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In this framework, define a local trajectory dynamics, δx, by applying the Taylor series expansion about
the reference (nominal) trajectory x̄, i.e., δx(t) = x(t)−x̄(t). The mth order solution and its time derivatives
can be stated as

δxi(tk) =
m∑

p=1

1
p!

φ
i,γ1···γp

(t,t0)
δxγ1

0 · · · δxγp

0 (8)

δẋi(t) =
m∑

p=1

1
p!

gi,γ1···γpδxγ1 · · · δxγp (9)

where γj ∈ {1, · · · , n}, subscripts γj denote the γjth component of the state vector, and

φ
i,γ1···γp

(t,t0)
=

∂pxi

∂xγ1
0 · · · ∂xγp

0

(10)

gi,γ1···γp =
∂pgi

∂xγ1 · · · ∂xγp

∣∣∣∣
x=x̄

(11)

We call the higher order partials of the solution flow (i.e., Eqn. (10) the state transition tensors, which map
the initial deviations to the current time. Note that the first order case (i.e., p = 1) reduces to the usual
STM and Eqn. (11) is simply the Jacobian matrix.

The differential equations for the STTs can be obtained by substituting Eqn. (8) into Eqn. (9) and
equating with the time derivative of Eqn. (8) and balancing terms of the same order in δx0.10,11 The
differential equations up to fourth order deviation are given in Eqns. (12-15).

φ̇i,a = gi,αφα,a (12)
φ̇i,ab = gi,αφα,ab + gi,αβφα,aφβ,b (13)

φ̇i,abc = gi,αφα,abc + gi,αβ
(
φα,aφβ,bc + φα,abφβ,c + φα,acφβ,b

)
+ gi,αβγφα,aφβ,bφγ,c (14)

φ̇i,abcd = gi,αφα,abcd

+ gi,αβ
(
φα,abcφβ,d + φα,abdφβ,c + φα,acdφβ,b + φα,abφβ,cd + φα,acφβ,bd + φα,adφβ,bc + φα,aφβ,bcd

)

+ gi,αβγ
(
φα,abφβ,cφγ,d + φα,acφβ,bφγ,d + φα,adφβ,bφγ,c + φα,aφβ,bcφγ,d + φα,aφβ,bdφγ,c

+ φα,aφβ,bφγ,cd ) + gi,αβγδφα,aφβ,bφγ,cφδ,d (15)

The initial conditions of the STTs are φi,a
(t0,t0)

= 1 if i = a and zero otherwise. Once these STTs are
computed, they serve a role identical to the STM except that higher order effects are now included, and
thus, the solution is nonlinear. Therefore, a significance of the STTs is that the local nonlinear motion of a
spacecraft trajectory can be mapped analytically and requires no integration.

The inverse series also exists and is defined as

δxi
0 =

m∑
p=1

1
p!

ψ
i,γ1···γp

(t0,tk) δxγ1 · · · δxγp (16)

where γj ∈ {1, · · · , n} and we call ψ
i,γ1···γp

(t0,tk) the inverse state transition tensors (ISTTs). The ISTTs can
be computed by using the similar integration approach as in the STT computation; however, it is more
convenient to compute via series reversion since the integration can take a long time for the large m. As
functions of the STTs, the ISTTs mapping from tk to t0 are

ψi,a
k =

[
Φ−1(t, t0)

]i,a
(17)

ψi,ab
k = −ψi,α

k φα,j1j2
k ψj1,a

k ψj2,b
k (18)

ψi,abc
k = −

[
ψi,α

k φα,j1j2j3
k + ψi,αβ

k

(
φα,j1

k φβ,j2j3
k + φα,j1j2

k φβ,j3
k + φα,j1j3

k φβ,j2
k

)]
ψj1,a

k ψj2,b
k ψj3,c

k (19)

ψi,abcd
k = −

[
ψi,α

k φα,j1j2j3j4
k + ψi,αβ

k

(
φα,j1j2j3

k φβ,j4
k + φα,j1j2j4

k φβ,j3
k + φα,j1j3j4

k φβ,j2
k + φα,j1j2

k φβ,j3j4
k

+ φα,j1j3
k φβ,j2j4

k + φα,j1j4
k φβ,j2j3

k + φα,j1
k φβ,j2j3j4

k

)
+ ψi,αβγ

k

(
φα,j1j2

k φβ,j3
k φγ,j4

k + φα,j1j3
k φβ,j2

k φγ,j4
k

+ φα,j1j4
k φβ,j2

k φγ,j3
k + φα,j1

k φβ,j2j3
k φγ,j4

k + φα,j1
k φβ,j2j4

k φγ,j3
k + φα,j1

k φβ,j2
k φγ,j3j4

k

)]
ψj1,a

k ψj2,b
k ψj3,c

k ψj4,d
k

(20)
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where ψk = ψ(t0,tk) and φk = φ(tk,t0) are used for the concise notations, and Φ represents the usual STM.
Note that Eqns. 17-20 are analytic in the STTs and require no integration. When computing the inverse of
the STM in Eqn. (17), we can take the advantage of the symplectic structure of a Hamiltonian system, i.e.,

Φ−1 = −T−1JT−T ΦT TT JT (21)

T =

[
I 0
ω̃ I

]
(22)

ω̃ =




0 −1 0
1 0 0
0 0 0


 (23)

J =

[
0 I
−I 0

]
(24)

where I and J are the identity and symplectic identity matrices, respectively, with proper dimensions.
By applying the forward and inverse state transition tensors, the STTs mapping from time tr to ts, where

tr, ts ∈ [t0, tf ] for some final time tf and tr ≤ ts, can be represented as

φi,a
(ts,tr) =

[
Φ(ts, t0)Φ−1(tr, t0)

]i,a
= φi,α

s ψα,a
r (25)

φi,ab
(ts,tr) = φi,α

s ψα,ab
r + φi,αβ

s ψα,a
r ψβ,b

r (26)

φi,abc
(ts,tr) = φi,α

s ψα,abc
r + φi,αβ

s

(
ψα,a

r ψβ,bc
r + ψα,ab

r ψβ,c
r + ψα,ac

r ψβ,b
r

)
+ φi,αβγ

s ψα,a
r ψβ,b

r ψγ,c
r (27)

φi,abcd
(ts,tr) = φi,α

s ψα,abcd
r + φi,αβ

s

(
ψα,abc

r ψβ,d
r + ψα,abd

r ψβ,c
r + ψα,acd

r ψβ,b
r + ψα,ab

r ψβ,cd
r + ψα,ac

r ψβ,bd
r

+ ψα,ad
r ψβ,bc

r + ψα,a
r ψβ,bcd

r

)
+ φi,αβγ

s

(
ψα,ab

r ψβ,c
r ψγ,d

r + ψα,ac
r ψβ,b

r ψγ,d
r + ψα,ad

r ψβ,b
r ψγ,c

r

+ ψα,a
r ψβ,bc

r ψγ,d
r + ψα,a

r ψβ,bd
r ψγ,c

r + ψα,a
r ψβ,b

r ψγ,cd
r

)
+ φi,αβγδ

s ψα,a
r ψβ,b

r ψγ,c
r ψδ,d

r (28)

where ψr = ψ(t0,tr) are φs = φ(ts,t0) and the ISTTs are computed by applying the Eqns. (17-20). In other
words, once the STTs are computed for the entire reference trajectory, the map from an arbitrary point in
space to some future time becomes a simple algebraic manipulation. Note that φ

i,γ1···γp

(ts,tr) can also be computed
by integrating the differential equations given in Eqns. (12-15) for each time interval (ts, tr).

One concern is a numerical consistency when Eqns. (12-15) are integrated over a long duration of time.
We note that the reference trajectory can be segmented arbitrarily to meet the desired numerical accuracy.
Another question that may arise is the computational difficulty (or the integration time) as we consider the
higher order solutions. Specifically, assuming a system with n = 6, the mth order analysis requires integration
of

∑m+1
q=1 6q equations. For example, when m = 3, one must integrate 1554 equations simultaneously.

However, the higher order solutions can be computed off-line, and especially when orbit is periodic (e.g., halo
orbit), these only need to be computed once. Lastly, the computation of the partials of the dynamics may be
of a concern. We note that there are symbolic manipulators available which provide optimal differentiations,
and also note that many of these partials vanish to zero for systems of spacecraft navigation interest.

III. Higher Order Extended Kalman Filter

Suppose we are given the continuous trajectory model defined in Eqn. (3). Since a spacecraft tracking
model is usually discrete, without loss of generality, consider the following discrete system model:

xk+1 = φ(tk+1;xk, tk) + wk (29)
zk+1 = h(xk+1, tk+1) + vk+1, (30)

where xk is the true spacecraft state, φ is the solution flow, wk is the white process noise perturbing
the spacecraft state, zk is the actual measurement, h is the measurement function, and vk is the white
measurement noise characterizing the observation error. The process noise and measurement noise are
assumed to be non-correlated, i.e., E

[
viwT

j

]
= 0, with the autocorrelations

E
[
wiwT

j

]
= Qiδij (31)

E
[
vivT

j

]
= Riδij (32)
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for all discrete time indexes i and j, where δij represents the Dirac delta function. Here, Q and R are also
known as the diffusion and measurement noise matrices, respectively.

A. Review of Gaussian Distribution

Consider the spacecraft state as a Gaussian with a mean m and covariance matrix P, i.e., x ∼ N (m,P).
The Gaussian probability density function (pdf) for x is then defined as

p(x) =
1√

(2π)ndetP
exp

[
−1

2
(x−m)T P−1 (x−m)

]
(33)

where, by definition, the first two moments are

m = E[x] (34)
P = E[xxT ]−mmT (35)

and for an arbitrary nonlinear function g(x) , the law of total expectation gives

E[g(x)] =
∫

∞
g(ξ)p(ξ)dξ (36)

Note that E[·] represents the expectation operator.
It is a unique property of the Gaussian distribution that moments of any order for x are functions of m

and P, which can be computed using a joint characteristic function.37,38 For the Gaussian random vector
the joint characteristic function is defined as

χ(u) = E[ejuT x] = exp
(

juT m− 1
2
uT Pu

)
(37)

where j =
√−1 and the higher moments can be computed using

E[xk1xk2 · · ·xkm ] = j−m ∂mχ(u)
∂uk1∂uk2 · · · ∂ukm

∣∣∣∣
u=0

(38)

B. Extended Kalman Filter

In the extended Kalman filter algorithm, the nominal trajectory is computed according to Eqn. (29) and
the covariance matrix is linearly mapped assuming the Gaussian statistics:1–3

Prediction:

m−
k+1 = φ(tk+1;m+

k , tk) (39)

P−k+1 = Φ(tk+1, tk)P+
k ΦT (tk+1, tk) + Qk (40)

n−k+1 = h(m−
k+1, tk+1) (41)

Update:

Kk+1 = Pxz
k+1(P

zz
k+1)

−1

= P−k+1H
T
k+1(Hk+1P−k+1H

T
k+1 + Rk+1)−1 (42)

m+
k+1 = m−

k+1 + Kk+1(z∗k+1 − n−k+1) (43)

P+
k+1 = P−k+1 −Kk+1Pzz

k+1K
T
k+1

= P−k+1 −Kk+1Hk+1P−k+1 (44)

where Hk = ∂hk/∂xk is the measurement partial computed at tk and z∗k+1 is the actual observation and
the difference between the actual and predicted measurement (i.e., z∗k+1 − n−k+1) is called the residual or
innovation.
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Among many important properties of the EKF, we point out the two which will be discussed later in
more details. Considering the gain Eqn. (42) and the mean update Eqn. (43), we observe that as the a
priori covariance matrix becomes more accurate (i.e., P−k+1 → 0) the filter values the residual less (i.e., the
actual measurement is trusted less). On the other hand, as the measurement becomes more accurate (i.e.,
Rk+1 → 0) the filter values the residual more (i.e., the actual measurement is trusted more). Therefore,
optimally weighting the residual is a critical component of maximizing the filter performance.

C. Higher Order Semi-Analytic Extended Kalman Filter

In deriving of the higher order semi-analytic EKF (HAEKF), we assume that the trajectory solutions
(i.e., STTs) are computed over some time span prior to filtering. Under this assumption the local trajectory
motion can be mapped analytically while incorporating nonlinear effects and the same analogy applies when
mapping the trajectory statistics.

For any dynamical systems, the current state mean and covariance matrix can be mapped as functions
of the epoch state distribution. Using the STT notation10,11,39,40

δmi
k+1(δxk+1) = E

[
δxi

k+1

]

=
m∑

p=1

1
p!

φ
i,γ1···γp

(tk+1,tk)E
[
δxγ1

k · · · δxγp

k

]
(45)

Pij
k+1(δxk+1) = E

[
(δxi

k+1 − δmi
k+1)(δx

j
k+1 − δmj

k+1)
]

=

(
m∑

p=1

m∑
q=1

1
p!q!

φ
i,γ1···γp

(tk+1,tk)φ
j,ζ1···ζq

(tk+1,tk)E[δxγ1
k · · · δxγp

k δxζ1
k · · · δxζq

k ]

)
− δmi

k+1δm
j
k+1 (46)

where {γj , ζj} ∈ {1, · · · , n} and E [xk+1] = mk+1 = φ(tk+1;xk, tk) + δmk+1. Now, the only unknowns are
the expectations (i.e., moments) of the deviations in Eqns. (45-46). Even if the trajectory is initiated with
the Gaussian a priori, except for the case m = 1, it is obvious that the mapped trajectory distribution is no
longer a Gaussian due to system nonlinearity. Hence, exact computation of the higher order moments is a
difficult process, if not impossible.

In the particle-based filters, this problem is remedied by using an ensemble of sample points to approxi-
mate the pdf. A more formal approach is to use the Edgeworth/Gram-Chalier1 or Laplace approximations
to compute the higher order moments; however, these approaches are beyond the scope of this paper. In
practice, especially in trajectory navigation, however, the Gaussian assumption has proven to provide a suf-
ficiently accurate statistical approximation. Therefore, we assumed that the updated estimates behave as
Gaussian and implement the joint characteristic function to compute the higher order moments. Note that,
as apparent from Eqn. (46) 2mth-order moments are required for covariance matrix computation. As the
order of solution increases, i.e., m →∞, the higher order solution will yield the true Monte-Carlo mean and
covariance matrix:38

mi
k+1 =

1
N

N∑
α=1

φi(tk+1;xα
k , tk) (47)

Pij
k+1 =

1
N − 1

N∑
α=1

[
φi(tk+1;xα

k , tk)−mi
k+1

][
φj(tk+1;xα

k , tk)−mj
k+1

]
(48)

where the superscript α represents the sample points that are chosen according to a probability distribution
at tk.

Now suppose at tk, a Gaussian distribution sufficiently approximates statistics of the state xk. The
moments in Eqn. (46) can then be computed using the joint characteristic functions, i.e., Eqn. (37), and
thus, the propagated mean and covariance matrix at tk+1 are functions of the first two moments. Note that
this prediction step is a simple algebraic operation since we assume the STTs are computed previously. If
we consider a zero initial mean, all the odd moments of the initial conditions vanish, which is the unique
property of the Gaussian distribution, and the above equations simplify a great deal. Moreover, it is clear
from Eqn. (45) that the mean will not be zero indicating that the mean deviates from the reference trajectory,
whereas the linear analysis assumes the mean being the reference trajectory.
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By applying the Gaussian assumption, the higher order semi-analytic extended Kalman filter algorithm
can be stated as follows:

Prediction:

(m−
k+1)

i = E[φi(tk+1;m+
k + δm+

k , tk)] = φi(tk+1;m+
k , tk) + δmi

k+1

= φi(tk+1;m+
k , tk) +

m∑
p=1

1
p!

φ
i,γ1···γp

(tk+1,tk)E
[
δxγ1

k · · · δxγp

k

]
(49)

(P−k+1)
ij = Pij

k+1 + Qij
k

=

(
m∑

p=1

m∑
q=1

1
p!q!

φ
i,γ1···γp

(tk+1,tk)φ
j,ζ1···ζq

(tk+1,tk)E[δxγ1
k · · · δxγp

k δxζ1
k · · · δxζq

k ]

)
− δmi

k+1δm
j
k+1 + Qij

k

(50)
(n−k+1)

i = E[(z−k+1)
i] = E[hi(tk+1;m+

k + δm+
k , tk) + vk+1] = hi(tk+1;m+

k , tk) + δni
k+1

= hi(tk+1;m+
k , tk) +

m∑
p=1

1
p!

hi,γ1···γp

(tk+1,tk)E
[
δxγ1

k · · · δxγp

k

]
(51)

where

hi,γ1···γp

(tk+1,tk) =
∂phi

∂xγ1
k · · · ∂xγp

k

(52)

Update:

(Pzz
k+1)

ij = E
[
(z−k+1 − n−k+1)

i(z−k+1 − n−k+1)
j
]

= E
[
(z−k+1)

i(z−k+1)
j
]− (n−k+1)

i(n−k+1)
j

= E
[
(h(tk+1;m+

k + δm+
k , tk) + vk+1)i(h(tk+1;m+

k + δm+
k , tk) + vk+1)j

]− (n−k+1)
i(n−k+1)

j

=

(
Rij

k+1 +
m∑

p=1

m∑
q=1

1
p!q!

hi,γ1···γp

(tk+1,tk)h
j,ζ1···ζq

(tk+1,tk)E[δxγ1
k · · · δxγp

k δxζ1
k · · · δxζq

k ]

)
− (δn−k+1)

i(δn−k+1)
j

(53)
(Pxz

k+1)
ij = E

[
(x−k+1 −m−

k+1)
i(z−k+1 − n−k+1)

j
]

= E
[
(x−k+1)

i(z−k+1)
j
]− (m−

k+1)
i(n−k+1)

j

= E
[
(φ(tk+1;m+

k + δm+
k , tk))i(h(tk+1;m+

k + δm+
k , tk) + vk+1)j

]− (m−
k+1)

i(n−k+1)
j

=

(
m∑

p=1

m∑
q=1

1
p!q!

φ
i,ζ1···ζq

(tk+1,tk)h
j,γ1···γp

(tk+1,tk)E[δxγ1
k · · · δxγp

k δxζ1
k · · · δxζq

k ]

)
− (δm−

k+1)
i(δn−k+1)

j (54)

Kk+1 = Pxz
k+1(P

zz
k+1)

−1 (55)
m+

k+1 = m−
k+1 + Kk+1(z∗k+1 − n−k+1) (56)

P+
k+1 = P−k+1 −Kk+1Pzz

k+1K
T
k+1 (57)
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Note that when the measurement function Eqn. (30) is linear in xk, Eqn. (51) simplifies to

(n−k+1)
i = hi(tk+1;m+

k , tk) + hi,α
k+1

m∑
p=1

1
p!

φ
α,γ1···γp

(tk+1,tk)E
[
δxγ1

k · · · δxγp

k

]
= hi(m−

k+1, tk+1) (58)

(Pzz
k+1)

ij =

(
Rij

k+1 + hi,α
k+1h

j,β
k+1

m∑
p=1

m∑
q=1

1
p!q!

φ
α,γ1···γp

(tk+1,tk)φ
β,ζ1···ζq

(tk+1,tk)E[δxγ1
k · · · δxγp

k δxζ1
k · · · δxζq

k ]

)

− (δn−k+1)
i(δn−k+1)

j

=
(
Rij

k+1 + hi,α
k+1h

j,β
k+1(P

−
k+1)

αβ
)
− (δn−k+1)

i(δn−k+1)
j

= (Hk+1P−k+1H
T
k+1 + Rk+1)ij (59)

(Pxz
k+1)

ij =

(
hj,α

k+1

m∑
p=1

m∑
q=1

1
p!q!

φ
i,γ1···γp

(tk+1,tk)φ
α,ζ1···ζq

(tk+1,tk)E[δxγ1
k · · · δxγp

k δxζ1
k · · · δxζq

k ]

)
− (δm−

k+1)
i(δn−k+1)

j

=
(
(P−k+1)

iαhj,α
k+1

)
− (δm−

k+1)
i(δn−k+1)

j

= (P−k+1H
T
k+1)

ij (60)

which indicates that the measurement prediction and update equations are the same as in the EKF algorithm.
Also, note that when m = 1, the higher order semi-analytic filter becomes the linear Kalman filter (LKF),

not the EKF. The superiority of the EKF over the LKF is clearly demonstrated in Maybeck.1 However, when
the reference trajectory is relatively close to the true trajectory, the HAEKF can provide a more accurate
solution than the EKF.

D. Higher Order Numerical Extended Kalman Filter

From the derivation of the HAEKF, it is obvious that we can also derive a higher order numerical
EKF (HNEKF) by directly integrating the STTs for each time interval between the measurements. The
filter algorithm is identical to the HAEKF except that the trajectory and STTs are integrated according to
Eqns. (12-15). We note that this process is numerically quite intensive as we consider higher order solutions;
however, the HNEKF can yield the most accurate solution. If we consider the case m = 1, the HNEKF
becomes the EKF shown in Eqns.(39-44).

E. Unscented Kalman Filter

The unscented Kalman filter, first introduced by Julier and Uhlmann,14,15,18 is being implemented in a
diverse field of engineering, science, and economics due to its simplicity while providing faster convergence and
better accuracy than the extended Kalman filter. The UKF is initialized with the following pre-determined
sigma points:

X 0
k = m+

k (61)
W0

k = κ/(n + κ) (62)

X i
k = m+

k +
[√

(n + κ)Pk

]
i

(63)

Wi
k = 1/[2(n + κ)] (64)

X i+n
k = m+

k −
[√

(n + κ)Pk

]
i

(65)

Wi+n
k = 1/[2(n + κ)] (66)

where κ ∈ <, X j
k are the sample points with associated weights Wj

k, and
[√

(n + κ)P(t0)
]

i
are the ith row

of the matrix square root of [(n + κ)P(t0)].
The unscented Kalman filter algorithm for additive (linear) process and measurement noises is as follows:
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Prediction:

X i
k+1 = φ(tk+1;X i

k, tk) (67)

m−
k+1 =

2n∑

i=0

Wi
kX i

k+1 (68)

P−k+1 =
2n∑

i=0

Wi
k

[X i
k+1 −m−

k+1

] [X i
k+1 −m−

k+1

]T
+ Qk (69)

Zi
k+1 = h(X i

k+1) (70)

n−k+1 =
2n∑

i=0

Wi
kZi

k+1 (71)

Update:

Pzz
k+1 =

2n∑

i=0

Wi
k

[Zi
k+1 − n−k+1

] [Zi
k+1 − n−k+1

]T
+ Rk (72)

Pxz
k+1 =

2n∑

i=0

Wi
k

[X i
k+1 −m−

k+1

] [Zi
k+1 − n−k+1

]T
(73)

m+
k+1 = m−

k+1 + Kk+1

(
z∗k+1 − n−k+1

)
(74)

P+
k+1 = P−k+1 −Kk+1Pzz

k+1K
T
k+1 (75)

Kk+1 = Pxz
k+1(P

zz
k+1)

−1 (76)

IV. Examples

In this section, we present several simulations of a halo orbit, which is a Lissajous type periodic orbit
where the in-plane and out-of-plane frequencies are the same, computed based on the circular restricted
three-body problem (CR3BP). The governing equations of motion for CR3BP, in non-dimensional form, are
given as41

ẍ− 2ẏ =
∂U

∂x
(77)

ÿ + 2ẋ =
∂U

∂y
(78)

z̈ =
∂U

∂z
(79)

where

U =
(1− µ)

r1
+

µ

r2
+

(x2 + y2)
2

(80)

r1 =
[
(x + µ)2 + y2 + z2

]1/2
(81)

r2 =
[
(x− 1 + µ)2 + y2 + z2

]1/2
. (82)

Here, U is the CR3BP potential, (x, y, z) are the spacecraft position components, (u, v, w) are the spacecraft
velocity components, and µ = µ⊕/(µS +µ⊕), where µS is the solar gravitational constant (1.32712440018 ×
1011 km3/s2) and µ⊕ is the Earth gravitational constant (398600.44 km3/s2).

The units can be dimensionalized by applying the length scale of ` = 1 AU = 1.49597870691× 108 km,
where AU stands for astronomical unit, and time scale of τ = 1/ωE , where ωE is the mean motion of the
Earth about the Sun (i.e.,

√
AU3/µS). There exist many techniques to efficiently compute halo orbits, and

we have implemented a third order analytic solution as the initial guess and applied differential corrections
to obtain convergence to the true halo orbit solution.42,43 Figure 1 shows the reference (nominal) trajectory
for one orbital period (∼177.86 days), which corresponds to the case 1 given in Table 1.
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Table 1. Halo orbit maximum amplitudes with respect to the L1 point

Cases Ax (km) Ay (km) Az (km)
1 245924 668228 137908
2 246069 668416 139015

For the measurement model, we assume a simple linear model where only the y-coordinate is observed,
i.e.,

zk+1 = yk+1 + vk+1. (83)

This can be viewed as a range measurement obtained by optical imaging of the Earth relative to distant
stars. The measurement noise is assumed to be 0.1 m for each range measurement. The linear assumption
simplifies the problem a great deal since the measurement sensitivity does not require the computation of
the higher order partials. This way, it is easier to understand the effect of the nonlinear orbit uncertainty
propagation on the filter performance.

At epoch the initial state is assumed to be a zero mean Gaussian with position uncertainties of 100
km and velocity uncertainties of 0.1 m/s. The initial mean and covariance matrix are mapped using the
STT approach for m = {1, 3}, unscented transformation, and Monte-Carlo simulations based on 106 sample
points, and Figure 2 shows the mean and the projection of the covariance matrix onto the x-y plane after one
orbital period. Assuming the MC simulation is the true solution, the result shows that the 3rd order solution
is the most accurate approximation, whereas the linear solution fails to characterize the orbit uncertainty
distribution.

We now consider the same initial uncertainties, but assume the initial guess (mean) is off by 100 km
for the position components and 0.1 m/s for the velocity components. A set of pseudo-measurements are
computed based on the reference trajectory with a 20-day increment. Using the same measurements, the
initial mean and covariance matrix are mapped and solved using the EKF, UKF, 3rd order HNEKF, and
3rd order HAEKF. For HAEKF, since the trajectory is periodic, the STTs are computed and stored for one
orbital period, which is divided into two segments for numerical consistency. Figure 3 shows the a priori and
a posteriori position and velocity uncertainties, where σR =

√
σxx + σyy + σzz and σV =

√
σuu + σvv + σww.

A sudden drop in the uncertainties right after 100 days is due to the fact that the initial covariance matrix
is quite large and it requires at least six independent measurements to obtain a well-defined (i.e., reduced
to the measurement noise level in all directions) a posteriori covariance matrix. The result shows that the
EKF overestimates the uncertainties (i.e., assumes they are smaller than they are in actuality) while the
UKF, HNEKF, and HAEKF provide conservative uncertainty estimates. Figure 4 shows the magnitude of
the absolute position and velocity errors, i.e., the difference between the updated mean and the true state.
The result shows that the EKF does not perform well as compared to the higher order filters. This clearly
explains the importance of nonlinear orbit uncertainty propagation. The covariance matrix computed by
using the first order method (i.e., EKF) overestimates the solution, and hence, the residual is less trusted.
On the other hand, the UKF and the higher order filters predict more conservative uncertainties and more
effectively balance the a priori uncertainties and the actual measurements (i.e., measurements are valued
more than the a priori information in this case). Figures 5 and 6 are based on the same filter setup except
that the measurements are updated every 5 days. It shows that there is not much difference in the propagated
uncertainties, but the absolute errors are computed more accurately in UKF and higher order filter runs.

Figures 7 and 8 show the HNEKF results for cases m ∈ {1, 2, 3}. As mentioned earlier, note that the
case m = 1 is identical to the EKF formulation. The result shows that the higher order filters, m ∈ {2, 3},
provide superior filter performance over the first order case and it is observed that the second order effect
contains most of the system nonlinearity, indicating that the second order filter is sufficient for an accurate
nonlinear filter in our example.

Figure 9 shows the HAEKF absolute error plots for m ∈ {1, 2, 3}. The uncertainties for m = 1 are similar
to the EKF solution and for m = 2 are similar to the case m = 3 as shown in Figure 3. The absolute
error plot shows that all three filters provide good estimation performance even for the case m = 1. This
is expected since the pseudo-measurements are computed based on the reference trajectory which the STTs
are computed based on. In other words, the reference trajectory can be thought of as a regression solution
for the simulated measurements. In order to analyze the higher order effect, the pseudo-measurements are

10 of 18

American Institute of Aeronautics and Astronautics Paper AIAA-2006-6399



generated from the case 2 halo orbit given in Table 1. Figures 10 and 11 show the simulated filter solutions.
The results show that the higher order solutions are superior over the linear filters, i.e., EKF and HAEKF
for m = 1. As expected, this indicates that the linear Kalman filter is only feasible when the reference
trajectory is sufficiently close to the true trajectory. The HAEKFs for m > 1, however, have more flexibility
in the reference trajectory. The overall filter convergence is slightly slower than the previous cases since the
initial mean is assumed to be the same as in the previous cases, and thus, it is farther away from the true
trajectory (i.e., the trajectory which the pseudo-measurements are generated).

A. Discussion

In this study, the EKF required integration of n + n2 = 42 equations and the UKF required integration
of (2n + 1)n = 78 equations between each measurement update, and in the actual filter runs, the EKF was
slightly faster than the UKF. The HNEKFs for m > 1 provide superior results over the linear filters (even
UKF when m > 2); however, the computational load increases significantly as m increases. For example, the
third order HNEKF requires integration of 1554 equations. On the other hand, the HAEKF does not require
any integration in the the actual filtering process. The most expensive numerical operation in the HAEKF
is the higher order moment computation; however, there exist various techniques for efficient computation of
moments. Hence, for the missions with pre-determined reference trajectories, the higher order semi-analytic
filter may be suitable for the trajectory navigation while obtaining faster convergence and a more accurate
filter solution than the EKF.

V. Conclusion

In this study, we have presented research showing the importance of nonlinear orbit uncertainty propaga-
tion for spacecraft trajectory navigation. Four different filtering methods, extended Kalman filter, unscented
Kalman filter, higher order numerical extended Kalman filter, and higher order semi-analytic extended
Kalman filter, were compared based on a halo orbit about the Sun-Earth L1 point with realistic measure-
ment accuracies. The results showed that a higher order filter provides a faster convergence and a superior
filter solution over linear filters. Also, the Gaussian assumption of the a posteriori state yielded a sufficient
approximation even for nonlinear filters. For the cases where the reference trajectory was relatively close to
the true trajectory, the higher order semi-analytic filter provided solutions essentially equivalent to both the
UKF and HNEKF, and yielded a much faster filter process. This indicates that once trajectory solutions
are stored on a spacecraft, an auto-navigation processor that incorporates trajectory nonlinearity and allows
fast convergence may be feasible in practice.
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Figure 1. Nominal halo orbit about the Sun-Earth L1 point.
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Figure 2. Covariance matrix computed after one orbital period and projected onto the x-y plane.
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Figure 3. Comparison of the uncertainties computed using the EKF, UKF, HNEKF (m = 3), and HAEKF
(m = 3). Measurements are taken every 20 days.
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Figure 4. Comparison of the absolute error computed using the EKF, UKF, HNEKF (m = 3), and HAEKF
(m = 3). Measurements are taken every 20 days.
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Figure 5. Comparison of the uncertainties computed using the EKF, UKF, HNEKF (m = 3), and HAEKF
(m = 3). Measurements are taken every 5 days.
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Figure 6. Comparison of the absolute error computed using the EKF, UKF, HNEKF (m = 3), and HAEKF
(m = 3). Measurements are taken every 5 days.
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Figure 7. Comparison of the uncertainties computed using the HNEKFs for the cases m = {1, 2, 3}. Measure-
ments are taken every 20 days.

0 100 200 300 400
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Time (days)

|P
os

iti
on

 E
rr

or
| (

km
)

0 100 200 300 400
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time (days)

|V
el

oc
ity

 E
rr

or
| (

m
/s

)

HNEKF (m=1)
HNEKF (m=2)
HNEKF (m=3)

HNEKF (m=1)
HNEKF (m=2)
HNEKF (m=3)

Figure 8. Comparison of the absolute errors computed using the HNEKFs for the cases m = {1, 2, 3}. Mea-
surements are taken every 20 days.
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Figure 9. Comparison of the absolute errors computed using the HAEKFs for the cases m = {1, 2, 3}. Mea-
surements are taken every 20 days.
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Figure 10. Comparison of the uncertainties computed using the EKF and HAEKFs for the cases m = {1, 2, 3}.
Measurements are taken every 20 days based on the halo orbit case 2.
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Figure 11. Comparison of the absolute errors computed using the EKF and HAEKFs for the cases m = {1, 2, 3}.
Measurements are taken every 20 days based on the halo orbit case 2.
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