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Abstract 

A new flexible body dynamic formulation, called the 
Augmented Imbedded Geometric Constraint (AIGC) approach, 
for beam structures undergoing large overall motion is 
developed. It is restricted to small elastic deformations of the 
beam about the large overall motion. The formulation outlined 
herein pertains to Go-dimensional motion and deformation of a 
single beam when the overall motion is prescribed as a function 
of time. The formulation can be easily extended to beam 
assemblies undergoing arbitrary motion in three-dimensional 
space. Elastic deformation is characterized by the superposition 
of a number of assumed global shape functions developed from 
a substructuring method. The motion of the system is 
governed by a set of differential and algebraic equations. The 
algebraic constraints arise from enforcement of the boundary 
conditions. The AIGC approach improves upon two existing 
approaches by allowing the solution of two disparate classes of 
elasto-dynamics problems with a single formulation, 
demonstrated by simulations for several verification problems. 
The problems are ones in which the lateral deformation of the 
beam is dominated by either bending or membrane behavior. 
Because the new formulation is problem independent, it is 
applicable to beam problems where the dominant stiffness 
effects are not known beforehand. 

The study of the coupling between overall dynamic motion and 
local deformation of structures has become important with the 
advent of the space-age, since the interaction is more 
pronounced with the relatively flexible structures common in 
spacecraft design. The effects of such coupling are important 
in the aeronautics industry and can be seen, for example, in 
helicopter blade response. High speed motion of robotic arms 
and rapid ground transportation systems are other areas in 
which the coupling effects are imnortant. 

One approach to studying flexible body dynamics is through 
the use of finite element methods ( see for example, Simo and 
Vu Quoc1s2 and Christensen and Lee3). Another strategy is to 
use rigid body dynamic approaches which have been modified 
to include the flexibility effects. Kane, Ryan and Banne rjee4 
used this strategy to study beams undergoing large overall 
motion of a prescribed nature. 

The technique introduced in reference [4] was restricted to 
systems with known overall motion. Ryan5 extended that 
formulation to allow solutions when forcesltorques are applied. 
Subsequently, Yoo6 has shown that the approach in references 
[4-51, which he refers to as the Imbedded Geometric Constraint 
(IGC) approach, fails to produce the correct result for problems 
where the lateral deformation of the beam is dominated by 
membrane stiffness. Yoo demonstrated that his formalism, 
which he refers to as the Nonlinear Strain Displacement (NSD) 
approach, handles such problems quite successfully. However 
the NSD method does not reliably solve problems in which 
lateral deformations are dominated by bending stiffness, which 
are handled very well by the IGC approach. 

A new approach called the Augmented Imbedded Geometric 
Constraint (AIGC) approach, is presented herein. It allows the 
solution of problems where the lateral deflection of the beam is 
dominated by either bending or membrane stiffness. This 
formulation is a -cation of the IGC approach. It is 
problem independent and, therefore, is applicable to structural 
dynamics problems where the dominant effects are not known 
before hand. 

Only small local deformations of the beam are considered. An 
Euler-Bernoulli model of the beam transverse flexibility, 
assuming linear elastic, isotropic behavior, is used. A set of 
ordinary differential equations (ODES) describing the flexible 
body dynamic behavior of the beam is developed using 
Kane's7 method. That pomon of the development of the AIGC 
approach is identical to that for the IGC approach. Differential 
algebraic eauations (DAEs) of motion for the AIGC a ~ ~ r o a c h  
a& generat& by de;eloping a set of algebraic constra& 
enforcing the physical boundary conditions for the beam. The 
spatial rLpresen&tion of the deformation is achieved through the 
use of global shape functions which are based on the 
substructuring techniques of Craig and Bampton8. 

Copyright c 1992 by the American Institute of Aeronautics 14 15 and Astronautics, Inc. All rights reserved. 



The plan of the paper is as follows. In the next section the 
system differential equations are derived. Then a general 
method for enforcing boundary conditions is described and 
implemented, resulting in a set of differential algebraic 
equations of motion. Numerical results for two benchmark 
problems, generated using several formulations, are then 
presented and compared. 

The model for a two-dimensional beam undergoing large 
overall motion and small local deformation is shown in Figure 
1. This model consists of a rigid body A and a flexible beam B 
of length L. A dextral set of mutually perpendicular unit - .+-.  
vectors, al,az,as, are fmed in A and directed as shown in 
Figure 1. The centroidal axis of the beam is assumed to be - 
coincident with the elastic axis, and is parallel to the $ 
direction when the beam is undeformed. Point Po located a 
distance x along the undeformed centroidal axis represents a 
generic point on the beam. After deformation, that point lies at 
a new position which is labeled point P. The position vector 
from point 0 to point P is given by: 

where u 1 and u2 are the $ and x2 measures of the beam 
deformation. 

An additional variable of interest is s, the stretch of the 
centroidal axis of the beam. After deformation, point P is 
located at a distance x + s measured along the defonned 
centroidal axis. 

Rigid Body @ 

Figure 1 -- Beam Description and Deformation Measures 

The equations of motion are derived using Kane's dynamical 
equations: 

where p is the number of system degrees of freedom, and F, 
and F: are the rth generalized active force and generalized 
inertia force, respectively. 

The generalized inertia force, F:, is associated with the mass 
distributed along the length of the beam and is given by: 

where P represents the beam mass per unit length and NgP 
represents the acceleration of point P in the Newtonian 

reference frame N. Ng is the rth partial velocity of NGP , the 
velocity of point P in the Newtonian reference frame N, and is 
a fundamental element in the formulation of Kane's dynamical 
equations. The partial velocity is defined as 

where u: are the generalized speeds. In this development they 
are chosen as 

where 91 is the rth generalized coordinate (specified later), and 
a dot denotes a time derivative. 

The generalized active force, F,, derived from a potential 
function describing the strain energy, V, is 

Detailed expressions for the generalized inertia and generalized 
active forces will now be developed. 

tia F m  

As seen in equation 3, the acceleration and velocity of point P 
in a Newtonian reference frame are needed to form the 
generalized inertia force. To facilitate their formulation, the 
planar motion of the rigid base, relative to the Newtonian 
reference frame, can be described by its angular velocity, NG*, 
and the translational velocity of some point 0, NI;O, fixed on 
the base. 

where is the g3 measure of the angular velocity of body A, 
and vl and v2 are the g1 and x 2  measures of the translational 
velocity of point 0. 

The velocity of point P in the Newtonian reference frame, N;P, 
is 

The Newtonian acceleration of point P, NgP, is 



In the current (as well as the IGC) approach, the variables s and 
u2 are used to describe the deformation. They are represented 
as follows: 

Recalling equation 4, the partial velocities of point P in frame 

N, NGP, are given by 

where $ l j  and $2, are shape functions, qj are the generalized 
coordinates, and v is the total number of functions used to 
describe the beam deformation. The specific choice of the The generalized inertia force is developed from equations 3, 10, 

and 20. 
shape functions, $ l j  and $2j will be presented later. 

Since s and not ul is chosen as a deformation measure, the 
following geometric relationship, given in reference [6], 
between the variables s, ul, and u2 will be used to develop 
expressions for ul, i l ,  and iil which appear in equations 9 and 
10 

Substitution of the expressions in equations 12,15,16,17,18, 
and 19 into equation 21 results in nonlinear terms in 9, , q j ,  and 

Because only small elastic deformations are of interest, the 
resulting expression for the generalized inertia force is 
linearized in 9j and its time derivatives. Also, integration by 
parts is applied to eliminate the indefinite integral arising from 
the expressions for ul, dl, and iil. 

where o is a dummy variable of integration. After performing a 
binomial expansion on the right hand side of equation 13 and 
neglecting terms higher than degree two, the following 
expression can be obtained 

The final simplified form of the generalized inertia force is: 

Substituting the relationships for s and u2 from equations 11 
and 12 into equation 14 yields 

where a prime denotes a partial derivative with respect to x. 
From equations 12 and 15, it follows that 

where 

Mlij = Wllij+ WZzij Gl i j  = WZlij - WlZij (23,241 

- xkiz[p x $ki dx 
(27) 

and terms resulting from the aforementioned integration by 
parts are: 





Using these these choices for the shape functions in equations 
11 and 12 (IGC approach), it is seen that the boundary 
conditions set forth in Figure 2 are fully satisfied. On the other 
hand, in the initial NSD approach, the deformation measures 
were taken to be 

with q l j  and h j  as before. Hence, in this representation, 

instead of enforcing = 0, the condition 

enforced. Yoo recognized this deficiency and attempted to 
remedv it through the use of so-called interaction modes - 
(between ul and u2 ) generated by enforcing an inextensibility 
condition. Some im~rovement was found, but it did not work 
for some circumsta&es (as will be shown shortly). 

For the membrane-stiffness-dominated beam problem shown in 
Figure 3, the shape functions are obtained from vibration 
analyses in which the following boundary conditions are 
enforced. 

Boundary Conditions 

Figure 3 -- Boundary Conditions for a Pinned-Pinned Beam 

Thus the NSD approach, using these shape functions in 
equations 44 and 45, fully satisfies the boundary conditions 
shown in Figure 3. Note that in the IGC approach the 
condition s 1, = = 0 is enforced instead of ul I,= L = 0. 

By using the shape function summation approach, only 
boundary conditions explicit in the chosen deformation 
measures can be enforced. Thus only boundary conditions 
expressed in s and u2 can be enforced for the IGC approach 
and only boundary conditions expressed in ul and u2 can be 

enforced for the NSD approach. This prevents either approach 
from accurately addressing both the bending and membrane 
problems, without some modification. 

Boundary conditions which are not explicit in the chosen 
deformation measures can be enforced by adding constraints 
derived from evaluation of equation 15, which represents the 
the geometric relationship between ul, s, and u2. Recall that in 
the IGC approach, the condition that ul be zero at the right end 
of the beam (membrane-dominated problem) could not be 
satisfied. Using equation 15 this boundary condition becomes 
the following constraint between the generalized coordinates: 

This is an example of the general approach for enforcing 
boundary conditions. However, care must be taken in selecting 
the shape functions so that undesirable conditions do not arise. 
For example, using the shape functions described above in the 
IGC approach, the constraint (equation 52) could, possibly, be 
satisfied. However, zero stretch at the right end of the beam 
would also result which is not physically correct. Clearly what 
is needed is an approach which allows arbitrary boundary 
conditions to be prescribed. This is achieved by using an 
approach similar to one set forth by Craig and Bampton in 
work on dynamic system substructuring. This will now be 
described. 

Craig and Bampton use dynamic modes in combination with 
static displacement modes in a substructuring approach for 
vibration problems. The dynamic modes, referred to as fixed- 
interface modes, are developed from an eigenanalysis of the 
lateral vibrations of a beam with boundary conditions of no 
slope and displacement at the ends of the beam. The static 
modes, referred to as constraint modes, are obtained by 
applying unit displacements or rotations in the directions held 
fixed in developing the dynamic modes. While enforcing each 
unit displacement or rotation, the others are held fixed. For 
example, one such shape function satisfies the conditions 

Q(0) = 1, and 4(0) = Q(L) = d ( ~ )  = 0. The combined set of 
shape functions, static and dynamic, is capable of representing 
any arbitrary boundary condition. The approach for developing 
the modes to describe the s and u2 deformations is slightly 
different and are outlined below. 

The dynamic shape functions for the u2 deformation are the 
eigenfunctions obtained from a linear lateral vibration analysis 
of a beam in a non-rotating frame with no displacement or slope 
at either end. The static shape functions are polynomials 
developed to satisfy the enforced displacement or slope 
conditions. Third degree polynomials are used because four 
boundary conditions need to be satisfied. Figure 4 shows the 
static shape functions and the polynomials that represent them. 
The use of polynomials for the static modes is a deviation from 
the approach of Craig and Bampton. To follow their approach 
completely, each unit deflection condition would have to be 
solved using beam theory. As the focus here is to demonstrate 
that a formulation can be developed that improves upon the 
predictive capabilities of the IGC and NSD approaches by 
ensuring that the boundary conditions are met, use of the 
polynomials, which yield the necessary boundary condition 
flexibility is deemed to be sufficient. 



Figure 4 -- Static Modes for Lateral Deformation Description 

The development of the shape functions to describe the s 
deformation is as follows. The dynamic shape functions are 
derived from an eigenanalysis of the axial vibrations of a rod 
with no displacement at either end. The supplementary static 
modes are developed from polynomials which satisfy unit 
displacements at one end and no displacement at the other end. 

The constraint equations for the bending and membrane 
problems are now set forth. 

* Bending Constraints 

* Membrane Constraints 

Thus the complete differential algebraic equations of motion for 
the membrane problem using the AIGC approach are the ODES 
in equation 36, along with the constraints in equations 53a-53f. 
For the membrane problem, the ODES in equation 36 in 
addition to the constraints in equations 54a-54f describe the 
system. 

Despite the fact that the AIGC approach provides different 
constraints for the bending and membrane problems (equations 
53 and 54, respectively), the approach is problem independent. 
This is true because the constraints are handled numerically in a 
generic way, and therefore differences in the specific 
constraints do not affect the solution procedure. That different 
boundary conditions must be specified for each given problem, 
is simply part of the problem description, and is necessary in 
any approach. 

Here, numerical solutions to the differential algebraic equations 
of motion are obtained using the approach developed by 
Baur:lgarte9. 

Verification P r o p  

The failure of the IGC and NSD approaches to solve both 
bending and membrane dominated problems, and the ability of 
the AIGC approach to solve both problems will be 
demonstrated by investigating two verification problems. 

A bending-stiffness-dominated problem, studied in reference 
[3], is shown in Figure 5. It involves a flexible beam 
cantilevered to a rotating base. The angular velocity of the 
beam base, which is a prescribed function of time, is given by: 

( w s [ 6 ( ~ ~ - 1 5 ( ~ ~ + 1 0 ( ~ ~ ]  . i f O i t i T ,  
o (t) = 

, i f  t > T s  
(55) 

Mass per Unit Length p = 250 kg/, 

Young's Modulus E = 6.89 x lo9 NIm2 

Length L = 30.5 m 

Cross Sectional Area Ab = 9.30 x 10.' m2 

Area Moment of Inertia I 3  = 7.20 x lo4 m4 

Figure 5 -- Bending-Dominated Validation Problem 

The lateral deflection response of the free end of the beam given 
in reference [3] is shown in Figure 6a. The responses for the 
IGC and NSD approaches (reference [6]) are given in Figure 



6b, and the response for the AIGC approach is shown in 
Figure 6c. Both the IGC and AIGC solutions agree with the 
results in reference [3]. However, it is seen that the NSD (even 
with the inclusion of Yoo's "interaction modes") method fails 
to correctly solve this problem. 

Lateral Tip Deflection vs. Time 

Lateral Tip Deflection vs. Time 
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Figure 6a -- Christensen and Lee's Results for the Bending- " 
Dominated Problem 

Lateral Tip Deflection vs. Time 
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Figure 6b -- IGC and NSD Results for the Bending-Dominated 
Problem 
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Figure 6c -- AIGC Results for the Bending-Dominated Problem 

A membrane-stiffness-dominated problem, studied in reference 
[6] is shown in Figure 7. It is comprised of a flexible beam 
pinned at the center and outer edge of a rigid rotating table. The 
prescribed angular velocity of the table is given by: 

/%[t-($)sin(%! , i f O S t S T s  

w (t) = 
, if t > Ts 

(58) 
0 s  

Mass per Unit Length p = 1.2 k& 

Young's Modulus E = 7.0 x 101° NJmz 

Length L = 2 0  m 

Cross Sectional Area A, = 4.0 x m2 

Area Moment of Inertia I3 = 2.0 x lo-' m4 

Figure 7 -- Membrane-Dominated Validation Problem 

The solutions predicted by the AIGC, IGC and NSD 
approaches, for the lateral deflection of a point at the beam mid- 
span, are shown in Figure 8 The solutions predicted by the 
NSD and AIGC approaches are nearly identical, and are not 



individually identifiable. Yoo verified that the solution 
predicted by the NSD approach, and hence also by the AIGC 
approach, is correct through the use of an independent 
calculation of maximum deflection, based on a static structural 
analogy, and an ADAMSlO transient solution. Thus, the 
solutions shown in Figure 8 demonstrate the ability of the NSD 
and AIGC approaches, and the inability of the IGC approach, 
to solve the membrane-stiffness-dominated problem. 

Lateral Mid-Span Deflection vs. Time 
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Figure 8 -- AIGC, IGC and NSD Results for the Membrane- 
Dominated Problem 

An interesting feature of the results in Figure 8 is that the steady 
state non-zero lateral deformation predicted by the NSD and 
AIGC approaches indicates that a buckling-type behavior 
occurs. Note that this is not predicted by the IGC formulation. 
The existence of such behavior was verified by a NASTRAN1l 
linear buckling analysis which predicted a first critical angular 
velocity (o,) of 3.01 radsec. As seen in Figure 9 (a,= 1.0 
radsec), at values of o, below the critical speed, no buckling- 
type behavior is exhibited. 

While only problems with cantilevered or pinned-pinned beam 
attachment have been addressed in this work, problems with 
other physical attachment could be analyzed with the AIGC 
approach. This would be done by using the boundary 
conditions for the specific problem in question. After 
describing the boundary conditions mathematically in terms of 
s, ul, and u2, the appropriate algebraic constraints could be 
obtained. As is done in this work, the complete equations of 
motion would then be obtained by addition of the set of second 
order differential equations (equation 36). 

The development of the AIGC approach is limited here to two- 
dimensional prescribed motion of a single beam. Currently 
efforts are underway to extend the formulation to permit three- 
dimensional motion and deformation as well as applied 
forces/torques. 

Lateral Mid-Span Deflection vs. Time 
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Figure 9 -- Membrane-Stiffness-Dominated Problem Solution 
at a Sub-Critical Speed 

A new flexible body dynamic beam formulation, the 
Augmented Imbedded Geomemc approach, has been 
developed. The ability of this approach to improve upon two 
existing approaches, the Imbedded Geometric Constraint and 
Nonlinear Strain Displacement approaches, has been 
demonstrated through the use of two specific problems. 
Application of this approach to problems with other boundary 
conditions has been discussed. 
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