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Abstract 

A retargeting procedure is developed for use 
as a nonlinear low thrust guidance scheme. The 
selection of a control program composed of a 
sequence of inertially fixed thrust-acceleration 
vectors permits all trajectory computations to be 
made with closed form expressions, and allows the 
controls to be represented by constant parameters, 
thrust-acceleration vectors and thrusting times. 
By requiring each trajectory to be time optimal, 
the guidance problem is transformed into a 
parameter optimization problem which is solved 
by the conjugate gradient method. The scheme is 
applied to a low thrust capture mission, and the 
results of computer simulations are presented. 

I. Introduction 

In the near future the capability for un- 
manned exploration of the solar system will be 
expanded by the introductisn of low thrust inter- 
planetary spacecraft. To date, proposed methods 
of guidance for these vehicles have been based 
on linear perturbation theory. Namely, the 
spacecraft's equations of motion were linearized 
with respect to a numerically generated reference 
trajectory; and a guidance scheme was designed 
to control the resultant linear system. 
References (1-6) describe a number of these 
schemes. 

In general, linear guidance laws continuously 
modify a continuously varying reference control 
program, and consequently, lack the simplicity 
desired for reliability and ease of implementation. 
A reduction in complexity can be obtained by 
taking the nominal control to be a sequence of 
thrust vectors fixed in some celestial reference 
frame for specified time periods, and by guiding 
with constant corrections to each fixed thrust 
vector. The corrections may be computed by 
linear means, but increased guidance flexibility 
is possible if nonlinear methods can be em- 
ployed. 

Nonlinear guidance, which is basically a 
retargeting of the spacecraft, normally requires 
a large computing effort involving the 
propagation of long powered trajectories 
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coupled with an iterative 
the control program. This computational 
complexity is one of the reasons for the 
prevalence of the linear approach in low thrust 
guidance to date. However, if the fixed thrust 
vector concept is emoloyed with the additional 
assumptions that the celestial reference frame 
is inertial and the thrust-acceleration is 
constant, a significant reduction in comvuting 
effort is realized. 
a closed form solution for the motion of  a 
vehicle in a central force field can be obtained, 
end the need for numerical trajectory propagation 
is eliminated. In addition, the remesentation 
of the control program by constants simDlifies 
the iterative update Drocess by Demitting the 
use of parameter optimization rather than 
calculus of variations techniques to compute 
control changes. In the following sections, the 
closed form trajectory solution is discussed, end 
a nonlinear guidance scheme employing it and 8 

parameter optimization method are presented and 
evaluated. Although only planar flight is 
considered, all results generalize to the three 
dimensional case. 

nrocess to update the 

Under those assumptions, 

11. The Constant Thrust-Acceleration 

Closed Form Solution 

Beletskii (7) has developed a solution for 
the three dimensional motion of a vehicle with 
a constant thrust-acceleration vector in an 
inverse square gravitational field. The 
equations of planar motion for such a vehicle may 
be written 88 

(1) 
(2) 

2 
;* - 42 =-1/r + 6 cos (a-e) 
1-8 + 2% - e sin (ore 1 

where 

r = radial distance 
e - polar angle 
e - constant thrust4cceleration magnitude 
a = constant thrust-acceleration direction 

angle 
(*)  - first time derivatide 

(") - second time derivative 
The variables in (1-2) have been nondimensionalized 

d 
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with  r e s p e c t  t o  condi t ions on a c i r c u l a r  o r b i t  of 
a r b i t r a r y  rad ius .  

Two i n t e g r a l s  fo r  (1) and (?)  may be 
obtained from work-enerey and moment of 

W momentun cons idera t ions .  They a r e  

+ (i2 + r2r;') - l/r - e r  cos ( n - r )  = E ( 3 )  

2 3 2  

2 . 2  

II i-6 s i n  (0-n) + (r A -1) cos (P-n.) + 
(4) 

f e r  s i n  (9-v)  = c 

By the  jn t roduct ion  of the  new dependent, and 
independent var iab les  

u = r [ l -cos(e-n:) l ,  v = r[l+cos(n-o)? (5)  

where t = nondimensianal ti.me and t = 
i n i t i a l  value of t, i n t e g r a l s  (3)  and (4) 
may be w r i t t e n  as 

0 

( 7 )  

( 8 )  

(du/d7)2 = 2(l+c)u .+ 2Eu 2 3  - eu 

2 3  (dv/d7)2 = 2 ( l - c ) v  + 2F.v + EY 

which can be p u t  i n t o  s tandard e l l i p t i c  form 

... 

with 

U 1 '  u2 = ( ~ / F ) [ E  2 J E ~  + z o ( i + c j l  , 

u1 > u 

vl, vz = ( l / e ) [ E  2 

2 

v > v  1 -  2 

= values  of u, v a t  to uo' 

The s i g n s  for (9) and (10) a r e  def ined by t h e  
i n i t i a l  condi t ions and t h e  r e l a t i o n s  

du/d7 = 2 4i-U tu, - u ) ( u  - u2) = 
I 

(11) 
2 rifl - cos ( 0  - q)l + r  6 s i n  ( P  - 0) 

1 
dv/d.r = _+ F-jiLITc- v) = 

2 .  . ry1 + cos (n - n)] - r 
(12)  

2 

P sin ( e  - w )  

Since f o r  r e a l  motion t h e  i n t e g r a l s  must e x i s t  
and u and v must be non-neeative, only a few cases 
occur. The ones considered by B e l e t s k i i  include 

o < u  2 -  < u < u l , u z < O L u c u  1 (13) 

v 2 < 0 c v 1 < v ,  V ' . v l < O r v ,  

2 < vl' 0 r v2 < v1 < v , 0 c Y / v ( 111 ) 

0 < v wi th  v1 , Y complex 2 

For var ious s e t s  of j n i t i a l  condi t ions most of  
these  cases  arise in low t h r u s t  t r a j e c t o r i e s ;  
and as examples, two of the  s o l u t i o n s  a r e  
presented below. From (9) w i t h  u2 < 0 s u < ul , 

" = u en2 w (15) 1 

~ r o m  (IO) w i t h 0  < v, v1 , vz complex, 

v = A (1 - cn w)/(L + cn  w )  (16) 

where w = 2 @ T + F ((no, k) 

cos q0 = ( A  - vo)/(A + vo) 

k = 4 G A - I  

A = d 2 ( 1 - C ) / ~ '  , b = - E/e 

Solu t ions  fo r  t h e  o t h e r  cases are s i m i l a r  t o  (15) 
and ( l h )  and a r e  presented  i n  Reference 7. 

To complete t,he d e s c r i p t i o n  of a t r a j e c t o r y ,  
t h e  followin@: t ransformation between u ,  v and 
phys ica l  v a r i a b l e s  is requi red  

r = +  (u+v) (17) 

d r / d t  = (l/zr)(du/dT+dv/dT) ( 1.8 1 

cos ( e - N )  = ( l / Z r ) ( v - u )  (19) 

(20 )  
d j d t    cos(^-^)) =(1/2r 3 )* 

t - to = i', (u+v) d 7  (21) 

(u dv/& - v du1d.r) 

Since 6 normally does not change s i g n ,  t h e  
quadrant of e can be found by using 

s i g n  [ s i n  (R-o)! = (22) 

s i g n  [ v  du/ar - u dv/d.r] 

which was obtained from equat ion  (20).  
i n t e g r a l  i n  (21) may a l s o  be w r i t t e n  i n  c losed 
form. 
t h e  i n d e f i n i t e  i n t e g r a l s  

The 

As an example, for  s o l u t i o n s  ( 1 5 )  and (16) 
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2 
Icn' w dw = (l/k ) [E(m,k)  - (l-k*)w] (23) 

j [ (1-cn w)/(l+cn w)] dw = w - (24) 

2 E (<$, k) - 2 (sn w cn w)/(l+cn w) 

with tn w = tan (D can he employed to compute t. 

By means of the various expressions derived 
above, it is possible to analytically describe 
the motion of a vehicle with a constant thrust- 
acceleration vector. Given a set of initial 
conditions, E and c can be evaluated, and the 
correct cases and sign conventions identified. 
Then for a specified time t, T can he found 
from equation (21), u and v computed, and the 
state determined from (17-20). 

111. Guidance Philosophy 

A vehicle employing inertially fixed 
thrust-acceleration vector control is limited 
in its ability to attein a desired terminal 
cmdition because only three paramcters mzy be 
selected to define the trajectory, i.e., thrust- 
acceleration magnitude and direction, and powered 
flight time. In order to provide the flexibility 
necessary far guidance, the admissible class of 
control programs is therefore extended to include 
those which may he represented as a sequence of 
fixed thrust-acceleration vectors. Such programs 
%re described by the set of elements 

[ E ~ ,  mi, T ~ ]  , i = 1 to N 

e .  = thrust acceleration magnitude during 

( 2 5 )  

where 

' i'th time interval 

W .  = thrust direction angle during the i'th 
time interval 

Ti = duratioa of the i'th time interval 

N = number of powered flight intervals in 
the control program 

By selection of N and the values of ( E ~ ,  ai, Ti), 
a wide variety of trajectories may be generated, 
and the closed form expressions of the previous 
section may be used to find the vehicle's state 
at any time. 

The objective of the guidance scheme is to 
find a trajectory, defined by a set [ E A ,  Ni, Ti] 
f o r  a given N, which satisfies the con ition 

where 
t, xf = vector of terminal state errors 

S = weighting matrix 

= error tolerance 

A straight forward method of obtaining the re- 
quired trajectory is to find one which minimizes 
Jl. However, because the minimum of J may be 
non-unique, a better approach is to adjoin a per- 

the quantity 

1 .  
formance index J2 to (26) and seek to minimize d 

J = Jl + K J2 (27)  

where K is a factor selected to guarantee 
satisfaction of (26). 

Since a given set of parameters defines a 
trajectory which then gives B value to J, it may 
he considered a function of several parameters 

J = J ( e ,  N, T )  (2s) 

where 
e ,  (y, 7 = N - dimensional parameter vectors 

'i 

and its minimization becomes a parameter 
optimization problem. 
algorithms exist far the solution of such 
problems; hut for onboard guidence purposes, 
the conjugate gradient 
with numerical partial derivatives appears to 
he the most attractive. It is a simple first 
order technique which requires less storage than 
more sophisticated methods such as Davidon's 
algorithm (11); and it exhibits good convergence 
properties for this problem. 
partials is dictated by the extreme complexity 
of  the analytic partials; however, as Johnson and 
Kamm (References 9 and 10) have shown, numerical 
differentiation can he employed effectively with 

J is evaluated quite accurately by means of 
closed form expressions, finite differences 
yield good approximate derivatives. 

with components Ei, mi, 

A number of computational 

(C. C.) method (8) 

The use of numerical 

accelerated gradient methods. Moreover, because L.' 

In order to generate a new control during a 
guidance cycle, the C. G. iterator requires an 
initial guess, and the logical choice is the 
current control program. This choice has an 
additional advantage since the first step in 
C. C. algorithm predicts the final state reached 
using the initial control estimate. Consequently, 
if the predicted final state satisfies (26), no 
control changes are necessary and the update 
operation can he bypassed. Every time a new 
control is determined, it will contain a numher 
of elements (ei, , T . )  equal to the numher 
unused in the prev3ous'control program. There- 
fore, as the vehicle proceeds to its target, the 
number of parameters in each updated control 
decreases, resulting in a loss of flexibility 
which may m&e the satisfaction of condition (26) 
difficult. A remedy for this pmhlem is to 
subdivide the current control in order to in- 
troduce additional parameters, For example, if 
only two elements 

(el, 01, T i )  , (829 %, 7 2 )  ( 2 9 )  

remain, a three element program can be computed 
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using as initial guesses 

for r2 2 T~ 

or 

(€1, % T i )  , (61, 0'1, &~),(6~r U29 7 2 )  

for T~ < T1 

This procedure, which can provide nine parameters, 
should be sufficient to define a trajectory with 
up to four terminal constraints, i.e., a fully 
constrained planar trajectory. It must be noted, 
however, that as the spacecraft nears its 
target point, even the subdivision procedure may 
not give acceptable results. 
failure is the inherent problem of controllability 
in low thrust flight due to the vehicle's 
inability to perform large maneuvers in short 
time periods. 
of the trajectory when the time-to-go drops 
below a specified threshold, it is best to 
terminate guidance and use the current control 
program to completion. 

me reason for this 

Consequently, in the final portion 

IV. Simulation Results 

In order to evaluate the performance of the 
guidance scheme, it was applied to the difficult 
mission of low thrust planetary approach, 
Specifically, the spacecraft was required to 
proceed from escape conditions to a specified 
final radial position, radial velocity, and 
angular velocity which corresponded to a point 
on an inward tangential thrust spiral trajectory 
terminating on a circular orbit. Throughout 
the flight, the gravitational and thrust forces 
are of the same order of magnitude, and 
guidance is essential for successful mission 
completion. 
from a piecewise 
half revolution of a constant thrust-acceleration 
tangential thrust trajectory. 
found to give a reasonable approximation; and 
since e is Constant along the tangential tra- 
jectory, the nominal control program contains 
only 20 parameters, (v T., i = 1 to io. 
1 shows the nominal t$aj&ctory, and Tables 1 and 
2 give its end conditions and control program. 

guidance scheme to null out errors due to 
off nominal conditions, a set of trials was 
made to find the minimum time trajectory to the 
nominal final state under the following per- 
turbed conditio- 

/ 

The nominal trajectory was obtained 
approximation to the last 

Ten elements were 

Figure 

In order to determine the ability of the 

(1) - error in thrust-acceleration 

(2) + 1% errors in initial radial velocity 
( 3 )  

magnitude 

1% errors in initial angular velocity 

The results of the trials are 
Figures (2-4). A tolerance ,,! = 10-5 

resented in 

guarantees position errors of less than 10 km and 
velocity errors of the order of meters/second. 
The weighting parameters in all of the cases were 
1, 105, 105 on final position, radial velocity, 
and angular velocity errors, respectively. 
Rather than iterate for all 20 parameters until 
an acceptable trajectory was obtained, an 
alternate strategy WBS employed. Fifteen itera- 
tions were carried out varying all 20 parameters; 
then the initial 10 were held constant, and only 
the last 10 were varied until covergence was 
obtained. This two phase procedure is, in 
effect, a coarse trajectory adjustment involving 
the full control program, followed by a fine 
adjustment with the controls of the 5 trajectory 
intervals nearest the target. The primary 
reason for this strategy is a reduction in 
computation time, since for the "fine sdjust- 
rnent" B problem of reduced dimension is solved 
by the C . G .  algorithm. A secondary reason is 
to demonstrate that a fully converged trajectory 
need not be obtained before control implementa- 
tion. That is, after a number of iterations an 
improved hut unconverged control program will 
be obtained. 
and then at a later point in the trajectory, 
additional corrections can be made to direct the 
vehicle to the target. Of course, it must be 
observed that due to low thrust controllability 
problems, sufficient time must be allotted for 
those additional corrections to be effective. 

This program can be implemented, 

Since the speed of the iterative procedure 
is important for real time guidance, the iteration 
times for the five cases were noted. When ?O 
parameters were being varied, each iteration 
required an average of about 6 seconds on an IBM 
360/67 computer. For the 10 parameter compu- 
tations, the time dropped to only about 2 seconds 
per iteration. Since the thrust acceleration 
vector is nominally held fixed for periods of 
the order of hours, guidance cycle times of the 
order of minutes are not unreasonable; and such 
time intervals are more than adequate to permit 
computation of an updated control program. 

As a final part of the evaluation, a simple 
test was conducted using the technique of sub- 
dividing intervals near the end of the flight. 
A representative unconverged trajectory from the 
- d e  case was selected; and the state correspond- 
ing to the start of the final two control intervals 
was taken as the initial state. 
the longest control interval, B search was 
carried out for a 3 element control program. 
Convergence WBS obtained in 7 iterations or about 
14 seconds. Figure 2 gives the J1 reduction with 
each iteration. This trial, of course, does not 
prove that interval splitting will always yield 
an acceptable control. However, it does permit 
some final refinement of the trajectory, and, 
therefore, appears to be a reasonable procedure. 

After subdividing 

As observed previously, the number of 
parameters affects the iteration time of the C . G .  
algorithm. In order to shorten that time, it is 
desirable to use as few parameters 8s possible 



in definiw thc control prog'ax. 
t rc<iuci ion i:: peranerer nuroier dc:reases the 
flc.<ibiliry of rhe :rajcctories, an? a loss :?. 
perfomance can be e.xpected. 
deLeraine The CffeCT of a chnnde !c  pnrancter 
ciumbcr on :hc mission CoIISidcrcC! in this paper, 
several T.i?.iw;? tire rrsjecrories were conp:lec; 
ana :kc results cppcar in Figure 5 (tor these 
tm;ectories E = 7.7578 x lo-'., 1.01 the nomir.el 
E given iii Table 2'. 
iecrease f rom twenty t o  eight parameters cauccs 
less rhan onc-half of one 2ercent var!arior. in 
flighr tire. Consequently, it nppears '.ha1 ilie 
use of only a few parame:crs is possible withou: 
P severe loss i: perforncxe. 

'.'Ifcrtut:ately, 

:r. order TO 

It ney be seen :har L 

Time 583.00 849.55 
Radial Distance 28.083936 7.0841736 
Polar Angle 1.8362218 -1.1741111+ 
Redial Rate - .17733447 - ,060492352 
Angular Rate - .OW71004979 - .036964070 

V. Concluding Remarks 

,L/, 

In this paper an explicit low thrust 
guidance technique which consists of a sequence 
of inertially fixed constant thrust-acceleration 
vectors for varying time intervals has been 
presented. Such a control program permits 
analytical description of the trajectory and 
simplicity in control implementation. The 
control updates are obtained from an optimization 
procedure which determines the sequence of 
inertial directions for the thrust vector and 
the time periods for which those directions are 
to be maintained. The guidance scheme is 
probably most useful in cases where gravitational 
and thrust forces are of the same order of 
magnitude, for example during planetary approach 
near zero energy condjtions. 
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Table 1 Nominal Trajectory Data 

Variable Initial Value Final Value 

Table 2 Nominal Control Program 

Initial Control Interval I 
nterval Angle Lehgth 
Time Ci (radians) Parameter 

583.00 2.554370 1.148552 

653.00 2.066465 1.000083 
612.33 2.258907 2.000099 

669.89 1.852573 i.000068 
685.0b 

711.49 
723.11 

698.88 

733.86 
784.44 

i.6i91-S i.000055 

1.101983 i.000036 
1.368575 1.000044 

.8208626 1.000031 

.5263267 1.000027 
0.21932'77 1.000027 

I Thrust Acceleration = ,00108420 
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Figure 1. Nominal T m j e c l m - y  
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Figure 2. Thrust  Accelerat ion 
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