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Abgtract

A retargeting procedure is developed for use
a8 a nonlinear low thrust guidsnce scheme. The
selection of a control program composed of a
sequence of inertially fixed thrust-acceleration
vectors permits all trajectory computations to be
made with closed form expressions, and allows the
controls to be represented by constant parameters,
thrust-acceleration vectors and thrusting times,
By requiring each trajectory to be time optimal,
the guidance problem ig transformed into &
parameter optimization problem which is solved
by the conjugate gradient method. The scheme ig
applied to a low thrust capture mission, and the
results of computer sgimulations are presented.

In the near future the capability for un~
menned exploration of the solar system will be
expanded by the introductisn of low thrust inter-
planetary spscecraft. To date, proposed methods
of guidance for these vehicles have been based
on linear perturbation theory., Namely, the
spacecraftts equations of motion were linesrized
with respect to a numerically genersted reference
trajectory; and a guldence scheme was designed
te control the reaultant linear system.
References {1-6) describe & number of these
schemes,

In general, linear guldance laws continucusly
modify a continuously varying reference contrel
program, and consequently, lack the simplicity
desired for reliability and ease of implementation,
A reduction in complexity can be obtained by
teking the nominal control to be a sequence of
thrust vectors fixed in some celestisl reference
frame for specified time perlods, and by guiding
with constant corrections to each fixed thrust
vector. The corrections may be computed by
linear mesans, but increased guidance flexibility
iz possible if nonlinear methods can be em-
ployed.

Ronlineer guidance, which 1s bssicelly a
retargeting of the gpacecraft, normally requires
a large computing effort involving the
propegation of long powered trajectories
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coupled with an iterative ovrocess to update the
the control program, This computational
complexity 1s one of the reasons for the
prevalence of the linear approach in low thrust
guldance to date, However, if the fixed thrust
vector concept is emnloyed with the additional
assumptions that the celestial reference frame
is inertial gnd the thrust-scceleration is
constant, a significant reduetion in computing
effort is realized. Under those assumptions,

a closed form solution for the motion of &
vehicle in a central force field can be obtained,
and the need for numericel trajectory propegation
is eliminated. 1In addition, the representetion
of the control program by constents simplifies
the iterative wupdate process by permitting the
use of parameter optimization rather than
calculus of varistions techniques to compute
control changes, In the following sections, the
closed form trajectory solution is discussed, and
s nonlinear guidance scheme employing it and a
parameter optimization method are presented and
evaluated., Although only planer flight is
considered, all resulis generalize to the three
dimensional case,

JI. The Constant Thrust-Acceleration

Closed Form Solution

Beletskii (7) has developed a solution for
the three dimensional motion of a vehicle with
a constant thrust-acceleration vector in an
inverse square gravitational field, The
equations of planar motion for such a vehicle may
be written as

r - r§2 =—1/r2 + ¢ cos (-9) (1)
8+ 28 =¢ sin (o-0) (2)
where

r = radial distance
8 = polar angle
¢ = constant thrust-scceleration magnitude
o = congstant thrust-ecceleration direction
angle
(*} = first time derivative
(**) = second time derivative

The variables in(1~2) have been nondimensionalized

N
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with respect to conditions on a circular orbit

arbitrary radius.

Two integrals for {1} and (2) may be
chbtained from work-energy snd moment of
momentum considerations. They are

(r + % ) - 1/r - er cos (r=p) = E

r2fé sin {p-ce) + (rgée-l) cos (p-p) +

% er®

By the introduction of the new dependent and
independent variables

sin® (p-0r) =

o= TEl“COS(Q"(}:)}, v = xf 1+(‘.05(ﬁ—(v)}
t
= dt/r
el e

where £ = nondimensional fime and to =
initial value of %, integrals (3) and (&)
mzy be written as
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(avfar)2 = 2(1-c)v + PRV + ev
which can pe put into standard elliptic form

du
u

— oS G —
i J e T = SU n ul—u u—ua

o]
A
Je'nn

v dv

Sv «ﬂv(vl-vj(vg-v)

o]

{

with

- (1/e)E + P + 2c(10))

I+

Yo Yy

b T

C (1/eXE 5 AR - 2e(1m0)1

I+

Vl’ V2

v, » V.
2

uy v = values of u, v at t
o’ o [

The signs for (9) and (10) are defined by the

initial conditions and the relations
——
dufar = + \je u (ul - ) (u - ua) =
' 2 . .
ri{l - cos {(a -~ )] +r 4 sin (s - &)
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Since for real motion the integrals must exist
and u and v must be non-negative, only & few cases

occur, The ones considered by Beletskil include
Ocuy,suau ;U< Ceu e wy {13)
Vs < 0« V€V sV, sy < Qe v,
Ozv2<vl<v,0<v<v2<vl, (1“’!‘}

O < v with v v, complex

i’ 2

For various sets of initial conditions most of
these cases arise in low thrust treajectories;
and as examples, two of the solutions sre

presented below, From {4) with u, <0z uau

u=u cn2 w (15}
1
where w = + ;aJ;(QAVZ-L‘T
? 1 2
T
:‘\/(ul - uo)/ul }

From (10} witho < v, v

T+F(rn k)

J”YECM?

v, complex,

sin
¢ DO

172
v=A(1-cnwl/{1+cnw (16)
wherew:i\/a-r +F(m k)
cos‘aﬁo= A-v /(A+\r)

=J(A + b)/QA]

2(1-¢)fe , b =-E/e
Solutions for the other cases are similar to (15)
and {16) and are presented in Reference 7.

To complete the description of a trajectory,
the following transformation between u, v and
physical variables is required

r =% (utv) (17)
gr/dt = (1/2r){du/aT+dv/dv) (1.8)
cos (g-n) = {1/2r)(v-u) (12)
afat [ cos{g-n)] =(1/2r 5 {20)
(w dév/dr - v dufar)
t-t, = gl E (utv) dr (21)
8ince & normally does not change sign, the
quadrant of g can be found by using
sign [sin (a-n)] = {e2)

sign [v dufar - u av/ar]

vhich was obtained from equation (20). The

integral in (21) may alsc be writien in closed
form. As an exemple, for solutions {15) and (16)
the indefinite integrals



Icne w dw = (1/k2) [EB(e,k) - (l—k‘?)WJ (23)

S ({1l-cn w)/(1+cn w)l aw = w - {24)
2E (p, k) - 2 (sn w cn w)/{1l+cn w)

with tn w = tan  can be employed to compute t.

By means of the verious expressions derived
above, it is possible to analytically describe
the motion of a vehicle with a constant thrust-
acceleration vector. Given a set of initisl
conditions, E and c can be evaluated, and the
correct cases and sign conventions identified,
Then for a specified time t, T can be found
from equation (21), u and v computed, and the
state determined from {17-20).

TIT. Guidance Philosophy

A vehicle employing inertially fixed
thrust-acceleration vector control is limited
in its ability to attazin a desired terminal
condition because only three parameters mey be
selected bo define the trajectory, i.e., thrust-
acceleration magnitude and directicn, and powered
flight time. In order to provide the flexibility
necessary for guidance, the admissible class of
control programs is therefore extended to include
those which mey be represented as a sequence of
fixed thrust-acceleration vectors. Such progranms
are described by the set of elements

[Gi, Nis 'T‘i] ’ i=1¥tN (25)

where
g = thrust acceleration magnitude during
i'th time interval

. = thrust direction angle during the i'th
time intervel

7. = duration of the i'th time intervsl

N = number of powered flight intervals in
the control program

By selection of N and the values of (e, q;» Ti)’
a wide variety of trejectories may be generated,
and the closed form expressions of the previous

section may be used to find the vehicle's state
at any time,

The objective of the guidance scheme is to
find a trajectory, defined by a set [6,, n., Ti]
for a given N, vwhich satisfies the con itidn

T 2
Jl=%ﬁfoAxfsgf {(26)
where
A xf = vector of terminal state errors
8 = weighting matrix

o error tolerance

A straight forward method of obtaining the re-
quired trejectory is to find one which minimizes
J,. However, because the minimum of J, may be
non-unique, a better approach is to adjoin a per-
formance index J, to (26) and seek to minimize
the quantity

J=J) 4K, (27)
where K is a factor selected to guarantee
satisfaction of (26),

Since a given set of parameters defines a
trejectory which then gives s value to J, it may
be considered a function of several parameters

J=J (e, vs 7} {(28)

where
¢, oy T = N - dimensional parameter vectors
with components Gi, trys Ty

and its winimization becomes a parameter
optimization problem., A number of computational
algorithms exist for the solution of such
problems; but for onboard guidence purposes,

the conjugate gredient ({C. G.) methed

with numerical partial derivatives appears to

be the most atiractive, It is a simple first
order technigue which requires less storage than
more sophisticsted methods such as Davidon's
algorithm (11); end it exhibits good convergence
properties for this problem. The use of numerical
partials is dictated by the extreme complexity
of the analytic partials; however, as Johnson and
Kamm (References 9 and 10) have shown, numerical
differentiation can be employed effectively with
accelerated gradient methods. Moreover, because
J is evaluated quite accurately by means of
closed form expressions, finite differences

yield good approximate derivatives.

In order to generate a new control during =
guidance cycle, the €, G. iterator requires an
initial guess, and the logical choice is the
current control program. This choice has an
additional advantage since the first step in
C. G. algorithm predicts the finel state reached
using the initisl control estimate, Consequently,
if the predicted final state satisfies (26), no
control changes are necessary and the update
operation can be bypassed. Every time a new
control is determined, it will contain a number
of elements (ei, ees T.) €qual to the number
unused in the prev%ouslcontrol progrem. There-
fore, es the vehicle proceeds to its target, the
number of parameters in each updated control
decreases, resulting in a loss of flexibility
which mey meke the satisfaction of condition {26)
difficult., A remedy for this problem is %o
subdivide the current control in order to in-
troduce additional parameters. For example, if
only two elements

(el’ O‘l’ Tl) ) (32! 0’23 5'2) (29)

remain, a three element program cen be computed



using as initial guesses
(Gls (J{l’ Tl) ] (32’ rve: %‘1’2) ’ (525 01'2, %‘ 72)

for To Ty
or

(cl’ (Yl’ é_"f'l) ) (el: f‘-'l: %‘rl})(seg oo "!"2)

for T < T

This procedure, which can provide nine parameters,
should be sufficient to define a trajectory with
up to four terminal constraints, i.e., a fully
constrained planar trajectory. It must be noted,
however, that as the spacecraft nears its

target point, even the subdivision procedure may
not give acceptable results. The remson for this
failure is the ivherent problem of controllsbility
in low thrust flight due to the vehicle's
inability 4o perform large maneuvers in short

time periods, Consequently, in the final portion
of the trajectory when the time-to-go drops

below a specified threshold, it is best %o
terminate guidance and use the current control
program to completion.

IV. Simulation Results

In order to evsluate the performence of the
guidance scheme, it was applied to the difficult
mission of low thrust planetary spprosch.
Specifiecally, the spacecraft was required to
proceed from escape conditions to a specified
final radiasl position, radisl velocity, and
angular velocity which corresponded to a point
on an inward tangential thrust spiral trajectory
terminating on & ecircular orbit., Throughout
the flight, the gravitational and thrust forces
are of the same order of magnitude, and
guldance is essential for successful mission
completion. The nominal trajectory was obtsined
from & piecewise approximation to the last
half revolution of = constant thrust-acceleration
tangential thrust trajectory. Ten elements were
found to give a reasonable gpproximation; and
since ¢ is constant slong the tangential tra-
Jectory, the nominal control program contains
only 20 parameters, p, 7., 1 = 1 to 10. Figure
1 shows the nominal t%ajéctory, and Tables 1 and
2 give its end conditions and control program.

In order to determine the ability of the
guidance scheme to mull out errors due to
off nominnl conditions, a set of trials was
mede to find the minimum time trajectory to the
nominal final state under the following per-
turbed conditions

(1) - 10% error in thrust-acceleration
magnitude

(2) + 10% errors in initial radial velocity

(3) # 10% errors in initisl angular velocity

The results of the trials are Bresented in
Figures (2-h), A tolerance gp" = 1075

guarantees position errors of less than 10 km and
velocity errors of the order of meters/second,
The weighting parameters in 81l of the cases were
1, 107, 105 on finel position, radisl velocity,
and angular velocity errors, respectively.
Rather than iterate for all 20 parsmeters until
an acceptable trajectory was obtained, an
alternate strategy was employed. Fifteen itera-
tions were carrled out varying all 20 parameters;
then the initial 10 were held constent, and only
the last 10 were varied until covergence was
obtained, This two phase procedure is, in
effect, a coarse trajectory adjustment involving
the full control program, followed by a fine
adjustment with the controls of the 5 trajectory
intervals nearest the target. The primary
reason for this strategy is a reduction in
computation time, since for the "fine adjust-
ment” a problem of reduced dimension is solved
by the C.G. algorithm. A secondary resason is

to demonstrate that a fully converged trajectory
need not be obtalned before control implementsa-
tion, That is, after s number of iterations an
improved but unconverged control program will

be obiained, This program can be implemented,
and then at a later point in the trajectory,
additional corrections can be made to direct the
vehicle to the target. Of course, it must be
observed that due to low thrust controllability
problems, sufficient time must be allotted for
those additional corrections to be effective,

Since the speed of the iterative procedure
is important for real time guidance, the iteration
times for the five cases were noted. When 20
parameters were being varied, each iteration
required an average of about 6 seconds on an IBM
360/67 computer. For the 10 paremeter compu-
tations, the time dropped to only about 2 seconds
per iteration. Since the thrust acceleration
vector is nominally held fixed for periods of
the order of hours, guidance cycle times of the
order of minutes are not unressonable; and such
time intervals are more than adequate to permit
computation of an updated control program.

As a final part of the evaluation, a simple
test was conducted using the technique of sub-
dividing intervals near the end of the flight.

A representative unconverged trajectory from the

- Ae case was gelected; and the state correspond-
ing to the start of the finel two control intervals
was taken as the initial state. After subdividing
the longest control interval, a search was

carried out for a 3 element contreol program.
Convergence was obtained in 7 iterations or about
14 seconds., TFigure 2 gives the J] reduction with
each iteration. This trial, of course, does not
prove that interval splitting will always yield

an acceptable control. However, it does permit
some Tinal refinement of the trajectory, and,
therefore, appears to be a reasonable procedure,

As observed previously, the number of
parameters affects the iteration time of the C.g.
algorithm, In order to shorten that time, it is
desirable to use as few parameters as possible



in defining the control program. Unfortunately,
g reduction in parameter number decreases the
flexibility of the trajectories, and & loss in
performance can be expected, In order to
determine the effect of a change in parsmeter
numker on the mission considered in this paper,
several minimum time trajectories were computed;
and the results appear in Figure 5 {for these
trajectories g = 9.7578 x 10-4, not the nominal
e given in Table 2), It may be seen that a
decrease from twenty to eight parameters causes
less than one-half of one percent variation in
flight time, Consequently, it eppears that the
use of only a few parameters is possible without
a severe loss in performence.

V. Concluding Remarks

In this paper an explicit low thrust
guidance technique which consists of & sequence
of inertially fixed constant thrust-acceleration
vectors for verying time intervals has been
presented. Such a control program permits
analytical description of the trajectory and
simplicity in control implementation. The
control updates are obtained from an optimization
procedure which determines the sequence of
inertial directions for the thrust vector and
the time periods for which those directions are
to be maintained. The guidance scheme is
probably most useful in cases where gravitational
and thrust forces are of the same order of
magnitude, for example during planetary approach
near zero energy conditions.
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Table I WNominal Trajectory Data

Varisble Initial Value Final Value
Time 583,00 Blug.55
Radisl Distance 28,083936 9,0841936
Polar Angle 1.8362218 -1,17k111k
Radial Rate - . 177334b7 - .060hg2352
Angular Rate - .0071004979 - .036964070

Table 2 Nominal Control Program

Initial Control Interval
Interval Angle Lehgth
Time & (redians) Parameter p
583.00 2.554370 1.148552
612,33 2.258907 2.,000059
653.00 2,066465 1.000083
669,89 1,852573 1. 000068
685,08 1.619306 1.000055
698, 88 1,368575 1.0000kk
711.k9 1.101983 1..000036
723.11, .B208626 1.000031
733.86 . 5263267 1, CO0027
784 44 0.2193277 1.000027

Thrust Acceleration = ,00108420




Figure

10

PERFORMANCE INDEX J

T 3 INTERVAL
TERMINAL GUIDANCE

L 30
B‘A,——-CA?TURR POINT

M LOCAL CIRCUTAR

CONDITIONS

1. DNominal Trajectory

- 1% re

J

ﬁfifg/’/

S O S N S A W U RP W S S

5 10 15 20 25

NUMBER OF ITERATIONS

Figure 2. Thrust Acceleration

Magnitude

Perturbations

I

PERFORMANCE INDEX

PERFORMANCE INDEX Jl

10

+ 10% &r’//(

5 10 15 20 o5
NUMBER OF TTERATIONS

Figure 3. Radial Velocity Parturbations

5 T R TR N T
NUMBER OF ITERATTONS

Figure 4. Angular Velocity Perturbations



FINAL TIME

876

875

By

873

87z

871

e + bt o

8 10 12 14 16 18 20
PARAMETER NUMBER

Figure 5, Variations of Pinzl Time

With Parsmeter Number

\,;}



