
AIAA JOURNAL
Vol. 34, No. 4, April 1996

Numerical Simulations of Three-Dimensional Drop Collisions
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Three-dimensional simulations of the off-axis collisions of two drops are presented. The full Navier-Stokes
equations are solved by a front-tracking finite difference method that allows a fully deformable fluid interface
and the inclusion of surface tension. Depending on whether the interface between the drops is ruptured or not,
the drops either bounce or coalesce. For drops that coalesce, the impact parameter, which measures how far the
drops are off the symmetry line, determines the eventual outcome of the collision. For small impact parameters the
drops coalesce permanently, but for larger impact parameters a grazing collision, where the drops coalesce and
then stretch apart again, is observed. The numerically found boundary between coalescing and grazing collisions
is compared with experimental observations.

Introduction

T HE dynamics of fluid drops is of considerable importance in
a number of engineering applications and natural processes.

The combustion of fuel sprays, spray painting, various coating pro-
cesses, and rain are only a few of the more common examples.
While it is usually the collective behavior of many drops that is of
interest, often it is the motion of individual drops that determines
the large-scale properties of the system. Thus, for example, the total
surface area of drops in sprays depends on the size of the individ-
ual drops as well as their number density. Computational models
for engineering predictions of spray combustion generally do not
resolve the motion of individual drops and must rely on subgrid
models where the average effects of the unresolved scales are incor-
porated into the equations used to predict the large-scale behavior.
Many spray models (see Heywood1 for a general discussion and
references, and Amsden et al.2 for a specific example) use point
particles to represent the drops. The drop motion is related to the
fluid flow by empirical laws for drag, heat transfer, and combustion.
Often these laws can be constructed by examining the dynamics
of a single drop and how it interacts with the surrounding flow.
When the number of drops per unit volume is high, however, it is
necessary to allow for the interactions between the drops and their
collective effect on the flow. To account for drop collisions, mod-
els must contain collision rules that determine whether the drops
coalesce or not.2 These rules are usually based on experimental in-
vestigations of binary collisions of drops, but the small spatial and
temporal scales make detailed experimental measurements difficult,
and usually the record consists of little more than photographs or a
video tape. Since the collision process generally involves large-drop
deformation and rupture of the interface separating the drops, it has
not been amenable to detailed theoretical analysis. Previous studies
are therefore mostly experimental, but sometimes supplemented by
greatly simplified theoretical argument.

Two recent experimental investigations of drop collisions can
be found in Ashgriz and Poo3 and Jiang et al.,4 who show sev-
eral photographs of the various collision modes for both water and
hydrocarbon drops. These and other experimental investigations
have provided considerable information, and in particular it is now
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understood that the outcome of a collision can be classified into
five main categories. For head-on collisions there are four main cat-
egories: bouncing collision, where the drops collide and separate,
retaining their identity; coalescence collision, where two drops be-
come one; separation collision, where the drops temporarily become
one but then break up again; and shattering collision, where the im-
pact is so strong that the drops break up into several smaller drops.
For off-axis collisions, where the drops approach each other along
parallel but separated lines, a fifth category appears, namely, graz-
ing or stretching collisions. Here, the drops coalesce upon contact,
but are sufficiently far apart so that they continue along the original
path and separate again, sometimes breaking up into more than two
drops. The collision type depends on the size of the drops, their rel-
ative velocities, their off-axis position, and the physical properties
of the fluids involved. For a given drop and ambient fluids some
of these collision regimes are not observed. Water drops, for ex-
ample, usually do not show bouncing at atmospheric pressures, but
Qian and Law5 have recently shown experimentally that the film be-
tween colliding drops takes longer to drain at higher pressures (and
denser ambient fluid), and for sufficiently high pressures bouncing
is observed. Other investigations of drop collisions may be found
in Bradley and Stow6 and Podvysotsky and Shraiber,7 for example.
The major goal of these investigations has been to clarify the bound-
aries between the major collision categories and explain how they
depend on the parameters of the problem. Simple models used to
rationalize experimental findings have been presented by Park and
Blair,8 Ryley and Bennett-Cowell,9 Brazier-Smith et al.,10 Ashgriz
and Poo,3 and Jiang et al.4

In principle, numerical solutions of the Navier-Stokes equations,
where all scales of motion are fully resolved, can provide infor-
mation not accessible by experimental measurements, but various
numerical difficulties associated with moving boundaries between
two fluids have made detailed simulations difficult in the past. Nev-
ertheless, several authors have computed the axisymmetric head-on
collision of drops with a wall. The first to do so was Foote,11 who
followed the evolution of rebounding axisymmetric drops at low
Weber number using the MAC method. Some of the most recent
computations can be found in Fukai et al.,12'13 who use a moving
finite element method. A review of experimental and analytical in-
vestigations of collisions of drops with a solid surface has recently
been compiled by Rein.14 Computations of the head-on collision
of two axisymmetric drops have been done by Nobari et al.15 who
examined the boundary between coalescing and reflecting collision
for equal-size drops. Here, we present numerical simulations of
three-dimensional, off-axis collisions, where the full Navier-Stokes
equations are solved using a front-tracking finite difference method.
Another effort to simulate fully three-dimensional drop collisions
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can be found in Lafaurie et al.,16 who use a method similar to the
one used here but without the explicit tracking of the drop surface.

Formulation and Numerical Method
The numerical technique used for the simulations presented in this

paper is the front-tracking/finite difference method of Unverdi and
Tryggvason.17'18 Since the procedure has been described in detail
before, we only outline it briefly here.

The physical problem and the computational domain are sketched
in Fig. 1. The domain is a rectangular box, and the drops are initially
placed near each end of the domain. A force that is turned off before
the drops collide is applied to drive them together. In many cases,
the density and viscosity of the ambient fluid are much smaller than
that of the drop fluid and thus have only a small effect on the results.
Although it may therefore be sufficient to solve only for the fluid
motion inside the drop, here we solve for the motion everywhere,
both inside and outside the drops. The Navier-Stokes equations are
valid for both fluids, and a single set of equations can be written for
the whole domain as long as the jump in viscosity and density is
correctly accounted for and surface tension is included:

3pu- + V • puu = -Vp +fx + V - JLt(Vn + Vnr)

-a / Kn8(x — xf)da
Js

(1)

Here, u is the velocity, p is the pressure, and p and [L are the discon-
tinuous density and viscosity fields, respectively. Surface tension
forces are added as a delta force where the interface between the
drop and the ambient fluid is. The integral is over the surface of the
drop, and 8 is a three-dimensional delta function. The scalar a is the
surface tension coefficient, K is twice the mean curvature, andn is an
outward-pointing normal to the surface of the drop. The vector fx is
a body force used to give the drops their initial velocity. Notice that
this form implicitly satisfies the correct stress boundary conditions
at the surface of the drop. The above equations are supplemented
by the incompressibility condition

V - M = 0 (2)

which, when combined with the momentum equations, leads to a
nonsepaf able elliptic equation for the pressure. We also have equa-
tions of state for the density and viscosity:

(3)

These last two equations simply state that the density and viscosity
within each fluid remain constant. In the front-tracking code these
equations are solved indirectly by reconstructing the density and
viscosity fields from the location of the front at every time step.

Nondimensionalization gives a Weber and a Reynolds number
defined by

We = PdDU2

Re = PdUD

where D is the initial diameter of each drop and U is the relative
velocity of the drops at impact, defined as the instant when the
centers of the drops are one diameter apart. In addition, the density

Fig. 1 Computational domain and initial conditions. The drops are
initially 2.5 diam apart. The.y dimension of the computational box is
the same as the z dimension.

ratio r = Pd/p0 and the viscosity ratio A, = /x<///z0 must be specified.
Here, the subscript d denotes the fluid in the drop, and o the ambient
fluid. In off-axis collisions, the drops approach each other along
parallel lines that are some distance apart. If this distance is greater
than the drop diameter D, the drops never touch and no collision
takes place. If this distance is zero, we have a head-on collision.
To describe off-center collision, a new nondimensional parameter,
usually called the impact parameter, is required in addition to the
Weber and the Reynolds number defined earlier. This parameter is
usually defined as

where x is the perpendicular distance between the lines that the
drops move along before collision. When we present our results,
time will be nondimensionalized by D/ U.

To solve the Navier-Stokes equations we use a fixed, regular, stag-
gered grid and discretize the momentum equations using a conser-
vative, second-order centered finite difference scheme for the spatial
variables and an explicit second-order time integration method. The
pressure equation, which is nonseparable on account of the differ-
ence in density between the drops and the ambient fluid, is solved by
a black-and-red successive overrelaxation scheme. Other versions of
our code use a multigrid iteration scheme. The novelty of the scheme
is the way the boundary, or front, between the drops and the ambient
fluid is tracked. The front is represented by separate computational
points that are moved by interpolating their velocity from the grid.
These points are connected by triangular elements to form a front
that is used to keep the density and viscosity stratification sharp and
to calculate surface tension. At each time step information must be
passed between the front and the stationary grid. This is done by a
method similar to the one discussed by Unverdi and Tryggvason,17

which spreads the density jump to the grid points next to the front
and generates a smooth density field that changes from one density
to the other over two to three grid spaces. Although this replaces
the sharp interface by a slightly smoother grid interface, it has the
advantage that all numerical diffusion is eliminated, since the grid
field is reconstructed at each step.

The surface forces are computed from the geometry of the inter-
face and distributed to the grid in the same manner as the density
jump. Generally, curvature is very sensitive to minor irregularity in
the interface shape, and it is difficult to achieve accuracy and robust-
ness at the same time. However, by computing the surface forces on
each surface element by

a (p
/A

t x nds
«/ £\

where the integration is over the boundary curve of each element,
we ensure that the net surface force on each drop is zero:

a tends = 0

where the integration is over the entire drop. Here, n is the outward
unit normal and t a unit tangent vector to the boundary curve for
each element. This is important for long-time simulations, since
even small errors can lead to a net force that moves the drop in an
unphysical way.

As the drops move and deform, it is necessary to add and delete
points at the front, and to modify the connectivity of the points to
keep the front elements of approximately equal size and as well
shaped as possible. This is described in Unverdi and Tryggvason.17

When the drops are close, we rupture the interface, in several of
our computations, by removing surface elements that are very close
and nearly parallel, and reconnecting the remaining ones to form
a single surface. Here, this restructuring of the interface is done
at prescribed time if the interfaces are close enough. While this is
rather arbitrary (and we have simply selected a time when the drops
look close enough), it allows some control over the dynamics of the
rupture, as compared with numerical methods where the front is not
tracked and the film would always rupture once it is thinner than a
few grid spaces. For a more detailed discussion of this point, see
Nobari et al.,15 where the effect of changing the time of rupture was
investigated for head-on collisions. When the governing parameters
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put the collision close to the boundary separating different collision
modes, it was found that changing the rupture time could change
the outcome of a collision, because of the loss of surface energy
when a part of the interface was removed. Away from the boundary,
however, the exact time of rupture did not have much effect on the
subsequent evolution.

To set the drops in motion, we have several alternatives. If the
ambient fluid were absent, the simplest approach would be to as-
sign uniform velocity to the fluid in the drops. However, when the
ambient fluid is included, its velocity must be adjusted in such a way
that the velocity field is divergence-free. It is possible to violate the
divergence-free conditions in the initial conditions (by giving the
drops uniform velocity and keeping the ambient fluid at rest, for
example), but this will lead to regions of extreme pressure values
during the first time step. Another alternative is to use potential flow
around a sphere as initial conditions. This is, however, only straight-
forward for the simplest drop configurations and will furthermore
result in a discontinuous velocity across the drop surface and a large
shear initially. We have therefore taken a slightly simpler approach
and used a force field to accelerate the drops until they reach the
desired speed. In addition to being a realistic way of initiating the
motion, this is particularly simple to implement in our code. The
force is taken as

= .C(p- p0)(x -xc) (4)

so the force acts only on the drops. Here C is an adjustable constant
and xc is midway between the drops. This force is turned off before
the actual collision takes place. Initially, the drops are placed with
their centers 2.5 diam apart, and C is varied to give different collision
velocities.

The method and the cdde has been tested in various ways, such
as by extensive grid refinement studies, comparison with other pub-
lished work, and analytical solutions (see also next section). It has
also been used to investigate a number of other multifluid problems.
In addition to the computations of head-on collisions of drops by
Nobari et al.,15 Unverdi and Tryggvason18 simulated the collision of
fully three-dimensional bubbles, Ervin19 investigated the lift of de-
formable bubbles rising in a shear flow (see also Esmaeeli et al.20),
Jan and Tryggvason21 examined the effect of contaminants on the
rise of buoyant bubbles, and Nobari and Tryggvason22 followed the
coalescence of drops of different sizes. Nas and Tryggvason23 pre-
sented a simulation of thermal migration of many two-dimensional
bubbles.

Results and Discussion
For the computations presented here, We = 23, Re = 68, r =40,

and A = 20, but the impact parameter / is varied. For the computa-
tions presented in Figs. 5-9 the computational domain is a rectangu-
lar box of dimensions 1x1x2 and is resolved by a 32 x 32 x 64 cubic
mesh. The diameter of the drops is 0.4 times the short dimension of
the box.

Whereas we have done extensive checks of the accuracy of the
axisymmetric code used in Nobari and Tryggvason,22 the three-
dimensional code has not been tested as thoroughly. We have there-
fore conducted a few calculations of head-on collisions where the
results from the three-dimensional simulations can be compared
with the axisymmetric results. Figure 2 shows this comparison. The
axisymmetric results are to the left, and the fully three-dimensional
results to the right. The axisymmetric results have been given a
fully three-dimensional appearance by rotating the surface around
the symmetry axis. The initial conditions are shown at the top of each
column, and the drops are then shown below at equispaced times.
The force that acts on the drops initially is turned off before impact
(just before the second frame). As the drops collide, they become
flatter, and the ambient fluid between them is pushed away, leaving
a thin film of fluid between the drops. Here, this film is not removed
and the drops therefore rebound, recovering their spherical shape.
Obviously, the results are in good agreement. Figure 3 shows a more
quantitative comparison, where we plot the x position of the center
of mass for the drops in Fig. 2, as well as for drops computed on a
coarser grid (16 x 16 x 32). Time is nondimensionalized by D/U,
and the origin is set at the time when the forces are turned off. The

Fig. 2 Comparison between a fully three-dimensional simulation
(right) and results obtained by an axisymmetric code (left). The ini-
tial conditions are shown at the top of each column and the solution is
then shown at three equispaced times for each run.

————— Axisymmetric (high res.)
— — — Axisymmetric (low res.)
— — — Three Dim. (high res.)
— - — - Three Dim. (low res.)

-.40 .00 40 .80
time
D/U

Fig. 3 Relative velocity U of the center of mass of one drop vs time, as
computed by both the fully three-dimensional code and an axisymmetric
one, for two different resolutions.

agreement is reasonably good, although the coarse-grid results are
not in as good agreement with each other as the finer-grid results are.

Another grid resolution study is presented in Fig. 4. Since a fine-
grid three-dimensional computations would be expensive, we have
used a two-dimensional version of the code here. Except for the
dimensionality, the codes are identical. The simulations have been
done on a 16 x 32 grid, 32 x 64 grid, and 64 x 128 grid. The middle
resolution corresponds to what is used for the three-dimensional
simulations in Figs. 5-9. In Fig. 4 the surfaces of the drops are
plotted at three times for the two finer resolutions in the top three
frames. The top frame is at the time when the force driving the
drops together is turned off, in the second frame the drops have
collided, and the third frame shows the drops starting to rebound.
In the bottom frame the results for all three resolutions, at the third
time, are plotted. The results for the two finer grids differ only by a
small amount, and even though the coarse-grid results are obviously
not fully converged, the bottom frame shows that overall evolution
is well reproduced. The behavior seen here is fairly typical of the
method described above: very coarse resolution gives qualitatively
correct results that converge rapidly under grid refinement.

In Fig. 5, the off-axis collision of two drops for / = 0.75 is shown.
The pair is shown at several equispaced times, beginning with the
initial position at the top of the figure. Unlike in Fig. 3, here we
put t = 0.0 when the distance between the centers of the drops is
1 diam. If the drops remained completely spherical, this would be
the time when they first touched. Once the drops have the desired
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Fig. 4 Two-dimensional grid resolution study. The drop surface com-
puted on a 16 x 32, a 32 x 64, and a 64 x 128 grid. Results from the two
finer grids, at three times, are shown in the top three frames, and results
from all three grids at the last time are shown in the bottom frame.

t=-1.3

t=2.9

Fig. 5 Bouncing collision. Here I = 0.75 and the drops are not allowed
to coalesce. The initial conditions are shown at the top, and the drops
are then shown every 0.42 time unit.

velocity, around the third frame from the top, the force that is applied
to drive the drops together is turned off. The drops continue to move
together, and in the fourth frame they have collided, deforming as
they do so. Since the collision parameter is large, the drops slide past
each other and continue along their original paths. The bottom four
frames show the motion of the drops after the collision. During the
collision the drops become nearly flat where they face each other,
and as the drops slide past each other the fluid layer between them

a)

.50
time
D/U

Fig. 6 a) Center-of-mass velocity of one drop from the computation in
Fig. 5 (——, U; ——, V; and - - -, W) and b) kinetic (——) and surface
tension (——) energy of one drop.

becomes progressively thinner. If it becomes thin enough it should
rupture, but here we have not allowed that to happen (as seen in
Fig. 7, rupture of this film will change the resulting evolution con-
siderably). In Fig. 6, the velocity components of the center of mass
of one of the drops (Fig. 6a) and the kinetic and the surface tension
energy (Fig. 6b) are plotted vs time. The solid curve in Fig. 6a is the
velocity in the horizontal direction. It increases as the force accel-
erates the drops together, and then decreases slightly because of the
drag from the outer fluid after the force is turned off. When the drops
actually collide, it decreases more rapidly, but eventually resumes
a nearly constant decay rate after the collision is over. The velocity
component in the vertical direction (short dashes) is nonzero only
during the actual collision, suggesting that the vertical movement
of the drop is more a result of deformation than a change of path.
The kinetic energy in Fig. 6b shows similar behavior to the veloc-
ity: it decreases slowly after the force is turned off, decreases more
rapidly during collision, and then resumes slow decay. The surface
tension energy rises during the collision as the drop deforms, thus
contributing to the reduction in the kinetic energy. Notice that the
drop oscillates slightly after the collision, as seen in the surface
tension energy plot.

Although bouncing is observed for real drops, it is actually a
rather rare outcome of a collision, only seen when the drops deform
and trap the ambient fluid between them and the drop velocity is
sufficiently large so the film does not have time to drain before the
drops rebound. To investigate the behavior of drops that coalesce,
we have written software to automatically remove the front bound-
ing the thin film between the drops at a prescribed time and allow the
drops to coalesce. Figure 7 shows the results of two computations
where the drops coalesce. All parameters are the same as in Fig. 2,
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t=-1.3 t=-1.3

t=2.9 t=2.9

Fig. 7 Coalescing collisions. The initial conditions are shown at the top
of the figure, and the pair is then shown every 0.42 time units. The film is
ruptured at t = 0.46 in both cases, but the impact parameter is different
for the two runs. In the left column / = 0.5, and in the right column / =
0.825. For the small impact parameter, the drops coalesce permanently,
but for the larger one they separate again.

except that in the left column / = 0.50, and in the right column
/ = 0.825. The film between the drops is ruptured at time 0.46 for
both runs. For the small-impact-parameter case, the drops deform
considerably during the initial impact, as observed for head-on col-
lisions, but the impact parameter is sufficiently large so the drops
still slide past each other. As the film is ruptured and the drops coa-
lesce, the momentum of each drop is sufficiently large so the large
combined drop continues to elongate. Eventually, however, surface
tension overcomes the stretching and the drop is pulled into a spher-
ical shape. Because of the velocity of the drops that coalesced, the
combined drop rotates. Whereas the small-impact-parameter drops
are in many way similar to drops undergoing a head-on collision,
the large-impact-parameter drops in Fig. 7b deform only slightly as
they collide. When the interface between them is ruptured, they have
nearly passed each other, and after rupture their momentum is suffi-
ciently large so they continue along their original path and stretch the
fluid column connecting them until it is near breaking. We have not
written the software necessary for rupturing the filament connecting
the drops and therefore must stop the computations at this point. No-
tice that the coalesced drop rotates, as the small-impact-parameter
one did, although much less. Although we have not attempted de-
tailed quantitative comparisons, the coalescing collision in Fig. 6a
and the grazing collision in Fig. 6b are in good qualitative agree-
ment with the experimental photographs in Ashgriz and Poo,3 Jiang
et al.,4 and Qian and Law,5 for example.

In Fig. 8, the surface tension energy, the kinetic energy, and the
total energy of the drops from Fig. 7 are plotted vs time. Initially, the
kinetic energy is increased by the force that accelerates the drops
together. After the force has been turned off, the drops move a short
distance before colliding. Since the ambient fluid has a nonzero
viscosity, kinetic energy is dissipated by friction and the drops
slow down. As the drops come in contact, the kinetic energy of
the small-impact-parameter drops decreases rapidly, but the large-
impact-parameter drops are not affected to any significant degree.
Similarly, the surface tension energy of the small-impact-parameter

UJ

a)

i.oo
time
D/U

.60-

k.e.

Fig. 8 Energies for the drops in Fig. 6: a) / = 0.5 and b) / = 0.825. The
total energy, the surface energy, and the kinetic energy of the drops are
plotted vs time.

1.00

0.75 -

0.50 -

0.25 -

0.00

Computational Results,
Re-68, We=23

Grazing Collision

Permanent Coalescence • Experiments
We=23

100 200 300
Reynolds Number

400 500

Fig. 9 Boundaries between coalescing and grazing collisions in the
Re-I plane for We = 23. The solid circles, connected by a line, are exper-
imental data from Jiang et al.4 The squares are computed results.

drops increases as the drops deform, but the surface tension en-
ergy of the other drops hardly increases at all, since the drops re-
main almost spherical. When the film between the drops is rup-
tured, part of the drops' surface is removed and the surface energy
reduced. This reduction is larger for the small-impact-parameter
drops, since the area removed is larger. Initially, the kinetic energy
of the large-impact-parameter drops is nearly unaffected (and con-
tinues to be dissipated at the same rate as before the drops collide),
but as the coalesced drop starts to stretch and the surface tension
energy to increase, the kinetic energy decreases sharply. As the fila-
ment between the drops starts to neck down, the increase in surface
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area stops and the kinetic energy levels off. For the small-impact-
parameter drops, the rupture takes place near the time of maximum
deformation, and surface energy is initially converted into kinetic
energy as the drop adjusts to the new shape/The momentum of
the drop before impact is, however, sufficiently large so the drop
is elongated as the fluid of the original drops continue along the
paths they were following before collision. This leads to an in-
crease in surface tension energy and a decrease in kinetic energy.
When the surface tension energy reaches maximum, the kinetic en-
ergy is not zero, because of the rotational motion of the coalesced
drop.

For modeling of droplet collisions, the major question is whether
the collision results in a single drop or not. Figure 9 shows our
computations in the I-Re plane. In addition to the computations
shown in Fig. 6, we have conducted two other calculations at dif-
ferent impact parameters. The runs that lead to a coalesced drop
are shown by black squares, and those leading to grazing collision
as open squares. We have also plotted the experimental results of
Jiang et al.4 for the boundary between these two collision modes for
We = 23. Their results do not extend down to the Reyn'olds number
simulated here, but since the boundary is only weakly dependent on
the Reynolds number, it seems safe to extrapolate their results to our
Reynolds number. The thin line shows this extrapolation, showing
that the numerical results are consistent with the experiments.

Conclusion
In this paper we present numerical predictions of fully three-

dimensional off-axis collisions of two drops. These computations,
which require about 10 h on a Cray X-MP, are done on a coarse
mesh and are therefore limited to small Reynolds and Weber num-
bers. Nevertheless, they do demonstrate well the feasibility of such
predictions. In Ref. 15 we showed simulations of head-on collisions
at both higher We and higher Re. There we took advantage of the
axisymmetry of the problem and could afford a much finer grid. We
believe that comparable three-dimensional simulations are simply a
matter of finer resolution, using either a larger number of grid points
or adaptive gridding.

The principle weakness of the simulations presented here is the
ad hoc way the film between the drops is ruptured for coalescing
drops. We have prescribed the time of rupture, but it is a simple mat-
ter to use other criteria such as the thickness of the film. If we used
a numerical method that did not explicitly track the interface,16 the
drops would always coalesce once they were close enough. How-
ever, in reality the rupture should reflect the time it takes for the
film to drain down to dimensions where it is unstable to attractive
interface forces. Since resolving the flow in the film completely is
likely to require excessively fine grids (even using an adaptive grid-
ding strategy), we believe that the most promising approach would
be to couple a simulation like ours with an analytical model of the
film draining. Such models have been developed by a number of
authors, generally using very simplified models for the drop evo-
lution. For a recent model and other references, see Jacqmin and
Foster.24 Since our method explicitly tracks the surface of the drop,
the incorporation of such a subgrid model for the film should be
possible.
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