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A low diffusion particle method for simulating compressible low Knudsen number gas 

flows is modified for application to flows involving nonequilibrium distributions in 

rotational and vibrational energy modes. This method is closely based on the direct 

simulation Monte Carlo (DSMC) method, and has been developed for use in a strongly 

coupled hybrid scheme with DSMC. In simulations employing this hybrid scheme, the 

proposed modifications allow greater consistency with DSMC and reduced information loss 

along continuum breakdown boundaries when significant internal energy nonequilibrium 

effects exist within continuum flow regions. Two different approaches for rotational and 

vibrational nonequilibrium are proposed; the first provides greater efficiency and reduced 

sensitivity to time step size, while the second utilizes standard DSMC energy exchange 

procedures and should be easier to implement in an existing DSMC code. Both approaches 

are evaluated through comparison with DSMC for a set of homogeneous relaxation 

problems, and capabilities of the hybrid scheme are demonstrated in simulations of a 

hypersonic flow over a cylinder. 

I. Introduction 

wide range of gas flow problems of engineering interest involve regions of continuum flow as well as rarefied 

regions with strong translational nonequilibrium. These flow problems include gas flows within and around 

micro-electro-mechanical systems (MEMS), supersonic flows for which the internal structure of shocks is important, 

flows around reentry vehicles and other hypersonic atmospheric flows, gas venting into a near-vacuum, and rocket 

exhaust flows at high altitudes. In any of these types of flows, characteristic lines or diffusive quantities may travel 

in both directions between rarefied and continuum regions, so that two-way coupled information transfer is required 

during flowfield simulation. Rarefied regions are typically simulated using the direct simulation Monte Carlo 

(DSMC) method,
1
 the dominant method for simulation of high Knudsen number (Kn) gas flows.  

In a DSMC simulation, a large number of particles – each representing a large collection of atoms or molecules – 

are tracked through a computational grid. Particle move and collide operations during each simulation time step are 

consistent with advection and collision terms in the Boltzmann equation (the governing equation for dilute gas flows 

at any Kn) and macroscopic flow properties are evaluated as cell-based averages of particle quantities. Relative to 

other simulation techniques for high Kn flows, DSMC tends to provide an excellent balance of computational 

efficiency, low memory  and accuracy. While the underlying assumptions in DSMC are valid in both high and low 

Kn regimes, the DSMC method can be prohibitively expensive in low Kn regions due to severe restrictions on the 

cell size and time step interval. More efficient computational fluid dynamics (CFD) methods, typically based on a 

finite volume solution to the Navier-Stokes (NS) equations, are generally used instead for simulation of low Kn 

regions where the NS equations are valid.  

A. Hybrid Schemes for Rarefied and Continuum Flow Simulation 

When two-way coupling between rarefied and continuum flow calculations is required, a hybrid CFD-DSMC 

scheme is typically employed. This type of scheme involves integration of separate DSMC and CFD algorithms into 

a single code, with domain decomposition into DSMC and CFD regions through evaluations of a continuum 

breakdown parameter and coupled information exchange along breakdown boundary surfaces. In weakly coupled 

hybrid approaches, suitable for steady state flow simulation, calculations are alternately performed in DSMC and 
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CFD regions, and each calculation is allowed to relax somewhat toward steady state before boundary conditions 

associated with the other calculation are updated.
2-5

 Strongly coupled hybrid approaches involve more frequent 

updates to these boundary conditions, and can allow for unsteady flow simulation while avoiding potential errors 

due to fluctuations in quantities transported across continuum breakdown boundaries.
6-9 

In recent years, a variety of hybrid CFD-DSMC schemes have been developed and applied to a range of test 

cases. Most of these test cases involve relatively simple flow configurations, and have been used primarily for 

assessment of simulation accuracy and efficiency. While CFD-DSMC hybrid schemes should also allow for accurate 

simulation of more complex flows for which other simulation techniques are either inaccurate or prohibitively 

expensive, to date these schemes have been utilized very little as engineering design and analysis tools. One reason 

for this may be the inherent complexity of such schemes; integration of DSMC and CFD codes tends to require 

extensive development time – even if the developer has access to two pre-existing codes – and coupling procedures 

are generally complex and difficult to implement in parallel.  

In an effort to develop simpler alternative DSMC-based techniques for coupled simulation of flows involving 

both high and low Kn regions, a number of authors have proposed modifications to DSMC for application to low Kn 

regimes.
10-15

 The proposed DSMC-based particle methods can be categorized as either collision limiters or as direct 

resampling techniques. The first type of method involves a specified upper limit on the number of collisions per 

particle or per cell during each time step,
10,11

 while in the second type of method either all or some fraction of 

particle velocities are resampled during each time step from desired distribution functions.
12-15

 While these DSMC-

based low Kn methods vary greatly in complexity, they are all considerably simpler and easier to implement in an 

existing DSMC code than proposed hybrid CFD-DSMC schemes. In contrast to a hybrid CFD-DSMC algorithm, a 

hybrid technique utilizing a DSMC-based particle method in continuum regions and standard DSMC in rarefied 

regions allows for strongly coupled information exchange at continuum breakdown boundaries through simple 

particle advection, and there is no requirement for integration of two different codes. In addition to straightforward 

procedures for strong two-way coupling
13,14 

and a relatively small source code, other advantages include greatly 

simplified parallelization and the potential for a unified approach to internal energy nonequilibrium through a 

DSMC-like treatment of rotational or vibrational energy in continuum particle methods.  

Despite such advantages of an "all-particle" hybrid scheme, inherent problems with DSMC-based continuum 

flow simulation methods generally make this type of scheme impractical. In particular, random particle motion 

occurs over length scales comparable to the cell size, which leads to large artificial diffusion and dissipation effects 

when the cell size and time step are much larger than the mean free path and mean collision time respectively.
10,16

 

This means that, for accurate simulation of continuum flows with boundary layers, slip lines or other regions 

involving strong transverse gradients, these DSMC-based methods have similar cell size and time step requirements 

as standard DSMC and provide only marginal efficiency benefits. 

B. The Low Diffusion Particle Method 

As an alternative basis for a hybrid scheme with DSMC, combining the accuracy of a hybrid CFD-DSMC 

scheme with the simplicity of an all-particle scheme, a new DSMC-based low diffusion (LD) particle method has 

recently been developed by the authors.
17-20

 This method is based on an approximation of an inviscid compressible 

flow as a collection of contiguous finite volume equilibrium reservoirs, represented by Lagrangian cells, which are 

bounded by massless specularly reflecting walls corresponding to each Lagrangian cell face. Kinetic theory 

arguments are used to determine the velocity of each face, and particle velocities are updated during each time step 

so that every particle remains fixed with respect to the assigned Lagrangian cell over the time step interval.
17

 Particle 

trajectories therefore tend to follow gas streamlines, as is physically appropriate for an inviscid flow on cell-based 

length scales much larger than the mean free path. A temperature and a separate “bulk” velocity – used to assign 

thermal energy and momentum respectively – are given to each particle, and both quantities are determined through 

kinetic theory expressions to enforce momentum and energy conservation.  

In an LD particle method simulation, standard DSMC procedures (with some minor modifications) are used for 

particle movement, Eulerian cell assignment and time-averaged sampling in each cell, while the following routines 

are performed during each simulation time step in place of DSMC collision calculations: 

 

1. The density, bulk velocity and temperature are evaluated in each fixed Eulerian cell as functions of the cell-

averaged particle properties, and these values are stored in the cell data structure.  

2. A velocity is calculated for all faces of each Lagrangian cell, using a series of expressions derived from kinetic 

theory. Lagrangian cells are coincident with Eulerian cells at the beginning of each time step, but then move and 

deform over the time step interval according to local gas properties. 
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3. Bulk velocity and temperature values assigned to each cell are updated, based on the contribution of momentum 

and energy transfer across all faces of the corresponding Lagrangian cell. 

4. All particles in each cell are assigned the cell-based bulk velocity and temperature. 

5. Velocities used for particle movement are updated, in such a way that all particles maintain a constant relative 

position within a Lagrangian cell over the time step interval.  

 

The reader is referred to Ref. 17 for an outline of numerical procedures and further information on the LD particle 

method.  

Through a series of detailed comparisons, considerable improvements in accuracy and efficiency have been 

demonstrated for the LD method over existing DSMC-based methods. For given levels of accuracy and precision, 

the LD method was found to be from one to three orders of magnitude more efficient than existing particle 

methods.
17

 In subsequent work, a strongly coupled LD-DSMC hybrid algorithm has been developed and tested.
18

 

The method has also been extended for simulation of viscous low Kn flows through a simple finite volume 

calculation procedure for the viscous terms in the NS equations.
19

 Additional modifications include the use of a 

model for temperature and velocity slip along wall boundaries,
19

 incorporation of mixing rules for transport 

coefficients in a gas mixture, and the addition of species diffusion velocities to cell face velocities for inclusion of 

mass diffusion effects.
20

  

C. Rotational and Vibrational Nonequilibrium 

In the current effort, modifications are proposed to the LD particle method for nonequilibrium characterization 

of rotational and vibrational energy. Previous versions of the LD method have assumed thermal equilibrium, with 

full accommodation of internal energy modes to the translational temperature and a fixed number of internal degrees 

of freedom. While these are generally accurate approximations for low temperature flows at very low Kn, both 

thermal nonequilibrium and vibrational excitation effects may become significant at higher temperatures and higher 

Kn. In particular, very large vibrational collision numbers allow for potentially large differences between vibrational 

temperatures and the corresponding translational temperatures, while permitting highly nonequilibrium quantized 

vibrational energy distributions even in very low Kn regimes. At somewhat higher Kn rotational nonequilibrium 

may also important; both rotational temperature lag and nonequilibrium rotational energy distributions can be 

observed within shocks or regions of rapid expansion.  

Vibrational and rotational nonequilibrium effects are typically included in CFD simulations of high enthalpy 

hypersonic flows through the use of separate vibrational, rotational and translational temperatures, although often a 

single translational/rotational temperature is employed to reduce simulation cost and complexity.
21

 An alternative 

“ladder-climbing” technique for vibrational excitation permits characterization of nonequilibrium vibrational energy 

distributions by treating each quantum energy level as a separate species, but this is seldom used due to its additional 

complexity, computational expense and memory requirements. A proposed two-level model for vibrational 

excitation provides for a simplified and less costly representation of nonequilibrium energy distributions. However, 

this model considers only a limited range of energy distributions and involves simplifying assumptions which may 

not be valid for expanding flows.
22

  

For either vibrational temperature or ladder-climbing quantum energy level based approaches, a loss of 

vibrational energy information is unavoidable along continuum breakdown boundaries in hybrid CFD-DSMC 

simulations due to inherent differences between DSMC and CFD methods. In a typical hybrid CFD-DSMC 

calculation employing vibrational energy excitation, newly generated DSMC particles at a continuum breakdown 

boundary are assigned vibrational energy values which are either sampled from an equilibrium Boltzmann 

distribution, or are set to some average energy level at the local CFD vibrational temperature. Subsequent CFD 

calculations then use vibrational temperature boundary conditions taken as the time-averaged local DSMC 

vibrational temperature.
 
While to the authors’ knowledge the ladder-climbing approach has never been implemented 

in a hybrid CFD-DSMC scheme, the extremely large scatter usually found in DSMC calculations of high vibrational 

energy level populations would likely result in a prohibitive level of noise in CFD vibrational energy boundary 

conditions along a continuum breakdown surface. 

Similarly, in hybrid CFD-DSMC simulations involving diatomic or polyatomic gas species, an equilibrium 

rotational energy distribution is typically imposed along continuum breakdown boundaries between CFD and 

DSMC domains. For newly generated DSMC particles along these boundaries, rotational energy values are sampled 

from an equilibrium distribution at the local rotational or translational/rotational temperature in the CFD 

calculations. No information regarding the shape of the rotational energy distribution in DSMC cells along these 

boundaries is shared with the CFD module in the hybrid code, and some associated loss of accuracy is assumed.     
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The hybrid LD-DSMC scheme described above, or any other hybrid scheme employing a DSMC-based particle 

method in continuum regions, allows for consideration of rotational and vibrational nonequilibrium in a manner that 

is both simpler and potentially more accurate than approaches used in hybrid CFD-DSMC simulations. In such all-

particle hybrid schemes, particles which move between rarefied and continuum regions may carry their assigned 

rotational and vibrational energies across the boundary between the two regions. No information regarding the shape 

of internal energy distribution functions is lost in this process, and nonequilibrium energy distributions can be 

maintained in continuum regions through the same efficient Monte Carlo representation as in standard DSMC.  

The main difficulty with inclusion of internal energy nonequilibrium in a DSMC-based continuum method, as 

outlined above, is in consideration of rotational and vibrational energy relaxation processes. Intermolecular 

collisions tend to force the internal energy distributions toward an equilibrium Boltzmann distribution, with 

redistribution of energy between internal and translational modes to enforce energy equipartition at equilibrium. 

Energy redistribution between different modes, and between different levels within each internal mode, must be 

included in calculation procedures. The assignment of a temperature value to each particle makes such energy 

redistribution procedures particularly simple in the LD method.  

In the following sections, two approaches are proposed for rotational and vibrational nonequilibrium in the LD 

method, and a series of homogeneous relaxation test cases are used to demonstrate relative advantages in efficiency 

and accuracy for each approach. Next, results are presented for hybrid LD-DSMC simulations of a hypersonic flow 

over a cylinder with nonequilibrium rotational and vibrational excitation, and both capabilities and limitations of the 

hybrid scheme are demonstrated through comparison with DSMC simulation results. Finally, conclusions are 

presented, and areas of current and future work are discussed.  

II. Models for Internal Nonequilibrium in the Low Diffusion Method 

In this section, two different approaches are outlined for inclusion of rotational and vibrational nonequilibrium in 

the LD particle method. As described below, both approaches have relative advantages and weaknesses (in 

particular, the first tends to provide better efficiency while the second will in some situations have better accuracy) 

and neither is proposed as the optimal technique for all applications of the LD method. For both approaches, 

rotational and vibrational energy values r and v are assigned to each newly generated particle along inflow 

boundaries exactly as in standard DSMC, and these values are sampled from equilibrium distributions at the 

imposed inflow temperature.
1
 Also for both approaches, the temperature value T assigned to each particle represents 

only the translational temperature, and the cell-averaged temperature as calculated in step (1) of the above LD 

method procedures
17

 is found (as for a monatomic gas) independently of any internal degrees of freedom. 

Furthermore, during particle cloning procedures related to information exchange between LD and DSMC 

calculations in a hybrid simulation,
18

 internal energy values r and v from parent particles are assigned to the newly 

generated clones.    

A. First Approach 

In developing the first approach for rotational and vibrational nonequilibrium in the LD particle method, we 

begin with Jeans’ equation for homogeneous adiabatic relaxation of internal energy.
24

 Given an internal energy 

mode with an average energy value e and  degrees of freedom, we can express the rate of relaxation toward the 

internal energy e
*
 corresponding to the instantaneous translational thermal energy et as  

 

 
*de e e

dt 


  (1) 

 

where  is the characteristic internal energy relaxation time. If  is assumed constant (i.e. independent of e) then e
*
 

and et may be related by e
*
/et =  /3. Next, we denote initial values of the average internal and translational energies 

e and et as e
o
 and et

o
 respectively. From energy conservation arguments, it follows that e + et = e

o
 + et

o
; hence  

 

  1*
3

o o
te e e e    (2) 

 

Substitution of Eq. (2) into Eq. (1) then gives 
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 

3

o o
te ede C

e
dt C





 
  

 
 

 (3) 

 

where C  1+ /3. If the relaxation time  is assumed constant, then Eq. (3) can be integrated over a finite time 

interval t to express e as a function of e
o
 and et

o
:  

 

  
1

1 exp 1 1 exp
3

o o
t

t t
e t C e C e

C C

  


 

       
            

       
 (4) 

 

We next define (e
*
)

o
 as the average internal energy at equilibrium with the initial translational energy et

o
. Thus 

(e
*
)

o
/et

o
 =  /3 and substitution into Eq. (4) gives the final result 

 

    *( ) 1o oe t P e P e       (5) 

where 

 
1

1 exp
t

P C
C





  
    

  
 

 

The parameter P in Eq. (5) may be interpreted as the fractional contribution of (e
*
)

o
 to the internal energy e after an 

elapsed time t. In other words, given the approximations of constant  and , the average energy e can be found at 

time t by resampling a fraction P of gas molecule internal energy values from an equilibrium distribution at the 

initial translational temperature.   

Eq. (5) may be applied within LD particle method procedures to account for relaxation of rotational and 

vibrational energy distributions toward equilibrium. In the following, these two relaxation processes are considered 

independently. For each particle in a LD method simulation representing diatomic or polyatomic species, or each 

such particle within the LD domain in a hybrid LD-DSMC simulation, the rotational energy r, vibrational energy v 

and temperature T values in the particle data structure are updated during every time step just before step (1) in the 

LD method procedures outlined above. 

Given a particle assigned to gas species i, we first determine the collision frequency f and rotational collision 

number Zr for this particle. The collision frequency is calculated using the variable hard sphere (VHS) model of 

Bird
1
 by summing over contributions from all simulated species j:  

 

  
1/2 1

21
2

2
i j

i j j B ref

i j refj

m m T
f d d n k T

m m T






    

      
     

  (6) 

 

Here dj, mj and nj are respectively the reference collision diameter, molecular mass and cell-based local number 

density for species j; Tref is the VHS reference temperature;  is the VHS temperature exponent for viscosity; and kB 

is Boltzmann’s constant. The rotational collision number is computed as a function of the particle temperature T, a 

reference temperature T
*
 and a maximum collision number Zmax using the model of Parker.

23 

   

 
   

1/21 13/2 * 2 *
2 4

1 / /

max
r

Z
Z

T T T T  


  
 (7) 

 

Once f and Zr are known for this particle, the probability of rotational-translational energy exchange Pr is 

calculated as  

 

 
1

1 expr r

r r

f t
P C

C Z

  
    

  
 (8) 
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where Cr = 5/3 for a diatomic gas. Given a random number R between 0 and 1, rotational-translational energy 

exchange will occur if Pr > R, in which case the particle rotational energy is resampled from an equilibrium 

distribution at the temperature T. For a diatomic gas, the new rotational energy is computed using the expression 

 

  lnr Bk T R    (9) 

 

where R denotes the output of another call to the random number generator. 

Next, for consideration of vibrational-translational energy exchange, we first calculate the vibrational relaxation 

time v as a function of the particle temperature T. An initial relaxation time MW is found using the correlation of 

Millikan and White.
25

   

 

 
 1/3exp

MW

AT B

P


 
  (10) 

where 

 

 

1/2
1 4/3
2

1/4
1
2

0.00116

0.015 18.42

A i i

A i

A N m

B A N m



  

 

 

Here P is the cell-based local pressure in units of atm; i is the characteristic vibrational excitation temperature in K 

for the particle species i; NA is Avogadro’s number in kmol
-1

; the species mass mi is in units of kg; and the relaxation 

time MW is given in s. A modified total relaxation time is then computed using the correction of Park
26

 for improved 

accuracy at high temperatures:  

 

 

1/2
1

8

i
v MW

v tot B

m

n k T


 



 
   

 
 (11) 

 

In Eq. (11), ntot is the total cell-based number density and v is a reference collision cross section. In the simulations 

described below, we use v = 5.8110
-21

 m
2
 along with constant values Zmax = 91.5 and T

*
 = 18.1 K in Eq. (7).  

For a diatomic gas species i, the coefficient Cv used to find the probability of vibrational-translational energy 

exchange is calculated as 

 

 
 

2
31

exp 1

i

v

i

T
C

T




 


 (12) 

 

after which the exchange probability is determined through the expression  

 

 
1

1 expv v

v v

t
P C

C





  
    

  
 (13) 

 

If Pv > R, then vibrational-translational energy exchange will occur for this particle, and the vibrational energy v is 

resampled from a quantized equilibrium distribution at the particle temperature T 

 

  v lni B iθ k R T θ      (14) 

 

where the operator     rounds to the nearest smaller integer. Finally, once both rotational-translational and 

vibrational-translational energy exchange have been considered for this particle, the particle temperature is updated 

to enforce conservation of total energy.   

 

 
3
2

o o
r v r v

B

T T
k

     
   (15) 
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In Eq. (15) the symbols r
o
 and v

o
 denote the initial rotational and vibrational energy values, respectively, before 

internal energy exchange operations.  

Note that the final particle temperature calculated through Eq. (15) can potentially be negative. While a negative 

translational temperature is unphysical, all particle temperatures are reassigned to the cell temperature shortly 

afterward in step (4) of LD simulation procedures as outlined above, and the potentially negative particle 

temperature is used only in an evaluation of the cell-averaged translational temperature during step (1) of the LD 

procedures immediately after energy exchange operations. The resulting cell-averaged temperature is extremely 

unlikely to be negative, particularly if a reasonably large number of particles (at least 20) are assigned to the cell. 

However, to account for the unlikely occurrence of a negative cell temperature based on averaging among all 

particles in the cell, any cell-averaged temperature value less than zero is replaced by the temperature in this cell 

during the previous time step.     

The energy exchange procedures involving Eqs. (6) through (15) provide a relatively simple means of including 

nonequilibrium rotational and vibrational energy distributions in continuum flow simulations using the LD particle 

method. Moreover, given the advantages of the LD particle method over other DSMC-based methods for continuum 

flow simulation,
17-20

 these energy exchange procedures constitute the first DSMC-based technique for inclusion of 

nonequilibrium internal energy distributions which also allows for accurate characterization of flow features such as 

slip lines or contact discontinuities when the time step and cell size are far too large for practical application of 

DSMC. 

Another key benefit of the above energy exchange procedures is that – similar to the lack of dependence for LD 

method simulations on the mean collision time – rotation and vibrational equilibrium are automatically imposed 

when the time step interval t is much larger than characteristic rotational and vibrational relaxation times. In 

contrast to a simple time integration of Eq. (1), the above procedures enforce a physically appropriate upper limit on 

the energy exchange probabilities (for rotational-translational energy exchange in a diatomic gas, this limit is 3/5) 

which tends to avoid instability or overshoot problems when a large ratio t/ exists for either rotational or 

vibrational relaxation. Note however that the above assumptions of constant internal degrees of freedom and 

relaxation times may lead to errors when t/  is large and considerable differences exist between translational and 

internal temperatures.    

Despite these benefits of the energy exchange procedures involving Eqs. (6) through (15), one serious problem 

exists for these procedures when used as part of a hybrid LD-DSMC simulation: The mechanics of rotational-

translational and vibrational-translational energy exchange as given above are significantly different than those used 

in DSMC. In particular, the Larsen-Borgnakke technique
1
 typically employed for energy exchange during inelastic 

DSMC collisions involves a different and more complex relationship between initial particle properties and post-

collision internal energy distributions. Unlike the above procedures, the Larsen-Borgnakke technique creates a 

dependence for post-collision internal energy values on the initial internal energy of each particle participating in an 

inelastic collision. Moreover, inelastic collision probabilities in DSMC are commonly a function of the total relative 

energy in a binary collision,
27

 which produces a further dependence on the initial rotational or vibrational energy 

assigned to each particle. Additional capabilities developed for DSMC include consideration of collisional energy 

exchange within internal modes, as well as more physically based models for quantum transitions between 

individual vibrational energy levels.
28-30

 Such models rely on simulated binary collisions, and likely cannot be 

implemented through reasonably simple modifications to the energy exchange procedures described above. 

As a result of these differences between DSMC and LD energy exchange, even if rotational and vibrational 

relaxation times are matched between DSMC and LD calculations in a hybrid LD-DSMC simulation utilizing the 

above energy exchange procedures, nonequilibrium characteristics of rotational and vibrational energy distributions 

may evolve discontinuously across the boundary between DSMC and LD domains. These nonequilibrium 

characteristics should not be noticeable in macroscopic output quantities such as the translational, rotational and 

vibrational temperatures, but any inconsistency in the treatment of nonequilibrium internal energy relaxation can 

potentially lead to some loss in simulation accuracy. This is particularly true if nonequilibrium features of the 

rotational and vibrational energy distributions are of interest, as in simulations used for gas radiation analysis.    

B. Second Approach 

To avoid discrepancies with DSMC in internal energy relaxation procedures as part of a hybrid LD-DSMC 

simulation, and to allow compatibility with improved relaxation models available for DSMC, an alternate approach 

for rotational and vibrational relaxation in the LD particle method has been developed. This second approach is 

simpler and easier to implement than the first approach described above, and uses the exact same energy exchange 

routines already employed in a preexisting DSMC code. However, the allowable time step size is limited by the 
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rotational relaxation time for simulations involving rotational nonequilibrium, and as demonstrated below, this 

alternate approach for internal energy relaxation is considerably less efficient than the first approach.  

In contrast to the first approach, here no additional calculations are performed before step (1) of the LD method 

procedures in the above outline. Instead, a series of further calculations are added between steps (3) and (4), just 

before new temperature and bulk velocity values are assigned to each particle. All cells are considered individually, 

and the following procedure is cycled through every cell within the LD domain. First, for all particles in a given cell, 

velocity components in the particle data structure used for particle movement are resampled from a Maxwellian 

distribution at the translational temperature Tc assigned to the cell. All three velocity components uk (k = 1,2,3) for 

each particle are computed as a function of two random numbers R1 and R2  

 

    
1/2

1 2

2
ln sin 2

B c
k

i

k T
u R R

m


 
  
 

 (16) 

 

where mi is the molecular mass for the assigned particle species. Next, the average translational energy et
o
 associated 

with particle velocities in the cell is calculated: 

 

 1
2

o
i k kte m u u  (17) 

 

Standard DSMC procedures are then performed for assignment of collision partners among all particles in the cell. 

The only difference with respect to traditional collision selection in DSMC is that each collision probability (or 

equivalently, the number of potential collision pairs in Bird’s no time counter scheme
1
) is multiplied by a factor Pmax 

between zero and one, which is unique to this cell and is stored in the cell data structure. At simulation startup Pmax 

is initialized for all cells at a small positive value much less than one (e.g. 0.01) and is subsequently increased, as 

discussed below, to match the maximum inelastic collision probability in each cell.  

Once particles in this cell have been sorted as necessary into collision pairs, standard DSMC binary collision 

operations are performed. Velocity components uk and internal energy values r and v may be modified for each 

colliding particle. In an additional difference from traditional DSMC collisions, the probabilities Pr and Pv of 

rotational-translational and vibrational-translation energy exchange during each collision are divided by the factor 

Pmax in the cell data structure. Noting that in most cases Pr >> Pv due to differences between rotational and 

vibrational collision numbers, we ensure that the conditions Pr/Pmax   1 and Pv/Pmax   1 are both generally satisfied 

by setting Pmax = min{Pr, 1} if Pr > Pmax for any collision in this cell. 

Next, an updated average translational energy et in the cell is found by repeating the calculation in Eq. (17) with 

post-collision particle velocities uk. The change in translational energy et – et
o
 is then incorporated into the cell 

temperature 
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before this same temperature Tc is assigned to all particles in the cell during step (4) of the LD method procedures. 

Note that velocity components uk used in particle movement are subsequently changed during step (5) of LD 

procedures, as outlined above. 

In many continuum flows for which a nonequilibrium vibrational energy distribution may be of interest, the 

rotational energy distribution can reasonably be approximated as in a state of local equilibrium, with energy 

equipartition between rotational and translational degrees of freedom. This accounts for the widespread use of a 

single translational-rotational temperature in hypersonic CFD simulations,
21

 and allows rotational relaxation 

processes to be completely neglected with little expected impact on simulation accuracy. The same approximation 

may be employed here, to reduce the number of simulated binary collisions per time step and considerably improve 

simulation efficiency in any case where rotational-translational equilibrium can be assumed. Instead of using a 

variable probability Pr of rotational-translational energy exchange based on the total collision energy,
30

 or using a 

temperature-based exchange probability equal to the reciprocal of the local rotational collision number, we instead 

set Pr to a small constant value for all simulated collisions in every cell. This value must be larger than any 

vibrational-translational exchange probabilities Pv, and should also be sufficiency large to avoid significant 

differences between rotational and translational temperatures. Subject to these conditions, the constant Pr value 

should be as small as possible for maximum efficiency; in the vibrational relaxation problem described below we 
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use Pr = 0.1. Following the above procedures involving Eqs. (16) through (18), this means that all collision 

probabilities are multiplied by a factor 0.1, all vibrational-translational exchange probabilities Pv are divided by this 

same factor, and every collision results in rotational-translational energy exchange.  

Note that use of a constant Pr value does allow for finite rotational-translational relaxation rates, and may be 

used to approximate rotational nonequilibrium effects when such effects are considered less important than 

consistency with DSMC in vibrational relaxation processes. A constant Pr value can also be used when a constant 

rotational-translational exchange probability is employed in DSMC calculations as part of a hybrid LD-DSMC 

simulation. In either case, Pr should be set to the reciprocal of the rotational collision number.  

III. Model Evaluation 

 To evaluate both approaches for rotational-translational and vibrational-translational energy exchange in the LD 

particle method, a series of homogeneous relaxation problems are simulated using each approach, and results are 

compared with those from DSMC and CFD simulations. For consistency with rotational relaxation times given by 

Eqs. (6) and (7), DSMC calculations here employ the variable exchange probability model of Boyd
30

 with the 

correction factor of Lumpkin et al.
31

 for rotational-translational energy exchange probabilities. For consistency with 

the vibrational relaxation time in Eq. (11), this equation is also used in DSMC calculations involving vibrational 

excitation to determine the relaxation time v as a function of the instantaneous cell translational temperature. A 

uniform vibrational-translational exchange probability is calculated for all collisions in the cell during each time 

step, as the inverse product of the relaxation time v and the collision frequency given by Eq. (6). The approximate 

correction factor of Gimelshein et al.
32

 is then used to adjust the resulting exchange probability due to differences in 

the treatment of vibrational collision numbers between DSMC and continuum formulations. These same models for 

rotational-translational and vibrational-translational energy exchange are applied in LD simulations which employ 

the second approach to internal energy relaxation involving Eqs. (16) through (18). All CFD calculation results are 

taken from the published data of Deschenes et al.,
33

 for which the same models and numerical parameters are used 

as in Eqs. (6), (7) and (11).  

A. Rotational Relaxation 

As a first test case to evaluate the proposed energy exchange procedures for the LD method, we consider a heat 

bath problem involving homogeneous rotational relaxation of N2 with no vibrational excitation. Two-dimensional 

simulations are performed on a 55 grid of square cells, bounded on all sides by symmetry boundaries. (While this 

is in principle a zero-dimensional problem, a two-dimensional treatment is employed here for reduced statistical 

scatter due to memory-based limitations on the number of particles per cell.) An average of about 2400 particles are 

assigned to each cell, for a total of around 60,000 particles. Following Deschenes et al.,
33

 at simulation startup we 

impose a uniform translational temperature of 10,000 K and a rotational temperature of 1000 K. Calculations are 

performed over a simulated time interval equal to 40 times the initial mean collision time coll.  

Using the first LD method relaxation approach, which involves Eqs. (6) through (15) and is denoted for 

convenience as “LD1,” we run simulations with a time step size corresponding to t/coll = 2 and 10. Using the 

second approach, denoted as “LD2,” a single simulation is run with t/coll = 2. (A time step ratio of 10 is not 

employed for the LD2 approach due to the very large corresponding number of simulated collisions per time step. 

To avoid an excessive number of collisions per time step in an LD2 simulation involving variable rotational-

translational exchange probabilities Pr, the normalized time step t/coll should be much smaller than the rotational 

collision number Zr. In this case Zr  13 so t/coll << 13 for rotational relaxation using LD2.) For comparison, a 

DSMC simulation is performed with t/coll = 0.4.  

Simulations are run on a single 2.33 GHz processor, and require the following calculation times: 0.74 s for LD1 

with t/coll = 2; 0.20 s for LD1 with t/coll = 10; 2.30 s for LD2; and 3.94 s for DSMC. Thus, the two LD1 

simulations are about 19% and 5% as expensive as the DSMC simulation, while the LD2 simulation is 

approximately 58% as expensive as DSMC. Note in these comparisons that the primary efficiency advantage of the 

LD method over DSMC is associated with the use of much larger cells, and that simulation expense is independent 

of cell size in this type of homogeneous relaxation problem. Still, a comparison of simulation expense for this case 

demonstrates that, as expected, the LD1 approach is far more efficient than LD2, and LD2 is in turn more efficient 

than DSMC even when differences in cell size requirements are neglected. 

In Fig. (1), translational and rotational temperatures, averaged over all 25 cells, are shown for all four 

simulations as a function of the normalized elapsed time t/coll. CFD results of Deschenes et al.
33

 are also included in 

Fig. (1) for comparison. As expected, we find very good agreement with both DSMC and CFD temperature profiles 
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for all three LD simulations, with a maximum difference from published CFD data of around 170 K in rotational 

temperature for the LD2 case.  

Figure (2) shows the rotational energy distribution from LD and DSMC simulations at the elapsed time t/coll = 

10. Particle rotational energy values r are sorted into bins of width r = 6.0510
-20

 J, and the rotational energy 

distribution for each simulation is approximated as a histogram with both axes nondimensionalized by the bin width 

r. The Boltzmann rotational energy distribution fB(r) for a diatomic gas, corresponding to equilibrium conditions 

at the rotational temperature Tr from the DSMC simulation, is also shown for comparison.
1
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Rotational energy distributions for all four simulations are shown in Fig. (2) to diverge considerably from the 

Boltzmann distribution, with particularly large disagreement at higher energy levels. In contrast, the LD2 

distribution is found to agree very well with DSMC, subject to significant statistical scatter at high energy levels, 

whereas relatively poor agreement is observed between DSMC and LD1 results. As discussed above, differences in 

nonequilibrium rotational relaxation between LD1 and DSMC are expected, and likely occur as a result of 

differences in the underlying mechanics of rotational-translational energy exchange.  

Similar results are found in Fig. (3), which shows corresponding rotational energy distributions at the normalized 

elapsed time t/coll = 20. In all simulations, the energy distribution is found here to better approximate the 

equilibrium distribution than in Fig. (2), due to the increased time for the relaxation process at t/coll = 20. Still, 

significant disagreement is found in Fig. (3) between DSMC and both LD1 simulations, particularly at the higher 

energy levels. As in Fig. (2), excellent agreement is observed in Fig. (3) between the DSMC and LD2 distributions. 

Figure (4) shows rotational energy distributions at the final elapsed time t/coll = 40. As shown in Fig. (1), rotational 

and translational temperatures are nearly equal at this elapsed time, and the rotational relaxation process has 

progressed for sufficiently long that the rotational energy distribution from all four simulations is found to closely 

approximate the equilibrium Boltzmann distribution. Small discrepancies are still observed at high rotational energy 

levels in Fig. (4) between LD1 results and DSMC, particularly for the LD1 simulation with t/coll = 10, although 

the size of these discrepancies is comparable to the level of statistical scatter.  

In evaluating the results from Figs. (1) through (4), we conclude that both LD1 and LD2 approaches provide 

good agreement with DSMC for the variation in rotational and translational temperatures during homogeneous 

rotational relaxation, and both approaches allow for nonequilibrium rotational energy distributions at intermediate 

times while converging toward the appropriate Boltzmann distribution. However, significant differences are found 

between LD1 and DSMC results in the rotational energy distributions at intermediate times. The increased 

efficiency of the LD1 approach relative to LD2 is therefore balanced by a corresponding reduction in consistency 

with DSMC.  

B. Vibrational Relaxation 

To evaluate vibrational-translational energy exchange in the LD1 and LD2 procedures, we use a similar test case 

of Deschenes et al.
33

 involving homogeneous vibrational relaxation. This case is identical to the previous case, 

except here the gas is vibrationally excited, and at simulation startup both rotational and translational temperatures 

are initialized at 10,000 K while the vibrational temperature is initialized at 1000 K. LD method simulations are 

performed using both LD1 and LD2 approaches with a normalized time step size of t/coll = 10. Following an 

assumption of near-equilibrium between rotational and translational energy modes, we impose a constant rotational-

translational exchange probability Pr = 0.1 in the LD2 simulation, as described above, to avoid an excessively large 

number of simulated collisions per time step. A DSMC simulation is performed with t/coll = 0.4 for comparison, 

and all simulations are run to a final elapsed time of t/coll = 4000. Simulation run times are 27.4 s for LD1, 59.1 s 

for LD2, and 479 s for DSMC. LD1 and LD2 simulations are therefore about 6% and 12% as expensive, 

respectively, as the DSMC simulation. 

In Fig. (5), translational and vibrational temperatures are plotted as a function of normalized time t/coll for all 

three simulations, and temperature profiles are compared with published CFD results of Deschenes et al.
33

 Excellent 

agreement is observed in Fig. (5) between all results, with maximum relative differences under 1% for both 

translational and vibrational temperature. Although not shown in the figure, rotational temperatures from all 

simulations are practically indistinguishable from translational temperatures, so the assumption in the LD2 

simulation of rotational-translational equilibrium is found to be valid as expected. 
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Figure (6) shows the quantized vibrational distribution function from LD1, LD2 and DSMC simulations at the 

normalized elapsed time t/coll = 400. Also shown for comparison is the equilibrium Boltzmann distribution fB(iv) at 

the DSMC vibrational temperature Tv   

 

      1 exp expB v v v vf i T i T        (20) 

 

where iv is the quantum vibrational level and  is the characteristic temperature for vibrational excitation.
34

 All 

simulation data are found here to be in poor agreement with the Boltzmann distribution, signifying a large departure 

from vibrational equilibrium. Reasonably good agreement is observed between all three simulation results, although 

the agreement with DSMC is significantly better for the LD2 simulation than for LD1. In particular, we find a 

noticeable underestimate, relative to DSMC, in LD1 vibrational energy level populations at iv = 1, 2 and 3, and a 

corresponding overestimate at iv = 0 and iv ≥ 6. In contrast, discrepancies observed between LD2 and DSMC data 

points are very small, and are likely dominated by statistical scatter.   

Similar trends are found in Figs. (7) and (8), which show vibrational energy distributions at elapsed times t/coll = 

800 and 4000 respectively. In comparing Fig. (7) with Fig. (6), we find that, as expected, the simulated vibrational 

energy distributions more closely approximate an equilibrium distribution when a longer period is allowed for 

vibrational relaxation. As in Fig. (6) all three simulation results in Fig. (7) differ considerably from the Boltzmann 

distribution, particularly at the higher energy levels. While the agreement in Fig. (7) between LD1 and DSMC 

results is somewhat better than that shown in Fig. (6), there is still noticeably better agreement in Fig. (7) between 

DSMC and LD2 than between DSMC and LD1.In Fig. (8), which displays the vibrational energy distributions at the 

final time t/coll = 4000, sufficient time has elapsed in the relaxation process for the vibrational energy distribution to 

converge to the equilibrium solution. Small differences from the Boltzmann limit, particularly at higher energy 

levels where the sampling size is very small, can be attributed mainly to statistical scatter.  

Figure (9) shows variation with time in relative populations for the bottom six vibrational energy levels. 

Excellent agreement is found here between DSMC and LD2 results, even though the time step size is 25 times larger 

in the LD2 simulation than in DSMC. In contrast, only fair agreement is found between DSMC and LD1; the largest 

discrepancy is around t/coll = 100 where the relative population at energy level iv = 1 is roughly 35% lower in the 

LD1 simulation. At intermediate periods during the relaxation process, the LD1 simulation is observed to 

underestimate vibrational energy level populations relative to DSMC at iv = 1, 2, and 3, while overestimating 

populations at iv = 0 and iv ≥ 5.  

In comparing calculated vibrational energy distributions with DSMC, it should be emphasized that the Larsen-

Borgnakke model used for vibrational-translational energy exchange in the DSMC calculations is inherently 

phenomenological. This model is intended to allow relaxation toward equilibrium while satisfying detailed balance, 

without any basis in the underlying physics. While the LD1 approach has no more physical basis than the Larsen-

Borgnakke model, a better gauge of accuracy for LD1 results would be a comparison with available experimental 

data in a similar relaxation problem. Still, consistency with DSMC is desired for inclusion in a DSMC-based hybrid 

algorithm, and the comparison with DSMC shown in Figs. (6) through (9) is useful both for assessing such 

consistency in the LD1 approach and for verifying that the LD2 approach can successfully reproduce DSMC results 

even when the time step size is well out of the practical range for DSMC. Moreover, LD2 should be compatible with 

any technique for vibrational-translational energy exchange developed for DSMC, so the very good agreement 

found between LD2 and DSMC results in Figs. (6) through (9) should extend to more sophisticated DSMC models 

which include additional phenomena or use fewer approximations to the underlying physics.
28,29

 

IV. Hypersonic Flow Demonstration 

To demonstrate capabilities of the LD-DSMC hybrid code with modifications for internal energy 

nonequilibrium, additional simulations are performed for a test case involving hypersonic flow over a cylinder. This 

case is based on that in Ref. 18, with N2 flow at a global Knudsen number of 0.01, but here the gas is vibrationally 

excited and the freestream Mach number has been increased from 6 to 15. As in Ref. 18, the cylinder surface is 

modeled as a specularly reflecting wall, and viscous modifications to the LD particle method described in Ref. 19 

are not used. Thus, no boundary layer is assumed to form along the cylinder surface, and viscous transport effects 

are neglected in LD calculations within continuum regions. This lack of consideration for viscous effects is 

necessitated by the fact that particles in the LD domain travel along streamlines at the gas bulk velocity, so that even 

when viscous flow simulation procedures outlined in Ref. 19 are employed, no diffusive transport occurs for 

rotational and vibrational energy. This means that unphysical transverse gradients in rotational and vibrational 



 

American Institute of Aeronautics and Astronautics 

Approved for public release; distribution unlimited. 

12 

temperatures may be found within boundary layer regions in the LD domain, particularly where diffusive transport 

effects dominate effects of advective transport and translational-internal energy exchange. While the viscous LD 

method modifications described in Ref. 19 should still be usable with rotational and vibrational nonequilibrium 

routines in cases (such as free expansion flows) where internal energy nonequilibrium is expected only outside of 

boundary layers, inviscid flow must be assumed for the present case to avoid problems associated with a lack of 

consideration for diffuse transport in internal energy modes. 

Hybrid LD-DSMC simulations are performed using both LD1 and LD2 approaches, with a constant Pr value of 

0.2 in the LD2 simulation, and a DSMC simulation is also run for comparison. Both hybrid simulations use a 

standard gradient length local Knudsen number KnGLL for assessment of continuum breakdown.
3
 This number is 

defined as the ratio of the local mean free path to the minimum value among characteristic length scales based on 

translational temperature, density or bulk velocity. The parameter KnGLL is periodically (every 2000 time steps) 

evaluated in each grid cell, and a cutoff value of 0.05 is used for assignment of cells to either LD or DSMC domains. 

Freestream inflow conditions include a temperature of 217.5 K and number density of 1.610
21

 m
-3

.  

All simulations use the same grid with 45,000 cells refined to less than twice the local mean free path, and 

DSMC subcells with dimensions of one-half the mean free path are employed to further reduce the mean separation 

distance between colliding DSMC particles. The time step interval is automatically and dynamically adapted in each 

cell, so that the local Courant number is no larger than 0.2 and a maximum of around 20% of the particles within a 

cell collide during each time step. Numerical weight values are also automatically adapted to allow for at least 60 

particles per cell.  

For each simulation, sampling is performed over 30,000 time steps, following an additional 30,000 time steps 

during a startup period required for convergence to steady state. Simulations are run on eight processors in the nyx 

cluster at the University of Michigan. Hybrid simulations require a total of 100.5 and 103.2 CPU hours, for 

calculations involving LD1 and LD2 internal nonequilibrium approaches respectively, while the DSMC simulation 

requires 48.3 CPU hours. Although a comparison with DSMC of simulation expense may seem very discouraging, it 

should be emphasized that the primary motivation for the hybrid LD-DSMC scheme is to allow for much larger cells 

and time step sizes in continuum regions than is possible using DSMC. As this case is used only for a preliminary 

demonstration of code capabilities in a multidimensional flow, these advantages of the LD-DSMC scheme are not 

utilized, and both cell dimensions and time step intervals within the LD domain are sufficiently small to meet 

DSMC guidelines. 

Contours of pressure from all three simulations are shown in Fig. 10. Continuum breakdown boundaries which 

separate LD and DSMC domains, as taken from the hybrid LD1 simulation, are also shown in the figure. As 

expected, continuum breakdown occurs in a narrow region surrounding the bow shock, and through much of the 

wake region downstream of the cylinder. Some scatter is observed in the continuum breakdown boundary, 

particularly in the far wake region at x > 0.2 m, but this is thought to have no significant effect on simulation 

accuracy. In comparing pressure contour lines from the three simulations, we find excellent agreement throughout 

the simulated flowfield. Some small differences are observed, particularly along the outflow boundary on the right 

side, in the wake region near the symmetry boundary at y = 0 m, and at the downstream edge of the shock around y 

= 0.1 m. Maximum local pressure differences are roughly equal to the 5% error tolerance corresponding to the 

breakdown parameter cutoff value of 0.05.  

In Fig. 11, contours of Mach number from the three simulations are shown along with streamlines and LD-

DSMC domain boundaries from the LD1 simulation. Differences in contour line locations are more noticeable in 

Mach number than in pressure, although the most visible differences here occur in regions of relatively small Mach 

number gradients. In particular, variation in the M = 3 contour lines between x = 0.1 and 0.2 m correspond to local 

differences in Mach number of less than 3%. In observing this same set of contour lines for M = 3, we find a small 

but noticeable discontinuity in slope along the LD-DSMC domain boundary for both the LD1 and LD2 simulations. 

This can be explained by the fact that the boundary lies almost directly along a streamline in a region of significant 

transverse velocity gradients. Thus, the inherent differences in diffusive momentum transport between the LD and 

DSMC methods should result in slope discontinuities along this boundary. When viscous flow simulation 

procedures in the LD method are enabled, the increased diffusive transport in LD calculations is found to prevent 

such discontinuities. However, as discussed above, these procedures must be disabled here to avoid problems 

associated with a lack of diffusive transport for internal energy modes.  

Translational temperature contours from all three simulations are shown in Fig. 12. As with Mach number 

contours in Fig. 11, Fig. 12 shows good overall agreement and some clear differences in contour line locations. 

These differences are most noticeable along the forebody surface, in the wake, and in the post-shock region far from 

the axis. In all of these regions, however, translational temperature gradients are relatively small, and maximum 

local differences in translational temperature are only around 4%.  
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In Fig. 13, gas bulk velocity and pressure are plotted along the stagnation streamline as functions of distance 

from the cylinder surface. Excellent agreement is found for both quantities for all three simulations, with extremely 

small differences (less than 1%) in shock standoff distance and post-shock stagnation pressure. The largest 

differences in pressure are found at the upstream end of the shock, where the DSMC result shows a more gradual 

slope than either hybrid simulation result. This can be partly explained by the fact that the edge of the shock is 

located along a boundary between DSMC and LD domains, and inviscid flow is assumed in the LD calculations. In 

an inviscid flow the shock is ideally represented by a pressure discontinuity, not a gradual pressure increase as in 

DSMC, so the inviscid flow assumption should have some influence on gas properties within any LD cells that 

border the shock. The magnitude of the disagreement here could likely be reduced by decreasing the cutoff value for 

the continuum breakdown parameter KnGLL, in order to extend the DSMC domain further upstream around the 

shock. A reduction in the cutoff value also warranted by the fact that a KnGLL value of 0.05 (as is used here) has 

previously been used in hybrid CFD-DSMC hypersonic flow simulations which employ a Navier-Stokes solver in 

continuum regions,
3
 while the present continuum calculations neglect viscous effects and are strictly valid only at 

the low Knudsen number limit. 

Figure 14 shows the variation in translational, rotational and vibrational temperatures along the stagnation 

streamline. While very good agreement between the three simulations is observed within the DSMC regions 

surrounding the shock, significant differences are found in the subsonic shock layer region further downstream. For 

both in the hybrid LD-DSMC simulations, translational and rotational temperatures are underpredicted in this post-

shock region by around 3%. Note that, as expected from the excellent agreement in pressure shown in Fig. 13, gas 

density is overpredicted in this region by approximately 3%. The level of disagreement increases toward the wall, 

where translational and rotational temperatures are underpredicted by between 5% and 8% in the hybrid simulations. 

The increased discrepancies along the wall can be primarily attributed to a lack of diffusive transport for vibrational 

energy in the LD calculations, which allows for large gradients in vibrational temperature within the stagnant flow 

region near the wall. In contrast, these diffusive effects are likely the dominant transport mechanism around the 

stagnation point in the DSMC simulation, as indicated by the plateau in DSMC vibrational temperature within the 

same near-wall region where the greatest disagreement is observed between DSMC and hybrid temperature profiles.  

Further upstream, in the post-shock region within the LD domain in the hybrid simulations, a significant 

underprediction in vibrational temperature is found in the hybrid simulation results in Fig. 14. One possible cause 

for this underprediction is the assumption of translational equilibrium in cells within the LD domain just 

downstream of the shock. The determination of continuum breakdown using gradient-based parameters such as 

KnGLL is inherently approximate, and an alternate breakdown parameter or smaller cutoff value may be necessary to 

reduce vibrational temperature discrepancies in this post-shock region. 

Figure 15 shows the variation along the stagnation streamline in the fraction of particles assigned to the first 

excited vibrational energy level (iv = 1). As with vibrational temperature, both LD1 and LD2 curves in Fig. 15 show 

large overpredictions relative to DSMC in the stagnant flow region around the wall. The DSMC curve levels off in 

this region as a result of diffusive transport effects, while the lack of diffusive transport for vibrational energy in the 

LD calculations allows the post-shock gradient in this quantity to continue up to the cylinder surface. Further 

upstream within the post-shock region, relatively good agreement is observed between LD2 and DSMC simulation 

results. In contrast, a significant underprediction is found here in the LD1 result. These trends are consistent with 

those shown in Figs. 6 through 9 for the homogeneous vibrational relaxation problem; considerable differences are 

found between LD1 and DSMC in relaxation rates for individual vibrational energy levels, while LD2 and DSMC 

results for these relaxation rates agree very well. Thus, as in LD2 simulations of the homogeneous relaxation 

problems, the reduced efficiency relative to LD1 is balanced by an improvement in accuracy for modeling 

vibrational nonequilibrium effects. 

V. Conclusions 

Two different approaches have been presented for inclusion of nonequilibrium internal energy distributions in 

the LD particle method. Both approaches allow continuous rotational and discrete vibrational distributions, with 

probabilistic rotational-translational and vibrational-translational exchange procedures and finite relaxation rates. In 

the first approach, denoted as LD1, relaxation occurs over an arbitrarily large time step interval through a single 

resampling procedure for some fraction of particles in each computational cell. This provides a very efficient means 

of energy exchange, and permits arbitrary internal energy distributions under nonequilibrium conditions while 

automatically satisfying energy equipartition at equilibrium for any time step size. In the second approach, termed 

LD2, simulated binary collisions are used to redistribute energy between translational and internal modes, following 

energy exchange procedures in DSMC. While collision-based procedures make LD2 less efficient than LD1, a 
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modification to the calculated collision probabilities results in less stringent limitations on time step size than in 

standard DSMC. Time step limitations in LD2 are relaxed even further for LD2 when rotational equilibrium can be 

maintained using a small constant rotational-translational exchange probability, or when a constant exchange 

probability can be assumed in modeling rotational relaxation effects.  

To evaluate the two LD energy exchange approaches, a series of LD and DSMC simulations were performed for 

homogeneous rotational and vibrational relaxation problems. Temperature profiles and internal energy distributions 

were compared between LD1, LD2, DSMC, and available CFD data. As expected, very good agreement with 

DSMC and CFD was found in rotational, vibrational and translational temperature profiles for both LD1 and LD2. 

Both approaches also were found to allow large departures from equilibrium in the rotational and vibrational energy 

distributions, although agreement with DSMC in these nonequilibrium distributions was significantly better for LD2 

than LD1. 

In a demonstration of current code capabilities, both LD1 and LD2 approaches were applied in hybrid LD-

DSMC simulations of a Mach 15 flow of N2 over a cylinder. Reasonably good agreement with results from a DSMC 

simulation was observed for most flow quantities considered, although some significant discrepancies were found. 

Many of these discrepancies can be attributed to inviscid flow assumptions in LD calculations, particularly the lack 

of diffusive transport models for internal energy modes in the LD method. Due in part to the lack of current 

capabilities in the LD method for diffusive internal energy transport, these simulations involved a specularly 

reflecting cylinder surface and did not consider boundary layer effects.     

When used as part of a hybrid scheme with DSMC, both LD1 and LD2 approaches offer significant advantages 

over rotational and vibrational nonequilibrium capabilities in a hybrid CFD-DSMC algorithm.
33

 In particular, there 

is no loss of information related to internal energy distributions along the boundary between LD and DSMC 

domains. In addition, the LD2 approach allows any internal energy exchange procedures developed for DSMC to be 

implemented for use in continuum flow calculations. This last advantage seems potentially the most promising, as 

high enthalpy continuum flows may involve significant internal nonequilibrium – particularly for vibrational energy 

– but existing CFD models for inclusion of nonequilibrium internal energy distributions
22

 are far more limited than 

those developed for DSMC.
27-29

 While it should generally be less efficient than LD1, the LD2 approach is simpler to 

implement, ensures consistency with DSMC internal energy exchange procedures in a hybrid simulation, and 

permits extension of DSMC energy exchange models to continuum flow problems where DSMC is prohibitively 

expensive and other DSMC-based continuum methods give excessive numerical diffusion. Furthermore, LD2 offers 

the potential, as planned in future work, of incorporating DSMC chemistry models for application to continuum 

flows. 

Other proposed areas of future work include detailed assessment of both accuracy and efficiency for the hybrid 

scheme, through comparison with DSMC for a series of hypersonic blunt body and multiscale expansion flows with 

viscous effects. Work currently in progress includes the implementation of diffusive transport models for rotational 

and vibrational energy, with diffusive fluxes based on gradients of time-averaged translational, rotational and 

vibrational temperatures. Other current work involves modifications to DSMC procedures so that each grid cell may 

be split into a large number of dynamically adaptive subcells, and so that cell-based time step and numerical weight 

values are automatically set to allow a relatively uniform number of particles per subcell. This should permit small 

mean separation distances between colliding DSMC particles even when each cell is far larger than the local mean 

free path. With uniformly much larger cells in both DSMC and LD regions, a significant efficiency increase should 

be found in hybrid LD-DSMC hypersonic flow simulations through the use of fewer particles per cell and larger 

time step intervals within the LD domain.  
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Figure 1. Variation in rotational and translational temperatures 

for homogeneous rotational relaxation in N2. 

 

 
Figure 2. Rotational energy distribution function at the elapsed 

time t/coll = 10. 
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Figure 3. Rotational energy distribution function at t/coll = 20. 

 

 
Figure 4. Rotational energy distribution function at t/coll = 40. 
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Figure 5. Variation in vibrational and translational temperatures 

for homogeneous vibrational relaxation in N2. 

 

 
Figure 6. Vibrational energy distribution function at t/coll = 400. 
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Figure 7. Vibrational energy distribution function at t/coll = 800. 

 

 
Figure 8. Vibrational energy distribution function at t/coll = 4000. 
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Figure 9. Time variation in relative populations for vibrational 

energy levels 0 through 5. 

 

 

 
Figure 10. Contours of pressure, in units of Pa, for a Mach 15 flow 

of N2 over a cylinder. Multicolored lines are from the LD1 hybrid 

simulation, green dashed lines are from the LD2 simulation, and 

red dotted lines are from DSMC. Thin black lines denote LD-

DSMC domain boundaries in the LD1 simulation. 
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Figure 11. Contours of Mach number from LD1, LD2 and DSMC 

simulations, and streamlines from the LD1 simulation. Line 

conventions are as in Fig. 10. 

 

 

 

 

 
Figure 12. Contours of translational temperature from LD1, LD2 

and DSMC simulations. Legend values are in units of K. 
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Figure 13. Variation in bulk velocity and pressure along the 

stagnation streamline. Solid and dashed vertical lines indicate LD-

DSMC domain boundaries from LD1 and LD2 simulations 

respectively. 

 

 
Figure 14. Translational, rotational and vibrational temperatures 

along the stagnation streamline. 
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Figure 15. Variation along the stagnation streamline in the fraction 

of particles at the first excited vibrational level. 


