
(c)1999 American Institute of Aeronautics &AstmnritiE~-- m----L-- 

A99133483 _~ .~____ -__- -_ -- AIM 99-3267 

Efficient .Multi-Stage Time Marching for 
Viscous’ Flows via. Local Preconditioning 

William L. KlebT William A. Wood* 
-NASA Langley Research Center, Hampton, VA 23681. 

and 
Bram van Leert 

Th,e University of Michigan, Ann Arbor, MI 4SiO9 

A new method has been developed to accelerate the convergence of explicit time- 
marching, laminar, Navier-Stokes codes through the combination of local preconditioning 
and multi-stage time marching optimization. Local preconditioning is a technique to 
modify the time-dependent equations so that all information moves or decays at nearly 
the same rate, thus relieving the stiffness for a system of equations. Multi-stage time 
marching can be optimized by modifying its coefficients to account for the presence of 
viscous t,erms, allowing larger time steps. We show it is possible to optimize the time 
marching scheme for a wide range bf cell Reynolds numbers for the scalar advection- 
diffusion equation, and local preconditioning allows this optimization to be applied to the 
Navier-Stokes equations. Convergence acceleration of the new method is demonstrated 
through numerical experiments with circular advection and laminar boundary-layer flow 
over a flat plate. 

Nomenclature 

Roman letters 
A 

a,b 

c 
C 
G 

d 

E 
E 
F 
G 
H 
h 

H 
J 

Cell- area 
Forizo$al and vertical components of 
advection velocity, q 
Speed of sound 
Viscous flux Jacobian in the s-direction 
Condition number, ratio of largest to 
smallest eigenvalues 
Horizontal shift for Tchebyshev polynomial 
transformation 
Energy per unit volume 
Viscous flux Jacobian in the y-direction 
Inviscid flux vector, z-component 
Inviscid flux vector, y-component 
Total enthalpy per unit volume 
Ratio of cell area to the length of the 
diagonal 
Inviscid flux vector 
Viscous flux vector 
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Lo 
M 

P 
P 
p, 
Pr 

Q 
Qo 
%Y 
R 
Rs 

RT 

Re 
ReA 
ReAz 
Reh 
Re, 
Res 
S 
S 

s 
T 
TTZ 
u 

Length from a cell corner to the diagonal 
along the advection velocity direction 
Reference length 
Mach number 
Pressure 
Preconditioning matrix 
Nth-order polynomial 
Prandtl number, 0.72 
Advection velocity 
Reference velocity 
Heat flux components 
Viscous flux vector, x-component 
Negative Real extent of the spatial 
operator’s Fourier Footprint 
Negative Real extent of the temporal 
operator 
Reynolds number 
Cell Reynolds number (generic) 
Cell Reynolds number based on Ax 
Cell Reynolds number based on h 
Reynolds number based on x-coordinate 
Residual 
Conserved scalar quantity _ 
Cell length 
Viscous flux vector, y-component 
Temperature 
Nth-order Tchebyshev polynomial 
Blasius freestream velocity 
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21 Velocity, horizontal component 
U Vector of conserved variables 
V Velocity, vertical component 
X Horizontal coordinate direction 

Y Vertical coordinate direction 
z Complex number 

Subscripts 

( 10 Reference quantity 

( )E Euler 

( >i Cell face index 

( >j Cell index in y-direction 

( )NS Navier-Stokes 

( )t Derivative with respect to time 

( )X,Y Horizontal and vertical components or 
derivatives 

Conventions 
Non-dimensional quantity (briefly) 
Differential quantity 

Runge-Kutta coefficient for stage lc 
Fourier frequency 
Time step 
Horizontal grid spacing 
Vertical grid spacing 
Scaling for Tchebyshev polynomial 
transformation 
Blasius boundary layer coordinate 
Ratio of specific heats, 1.4 
Imaginary component 
Parameter which controls upwind-biasing 
Kinematic viscosity 
Reference kinematic viscosity 
Courant number 
Flow angle with respect to the horizontal 
Real component 
Mass density 
Prandtl-Glauert factor 
Von Neumann number 
Cell stretching parameter 
High frequency damping 
Shear stress components 
Angle between h and the advection velocity 
High-frequency scaling for Preconditioner 
Transformed complex number 
Cell aspect ratio 
Equivalent cell aspect ratio in the flow 
direction 
Common denominator 

.F Fourier Footprint 

Introduction 

T HIS work is motivated by the poor convergence of 
explicit time-stepping Computational Fluid Dy- 

namics (CFD) codes for viscous flow problems. The 
recent development of local preconditioning meth- 
odsrW4 and the flexibility of multistage time-marching 
schemes provide the tools to relieve this bottleneck.a 
With the strong shift toward cache-based parallel ar- 
chitectures, implicit schemes are beginning to show 
limitations for this emerging environment. 

Typically an explicit time marching scheme is lim- 
ited by the minimum of an inviscid time step5*6 and a 
viscous time step.7 The inviscid portion relates to the 
advective part of the equations and the viscous por- 
tion represents the dissipation component. In terms of 
Von Neumann stability analysis* these portions corre- 
spond to the extents of the Fourier Footprintb along 
the imaginary axis and negative real axis, respectively. 

In the beginning of the “Euler era” (early 198Os), 
multistage time-marching schemes were optimized for 
the maximum imaginary extent of the stability do- 
main, given the number of stages of the scheme.g This 
alIows inviscid problems to be solved efficiently on 
a single grid. Very soon, multigrid relaxation made 
its entrance,lO and the emphasis in multi-stage design 
shifted to choosing the coefficients such that maximum 
high-frequency damping results for a given number of 
stages, typically at half the maximum allowable time 
step.11-13 This optimization technique originally was 
based on a scalar analysis, losing most of its validity 
when applied to a system of equations. The introduc- 
tion of local preconditioning for the Euler equations,4 
which tends to equalize the advective time scales and 
concentrates the Fourier footprint, finally made it pos- 
sible to optimize high-frequency damping for all types 
of waves admitted by the inviscid system.r4-i6 

For a typical viscous flow problem, however, a ma- 
jority of the computational cells are limitedin the size 
of their time step by the viscous criterion, due to the 
limited extent of the stability boundary along the neg- 
ative real axis. By making the multistage coefficients 
a function of the local cell Reynolds number, ReA, the 
stability boundary can be reshaped to alleviate this 
restriction.15116 

For systems of equations, local preconditioning is 
necessary for equalizing various time scales admitted 
by the system. 16-20 However, the analytical precon- 
ditioning analysis for the Navier-Stokes equations is 
much more complicated than for the Euler equations, 
and is still far from complete. As a result, the current 
paper uses a simple block-Jacobi method to extend the 

*Also, ss a fringe benefit of local preconditioning, the solution 
accuracy at low Mach numbers is enhanced. 

bThe locus of the Fourier transform in the complex plane. 
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Euler preconditioner to viscous problems.21 
In the work of Lynn,15’ r6 multistage methods are 

optimized based on the precise Fourier footprint of the 
spatial operator. The optimization must be performed 
separately for each choice of cell Reynolds number. 
The multistage time steps can be tabulated.as fun?- 
tions of ReA, or, more practically, given as functions 
that closely fit the data. Neither Lynn nor D. Leer* ac- 
tually carry out Navier-Stokes calculations with ReA- 
dependent multistage coefficients. Z 

In the present work the optimization procedure is 
reversed, and thereby greatly simplified. We start 
with a family of multistage schemes that has .stabil- 
ity domains of desirable shape. Then, using the scalar 
advection-diffusion operator as a foothold, we fit the 
spatial footprint within the temporal stability bound- 
ary to achieve stability and possibly some other desir- 
able property, like prescribed high-frequency damping. 
Related work which optimizes the time step without 
consideration for the associated damping is given by 
Lorber et a1.22323 The transition from the advection- 
diision operator to the Navier-Stokes operator is 
accommodated by the local preconditioning. This pro- 
cedure provides a numerical relationship between ReA 
and the multistage time step coefficients. The result- 
ing ReA-dependent marching schemes are used to solve 
the advection-diffusion equation and compute laminar 
boundary-layer flow. 

Runge-Kutta DeFign 
Optimizing the time-marching scheme for efficiency 

or high-frequency damping is most easily accomplished 
by working in the complex space of the Fourier trans- 
form via Von Neumann stability analysis.* The over- 
riding goal, of course, is stability, i.e., to contain the 
Fourier Footprint of the spatial discretization inside 
the stability boundary of the time-marching scheme. 
A secondary goal is to provide some level of high- 
frequency damping. If only single-grid marching is 
desired, the tradition is to go for the largest time step 
possible. For multigrid marching it is necessary to 
maximize high-frequency damping, which means giv- 
ing.up the maximum time step. The latter strategy 
actually turns out to also be more efficient for single- 
grid marching, as was shown by Tai.13 Maximizing 
high-frequency damping without setting a target level 
for the damping, though, is not a good idea for a vis- 
cous equation solver, as this tends to reduce the time 
step to unacceptably low values.r51m 

For the sake of simplicity we will start our analysis 
by examining the scalar model equation for the Navier- 
Stokes system of equations: the advection-diffusion 
equatiomc 

St + a S, + b S, = $ (S,, + S,,) , 

‘See Appendix A for non-dimensionalization. 

(1) 

where S is some conserved, scalar quantity; a and b are 
horizontal and vertical components of the advection 
velocity, respectively; and Re is the Reynolds number. 

Once we choose a discretization of the spatial terms, 
we are stuck with the resulting Fourier Footprint, so 
we will study it first. Afterward we will examine the 
temporal operator, and finally, the procedure used to 
fit one to the other. 

Spatial Operator 
For this study we will use central differencing for the 

viscous terms and the f+scheme24>25 for the advective 
terms. This yields, 

FTS- (l-&$+2 ( &f-g) (1 - cosa> 
-~g+os2px) 

. bAt 
- z-sin& + i-- 

AY 
(~ - 1) bat sin 2p 

4 Ay y’ 

where K. E [-1, 11, providing a blending between fully 
upwind and central differencing, respectively. In a mo- 
ment we will look at the resulting Fourier Footprint, 

.but first let us define some parameters, 

4 =&GF, the advection speed, 
b 

4 =arctan-, 
a 

the flow angle, 

&=A? 
Ay’ 

cell aspect ratio, 

and scale the footprint by fixing the position of the 
high frequency components (p - K) at -Rs. With 
these defimtrons Eq 2 becomisy - . . 

, . 7 

-Rs =-2At (l-fi)+-(cos++Atsin$) 
[ 

+ &(l +&a)] * (3) 
In this form, two length scales have emerged, 

h=&-t&p~ 

the ratio of cell area to the length of the diagonal, and 

1= 
Ax 

cosla+&sin$ 

which is the length from a cell corner to the diago- 
nal along the advection velocity direction. Figure 1 
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4 

/ 

Fig. 1 Time-step cell and flow geometry. 

AY 

-I- 

shows the cell geometry and the associated lengths. 
Moreover, h and 1 are related by 1 = h/ cos8 where 13 
is the angle between h and the advection velocity. 

Using the new length scale, h, we solve for At to fix 
the high frequency portion of the footprint at -R,, 

Es 
At = 2 

~(l-fC)cose+$& (6) 

Factoring out the q/h and converting the Reynolds 
number, Re, to the cell Reynolds number, Reh, we 
find, 

&=RSh Reh 
2 qReh(l-K)cosB+2’ (7) 

Substituting this time step into Eq. 2 gives our scaled 
Fourier Footprint of the form, 

3~-RSh Reh 
2 Ax RebcosO+2 . 

ReAzgh’+2) (l-cos,&)+icos~sin~, 

(8) 
(1 - cos PY) 

+ i.&sin$sin& 1 . 

Finally, we reveal the Fourier Footprint in Fig. 2 which 
shows the effect of various IC’S for Rs = 1, At = 1, 
and Re = 1. Defining a non-dimensional time step 
for the advection-diffusion equation is not trivial, see 
llppendix B for more details. 

Now that we have the spatial operator’s footprint, 
we turn our attention to the temporal stability bound- 
U-y. 

Temporal Scheme 

For this study the stability boundary is given by a 
transformation of Tchebyshev polynomials attributed 
to Manteuffel,26 

(9) 

a) Upwind (K = -1). b) Fromm’s scheme 
(ffi = 0). 

0.2 0.1 

0.0 0.0 

-0.2 -0.2 

-1.0 R -0.6 -0.2 -1.0 P -0.6 -0.2 

c) Third-order in 1D only d) Central difference 
(kc = l/3). (/c = 1). 

Fig. 2 Effect of 6 on the footprint of the higher-order 
scheme (Ai. = 1, 4 = 45deg, &h = 1, &,&, E’ [0,27r], 
A0 = 2x/40). 

where n is the order of the respective polynomials, z is 
a number in the left complex plane, and the sequence 
of Tchebyshev polynomials are given by recursion, 

To(C) = 1, (10) 
Tl(C) = c, 

Tn+l(c‘) = 2 C WC) -%-1(C), n > 1. 

The resulting coefficients of P,(z) are chosen such that 
the jPn(z)] = 1 stability boundary remains simply con- 
nected and the blended polynomial is scaled properly, 
i.e., 

P,(O) = 1, (11) 

and 

dpn 
-z z=o 

= 1. (12) 

For example, a four stage scheme would take the 
form, 

Pd(Z) = l- 
32d3 - 16s2d 

v z 
48cb-8&2z2-32d 8 4 (13) 

+ v 
-z3+--2) 

v 23 

where V = Sd4 - 8ds.s2 + s4. To satisfy the conditions 
given by Eqs. 11 and 12 we find, 

E = d 4d(2+d) + &6@(2+d)2 - 8d3(d+4). (14) 

Thus, we now have a one-parameter family of stability 
boundaries governed by d. 

Next, we recall that a Qstage Runge-Kutta scheme 
has the form of 

P4(z) =l+Q4 z+(Y4Qi3 z2+Q,#3Q2 z3+(Y@3a2Q1 z4. 

(15) 
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So by equating the coefficients in Eqs. 13 and 15 we can 
determine the coefficients, ok, for the corresponding 
Runge-Kutta scheme. 

Fitting 

The procedure employed is analogous to blowing up 
a balloon into a bear trap: a given stability boundary 
(the bear trap) ischosen; next, a given high frequency 
damping levell is ‘located on .the negative real axis; 
and then the cell Reynolds number is increased until 
some part of the spatial operator’s Fourier Footprint 
(the balloon) reaches a specified damping contour of 
the temporal operator. Figure 3 depicts the parime- . 
ters, the stability boundary, and the spatial 
Fourier Footprint; ‘. 4. 

T- 
--RT -7 

operator 

Fig. 3 Sketch .of optimization procedure. 

The fitting algorithm is as follows: 

1. 

2. 

3. 

4. 

Pick a value for d. This sets the shape and extent 
of the Tchebyshev stability boundary. 

Compute -RT, the negative Real extent of the 
Temporal operator. (Hint: RT = 2d.) 

Given the negative Real extent of the stability do- 
main, -RT, as a starting point, find the negative 
Real extent of the spatial operator, -R,, which 
satisfies the prescribed high frequency damping,d 
(T,,, by moving toward the origin along the Real 
axis, computing jPn(z)j. 

Using the viscous limit (Reh 3 0) as an initial 
guess increase the cell Reynolds number until the 
prescribed damping conditions for the entire foot- 
print or its high-frequency part are met. 

Figure 4 shows a sequence of stability plots for dif- 
ferent values of d. Superimposed are the spatial opera- 
tor Fourier Footprints which yield the maximum time 
step given a high-high frequency damping of 0.5. The 
contours in Fig. 4 represent levels of the temporal op- 
erator’s amplification (or damping). factor, IPI, from 
0.1 to 1.0 in increments of 0.1. 
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dOr, if unable to find the requested damping, use the maxi- 
mum damping available. 

The dashed line in Fig. 6 represents the Euler 
equations preconditioned with the Van Leer-Lee-Roe 
preconditioner.4 This preconditioner comes closest to 
achieving equalization of wave speeds, without afIect- 
ing their direction of propagation or their hyperbolic- 
ity. The dashed line shows it is possible to eliminate 
completely the stiffness as the Mach number goes to 
zero; greatly reduce the transonic stiffness, and, in gen- 
eral, substantially lower the condition number for the 
system of equations. This makes the system behave as 

Notice the large negative extent of the stability do- 
main along the real axis, made possible by the Tcheby- 
shev polynomial. The domain maximally extends to 
-2n2 for an n-stage scheme; however, for this choice 
the scheme is only stable in the limit of ReA = 0 (refer 
to Fig. 4(d)). 

Figure 5 shows the reference time step and Runge- 
Kutta coefficients as a function of the cell Reynolds 
number for the resulting 4-stage Runge-Kutta scheme. 
This provides the link between the cell Reynolds num- 
ber, the time step, and the multistage coefficients for 
a given cell. Note that the time step maintains an ap- 
preciable value all the way down to h!eh = 0.1, which is 
smaller than many people use to resolve the boundary 
layer in a Navier-Stokes calculation. 

Extension to Systems (Local Preconditioning) 

Local preconditioning is a technique to remove 
stiffness from a system of equations. In the 
aeronautical CFD community, the set of time- 
dependent, Reynolds-averaged, compressible, Navier- 
Stokes equations-sometimes simplified to the (invis- 
cid) Euler equations-are typically solved in an iter- 
ative fashion to achieve a steady-state solution. Al- 
though in most cases only the steady-state solution 
is desired, the time-dependent equations are still em- 
ployed so that the marching problem is well posed 
for all Mach numbers. The time-dependent Euler 
equations are hyperbolic and admit real wave-like fun- 
damental~ solutions; the Navier-Stokes equations are 
mixed parabolic-hyperbolic and admit damped travel- 
ing waves as well as non-propagating damped modes. 

Convergence to steady-state for inviscid calculations 
is impaired in some flow regimes due to the spread in 
the characteristic wave speeds. The spread is largest 
for waves moving in the streamwise direction, in which 
case their speeds are 4, q + c, and q - c, where q is the 
total flow speed and c is the speed of sound. The 
ratio of the largest to smallest wave speed is termed 
the condition number, Cn, and serves as a measure of 
.‘%tiffness”. Figure 6 shows the condition number as a 
function of Mach number for the Euler equations. The 
solid line represents the original Euler equations and 
it is apparent that infinite stiffness occurs in both the 
subsonic and transonic regimes; as the Mach number 
further increases, the condition number asymptotes to 
the ideal value of one. 
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a) d=-1 b) d=-4 c) d=-8 
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Fig. 4 Optimized stability plots as a function of the temporal operator parameter, d, for Fromm’s Scheme (K = 0) 
with a prescribed high frequency damping of 0.5 with contours of damping every 0.1 and the size of the frequency 
symbols scaled by their respective damping. 
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Fig. 5 The reference time step and Runge-Kutta co- 
efficients as a function of the cell Reynolds number for 
the fitting presented in Fig. 4. 

- Euler Equations 
---- Preconditioned 

:zUL 

roO ----’ / ‘.- ----__ -_--- I , 1 t I I 
0 1 2 3 

M 

Fig. 6 Condition number aa a function of Mach number 
for the Euler equations. 

a scalar equation which ‘has only a single wave speed,‘ 
so we can apply the Runge-Kutta scheme developed in 
the previous section after accounting for some scaling 
factors. 

The inviscid portion of local preconditioning used 
in this paper is that of Van Leer-Lee-Roe4 with a 
modification according to D. Lee20*27 and Lynn.16 
In stream-aligned, hyperbolic symmetrizing variables, 
[dp/(pc), du, dw, dp - c2dplT, it has the form, 

W 

with Q = dm and 5 = Q/(Q + At,), where A, 
is an effective streamwise aspect ratio given by sum- 
ming the appropriate velocity projections for each cell 

face, i, 

(17) 

This form is due to Darmofal.28 
Preconditioning of the Navier-Stokes equations is 

accomplished according to the method proposed in 
Ref. 21, namely, the addition of the viscous Jacobians: 

P& =P$+ A,(;- &) (: + AtE) ’ (18) 

where C and E are the Jacobians of the viscous fluxes 
in the z and y directions, respectively. 
. Thus, instead of marching to the steady state with 

Ut = Res(U), , 

march with a preconditioned residual 

Ut = P(U)Res(U). 

(19) . 

‘_ (20) 

This can be viewed as marching with a matrix time 
step as opposed to a scalar time step. However, the 
following three elements of an existing code need to 
be modified to account for the new, preconditioned 
system:’ 

l Time-step definition 

l Artificial dissipation 

l Boundary conditions 

First, since preconditioning serves to collapse all 
wave speeds to the total flow speed, 4, the time step 
should be based on the flow speed, q, and not the 
largest acoustic wave speed, q + c, which is typically 
used in the unconditioned case. 

Next, for an upwind scheme the artificial dissipation 
matrices IAl and IBI need to be evaluated in terms of 
preconditioned. quantities, i.e., they become P-l IPAl 
and P-l IPBl for the preconditioned system. 

And lastly, if one is employing “weak” (image cell) 
boundary conditions and using~the modified upwind 
scheme to .solve for the boundary fluxes, no change 
is necessary for the boundary conditions. However, if 
one is using explicit characteristic boundary conditions 
and/or employs “strong”, specified boundary fluxes, 
these procedures need to be modified to account for the 
preconditioned equations that are now being solved. 

Numerical Experiments _ 
Two numerical experiments were performed, the 

first on the scalar model equation for the Navier-Stokes 
equations: advection-diffusion; and the second experi- 
ment solved the Navier-Stokes system of equations for 
boundary layer flow over a flat plate. 
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Fig. 7 Circular advection for a Reynolds number of 500 including velocity vectors and solution contours every 
0.i from 0.05 to 0.95. 

Circular Advection 

To remove the added complication of precondi- 
tioning a system of equations, the scalar advection- 
diffusion model problem was first considered. The 
case considered here is that of circular advection in 
the upper half plane, i.e., the domain consisted of 40 
equally-spaced cells along the z direction from -1 to 1 
and 20 equally-spaced cells along the y direction from 
0 to 1, with a top-hat profile entering at the lower left 
rotating clockwise to exit at the lower right. Figure 7 
slhows a representative solution for a Reynolds number 
of 500. 

The number of iterations to converge the LZ er- 
ror norm to 10-l’ are recorded in Table 1 for a 
host of Reynolds numbers for both the variable- 
coefficient Runge-Kutta scheme and the constant- 
coefficient scheme. The fixed-coefficient scheme uses 
a,dvection-optimized Runge-Kutta coefficientse due to 
Tail3 for maximizing damping over frequencies from 
71./4 to 7r while the variable-coefficient scheme uses the 
cell Reynolds number-dependent coefficients that were 
developed in the preceding section. Note that for this 
problem the average cell Reynolds numbers are a fac- 
tor of 20 less than the Reynolds number and actually 
tend toward zero near the center of the advection ve- 
locity field since Reh = Re h q. However, for very low 
values of q we found that the local time-step given by 
Eq. 7 must be capped to avoid numerical instability 
regardless of the marching method used. 

Table 1 clearly demonstrates the devasta.ting ef- 

Toefficients: a1=0.2131, (~~~0.4364, a3=0.7641 with 
v=1.1727. 

Table 1 Comparison of constant-coefficient Runge- 
Kutta scheme to variable-coefficient Runge-Kutta 
scheme for Circular Advection on a 40 x 20 grid. 

Re 
Iterations 

Variable Fixed 
1 868 4,271 

10 422 2,736 
25 252 1,374 
50 151 736 

100 110 387 
500 85 136 

1,000 77 117 
5,000 81 98 

10,000 82 99 

fects that low Reynolds numbers (and hence low cell 
Reynolds numbers) have on the standard advection- 
optimized time marching scheme. As anticipated by 
the Fourier analysis, the variable-coefficient scheme re- 
tains a healthy convergence rate even with local cell 
Reynolds numbers well below 0.01. 

Laminar Boundary Layer 

The flow solver for this portion of the study was pur- 
posely kept as simple as possible to isolate the effect 
of the variable Runge-Kutta coefficients. The solver 
consists of a cell-centered, finite-volume-based scheme 
which uses Roe’s Flux Difference Splitting2g for the 
inviscid fluxes and central diiferencing for the viscous 
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terms on a structured grid of quadrilaterals. In inte- 
gral form, 

~UtdA+j+Ids =j&ds, ,‘. 

where U is the conserved state irector d&fined.- &s’ 
(p, pu, pv, PE)~, His ,the inv&cid cux vect+r, ::I . . ..+I ::‘:: 

(Fz^+-Gj) ads’, 

and J is the viscous flux vector, 

(Rz^ + Sj) . d.?. 

The Cartesian components of the inviscid flux are 

. F = (pu,p~~+p,puv,puH)*, 

and 

G = (pw, pvti, pw2+ p, ,owH)~, 

while. the viscous components are 

R = (0, &x, ~xy, ~+ny-qx)~, 

and 

s =(O ,Txy,~yy,~~xy+~~yy--Qy)T. 

The governing equations tie non-dimensionalized by 
freestream speed of sound, c, and density, p, so that 
the viscous stresses and heat flux terms are given by 

The system is closed with an equatiqn of state, 

p +yLl) 
[ 
E-1 2 (u2 + I?)- ) 

I 

where E is the total energy per unit volume, H is the 
total enthalpy per unit volumti, T is thetemperature, y 
is the ratio of specific heats (1.4), p is the viscosity, Pr 
is the Prandtl number (0.72), and Re is Lhe Reynolds 
number. 

The numerical test problem chosen is that of a lam- 
inar boundary layer flow; specifically, two-dimensional 
subsonic flow over. a flat plate. The unit-length 
Reynolds number is 10,000 and the freestream Mach 

number is varied between 0.05 and 0.3. The computa- 
tional domain and mesh are shown in Fig. 8. The plate 
is 4 units. long, with the up&earn boundary 2 units 
away from the leading edge and the’upper boundary 
is placed at 1.2 units. There are 36 cells evenly dis- 
tributed along the x-direction (24 cells on the plate 

1 and 12 upstream) and 40 cells expoqentially stretched 
-‘hi th& y-direction according td“ ’ 

forj=l,...nj 

Where the wall spacing is set to have an acoustic cell 
Reynolds number of 10, yielding a stretching parame- 
ter, c, of 1.1360.f By employing characteristic bound- 
ary conditions, neither second-order boundary con- 

‘ditions30t 31 nor solution-assumed grids32-34 are nec- 
essary to capture the boundary layer gradients (see 
Fig. 9 where athe computed resultsg are compared to 
the Blasius resultsh). 

Table 2 shows the number of iterations to converge 
the LZ error norm to 10m6 for a range of Mach num- 
bers for both the fixed-coefficient, Runge-Kutta scheme 
and the variabkcoefficient Runge-Kutta scheme.’ The 

Table 2 Comparison of constant-coefficient Runge- 
Kutta scheme to the variable-coefficient Runge-Kutta 
scheme for boundary layer flow over a flat plate. 

M 
Fixed 

Uncond. Precond. 
Variable 

0.3 21,322 7,667 3,102 
0.1 45,371 7,482 1,945 
0.05 97,263 8,231 1,543 

fixed-coefficient, scheme was run with and without pre- 
conditioning. The results clearly show the benefits of 
preconditioning, with local preconditioning providing 
nearly Mach number independent convergence. How- 
ever, we note some degradation as the cell Reynolds 
numbers become lower as the Mach number is lowered. 
This effect was predicted by D. Lee20T27 and shows 
the limitation of,simply using the viscous Jacobians to 
augment the Euler preconditioning (see Eq. 18). 

Most important, the results for the variable- 
coefficient scheme show even further improvement in 
convergence efficiency: the variable-coefficient, scheme 
reaches convergence with nearly a factor of five fewer 
iterations than the -tied-coefficient scheme. 

‘Parabolic stretching< as used in Refs. 30 and 31, was origi- 
nally tried until, upon further examination, it became apparent 
that it had a canonical first-point stretching factor of three! 

Whe UnConditioned and preconditioned solutions are indis- 
tinguishable. 

hStrictly speaking, Blasius is only valid for incompressible 
flow, but up to Mach 0.3 compressiPility effects are negligible. 

IdPU timing data are not presented for this proof-of-concept 
study since no optimization of the new iqplementation has been 
attempted. ~. 
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Fig. 8 Computational domain and grid. 

a) u-velocity 

Conclusions 
A four-stage time-marching scheme was optimized 

for a viscous model problem. The Runge-Kutta coef- 
ficients as a function of cell Reynolds number were 
designed to yield a specified damping level while 
maintaining large time steps. These variable coeffi- 
cients were applied to a two-dimensional, cell-centered, 
Navier-Stokes solver which incorporated local precon- 
d.itioning. The results for a subsonic flat, plate bound- 
ary layer flow indicate that by employing local Runge- 
Kutta coefficients as a function of cell Reynolds num-, 
ber, convergence to steady state is greatly enhanced. 

Since this is a proof-of-concept study, many other 
variables were purposely held constant so that the 
effects of the cell Reynolds number-dependent Runge- 
Kutta coefficients could be ascertained. Given the 
qualitative improvement over the standard method, 
the new approach appears to justify further develop- 
ment. 
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Appendix 

A Non-dimensionalization of the 
Advection-Diffusion Equation 

We begin with 

St + a sx + b sy = p(Sxx + S,,) ) (A.1) 

20Lee, D., Local Precondita’oning of the Euler and Navier- 
Stokes Equations, Ph.D. thesis, University of Michigan, 1996. 

21Godfrey, A. G., Walters, R. w., and van Leer, B., “Pre- 
conditioning for the Navier-Stokes Equations with Finite-Rate 
Chemistry,” AIAA- Paper 93-0535, Jan. 1993. 

22Lorber, A. A., Carey, G. F., Bova, S. W., and HarlB, 
c., “Accelerated Solution of Non-linear Flow Problems us- 

then define non-dimensional quantities, . 

k$a~&&&i=~, 
PO 

t. 
z,= 2, i? = -$ and f= Lo,&o . 

(A-2) 
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Substituting into Eq. A.1 yields, 

Collecting constant terms gives, 

%i$s,+- I - SoQo iis- + SoQo g3- 

Lo Lo 
Y 

F=- zE.2 ( &) (l-cosp) -i$sinp, 
r 

(B-2) 

where ,O represents the Fourier frequency. Alterna-, 
tively, employing a higher-order t+scheme24> 25 for the 
a,dvective term yields, 

T=- (l-/9$+2 
( 

&) (1 - cost4 

- 9% (1 - cos 2p) 

J3-+At sinp + i (1 - ~1 aAt . 
2 Ax 

yZsin2p, 
4 

where IC E [-l,l]. 

= yfi ($., + sgg) , (A.4) 
0 

while multiplying through by L,-,/(SoQo) and defining 
li!e = SOLO/~O yields, 

SE + asz + as, = g ($,, + s&Q) . 64.5) 

If we chose ~0 = /I and drop the bar notation, we have 
simply, 

St + a s, + b s, = &s”” + Sg,) . (A4 

El Time-Step Normalization for the 
Advection-Diffusion Equation 

Let us try to find a non-dimensional time step that 
includes both advective and diffusive effects. 

One-Dimension 
To provide a simple foundation, we begin with the 

one-dimensional case, 

St + a S, = & S,, , (B-1) 

where S is some conserved scalar quantity, a is the 
advection speed, and Re is Reynolds number. Cen- 
tral differencing for the diffusive term and first-order 
upwind discretization of the advective term yields, 

Typically one defines parameters according to the 
advective and diisive terms, e.g., 

aAt At J/Z-- 
Ax 

and O=&Q’ 

where v is the Courant number5 and (T is the Von 
Neumann number.36 This gives a footprint in Fourier 
space as shown in Fig. B.l which is an ellipse defined 
by the Courant number and the Von Neumann num- 
ber. (The higher-order scheme yields an ellipse only 
for IC = 1; in general it is egg-shaped.) 

9 

Fig. B.l Fourier footprint for the one-dimensional 
Advection-Diffusion equation using first-order upwind 
spatial discretization for the advective term and central 
differencing for the diffusion term (p E [0,2?r]). 

Now, suppose we want to f?x the location of the neg- 
ative real extent of this footprint. We can do this by 
examining the high frequency limit (p = X) of the 
Fourier footprint given in Eq. B.2, 

-Rs = -2 (B-4) 

where -Rs is the specified negative Real axis extent. 
Now we simply solve for the time step, At, 

For the K-scheme the result is similar, 

(B-5) 

03.6) 

Thus, by specifying such a time step, the high fre- 
quency components of the Fourier footprint remained 
fixed to -Rs. We could also write this in terms of 
a cell Reynolds number,7 Rea, = (aAx)/p where 
p=l/Reas h s own in Appendix A. For the first-order 
discretization of the advective term this yields, 

(B.7) 

or 
at _ RS Ax ReA, 

2 a R&.+2’ - @w 

while the bscheme gives, 

At=!%!& ReAZ 
2 a ReaZ(l-K)i-2’ (B-9) 
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Alternatively, we could express these as conditions on 
the Courant and von Neumann numbers, 

Rs = 
2(v + 2a) first-order 

2[(1- K)V + 21~1 higher-order 
. (B.10) 

Now, we insert our definition of At from Eq. B.7 
into Eq. B.2 to verify that the footprint is now only 
dependent on Rs and the cell Reynolds number, 

(I- cosp) + ~Re~~~ 2 sinp] . (B.11) 

So Rs controls the negative real extent and the cell 
Reynolds number dictates the. ellipticity. 

Two-Dimensions 
While the one-dimensional case is relatively 

straightforward in terms of parameter choices, etc., 
adding another dimension creates some “pseudo” am- 
biguities which are not typically resolved in the CFD 
community. 

The governing equation is now, 

St + a sz + b sy = $ (S,, + S,,) . (B.12) 

Again, using a first-order, upwind- approximation for 
the advective terms and central differencing for the 
diffusion terms yields, 

FT=- cos/G) - ig sinp, 

- cos/ly) - ie sin&. 
AY 

(B.13) 

Now there are two Fourier frequency components, ,& 
and &. The corresponding higher-order result is, 

3==- (1+E+2& 
( > 

(1 - cosa> 

J!ipG& COS2,&) - iz sin/l, 

+i--A (~ - ‘> uAt sin 2p 
4 Ax x 

(1 - cos &) 
(B.14) 

- 9% (1 - cos2&) 

. bAt 
-2-sin&+i4 

AY 
b - 1) la + 2p 

Ay ” 

From here there are many avenues to follow, one 
of the most prevalent is to define component-wise 
Courant numbers and Von Neumann numbers, e.g., 

aAt 
v -7 x= Ax 

bat and 
At 

uy =-) 
AY 

cy = - 
ReAy2 ’ 

Instead, we propose to express the flow quantities in 
cylindrical coordinates and the geometric quantities in 
terms of Ax and the cell aspect ratio, 

and &=!!E 
AY’ 

(Cf. Fig. 1 in the.main text.) Applying these defini- 
tions to Eq. B.13 gives, 

F=- 
q cos $At 

Ax -i-2 

_ pcos@t 

Ax 
sin pz 

_ Atq$inW +2At2 At 
Ax s 

> 
(1 -co@,) 

- iA1q sin +At 
Ax 

sin & . (B.15) 

As was done for the one-dimensional case, we ex- 
amine the high frequency limit (pz = & = 7r) of the 
Fourier footprint given in Eq. B.15, 

-Rs= -2At q 
( 

cos++Alsin$ 2 1+As2 
Ax +-- 

Re Ax2 > ’ 
(B.16) 

and, solving for the time step such that the nega- 
tive Real extent of the footprint remains fixed at -Rs 
yields, 

(B.17) 

where h is a new length scale that corresponds to the 
ratio of cell area to the cell’s diagonal length and the 
angle 13 is the angle between h and the flow direction. 
(Again, cf. Fig. 1.) The K-scheme yields a similar 
form, 

Es 
At= 

(1-Q++&. 
(B.18) 

Again, as was done for the one-dimensional case, we 
can re-write this in terms of a cell Reynolds number, 
Reh = (qh)Re, so Eq. B.17 becomes, 

(B.19) 

and the K-scheme yields a similar result, 

A&kh Re fi 
2 ;Reh(l-K)COS8+2’ 

(B.20) 

Note the differences with respect to Eq. B.8 and 
Eq. B.9. In the two-dimensional case we have a new 

193 



(c)l999 American Institute of Aeronautics & Astronautics 

length scale, h, which amounts to something akin to 
the harmonic average of the two length scales, 

(B.21) 

This favors the smaller of the two components. h can 
also be expressed as the ratio of the cell area to the 
length of the diagonal, 

(B.22) 

Another twist is that the flow speed component in the 
“h” direction is what governs the advective portion 
and not the full flow velocity as one might anticipate. 

Now we will substitute our value of At into the orig- 
inal Fourier footprint of Eq. B.15, 

1 

+ iAlsin$sin,L?, 
1 

. (B.23) 

Th.is form is not as straightforward as the one- 
dimensional results, but examining the case of & = 1, 
4 = 45 deg, we do recover a similar form; 

(B.24) 

which for ,6 = ,& = &, gives the identical result to 
Eq. B.ll. Figure 2 in the main text shows Fourier foot- 
prints for four values of n for the higher-order scheme 
with & = 1, 4 = 45deg, and Reh = 1. 
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