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Abstract 

A scheme for the twedimensional Euler equations 
that uses flow parameters to  determine the direc- 
tion for upwind-differencing is described. This ap- 
proach reduces the grid-dependence of conventional 
schemes. Upwinding at the local flow angle and the 
local pressure-gradient angle is tested. The upwind- 
biased fluxes are calculated with Roe's approximate 
Riemann solver. A centered flux is used for the com- 
ponent normal t o  the upwinding direction. Results 
for a first-order scheme show significant improvement 
over conventional grid-aligned upwinding. Specifically, 
oblique shock waves are less diffused. Preliminary re- 
sults for a second-order scheme are also included. 

Introduction 

When approximating the one-dimensional Euler equa- 
tions by upwind differencing, the choice of the upwind 
direction is straightforward. Characteristic informa- 
tion can only be transmitted forwards or backwards 
depending on the sign of the corresponding charac- 
teristic speed. In two or three dimensions the choice 
is more difficult. Although efforts are underway to 
develop truly multi-dimensional schemes [1,2], most 
multi-dimensional schemes treat the flow in a direction- 
split manner, with the upwind direction always normal 
t o  the face of the computational cell across which the 
fluxes are calculated. The problem with this approach 
is that it has little regard for the physical features of 
the flow. This becomes particularly evident when com- 
puting oblique waves, which tend to become excessively 
smeared. 
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Previous efforts to  develop grid-independent schemes 
include the work of Davis [3], who has implemented 
a scheme with upwind differencing normal to  shock 
waves. Hirsch et al. [4] has tested one with upwind 
directions normal t o  certain characteristic waves. The 
present work initially began as an extension of the 
QAZlD formulation of the Euler equations in Verhoff 
et al. [5], which is a non-conservative upwind scheme 
in intrinsic coordinates. Moretti [6] has developed the 
A-scheme, which also is non-conservative, and deter- 
mines the proper domain of dependence for each grid 
point based on the directions of certain characteristics. 
Preceding the Euler discretizations is the scheme of 
Jarneson [7], which solves the full transonic potential 
equation in intrinsic coordinates, calculating upwind 
differences in the flow direction and central differences 
in the normal direction. 

This paper investigates the effects of upwind differ- 
encing a t  a specified angle, one that may be chosen 
independent of the grid coordinates. There are three 
major aspects of this problem: 

1. Choice of upwind differencing angle; 

2. Determination of a left and a right state at each 
cell idterface, as a function of the upwinding angle; 

3. Computation of fluxes at an arbitrary angle. 

The differences between conventional grid-aligned 
schemes and the present schemes all relate to  these as- 
pects: 

1. In a grid-aligned scheme, the direction of upwind 
differencing is normal t o  the cell face. In the 
present scheme, the upwinding angle can be freely 
chosen, and, in particular, can be based on flow 
features such as flow and pressure-gradient angles. 
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2. In a first-order grid-aligned scheme, the left and 
right states are taken to be the average quantities 
of the cells on either side of the cell face. In the 
present scheme, the left and right state vectors are 
calculated in a manner biased by the upwinding 
direction. The first-order scheme interpolates be- 
tween cell centers to obtain these states. 

3. In a grid-aligned scheme, the flux normal to the 
upwinding direction does not contribute to the flux 
through the cell face, so it is not calculated. In 
the present scheme, the flux at the chosen angle 
is computed with upwind bias and a centered flux 
is computed normal to  this direction. The flux 
normal to the cell face is computed by rotating 
these two flux components to the coordinate frame 
aligned with the cell face. 

Approximate Riemann Solver 

The Euler equations in two dimensions can be written: 

where: 

- u =  

where H = E+p/p  is the total enthalpy. The equations 
are then integrated over a cell S2: 

The  second integral is converted to a line integral over 
the cell boundary, dS2, with Gauss' theorem: 

The first integral can be expressed in terms of the 
change in the average state U in the cell, and the line 
integral becomes a sum over the four faces of a quadri- 
lateral cell: 

x 

Figure 1: Geometry for Flux Calculation 

After introducing the cell-face length As, 

As2 = AZ' + ~ y ~ ,  (7) 

equation 6 can be written as: 

where F is the flux normal to the cell face (see Figure 1): 

pu.u +pcos4  

p u ~ v  - psin 4 I (9) 

Equation 8 is exact if Fk equals the average normal 
flux a t  the kth  cell face. If no angles other than 4 are 
defined, the above formulation will automatically lead 
to grid-aligned upwind differencing. 

The basic method of flux computation is essentially 
the same for both grid-aligned and grid-independent 
schemes. It is based on Roe's approximate Riemann 
solution [8] for the Euler equations. The flux across a 
plane of which the normal is a t  an angle 4 with respect 
to the x-axis is computed from: 

FL and FR are the flux vectors computed from the left 
and right states, UL and UR; 'left' refers to the lower 
cell index; furthermore, 



The matrix A is the Jacobian of F(U), the eigen- trix of absolute characteristic speeds lirkl:  

values ak of which are the characteristic speeds ii - i, 
ii, ii, and ii + 6. The matrix A is the diagonal matrix 1 - i *  0 0 0 
of these eigenvalues. The matrix R is composed of the 
right eigenvectors of A: 0 0 

IAl* = 

1 

ii - icosq 

6 - isinq 

H - u l i  

- ull sin 4 

Qll cos 4 

The modified absolute speeds, jal;, k=1,4, are com- 

( 14b) 
puted as follows: 

The hats refer to  Roe averages; the Roe average of 
a quantity is computed by weighting with JjT, for in- 
stance: 

This enforces the entropy condition, which eliminates 
expansion shocks, and ensures a smooth transition from 
subsonic to supersonic flow. 

In a first-order scheme, the left and right states are 
chosen to be the cell center values to the left and right 
of the cell face. Higher-order schemes interpolate or 
extrapolate state quantities to the cell face using more 
than one cell, but the choice of cells used is still based 
on grid geometry. 

In the first-order scheme, forward Euler time step- 
ping is used. 

Angles for Upwind Differencing 

Three choices of angles for upwind differencing are in- 
vestigated: 

1. Arbitrary, fixed angle throughout the grid; 

2. Local flow angle; 
and similarly for .6, H ,  and 1/b. The other quantities . . 
with hats are not averaged independently, but are ob- 3. Local pressure-gradient angle. - - .  
tained from the basic Roe-averaged quantities by their 
normal functional relations. Choice 1 is included to test the sensitivity of the solu- 

tion to the upwinding angle. With Choice 2, the flow 
The weights of R k  in the A U  form the vector AV: angle used at an interface is the simple average 

(ri- + , y j )  define: 
Since 411 may vanish locally the second element of 

AV = 

A V  is preferably multiplied, and R2 is divided, by iiI1/2. 1 
The matrix IAl* is computed from the diagonal ma- Pkjt = ; (pi-li-l + 2pi-lj + P ~ - I , ~ + I ) ,  (22a) 

- . 
(Ap - p2Aul) /2e2 

P A u I ~ / ~  

Ap - Ap/i2 

(Ap + p6Aul) /2i2 - - 

6, = tan-' 
UL + u R  ( v L + v R ) .  (21) 

(I6) With Choice 3, pressure gradients are computed after 
averaging the pressure field to avoid noise in the nu- 
merical derivatives. For a cell boundary centered at 



The derivatives in computational space are 

Equations 23a and 23b are transformed back to the Figure 2: Interpolation in the Physical Plane 
physical plane using the grid metrics: 

8~ - - - d p d i  d p d j  -- + -- 
dx di a x  d j  a x '  

(244  
A transformation similar to 27a-27b, but quadratic in 

8~ - - - a p d i  d p d j  -- + --. z and linear y, is used for the horizontal celi faces. The 
aY ai ay a j  ay (24b) slope of the line y = m r  + b in the upwind direction 

going through the midpoint of the cell face transforms 
The pressure gradient angle Op then follows from according to: 

dpldy Op = tan-' -. 
dp ldz  

(25) m' = b2 + b3m + b4tl + b5t2 + bsts 
a2 + a m  + a d 1  + a d 2  + a& ' 

To avoid random angles in areas with small pressure 
gradients, the final upwinding angle is a blend of the where: 
pressure gradient angle with the flow angle: 

Here, c is a weighting factor. In the present implemen- 

t l  = 2m(mxm + b), 

t2 = 2mxm+b ,  

t3 = 3m2x& + 4mbzm + b2. 

tation, the value c = 0.20 is the largest value that will 
If the line is vertical (m -, a), then: 

allow convergence, as discussed below. 

Interpolation Methods for First- 
Order Scheme 

The advantage of this method is that it simplifies the 
As in the method of Davis [31, the present method de- searching procedure, as the geometry in the mapped 
termines by interpolation the input states for the flux plane is always the same. To calculate the left state 
calculation in the frame of the upwinding angle. Two for < -1 ,  the interpolation is done between the 
interpolation methods are tested. The first method .average quantities in lower left and lower right cells. 
searches a cluster of six cells surrounding the cell face of ~f -1 < m1 5 0, the left and lower left cells are 
interest to find between which cell centers the upwind used, for 0 5 m' 5 1, the left and upper left 
and normal directions fall (Figure 2). For an arbitrary ,tates are used. Finally, if 1 < m' the interpolation is 
grid, implementation of this method is rather cumber- done between the upper left and upper right states. A 
some, although it can be made completely general. similar procedure is followed for finding the right state 

The second method maps the six-cell cluster (shown in the upwind direction and for finding finding both 
in Figure 3a) onto < E [-I, 11, 71 E [-I, 11 (Fig- states in the direction normal to  the upwinding angle 
ure 3b), through the linear-quadratic coordinate trans- (crms direction). Note that the interpolation is linear 
formations: in the (<, q) plane. 

2 The methods produce similar results. The cases pre- 
'(x' y)='' + + + a4xy + + ' (27a) sented below, with one exception, are computed with 
q(x, y)=bl + b 2 2  + b3y + b4xy + b5y2 + b6xy2, (27b) the interpolation in the mapped plane. 



Flux Formulation in Rotated 
Frame 

The generic fomula for a flux normal to  a cell face is 

in a conventional first-order-scheme the left and right 
input states simply are the average values in the ad- 
jacent cells. Convection speeds are based on velocity 
components parallel and perpendicular t o  the cell face; 
the upwinding direction, i.e., the direction in which the 
Riemann problem is solved, is normal to  the cell face. 

When an upwind direction is chosen that is not nor- 
mal to  the cell face, the flux component in this direction 
is 

FL = FL (UL,, UR,). (30) 

This flux is computed as before, with two changes. 
The velocity components are now in the new reference 
frame, and the left and right states are interpolated 
from the values in the nearest cell centers, as shown in 
Figure 3. The subscript I is chosen to indicate that 
the direction, although not normal to a cell face, may 
be normal t o  another important line, such as a shock 
front. 

Next, a flux normal to  this direction, e.g. along a 
shock front, must also calculated; for this, simple aver- 
aging will suffice: 

In the final scheme, this leads to  central differencing 
of this flux component. Note that this flux component 
also exists in the conventional formulation, but does 
not contribute to  the flux through the cell face. 

The flux normal to  the cell face is constructed by 
rotating the above fluxes back t o  the coordinate frame 
normal t o  the cell face: 

Here, 0 is the upwinding angle and q!~ is the angle normal 
t o  the cell face. The computation of the upwind biased 
fluxes in a rotated frame, followed by rotating back to 
the computational frame, makes a difference only for 
the nonlinear waves. For passive convection, such as 
entropy convection, there is no change. 

It is possible to  use upwind differencing for both flux 
components. This would lead to  a better approximation 
of the effect of pressure waves in the cross direction. 
However, this almost doubles the computational effort 
of calculating the flux through the cell face. 

Boundary Procedures 

For the inlet and exit boundaries, conventional char- 
acteristic boundary procedures are employed. For cell 
faces coinciding with a solid wall boundary, the nor- 
mal velocity is zero, so the mass and energy fluxes can 
be set to zero. Only the pressure terms contribute to 
the momentum flux terms. These are calculated based 
on the cell average value from the adjacent cell. This 
procedure corresponds to  the use of central differenc- 
ing normal to  the wall; this in turn implies upwind dif- 
ferencing along the wall, which is also the streamwise 
direct ion. 

Results and Discussion 

The test-case geometry is a two dimensional channel 
with a 15' wedge on the lower wall. A 15' expansion 
corner is also included t o  study expansion waves and 
wave interactions. The inflow Mach number equals 2. 
An oblique shock wave is produced by the wedge, and is 
somewhat weakened by the expansion wave. The shock 
reflects from the upper wall and passes through the rest 
of the expansion wave. The expansion wave also reflects 
from the upper wall slightly downstream of the shock 
reflection point. 

Conventional, analytical calculations predict a post- 
shock Mach number of 1.454. For this Mach number, 
any turning angle greater than 10.5' is too large to 
allow a regular reflection off the upper wall. Thus, a 
'Mach reflection' results, with subsonic flow behind the 
Mach stem and a slip surface trailing from the intersec- 
tion of the incident, normal, and reflected shock waves 
[9]. In this test case, however, the incident shock wave 
interacts with the expansion wave. The shock incident 
on the upper wall may still be too strong to allow a reg- 
ular reflection; the numerical solutions seem to support 
this conclusion. 

The grids used are algebraic, with constant Ax and 
AY = (Y ma= - ymin)/N, where N is the number of cells 
in the y direction. The three grids are shown in Fig- 
ures 4-6. 

For comparison, grid-aligned upwinding cases are 
shown first for coarse (60x20), fine (120x40), and ex- 
t ra  fine (180x60) grids (Figures 7-9). On the coarse 
grid, the shock wave is substantially diffused after re- 
flection, as expected from a first-order-scheme. The 
fine grid case has improved resolution. The extra fine 
grid case shows little improvement in resolution, be- 
sides narrower shocks, indicating proximity to a grid- 
converged solution. 

Sensitivity to  the upwinding angle is shown in Fig- 
ure 10. In this case, an upwinding direction of 45' is 
specified only for the horizontal cell faces. The upwind 
angle for the vertical cell faces is fixed at 0' relative to 
the x-axis. Notice that the reflected shock wave is bet- 
ter resolved than in the grid-aligned case of Figure 7, 



as the upwinding direction is approximately normal to  
this wave. Clearly there is reason to upwind in special 
directions; the question is which direction is best. 

The result shown in Figure 10 for fixed4 is based 
on interpolation in the physical domain, except in the 
five rows of cells nearest to the walls, where the angle is 
gradually turned toward the wall direction ('blending'). 
All other grid-independent results discussed below use 
interpolation in the mapped domain without blending. 

Figures 11 and 12 show the result of using the lo- 
cal flow direction as the upwinding direction (stream- 
wise upwinding). The expansion wave and the reflected 
shock wave are well resolved. Comparison with the 
grid-aligned cases of Figures 7-9 shows that the res- 
olution of the grid-independent case on the coarse grid 
is comparable to  that of the grid-aligned upwinding 
case on the fine grid, etc. This is especially true of 
the shock wave reflecting from the lower wall near the 
exit of the channel. The Mach contours of Figures 11- 
12, and specifically the subsonic Mach levels after the 
reflected shock, hint at  the presence of the analytically 
predicted Mach reflection. This effect is not present in 
even the finest-grid case for grid-aligned upwinding. 

One reason for the improved resolution and reduced 
dissipation is that the grid-independent scheme calcu- 
lates a part of the flux with central-differencing, which 
is a more accurate approximation  AX)^) than up- 
wind differencing   AX)). In fact, the flux through 
faces aligned with the local flow direction is entirely 
composed of the central-differencing component. In the 
present scheme, the stabilizing effect of using upwind 
differencing in the dominant direction allows the use of 
central differencing in the cross direction. 

Figures 13 and 14 show the upwind directions for 
the grid-aligned and grid-independent cases. There is a 
significant difference for the horizontal cell faces, while 
there is not much difference for the vertical cell faces. 

Pressure-gradient upwinding, as seen from Figure 15, 
shows little improvement over streamwise upwinding, 
except near the expansion corner. Figure 16 shows the 
upwinding angles for the pressure gradient case. 

Although the directional upwinding shows improved 
performance in comparison to the grid-aligned method, 
it comes at a price. The non-linearities introduced by 
the method cause convergence difficulties. To remedy 
this, the upwind angle is recalculated a t  specific times, 
and is frozen when the residual falls below For 
streamwise upwinding, the upwinding angle is recalcu- 
lated every 50 time steps. For pressure gradient up- 
winding, this process still results in limit cycles, so the 
upwinding angle is recomputed each time the residual 
falls below loF3. Each time the angle is recomputed, E 

is increased linearly. For the given example, intermedi- 
ate values of 0.05, 0.10, and 0.15 are used, until the final 
value of E = 0.20 is reached. Even with this phasing in 
procedure, limit cycles resulted for E > 0.25. Figure 17 
shows the convergence characteristics for grid-aligned, 

streamwise, and pressure-gradient upwinding. 
The calculation of the left and right states requires 

additional computational effort, so total run time is 
somewhat increased for fixed grid size. The compu- 
tation of the centered flux and the rotation back to 
cell-face direction, plus the interpolation procedure in- 
crease computation time by 33% per iteration. The 
present code, with storage for the mapping coefficients 
and the states, requires 56 additional words per cell of 
memory over a grid-aligned scheme. There is a trade-off 
between memory and computational speed. It may be 
possible to  eliminate the storage for the left, right, up- 
wind and normal states without sacrificing speed. The 
mapping coefficients, however, require inversion of a six 
by six matrix, and they never change, so it is worthwhile 
to  save these in memory. There may still be room for 
speeding up the interpolation process. 

The present implementation of grid-independent up- 
winding also introduces a short-wave instability due to 
lack of dissipation near the wall boundaries. Pressure 
oscillations of wavelength 2Ay propagate from the wall 
into the domain vertically. The instability is aggra- 
vated as the grid is refined. Residual averaging is used 
to  help solve this stability problem, but a solution for 
streamwise upwinding on the extra-fine grid mesh could 
not be obtained. A modification of the wall boundary 
procedures may help solve this problem. 

Examination of the total-pressure contours shown in 
Figures 18 and 19 reveals the pressure loss through the 
initial shock wave, and its convection downstrwam. En- 
tropy is being generated at the expansion corner for 
both grid-aligned and streamwise upwinding. There is 
a larger entropy gain in the streamwise case, although 
the layers are of comparable thickness. 

In general, the results of grid-independent upwind- 
ing show more numerical noise, due to  the inherent 
non-linearity of the method. For example, in the grid- 
independent cases there are overshoots on the lower 
wall, just ahead of the wedge, and behind the incident 
and reflected shock waves. 

Extension to Second Order Accu- 
racy 

To achieve second-order accuracy, a template of 16 cells 
surrounding the cell face of interest is used (Figure 20). 
Unit vectors from the midpoint of the face to  each of the 
16 cell centers are calculated, as well as the unit vector 
oriented in the desired upwinding direction. The dot- 
product of each cell direction vector with the upwind 
vector is calculated. The cells with the four most neg- 
ative dot products are chosen to form the 'left' state; 
the four most positive products are chosen to form the 
'right' state. The same method is used to  calculate the 
states in the cross direction. 

To implement this procedure, the 16 dot products 



with the upwind direction vector. are put in ascending 
order with a standard bubble sort. The same method 
is used to sort the dot products with the vector in the 
cross direction. Figure 20 shows the selection of the left 
states for various upwind directions. 

The state value at the midpoint of the cell face is 
a weighted average of the four cell center values. The 
weights, wi, are chosen such as to: 

1. Preserve a constant solution, 

2. Preserve a linear function in the x-direction, 

3. Preserve a linear function in the y-direction, 

4. Preserve a bilinear function in z and y. 

This results in the following equation: 

The cell-face midpoint state is then calculated from 

This, in effect, is a bilinear curve fit of the data. 
For the regular grid used in these calculation, the 

above matrix is singular for the 'T' shape stencil in Fig- 
ure 20c. This case occurs frequently, e.g. when the flow 
is uniformly aligned with the grid. Logic is included to  
avoid these singularities by replacing the fourth most 
upwind cell with the fifth most upwind cell. 

The second-order interpolation does not depend as 
smoothly on 0 as the interpolation for the first-order 
scheme. The upwinding direction is used to choose the 
cells with which to form the curve fit, but the fit is 
based on grid geometry. The Riemann problem is still 
solved in a directional manner, however. 

This method has yet to be completely implemented. 
As a preliminary step, a fixed set of cells were used to 
form the bilinear curve fit. The cells chosen are repre- 
sentative of those that would be chosen for the dorni- 
nant flow directions present in the test case. 

In the test, the wedge angle is reduced to 7.5' to re- 
duce the magnitude of overshoots typical of a second- 
order scheme (no limiters are used). For this test case, 
a post-shock Mach number of 1.705 and a regular reflec- 
tion from the upper wall are predicted. The forward- 
Euler time-stepping algorithm used for the first-order 
scheme is generally unstable for a second-order scheme. 
Instead, the optimally smooth, six-stage scheme de- 
scribed in Van Leer et a1.[10] is used. 

Results for the second-order, grid-dependent scheme 
on coarse and fine grids are shown in Figures 21 and 22. 

Results for the fixed-template, streamwise upwinding 
on the same grids are shown in Figures 23 and 24. 

There is some improved resolution over the grid- 
aligned cases, but it is not dramatic. The improvement 
could simply be due to the fact that more cells are used 
to  extrapolate to the cell face. The overshoot ahead of 
the shock wave is somewhat aggravated. 

Conclusions and Recommenda- 
t ions 

Upwind schemes have been formulated for the two- 
dimensional Euler equations with the direction of up- 
wind differencing independent of the grid geometry. A 
first-order scheme has been implemented with the up- 
winding angle based on the flow pattern, such as flow 
angle and pressure-gradient angle. This formulation 
exploits the multi-dimensional nature of the flow and 
leads to  improved resolution of flow features such as 
oblique shock waves. 

A second-order scheme has also been implemented 
that may be regarded as a two-dimensional extension 
of the fully one-sided second-order scheme in one di- 
mension. 

The present codes require more memory and have 
longer run times than the codes based on grid-aligned 
upwind differencing for comparable grid sizes. There 
are still possibilities for reducing memory requirements 
and run times. Future research will focus on improving 
robustness and testing different flow geometries. 
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Figure 3: Interpolation in the Mapped Plane 

Figure 4: Coarse (60x20) Grid for the Test Geometry 

Figure 5: Fine (120x40) Grid for the Test Geometry 



Figure 6: Extra-Fine (180x60) Grid for the Test Geometry 

Figure 7: Mach Contours for Grid-Aligned Upwinding, Increment = 0.05, Coarse Grid (60x20) 

Figure 8: Mach Contours for Grid-Aligned Upwinding, Increment = 0.05, Fine Grid (120x40) 



Figure 9: Mach Contours for Grid-Aligned Upwinding, Increment = 0.05, Extra Fine Grid (180x60) 

Figure 10: Mach Contours for Fixed-9 Upwinding, Increment = 0.05, Coarse Grid, 9 = 45' 

Figure 11: Mach Contours for Streamwise Upwinding, Increment = 0.05, Coarse Grid 



Figure 12: Mach Contours for Streamwise Upwinding, Increment = 0.05, Fine Grid 

Figure 13: Upwinding Angles for Grid-Aligned Case, Coarse Grid 



Figure 14: Upwinding Angles for Streamwise Case, Coarse Grid 

Figure 15: Mach Contours for Pressure-Gradient Upwinding, Increment = 0.05, Coarse Grid 



Figure 16: Upwinding Angles for Pressure-Gradient Case, Coarse Grid 

Figure 17: Convergence characteristics for Grid-Aligned, Streamwise, and Pressure-Gradient Upwinding 



Figure 18: Stagnation Pressure Loss, 1 - ps/psm, Contours for Grid-Aligned Upwinding, Increment = 0.02, 
Coarse Grid 

Figure 19: Stagnation Pressure Loss, 1 -ps/psm, Contours for Streamwise Upwinding, Increment = 0.02, Coarse 
Grid 

Figure 20: Cells Used in the Interpolation Method for the Second-Order Scheme 



Figure 21: Mach Contours for Second-Order, Grid-Aligned Upwinding, Increment = 0.05, Coarse Grid 

Figure 22: Mach Contours for Second-Order, Grid-Aligned Upwinding, Increment = 0.05, Fine Grid 

Figure 23: Mach Contours for Second-Order, Streamwise Upwinding, Increment = 0.05, Coarse Grid 



Figure 24: Mach Contours for Second-Order, Streamwise Upwinding, Increment = 0.05, Fine Grid 


