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Stability and Stabilization of Relative Equilibria
of Dumbbell Bodies in Central Gravity

Amit K. Sanyal,∗ Jinglai Shen,† N. Harris McClamroch,‡ and Anthony M. Bloch§

University of Michigan, Ann Arbor, Michigan 48109

A dumbbell-shaped rigid body can be used to represent certain large spacecraft or asteroids with bimodal mass
distributions. Such a dumbbell body is modeled as two identical mass particles connected by a rigid, massless
link. Equations of motion for the five degrees of freedom of the dumbbell body in a central gravitational field are
obtained. The equations of motion characterize three orbit degrees of freedom, two attitude degrees of freedom,
and the coupling between them. The system has a continuous symmetry due to a cyclic variable associated with the
angle of right ascension of the dumbbell body. Reduction with respect to this symmetry gives a reduced system with
four degrees of freedom. Relative equilibria, corresponding to circular orbits, are obtained from these reduced
equations of motion; the stability of these relative equilibria is assessed. It is shown that unstable relative equilibria
can be stabilized by suitable attitude feedback control of the dumbbell.

Nomenclature
er = unit vector along local vertical (radial) direction
ex = unit vector along longitudinal axis of dumbbell
ey , ez = orthogonal unit vectors spanning plane

perpendicular to dumbbell axis
eλ = unit vector along direction of increasing λ
eν = unit vector along direction of increasing ν
e1, e2, e3 = standard basis column vectors of R

3

m = mass of each end mass of dumbbell-shaped body
Q = configuration manifold for dumbbell

body in central gravity
R ∈ SO(3) = rotation matrix from body-fixed frame to local

vertical/local horizontal (LVLH) frame
r = radial distance from origin to center of mass

of dumbbell body
S = one-dimensional circle, or R/{2π}
SO(3) = group of rigid-body rotations in R

3

so(3) = Sophus Lie algebra of SO(3), identified with R
3

T Q = velocity state space for dumbbell body
in central gravity

λ = angle of declination of center of mass
of dumbbell body

µ = gravitational force constant
ν = angle of right ascension of center of mass

of dumbbell body
ω ∈ so(3) = angular velocity of dumbbell body

with respect to LVLH frame
ω I = angular velocity vector of body-fixed coordinate

frame with respect to inertial frame
ωL = angular velocity vector of LVLH coordinate

frame with respect to inertial frame
2l = length of rigid link connecting the two end

masses of the dumbbell
‖ ‖ = Euclidean norm, or two norm in R

3

Received 3 May 2004; revision received 7 October 2004; accepted for
publication 28 October 2004. Copyright c© 2004 by the American Institute
of Aeronautics and Astronautics, Inc. All rights reserved. Copies of this pa-
per may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0731-5090/05 $10.00 in
correspondence with the CCC.

∗Graduate Student, Department of Aerospace Engineering.
†Postdoctoral Scholar, Department of Aerospace Engineering.
‡Professor, Department of Aerospace Engineering. Fellow AIAA.
§Professor, Department of Mathematics.

Superscript

ˆ = adjoint representation of so(3) as 3 × 3
skew-symmetric matrices

I. Introduction

E QUATIONS of motion are derived for a dumbbell-shaped body
in a central gravitational field. The equations of motion de-

scribe the translational or orbit dynamics, the rotational or attitude
dynamics, and their coupling. The dumbbell consists of two ideal
mass particles of identical mass m connected by a rigid, massless
link of length 2l. The dumbbell can rotate and translate in three
dimensions under the action of gravity forces. A gravity force acts
on each individual mass particle of the dumbbell. The differential
gravity effects about the dumbbell’s center of mass play a crucial
role in its dynamics.

This model is similar to the dumbbell spacecraft models in Refs. 1
and 2, which treat dynamics and control of an elastic dumbbell re-
stricted to planar motion. The full dynamics of this model is treated
in Ref. 1, whereas the reduced dynamics is treated in Ref. 2, assum-
ing attitude and shape actuation only. These cited models include
flexibility effects in the link connecting the two mass particles. For
simplicity, flexibility effects are not included in the models devel-
oped in this paper. The models here are also similar to the dumbbell
spacecraft model in Ref. 3, which treats the orbit and attitude dy-
namics of a dumbbell spacecraft moving in a plane. The dumbbell
can also be considered as a special case of a full body, as treated in
Ref. 4. In this paper, we treat both the full and the reduced dynamics
of a dumbbell body in three spatial dimensions.

The dumbbell can also be viewed as a model of a tethered space-
craft. Typical assumptions for tethered spacecraft include negligible
elastic effects and a taut tether corresponding to a positive tension
force in the tether. Because of its relevance, some of this earlier
work is now described. Deployment, station keeping, and retrieval
of tethers have been studied in Ref. 5. Attitude dynamics issues for
tethered spacecraft have been treated in Refs. 6–8. Orbital dynamics
issues for tethered spacecraft have been treated in Refs. 9 and 10.
None of these references provides a comprehensive model that in-
cludes both orbit and attitude degrees of freedom. This paper makes
a contribution to this problem for the simplified dumbbell model.

The dumbbell model is simple but effective in demonstrating
complex dynamics that can arise when it is in orbit about a mas-
sive central spherical body. It provides a framework for studying
the orbital degrees of freedom, the attitude degrees of freedom, and
the coupling between them. The dynamics of large extended bodies
in central gravity present significant analytical challenges. In this
paper, we introduce new orbital and attitude problems that have not
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been studied previously in the published literature. We obtain rela-
tive equilibria for the full dynamics of the dumbbell body in a central
gravitational field; these correspond to the equilibria of the reduced
dynamics. The reduced dynamics are obtained by the process of
Routh reduction (see Refs. 11 and 12), and stability properties of
the relative equilibria are obtained from the reduced dynamics. Con-
trol laws based on potential shaping13−15 that use attitude feedback
for stabilization of the unstable relative relative equilibria are also
developed and presented.

The present paper can also be viewed as an extension of Ref. 16.
In that paper, coupling between translational and rotational degrees
of freedom was studied. However, Ref. 16 did not include a central
body gravity field, and so the results in that paper are not directly
applicable to the problems considered here.

II. Equations of Motion
An inertial coordinate frame is chosen such that its origin is at the

center of a large spherical central body, for example, Earth. This in-
ertial coordinate frame is defined by three mutually orthogonal axes.
It is convenient to express the orbital motion in terms of spherical
coordinates r , ν, and λ, for the position of the center of mass of the
dumbbell in the inertial frame, as shown in Fig. 1. This spherical
coordinate frame is also termed the local vertical/local horizontal
(LVLH) coordinate frame. In the LVLH coordinate frame, er , eν ,
and eλ form a mutually orthogonal right-handed set of unit vectors.

Figure 1 shows the dumbbell in the inertial and LVLH coordinate
frames. In addition, a coordinate frame is introduced that is fixed
to the dumbbell; its origin is at the dumbbell center of mass. The
unit vectors ex , ey , and ez form a mutually orthogonal, body-fixed,
right-handed set of unit vectors. Hence, there are three different co-
ordinate frames, each of which consists of mutually orthogonal axes
consistent with the right-hand rule. In the subsequent development,
substantial care must be taken when representations in R

3 are used
to express a vector in one of these coordinate frames.

The angular velocity vector of the LVLH coordinate frame with
respect to the inertial frame is

ωL = ν̇ sin λer − λ̇eν + ν̇ cos λeλ (1)

The angular velocity vector of the body-fixed coordinate frame with
respect to the inertial frame is ω I . The position vectors of the two
end masses are given by

x1 = x + lex , x2 = x − lex

where 2l is the length of the dumbbell.
The inertial velocities of the end masses in the LVLH frame are

ẋ1 = ẋ + l(ω I × ex ), ẋ2 = ẋ − l(ω I × ex )

Fig. 1 Dumbbell in LVLH coordinate frame.

The kinetic energy is given by

T = (m/2)
(‖ẋ1‖2 + ‖ẋ2‖2

)

Using the expressions for ẋ1 and ẋ2, we have

T = m
(‖ẋ‖2 + ‖l(ω I × ex )‖2

)
(2)

Because x = rer , it follows that

ẋ = ṙer + r(ωL × er )

= ṙer + r ν̇ cos λeν + r λ̇eλ

‖ẋ‖2 = ṙ 2 + r 2(ν̇2 cos2 λ + λ̇2)

In the subsequent development, we represent ωL and x in terms
of column vectors ωL and x in R

3 with respect to the basis vec-
tors er , eν , and eλ in the LVLH frame. The notation ωB in R

3 is
used to express the components of the angular velocity vector ω I in
the body-fixed coordinate frame. The standard basis vectors in R

3

are denoted by e1 = [1 0 0]�, e2 = [0 1 0]�, and e3 = [0 0 1]�.
We also introduce the rotation matrix, denoted by R ∈ SO(3), that
maps the representation of a vector in the body-fixed coordinate
frame into the representation in the LVLH frame. We use the no-
tationˆ: so(3) → so(3) or ()̂ : so(3) → so(3) to denote the adjoint
representation of so(3) (identified with R

3), given by

u =




u1

u2

u3



 , û =




0 −u3 u2

u3 0 −u1

−u2 u1 0





This allows us to write

‖ω I × ex‖2 = ω�
B ê1

�ê1ωB = ω�
B

(
I3 − e1e�

1

)
ωB

so that the kinetic energy is

T = 1
2 m

[
ẋ�

1 ẋ1 + ẋ�
2 ẋ2

] = [
mẋ� ẋ + ω�

B JωB

]

where

J = ml2
(

I3 − e1e�
1

)
(3)

is the constant inertia matrix of the dumbbell. The definition of the
dumbbell as a rigid connection of two ideal mass particles leads to
rank(J ) = 2. The implications of this assumption are discussed in a
later section.

We use ω to denote the components of the angular velocity of
the body-fixed frame relative to the LVLH frame, expressed in the
body-fixed frame. Thus,

ωB = R�ωL + ω

and the kinetic energy can be written as

T = m[ṙ 2 +r 2ν̇2 cos2 λ+r 2λ̇2]+(
R�ωL +ω

)�
J
(

R�ωL +ω
)

(4)

The exact potential energy of the two mass particles that define the
dumbbell is

−µm/‖x1‖ − µm/‖x2‖
where

‖x1‖ =
√

r 2 + 2rle�
1 Re1 + l2, ‖x2‖ =

√
r 2 − 2rle�

1 Re1 + l2

In our subsequent analysis, we assume that r > 0 and l/r � 1. Be-
cause (2rle�

1 Re1 + l2)/r 2 � 1 and (2rle�
1 Re1 − l2)/r 2 � 1, we can

use the second-order approximation for the gravitational potential
energy

Vg = −(µm/r)
{

2 − (l2/r 2)
[
1 − 3

(
e�

1 Re1

)2]}
(5)
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Note that the potential energy of the dumbbell depends only on
the radial position r of the center of mass of the dumbbell and
the direction of the dumbbell axis Re1 in the LVLH frame. The
Lagrangian is, thus, obtained as

L(r, λ, R, ṙ , ν̇, λ̇, ω) = T − Vg = m[ṙ 2 + r 2(ν̇2 cos2 λ + λ̇2)]

+ (
R�ωL + ω

)�
J
(

R�ωL + ω
)

+ (µm/r)
{

2 − (l2/r 2)
[
1 − 3

(
e�

1 Re1

)2]}
(6)

The attitude kinematics of the dumbbell is given by

Ṙ = Rω̂ (7)

The orbital equations of motion are given by the ordinary Euler–
Lagrange equations obtained from the Lagrangian (6) for these
degrees of freedom. The configuration manifold of the system is
denoted by Q. The configuration is specified by the translation,
represented by the local coordinates (r, ν, λ), and the attitude, rep-
resented by the rotation matrix R.

We define

f (λ) = sin λe1 + cos λe3, g(λ) = cos λe1 − sin λe3

so that

∂ωL

∂ν̇
= f (λ),

d

dt

(
∂ωL

∂ν̇

)
= λ̇g(λ),

∂ωL

∂λ
= ν̇g(λ)

The orbital equations of motion can be expressed as

r̈ − r ν̇2 cos2 λ − r λ̇2 + (µ/r 2) − (3µl2/2r 4)
[
1 − 3

(
e�

1 Re1

)2]= 0

(8)

m[(r 2ν̈ cos λ + 2rṙ ν̇ cos λ − 2r 2ν̇λ̇ sin λ) cos λ]

+ λ̇g(λ)� R J
(

R�ωL + ω
) + f (λ)� Rω̂J

(
R�ωL + ω

)

+ f (λ)� R J
(

R�ω̇L + ω̇ − ω̂R�ωL

) = 0 (9)

m[r(r λ̈ + 2ṙ λ̇ + r ν̇2 sin λ cos λ)] − e�
2 Rω̂J

(
R�ωL + ω

)

+ e�
2 R J

(
ω̂R�ωL − R�ω̇L − ω̇

)

− ν̇g(λ)� R J (R�ωL + ω) = 0 (10)

In each of these scalar equations, the first set of terms are Keplerian
terms expressed in spherical coordinates. The additional terms rep-
resent perturbations that arise from the attitude dynamics.

The attitude equations of motion are obtained as a modification of
the Euler–Poincaré equations, obtained by applying the variational
principle to the Lagrangian (6), as in Refs. 11 and 12. If we define
the conjugate momentum

� =
(

∂L
∂ω

)�
= 2J

(
R�ωL + ω

)

then the attitude equation of motion is given by

�̇ + (
ω + R�ωL

)× � − (6µml2/r 3)
(
e�

1 Re1

)
e1 × (

R�e1

)= 0
(11)

Substituting for �, we obtain the following attitude equation of
motion:

J
(
ω̇ + R�ω̇L − ω̂R�ωL

) + (
ω̂ + R̂�ωL

)
J
(
ω + R�ωL

)

− (3µml2/r 3)
(
e�

1 Re1

)
ê1 R�e1 = 0 (12)

The derivation of Eq. (11) is given in Appendix A. This vector
equation describes the attitude dynamics, including perturbations
that arise from the orbit dynamics. In particular, the last term in
Eq. (12) is the familiar gravity gradient term. Equations of motion

(8–10), along with either Eq. (11) or (12), describe the full dynamics
of the system in T Q.

The total energy

E = T + Vg = m[ṙ 2 + r 2(ν̇2 cos2 λ + λ̇2)] + (
R�ωL + ω

)�

× J
(

R�ωL + ω
)− (µm/r)

{
2 − (l2/r 2)

[
1 − 3

(
e�

1 Re1

)2]}

(13)

is conserved along the flow defined by Eqs. (8–10) and (12), as
shown in Appendix B. Also note that the variable ν ∈ S is a cyclic
variable for the Lagrangian (6) and that it corresponds to a symmetry
in the system. This gives rise to the following result.

Proposition: The conjugate momentum

p = ∂L
∂ν̇

= 2mr 2ν̇ cos2 λ + 2 f (λ)� R J
(

R�ωL + ω
)

(14)

is conserved along the flow defined by Eqs. (8–10) and (12).
It is easy to differentiate p with respect to time and to confirm

that ṗ = 0 is equivalent to Eq. (9).
The complexity of the preceding equations reflects the complex

coupling that arises between the orbit and attitude degrees of free-
dom for the physically simple dumbbell body. These equations of
motion are especially suited for analysis of the full-body dynamics
of dumbbell-like asteroids or dumbbell-like spacecraft.

III. Routh Reduction and Reduced
Equations of Motion

In this section, we obtain the reduced equations of motion ob-
tained by eliminating the degree of freedom associated with the
(cyclic) symmetry variable ν ∈ S. Stability analysis of the relative
equilibira of the system is performed using the reduced dynamics
because they correspond to the equilibria of the reduced dynamics.
Let Sp denote the momentum level set in the configuration space
of the dumbbell, corresponding to the constant angular momentum
value p. The classical Routhian (see Refs. 11 and 12) is obtained
from the Lagrangian in Eq. (6) by the partial Legendre transform

R(r, λ, R, ṙ , λ̇, ω) = {L − ν̇ p}|Sp

where ν̇ is obtained from Eq. (14) for constant p. Carrying out this
substitution to eliminate ν̇, we obtain the following expression for
the Routhian:

R(r, λ, R, ṙ , λ̇, ω) = m[ṙ 2 + r 2λ̇2] + (
ω − λ̇R�e2

)�
J
(
ω − λ̇R�e2

)

− [
f (λ)� R J

(
ω − λ̇R�e2

)]2
Up(r, λ, R)

+ p f (λ)� R J
(
ω − λ̇R�e2

)
Up(r, λ, R) − Vp(r, λ, R) (15)

where Vp(r, λ, R) is the amended potential energy given by

Vp(r, λ, R) = Vg(r, R) + (p2/4)Up(r, λ, R) (16)

and Vg is the gravitational potential expressed as in Eq. (5). The
function Up(r, λ, R) is given by

Up(r, λ, R) = 1/[mr 2 cos2 λ + f (λ)� R J R� f (λ)]

We assume that [ f (λ)� R J R� f (λ)]/(mr 2 cos2 λ) � 1 and that the
declination angle λ is bounded away from ±π/2 rad. Then we can
approximate Up as

Up(r, λ, R) = (1/mr 2){sec2 λ − (1/mr 2) f (λ)� R J R� f (λ) sec4 λ}
(17)

We use this approximation for the function Up(r, λ, R) in Eqs. (15)
and (16). The configuration space for the reduced dynamics is Q/S,
and the configuration is represented by (r, λ) for the orbital motion
and the rotation matrix R for the attitude. The equations of motion for
the orbital degrees of freedom are obtained by using the Routhian in
place of the Lagrangian in the Euler–Lagrange equations of motion.
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The attitude equations of motion are obtained from the variational
principle by substituting the Routhian in place of the Lagrangian.

The orbital equations of motion for the reduced dynamics are
obtained as

2mr̈ − 2mr λ̇2 + [
f (λ)� R J

(
ω − λ̇R�e2

)]2 ∂Up

∂r

− p f (λ)� R J (ω − λ̇R�e2)
∂Up

∂r
+ 2µm

r 2

− 3µml2

r 4

[
1 − 3

(
e�

1 Re1

)2] + p2

4

∂Up

∂r
= 0 (18)

mλλ(r, λ, R)λ̈ + mλω(r, λ, R)ω̇ + ∂mλλ

∂r
ṙ λ̇ + 1

2

∂mλλ

∂λ
λ̇2

+ m R
λω(λ, R, ω)ω + ∂mλω

∂r
ṙω + p

{
∂m pλ

∂r
ṙ + m R

pλ(r, λ, R, ω)

}

− 1

2
ω� ∂ Mωω

∂λ
ω − p

∂m pω

∂λ
ω + ∂Vp

∂λ
= 0 (19)

where

mλλ(r, λ, R) = 2mr 2 + 2e�
2 R J R�e2

− 2
[

f (λ)� R J R�e2

]2
Up(r, λ, R)

mλω(r, λ, R) = −2e�
2 R J + 2Up(r, λ, R)

[
f (λ)� R J R�e2

]
f (λ)� R J

Mωω(λ, R) = 2J − 2J R� f (λ) f (λ)� R JUp(r, λ, R)

m pλ(r, λ, R) = f (λ)� R J R�e2Up(r, λ, R)

m pω(r, λ, R) = f (λ)� R JUp(r, λ, R)

and aR(r, λ, R, ω) = d/dt |(r,λ)a(r, λ, R) denotes the time derivative
obtained by varying R and holding r and λ constant.

The attitude equations of motion for the reduced system are ex-
pressed in terms of

�̃ =
(

∂R
∂ω

)�
= 2Jω − 2λ̇J R�e2

+ [
p − 2 f (λ)� R J (ω − λ̇R�e2)

]
J R� f (λ)Up

One can verify that

�̃ = �|Sp

In terms of this momentum �̃, the attitude equations of motion are

˙̃
� + (

ω − λ̇R�e2

) × �̃ − {
p − 2 f (λ)� R J (ω − λ̇R�e2)

}

× ̂R� f (λ)J
(
ω − λ̇R�e2

)
Up + v� = 0 (20)

where

v = (6µml2/r 3)
(
e�

1 Re1

)
e�

1 Rê1 + (p2/4m2r 4) f (λ)� R

× {[J R� f (λ)]̂ − J ̂R� f (λ)} sec4 λ

The derivation of this equation is provided in Appendix A.
Equations (18–20) describe the reduced dynamics of the system
in T (Q/S).

IV. Relative Equilibria for the Orbit
and Attitude Dynamics

In this section, we study certain dynamics of the orbit and attitude
degrees of freedom of the dumbbell. Three categories of relative
equilibria are identified. Stability of each relative equilibrium is
studied.

A. Identification of Relative Equilibria
We first identify the natural relative equilibria that correspond to

circular orbits in a fixed orbital plane for the dumbbell. The relative
equilibria are equilibria for the reduced equations and satisfy

r̈ = ṙ = 0, ωL = ν̇e3, ν̈ = 0, λ̇ = 0, ω = 0

We assume that the inclination of the orbital plane λ = 0. We use the
subscript e to denote quantities evaluated at a relative equilibrium.
Substituting into the reduced equations of motion that we obtained
in the last section, we see that the relative equilibria are zeros of the
gradient of the modified potential, namely,

∇̃Vp ≡






∂Vp

∂r
∂Vp

∂λ

v�






= 0 (21)

The radial part of the gradient of the modified potential (21) gives

(2µm/r 2) − (3µml2/r 4)
[
1 − 3

(
e�

1 Re1

)2]

− p2
/

2mr 3
e + (

p2
/

m2r 5
e

)
e�

3 Re J R�
e e3 = 0 (22)

at a relative equilibrium, where Eq. (17) is used to approximate
Up(r, λ, R). This can also be expressed in terms of the orbtial rate
at the relative equilibrium ν̇e. The horizontal equation of motion (9)
at a relative equilibrium is trivially satisfied. The second term of
Eq. (21), at a relative equilibrium, gives

2mν̇2
e e�

1 Re J R�
e e3 = (

p2
/

2m2r 4
e

)
e�

1 Re J R�
e e3 = 0 (23)

where Eq. (17) is used to approximate Up(r, λ, R). The third term
of Eq. (21), when evaluated at a relative equilibrium, gives

(
6µml2

/
r 3

e

)(
e�

1 Ree1

)
ê1 R�

e e1 = (
p2

/
2m2r 4

e

)
R̂�

e e3 J R�
e e3 (24)

where Eq. (17) is used to approximate Up(r, λ, R). This, again,
can also be expressed in terms of the orbtial rate at the relative
equilibrium ν̇e.

Let Re denote the attitude at a relative equilibrium and
R�

e = [u1 u2 u3], where u�
i ui = 1 and u�

i u j = 0 for i 
= j ;
i, j ∈ {1, 2, 3}. Then, substituting for J from Eq. (3) into Eqs. (23)
and (24), we obtain three different conditions for relative equilibria
of the dumbbell body in orbit:

u11 = 0, u31 = 0

or

u3 = e1

or

u1 = e1

where u1 = [u11 u12 u13]� and u3 = [u31 u32 u33]�. The only ro-
tation matrices that satisfy at least one of these conditions are given
by

Re =




1 0 0

0 cos α − sin α

0 sin α cos α



 , Re =




0 cos α sin α

1 0 0

0 − sin α cos α





Re =




0 cos α − sin α

0 sin α cos α

1 0 0





where α is an arbitrary angle that represents rotations about the lon-
gitudinal axis of the dumbbell. This gives us three different types
of relative equilibria for this body. We now look at how the relative
equilibrium conditions (22) simplify at these three types of relative
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equilibria. Note that because the longitudinal axis is an axis of sym-
metry for the dumbbell body, arbitrary rotations about this axis at
any relative equilibrium also give another relative equilibrium of the
same type. Also note that due to the equal masses at the ends of the
dumbbell body, there is a discrete (Z2) symmetry. An instantaneous
rotation by π radians about an axis perpendicular to the longitudinal
axis of the dumbbell does not affect the dynamics. Hence, there are
only three relative equilibria, instead of a possible six in the case of
the end masses being unequal.

The first type of relative equilibria corresponds to an orientation
in which the dumbbell has its longitudinal axis aligned with the local
vertical (radial) direction. This class of relative equilibria satisfies

Ree1 = e1, ν̇2
e = µ

/
r 3

e + 3µl2
/

r 5
e (25)

The constant angular rate at which the dumbbell revolves around
the central body is given by ν̇e.

The second type of relative equilibria corresponds to the longi-
tudinal axis of the dumbbell being aligned with the local horizontal
direction in the plane of the orbit. This class of relative equilibria
satisfies

Ree1 = e2, ν̇2
e = µ

/
r 3

e − 3µl2
/

2r 5
e (26)

where ν̇e is the constant angular rate at which the dumbbell revolves
around the central body.

The third type of relative equilibria corresponds to the longitudi-
nal axis of the dumbbell orthogonal to the orbital plane. This class
of relative equilibria satisfies

Ree1 = e3, ν̇2
e = µ

/
r 3

e − 3µl2
/

2r 5
e (27)

where ν̇e is the constant angular rate at which the dumbbell revolves
around the central body.

Each of the preceding relative equilibrium solutions corresponds
to a particular attitude of the dumbbell body with respect to the
LVLH frame and an orbital frequency that differs from the Keplerian
orbital frequency by a factor dependent on the size of the dumbbell
body and its attitude.

B. Stability of the Relative Equilibria
A sufficient condition for the stability of a relative equilibrium of

the dumbbell is given by the Routh stability criterion, which is based
on the energy-momentum method (see Refs. 11 and 12). This result
is based on the reduced dynamics obtained from Routh reduction.

Stability of a relative equilibrium of the dumbbell is expressed
in terms of a modification of the Hessian of the amended potential,
given by

∇̃2Vp(r, λ, R) =









∂2Vp

∂r 2

∂2Vp

∂r∂λ

∂v

∂r

∂2Vp

∂r∂λ

∂2Vp

∂λ2

∂v

∂λ
(

∂v

∂r

)� (
∂v

∂λ

)�
V









(28)

where

V = (6µml2/r 3)
[
ê1 R�e1e�

1 Rê1 − (
e�

1 Re1

)
ê1 R̂�e1

]+ (p2/2m2r 4)

× [ ̂R� f (λ)J ̂R� f (λ) − [J R� f (λ)]̂ ̂R� f (λ)] sec2 λ (29)

Note that the rank of the matrix V is at most two for the inertia
matrix J given by Eq. (3), which also has rank two because e1 is an
eigenvector with zero eigenvalue. The computation of this Hessian
is shown in Appendix C.

The following theorem is based on the Routh stability criterion.
Theorem: A relative equilibrium is stable if the modification of

the Hessian of the amended potential, given by Eq. (29), evaluated at
the relative equilibrium, is positive semidefinite with rank deficiency
one. It is unstable if this Hessian has negative eigenvalue(s).

The kernel of ∇̃2Vp has a dimension of at least one, and its third
row and column are zero. The first statement of the theorem follows
from Routh’s stability criterion. Note that if the quantity ∇̃2Vp ,
evaluated at a relative equilibrium, has negative eigenvalues, then
the linearization of the reduced dynamics is unstable. Hence, the
system is formally unstable (see Ref. 11, pp. 39–42) in this case.

Using the Theorem, we verify the stability of relative equilibria
of the dumbbell when the axis of the dumbbell is aligned with the
local vertical. We have

Ree1 = e1, ν̇2
e = µ

/
r 3

e + 3µl2
/

r 5
e

p2 = 4m2
(
µre + 5µl2

/
re

)

Corollary 1: The first class of relative equilibria of the dumbbell,
where the axis of the dumbbell is aligned with the local vertical, is
stable.

The modified Hessian evaluated at such a relative equilibrium is

∇̃2Vp

∣∣
1

=






2µm

r 3
e

− 14µml2

r 5
e

0 01 × 3

0 2m

(
µ

re
+ 5µl2

r 3
e

)(
1 − l2

r 2
e

)
−2ml2

(
µ

r 3
e

+ 5µl2

r 5
e

)
e�

2

03 × 1 −2ml2

(
µ

r 3
e

+ 5µl2

r 5
e

)
e2 2ml2

(
µ

r 3
e

+ 5µl2

r 5
e

)
E1 − 6µml2

r 3
e

ê1
2






(30)

where

E1 = −ê3
2 − ê3ê1

2ê3

This modified Hessian has one zero eigenvalue, the third row and
third column are zeros, and the remaining eigenvalues are always
positive because l/re � 1, according to symbolic calculations using
Mathematica. This proves that the first class of relative equilibria
given by Eq. (25), with the axis of the dumbbell aligned with the
local radial direction, is stable.

Now we assess the stability of relative equilibria of the dumbbell,
when the axis of the dumbbell is aligned with the local horizontal
direction in the plane of a circular orbit. For the second class of
relative equilibria, we have

Ree1 = e2, ν̇2
e = µ

/
r 3

e − 3µl2
/

2r 5
e

p2 = 2m2
(
2µre − µl2

/
re

)

Corollary 2: The second class of relative equilibria of the dumb-
bell, where the axis of the dumbbell is aligned with the local hori-
zontal direction in the plane of a circular orbit, is unstable.
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The modified Hessian evaluated at such a relative equilibrium is

∇̃2Vp

∣∣
2

=






2µm

r 3
e

− 5µml2

r 5
e

0 01 × 3

0
2µm

re
− 3µml2

r 3
e

01 × 3

0 0

(
2µml2

r 3
e

− µml4

r 5
e

)
E2 − 6µml2

r 3
e

e2e�
2






(31)

where

E2 = −ê2
2 − ê2ê1

2ê2

This modified Hessian has one zero eigenvalue, the third row and
third column are zeros, and there is a negative eigenvalue, namely,
−6µml2/r 3

e . Using the theorem, we conclude that the second class of
relative equilibria given by Eq. (26), with the dumbbell axis aligned
to the local in-plane horizontal, is unstable.

The stability of the third class of relative equilibria of the the
dumbbell, when the axis of the dumbbell is aligned to be orthogonal
to the plane of a circular orbit, can be assessed using the theorem.
For the third class of relative equilibria, we have

Ree1 = e3, ν̇2
e = µ

/
r 3

e − 3µl2
/

2r 5
e

p2 = 2m2
(
2µre − 3µl2

/
re

)

Corollary 3: The third class of relative equilibria of the dumbbell,
with the axis of the dumbbell aligned to be orthogonal to the plane
of the circular orbit, is unstable.

The modified Hessian evaluated at such a relative equilibrium is

∇̃2Vp

∣∣
3

=






2µm

r 3
e

+ 3µml2

r 5
e

0 01 × 3

0
2µm

re
− 5µml2

r 3
e

(
2µml2

r 3
e

− 3µml4

r 5
e

)
e�

3

03 × 1

(
2µml2

r 3
e

− 3µml4

r 5
e

)
e3 −6µml2

r 3
e

e3e�
3 −

(
2µml2

r 3
e

− 3µml4

r 5
e

)
ê1

4






(32)

This modified Hessian has one zero eigenvalue, because the
third row and third column are zeros, and the eigenvalue
−(2µml2/r 3

e − 3µml4/r 5
e ) is negative because l/re � 1. Using the

theorem, we conclude that the third class of relative equilibria given
by Eq. (27) is unstable.

V. Stabilization of Unstable Relative Equilibria
In this section we assume that the attitude of the dumbbell body

can be controlled through a moment vector expressed in the body-
fixed coordinate frame. Based on this control assumption, the con-
jugate momentum corresponding to the cyclic variable ν remains
conserved. Consequently, the reduced equations can be obtained as
earlier, resulting in

2mr̈ − 2mr λ̇2 + [
f (λ)� R J

(
ω − λ̇R�e2

)]2 ∂Up

∂r

− p f (λ)� R J
(
ω − λ̇R�e2

)∂Up

∂r

+ 2µm

r 2
− 3µml2

r 4

[
1 − 3

(
e�

1 Re1

)2] + p2

4

∂Up

∂r
= 0 (33)

mλλ(r, λ, R)λ̈ + mλω(r, λ, R)ω̇ + ∂mλλ

∂r
ṙ λ̇ + 1

2

∂mλλ

∂λ
λ̇2

+ m R
λω(λ, R, ω)ω + ∂mλω

∂r
ṙω + p

{
∂m pλ

∂r
ṙ + m R

pλ(r, λ, R, ω)

}

− 1

2
ω� ∂ Mωω

∂λ
ω − p

∂m pω

∂λ
ω + ∂Vp

∂λ
= 0 (34)

˙̃
� + (

ω − λ̇R�e2

) × �̃ − {
p − 2 f (λ)� R J

(
ω − λ̇R�e2

)}

× ̂R� f (λ)J
(
ω − λ̇R�e2

)
Up + v� = τ (35)

where τ is the control moment vector. This control moment can
be used to influence the attitude dynamics and, indirectly, the orbit
dynamics of the dumbbell.

The control moment is used here to stabilize the relative equilibria
that, if uncontrolled, would be unstable. The approach is to select
the control moment to modify the amended potential so that the
unstable relative equilibria are made Lyapunov stable. This approach
is referred to as potential shaping. Note that the feedback control
moment depends only on attitude feedback.

The idea of potential shaping is not new, and in Refs. 13 and 14 the
interesting case of asymptotic stabilization of underactuated Hamil-
tonian systems is considered. Potential shaping has also been used
in conjunction with controlled Lagrangian techniques in Ref. 15 to
stabilize equilibria of Hamiltonian systems asymptotically. In our
application, we use this technique to modify the amended poten-
tial to stabilize unstable relative equilibria of the reduced system of
the dumbbell in three-dimensional motion in a central gravitational
field. The feedback moment maintains the Hamiltonian structure of
the system, and so the feedback system is also conservative, and
we obtain Lyapunov stability, which can be verified by applying
the Routh stability criterion (theorem). In addition to the potential
shaping attitude feedback control presented here, one may apply
Rayleigh dissipation to the system by angular velocity feedback to
make the system asymptotically stable.

A. Potential Shaping for Dumbbell in Space
We observe from Eqs. (31) and (32) that the unstable modes

at the unstable relative equilibria (26) and (27) are due to the
attitude degrees of freedom only. Therefore, a feedback control
law that stabilizes an unstable relative equilibrium may be ob-
tained by adding an artificial potential Va(R) that depends on the
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attitude only, so that the Hessian of the total amended potential
V (r, λ, R) = Vp(r, λ, R) + Va(R) is positive semidefinite with one
zero eigenvalue corresponding to the eigenvector representing the
axial direction of the dumbbell body in the body frame. This property
of the Hessian of the total potential also ensures that the feedback
does not create a moment about this axial direction. The attitude
feedback stabilizing control law τ(R) is then obtained from the first
variation of the artificial potential Va(R). Note that this artificial
potential does not break the symmetry due to the cyclic variable ν
because it does not depend on it and, hence, does not act on the ν
dynamics. This is unlike the application in Ref. 15, where potential
shaping is carried out to break existing symmetries in a mechanical
system.

The artificial potential is chosen to be of the form

Va(R) = − 1
2 c� R J R�c + 1

2 ml2η
(
e�

1 Re1

)2
(36)

where c ∈ R
3 is a constant vector and η is a constant nonnegative real

scalar. Note that the vector c has units of angular velocity and can
be thought of as an artificial angular velocity induced by the feed-
back control. The first term in Eq. (36) can, therefore, be described
as an artificial amended potential. The second term can clearly be
described as an artificial gravity potential, when compared with the
natural gravitational potential in Eq. (5).

With this choice of artificial potential, the total potential
V (r, λ, R) = Vp(r, λ, R) + Va(R) has a Hessian whose structure is
given by

∇̃2V (r, λ, R) =






∂2Vp

∂r 2

∂2Vp

∂r∂λ

∂v

∂r

∂2Vp

∂r∂λ

∂2Vp

∂λ2

∂v

∂λ
(

∂v

∂r

)� (
∂v

∂λ

)�
V + Va






(37)

with zeros in the third row and third column, corresponding to a
single zero eigenvalue. Here, Va is the Hessian of the artificial po-
tential, and it is obtained from the second variation of the artificial
potential (36). From the given form of the artificial potential (36),
we obtain the feedback control moment

τ = R̂�cJ R�c + ml2η
(
e�

1 Re1

)
ê1 R�e1 (38)

and the Hessian

Va = R̂�c[J R̂�c − Ĵ R�c]

+ ml2η
[(

e�
1 Re1

)
ê1 R̂�e1 − ê1 R�e1e�

1 Rê1

]
(39)

The derivation of these quantities is shown in Appendix C.
The closed-loop dynamics of the dumbbell in a central grav-

itational potential is also Hamiltonian. Hence, we can apply the
Routh stability criterion (theorem) to the closed-loop dynamics of
the dummbbell body. If the quantity ∇̃2V evaluated at a relative
equilibrium has negative eigenvalues, then the linearization of the
closed-loop reduced dynamics is unstable. We now apply the theo-
rem to stabilize the unstable relative equilibria of the dumbbell body
in space using attitude feedback.

B. Stabilization of Horizontal In-Plane Relative Equilibria
For the unstable relative equilibria given by Eq. (26) with the

dumbbell axis pointing along the horizontal in-plane direction, we
have, from Eq. (31), for the free dynamics

V = (
2µml2

/
r 3

e −µml4
/

r 5
e

)(−ê2
2 − ê2ê1

2ê2

)−(
6µml2

/
r 3

e

)
e2e�

2

In matrix form,

V = ml2




0 0 0

0 n 0

0 0 q



 , n = −6µ

r 3
e

, q =
(

2µ

r 3
e

− µl2

r 5
e

)

(40)

We choose an artificial potential of the form of Eq. (36) with c given
by

c = c1e1 + c3e3

where c1 and c3 are real scalars and η = 0. The control law obtained
from this artificial potential using Eq. (38) is

τ = R�




c1

0

c3



 × J R�




c1

0

c3



 (41)

The Hessian of the artificial potential, evaluated using Eq. (39), is

Va = [R̂�cJ − ̂J R�c]R̂�c, c = [c1 0 c3]� (42)

Evaluated at the relative equilibria given by Eq. (26), this Hessian
gives

Va = ml2




0 0 0

0 c2
1 −c1c3

0 −c1c3 c2
3



 (43)

The closed-loop system is obtained by using the feedback control
moment (41) as an input to the attitude equation of motion (35)
for the reduced dynamics. The following result gives a sufficient
condition for the stability of the closed-loop system based on the
theorem.

Corollary 4: The second class of relative equilibria of the dumb-
bell, given by Eq. (26), is stable with the feedback control moment
given by Eq. (41) if

nq + nc2
3 + qc2

1 > 0, q + n + c2
1 + c2

3 > 0 (44)

where

n = −6µ
/

r 3
e , q = (

2µ
/

r 3
e − µl2

/
r 5

e

)

In this case, one can verify that

V + Va ≥ 0, ker(V + Va) = {e1}

This makes the Hessian of the total potential (37) positive semidef-
inite with one zero eignevalue, and the result follows. If we choose
the specific constants

c1 =
√

9µ
/

r 3
e , c3 =

√
µl2

/
2r 5

e (45)

that satisfy Eq. (44), then we obtain a control law from Eq. (41)
that stabilizes the unstable horizontal in-plane relative equilibrium
of the dumbbell body, given by r = re, λ = 0, and R = Re such that
Ree1 = e2.

C. Stabilization of Horizontal Out-of-Plane Relative Equilibria
At the unstable relative equilibria given by Eq. (27) with the

dumbbell axis pointing along the horizontal out-of-plane direction,
the attitude submatrix of the Hessian matrix of the modified potential
is given by Eq. (32) as

V = −(
6µml2

/
r 3

e

)
e3e�

3 − [(
2µml2

/
r 3

e

) − (
3µml4

/
r 5

e

)]
ê1

4

In matrix form,

V = ml2




0 0 0

0 n1 0

0 0 n2



 , n1 = −
(

2µ

r 3
e

− 3µl2

r 5
e

)

n2 = −
(

8µ

r 3
e

− 3µl2

r 5
e

)
(46)
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We choose an artificial potential of the form of Eq. (36) with c given
by

c = c1e1 + c2e2

where c1 and c2 are real scalars and η > 0. The control law obtained
from this artificial potential is obtained using Eq. (38) as

τ = R�




c1

c2

0



 × J R�




c1

c2

0



 + ml2η
(
e�

1 Re1

)
e1 × R�e1 (47)

The Hessian of the artificial potential is evaluated using Eq. (39) as

Va = [R̂�cJ − Ĵ R�c]R̂�c + ml2η

× [(
e�

1 Re1

)
R̂�e1ê1 − ê1 R�e1e�

1 Rê1

]

c = [c1 c2 0]�, η > 0 (48)

Evaluated at the relative equilibria given by Eq. (27), this Hessian
gives

Va = ml2




0 0 0

0 c2
2 −c1c2

0 −c1c2 c2
1 + η



 (49)

The closed-loop system is obtained by using the feedback control
moment (47) as an input to the attitude equation of motion (35)
for the reduced dynamics. The following result gives a sufficient
condition for the stability of the closed-loop system based on the
theorem.

Corollary 5: Assume that c2
1, c2

2, and η are all of the order of
µ/r 3

e . The third class of relative equilibria of the dumbbell, given
by Eq. (27), is stable with the feedback control moment given by
Eq. (47) if

n1n2 + n1c2
1 + n2c2

2 + η
(
n1 + c2

2

)
> 0

n1 + n2 + c2
1 + c2

2 + η > 0 (50)

where

n1 = −(
2µ

/
r 3

e − 3µl2
/

r 5
e

)
, n2 = −(

8µ
/

r 3
e − 3µl2

/
r 5

e

)

In this case, both of the modes obtained from the attitude degrees
of freedom at relative equilibria given by Eq. (27) are unstable. With
the feedback control torque given by Eq. (47), we can verify that

V + Va ≥ 0, ker(V + Va) = {e1}

The 3 × 3 submatrix of the Hessian (37) of the feedback system,
obtained by eliminating the first and third rows and columns, is
given by

ml2




p 0 −n1

0 n1 + c2
2 0

−n1 0 n3 + c2
1 + η





where p = 2µ/rel2 − 5µ/r 3
e is positive definite, which makes the

Hessian (37) positive semidefinite with one zero eigenvalue. If we
make the specific choices

c1 =
√

µ
/

r 3
e , c2 =

√
3µ

/
r 3

e , η = 12µ
/

r 3
e (51)

which satisfy Eq. (50), we obtain a control law from Eq. (47) that
stabilizes the unstable horizontal out-of-plane relative equilibrium
of the dumbbell body, given by r = re, λ = 0, and R = Re such that
Ree1 = e3.

VI. Conclusions
We have extended some of the results of our earlier work, which

treat the dynamics of a dumbbell-shaped body in planar motion in
a central gravitational field, to motion in three-dimensional space.
The system of the dumbbell body in three-dimensional motion in
a central gravity field consists of three orbital degrees of freedom
and two attitude degrees of freedom because the inertia about the
longitudinal axis of the dumbbell is ignored. We represent the or-
bital degrees of freedom using spherical coordinates, defined by the
LVLH coordinates; the attitude is represented globally by a rota-
tion matrix from a body-fixed coordinate frame to the LVLH frame.
We obtain the equations of motion representing the full orbit and
attitude dynamics.

We obtain the equations of motion representing the reduced dy-
namics using Routh reduction. The reduced system has four degrees
of freedom; the orbit degrees of freedom are represented by the ra-
dial distance and the angle of declination. The attitude is represented
by the rotation matrix from the body-fixed frame to the LVLH frame.
We obtain the relative equilibria, which correspond to local extrema
of the modified potential for the reduced dynamics. These relative
equilibria correspond to circular orbits, with fixed orbital rate and
fixed attitude.

Because the two end masses of the dumbbell model are equal, the
system also has a discrete symmetry. This gives rise to three types
of relative equilibria: one in which the dumbbell axis is aligned
with the radial (local vertical) direction, another in which the axis
is aligned with the local horizontal direction in the plane of the
circular orbit, and a third in which the axis is aligned with the local
horizontal direction out of the plane of the orbit. The first two types
are identical to those obtained for the dumbbell in planar motion,
dealt with in our previous work. We analyze the stability of these
three types of relative equilibria using the Routh stability criterion.
The first type of relative equilibria is found to be locally (Lyapunov)
stable, whereas the other two types of relative equilibria are unstable.

In the final part of the paper, we use attitude feedback control
based on potential shaping to stabilize the unstable relative equilib-
ria of the dumbbell body. This is based on the unstable modes at the
unstable relative equilibria being due to the attitude, rather than the
orbital degrees of freedom. Hence, potential shaping with attitude
feedback is adequate for stabilizing these relative equilibria. To do
this, we create an artificial potential depending on the attitude that
is similar to the modified potential of the natural reduced dynamics
of the dumbbell in central gravity. This artificial potential has two
terms, one of which is similar to the gravity potential, and the other
of which is similar to the amendment in the modified potential. The
feedback torques for stabilization of an unstable relative equilib-
rium are obtained by computing the first variation of this artificial
potential with respect to the attitude. The stability of the feedback
controlled system is analyzed by applying the Routh stability cri-
terion to the the Hessian of the total potential, which is the sum of
the modified and artificial potentials, at that relative equilibrium.
We find that to stabilize the unstable relative equilibria where the
axis is aligned with the local horizontal direction in the plane of the
circular orbit, we need to use feedback control based only the term
of the artificial potential that is similar to the amendment. However,
to stabilize the unstable relative equilibria where the axis is aligned
with the local horizontal direction out of the plane of the circular
orbit, we need to use feedback control based on both terms of the
artificial potential.

Appendix A: Attitude Dynamics
Here we show the derivation of the attitude equations of motion

for the full and reduced dynamics of the dumbbell body in central
gravity. We define the quantity 
 ∈ so(3) (given in Refs. 11 and
12), so that the attitude and angular velocity variations are

δR = R
̂, δω = 
̇ + ω̂


We then apply standard variational arguments to the Lagrangian of
the full dynamics, assuming zero initial and final values of 
. This
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leads to the equation

d

dt

(
∂L
∂ω

)
= ∂L

∂ω
ω̂ + r (A1)

where r is the so(3)-valued one-form obtained such that

− 1
2 〈〈r, 
〉〉

is the variation of the Lagrangian with respect to the rotation matrix
R, holding other quantities constant. Here 〈〈 〉〉 denotes the Killing
form in so(3) (see Refs. 17 and 18) given by

〈〈a, c〉〉 = trace(âĉ)

We denote one-forms like r∈ so(3)� by row vectors to distinguish
them from elements in so(3), which are denoted by column vec-
tors. Substituting the Lagrangian L given by Eq. (6) into Eq. (A1)
and defining the conjugate momentum � = (∂L/∂ω)�, we obtain
Eq. (11) for the attitude dynamics of the dumbbell body.

The reduced equations of motion are obtained by applying
standard variational techniques to the Routhian, instead of the
Lagrangian. Hence, we obtain the following equation, which is sim-
ilar to Eq. (A1):

d

dt

(
∂R
∂ω

)
= ∂R

∂ω
ω̂ + s (A2)

wheres is theso(3)-valued one-form obtained such that− 1
2 〈〈s, 
〉〉

is the variation of the Routhian with respect to the rotation matrix
R, where other quantities are held constant. The one-form s for the
Routhian R given by Eq. (15) is expressed as the row vector

s = −2λ̇
(
ω − λ̇R�e2

)�
J R̂�e2 − {

p − 2 f (λ)� R J
(
ω − λ̇R�e2

)}

× {(
ω − λ̇R�e2

)�
J ̂R� f (λ) − λ̇ f (λ)� R J R̂�e2

}
Up

− (6µml2/r 3)
(
e�

1 Re1

)
e�

1 Rê1 − (p2/4)u

= −λ̇�̃� R̂�e2 − {
p − 2 f (λ)� R J

(
ω − λ̇R�e2

)}

× (
ω − λ̇R�e2

)�
J ̂R� f (λ)Up − v

where �̃ = (∂R/∂ω)� is the restriction of the angular momentum
� to the conjugate momentum level set Sp , and u and v are so(3)-
valued one-forms, with

v = (6µml2/r 3)
(
e�

1 Re1

)
e�

1 Rê1 + (p2/4)u

u = (1/m2r 4) f (λ)� R
{[

J R� f (λ)
]̂ − J ̂R� f (λ)

}
sec4 λ

as defined in Sec. III, and where − 1
2 〈〈v, 
〉〉 is the variation of the

amended potential Vp with respect to R. Substituting the RouthianR
given by Eq. (15) into Eq. (A2), and using the preceding expression
for s, we obtain Eq. (20) for the attitude dynamics of the dumbbell
body in terms of �̃ = (∂R/∂ω)�.

Appendix B: Conservation of Energy
To show that the total energy for the dumbbell system in central

gravity, given by Eq. (13), is conserved, we evaluate its time deriva-
tive along the flow of the system. We write the energy expression
again as

E = m[ṙ 2 + r 2(ν̇2 cos2 λ + λ̇2)] + (
R�ωL + ω

)�
J
(

R�ωL + ω
)

− (µm/r)
{

2 − (l2/r 2)
[
1 − 3

(
e�

1 Re1

)2]}

We have

ωB = R�ωL + ω

The time derivative of E is then given by

dE

dt
= m[2ṙ r̈ + 2rṙ(ν̇2 cos2 λ + λ̇2)

+ 2r 2(ν̇ν̈ cos2 λ + λ̇λ̈ − ν̇2λ̇ cos λ sin λ)] + 2ωB J ω̇B

+ µm

r 2
ṙ

{
2 − l2

r 2

[
1 − 3

(
e�

1 Re1

)2]
}

− 2µml2ṙ

r 4

× [
1 − 3

(
e�

1 Re1

)2] − 6µml2

r 3

(
e�

1 Re1

)
e�

1 Rω̂e1

= 2mṙ

{
r̈ − r(ν̇2 cos2 λ + λ̇2) + µ

r 2
− 3µl2

r 4

[
1 − 3

(
e�

1 Re1

)2]
}

+ 2mν̇[r 2ν̈ cos2 λ + 2rṙ ν̇ cos2 λ − 2r 2ν̇λ̇ sin λ cos λ]

+ 2mλ̇[r 2λ̈ + 2rṙ λ̇ + r 2ν̇2 sin λ cos λ] + 2ωB J ω̇B

+ 6µml2

r 3

(
e�

1 Re1

)
e�

1 Rê1ω (B1)

On substituting the equations of motion (8–10) into the right-hand
side of equation (B1), we obtain

dE

dt
= −2ν̇

[
λ̇g(λ)� R JωB + f (λ)� Rω̂JωB + f (λ)� R J ω̇B

]

−2λ̇
[−e�

2 Rω̂JωB − e�
2 R J ω̇B − ν̇g(λ)� R JωB

]

+ 2ω�
B J ω̇B − 6µml2

r 3

(
e�

1 Re1

)
ω�ê1 R�e1

= −2[ν̇ f (λ) − λ̇e2]� Rω̂JωB − 2(ν̇ f (λ) − λ̇e2)
� R J ω̇B

+ 2ω�
B J ω̇B − 6µml2

r 3

(
e�

1 Re1

)
ω�ê1 R�e1

= 2ω�
B J ω̇B − 2ω�

L R(ω̂JωB + J ω̇B)

− 6µml2

r 3

(
e�

1 Re1

)
ω�ê1 R�e1

= 2ω�
B J ω̇B + 2ω� R̂�ωL JωB − 6µml2

r 3

(
e�

1 Re1

)
ω�ê1 R�e1

= 2ω�
[

J ω̇B + (ω̂ + R̂�ωL)JωB − 3µml2

r 3

(
e�

1 Re1

)
ê1 R�e1

]

= 0

using Eq. (12) at the last step.

Appendix C: First and Second Variations of Potentials
Here we obtain Eqs. (28) and (29), which give the Hessian of the

amended potential of the reduced dynamics, as well as the equations
for the feedback torque (38) and Hessian (39) obtained from the
artificial potential. The top left 2 × 2 submatrix of the Hessian (28) is
obtained from the second partial derivatives and the mixed derivative
of the amended potential with respect to the coordinates r and λ.
In Appendix A, we obtained the one-form v from the first variation
of the amended potential Vp(r, λ, R). For convenience, we give this
expression again

v = (6µml2/r 3)
(
e�

1 Re1

)
e�

1 Rê1 + (p2/4)(1/m2r 4) f (λ)� R

× {[J R� f (λ)]̂ − J ̂R� f (λ)} sec4 λ

The partial derivatives of v with respect to r and λ give the (1,3),
(3,1), (2,3), and (3,2) blocks of the Hessian matrix (28). The (3,3)
block, which is obtained from the second variation of Vp with respect
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to the attitude R, is given by the matrix V , such that

〈〈V
, 
〉〉 = −2V R2

p (r, λ, R, 
) (C1)

and V R2

p (r, λ, R, 
) is the second variation of Vp holding r and λ
constant and varying R. The quantity V is also given by


�V = vR(r, λ, R, 
)

the first variation of v with respect to R. For the amended potential
Vp given by Eq. (16), we can use Eq. (C1) or the preceding result
to evaluate V . We then obtain V as given by Eq. (29).

The artificial potential is given by Eq. (36), which we given here
for convenience

Va(R) = − 1
2 c� R J R�c + 1

2 ml2η
(
e�

1 Re1

)2

The first variation of this gives the feedback torque τ as follows:

V R
a (R, 
) = 1

2 [c� R J 
̂R�c − c� R
̂ J R�c]

+ ml2η
(
e�

1 Re1

)
e�

1 R
̂e1

= 1
2 [
� R̂�cJ R�c − c� R J R̂�c
]

− ml2η
(
e�

1 Re1

)
e�

1 Rê1


= −c� R J R̂�c
 − ml2η
(
e�

1 Re1

)
e�

1 Rê1


= − 1
2 〈〈τ, 
〉〉

⇒ τ = R̂�cJ R�c + ml2η
(
e�

1 Re1

)
ê1 R�e1

as given in Eq. (38). The second variation of the artificial potential
(36) gives the Hessian Va in Eq. (39), as follows:

V R2

a (R, 
) = − 1
2 〈〈Va
, 
〉〉

= c� R J
̂

̂R�c − c� R
̂ J R̂�c

+ ml2η
[
e�

1 R
̂e1

(
ê1 R�e1

) − (
e�

1 Re1

)
ê1
̂R�e1

]

= c� R
̂ Ĵ R�c + 
� R̂�cJ R̂�c

+ ml2η
�[(
e�

1 Re1

)
ê1 R̂�e1 − ê1 R�e1e�

1 Rê1

]

= 
� R̂�c Ĵ R�c + 
� R̂�cJ R̂�c

+ ml2η
�[(
e�

1 Re1

)
ê1 R̂�e1 − ê1 R�e1e�

1 Rê1

]

⇒ Va = R̂�c Ĵ R�c + R̂�cJ R̂�c

+ ml2η
[(

e�
1 Re1

)
ê1 R̂�e1 − ê1 R�e1e�

1 Rê1

]
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