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SECOND MODE

CLAMPED PLATE

Table 1 Values of aAT(b/t)\ for appearance of the second
mode

FIRST MODE

Fig 3 Buckling of flat plates under combined stress

buckles into the first mode when the stress in the x direction,
which is larger than % the stress in the y direction, reaches the
following value:

(3)

(4)

(5)

<rx =

and the deflection form is

w = w0 sm(7rx/b)

so that the unit axial shortening in the buckle mode is

d ( i \ fb (dwi = (to) Jo U dx

The condition of compatibility in the a; direction gives

aAT = <rxBx/E - vvy/E + 8/b (6)

Substituting Eqs (3) and (5) in Eq (6) and solving for
WQ yields

WQ = (2b/ir)[aAT - 0 9(t/b)2Bx + vay/E}^ (7)

The critical stress condition for the curved plate is calculated
by utilizing the following criterion:

0 3Et/R (8)

which was arrived at by adding the buckling stress of the
cylinder to that of a square plate The radius R in the
previous equation is taken as the constant radius which gives
the same deflection as the sine wave,

R = &2/8w0 (9)
The equation for compatibility in the y direction reduces to

ay/E = (l/By} [0 9K4/&)1 + «A!T] (10)

Substituting Eqs (7, 9, and 10) in Eq (8) and setting v =
0 30 yields

aAT(6/«)2 = 1 17£y
2 + 3 05£y - 0 27 ± [1 36Btf

4 +
7 YIBJ + 1 3&B,2 - 2 lOB^2]1/2 (11)

As can be seen from Eq (11), the value of the parameter
aAT(6/i)2 at which the second mode occurs depends, in a rather
involved way, on the values of the in-plane restraint param-

By

I
2
3

1

6 74
19 2
36 6

Bx
2

6 33
18 7
36 1

3

5 84
18 2
35 5

eters Bx and By A set of values of aAT(b/t)2 for various
restraints, including completely restrained Bx = By = |1,
and lightly framed panels Bx = By = 3, is given in Table_l

Concluding Remarks

All the values of a AT (6/02 are significantly higher than the
value 2 43, which is the lowest value corresponding to initial
buckling in the second mode with complete inplane restraint
of the heated panel in the y direction The value of Bx is
of minor importance as long as the panel buckles initially
in the first mode In the application of the preceding re-
sults it should be noted that the assumptions of simple sup-
port and uniform compression may lead to overoptimism
where these conditions are not closely approximated
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Detonation of Hydrogen-Oxygen
at Low Temperature and High Pressure

K W RAGLAND,* G L CosENS,f
AND R E CULLENJ

University of Michigan, Ann Arbor, Mich

THE detonation velocity of hydrogen-oxygen mixtures is
of fundamental interest in the study of combustion in-

stability in conventional rocket motors as well as in the re-
search on unconventional rocket motors utilizing detonative
combustion 1 This note presents the experimentally ob-
tained detonation velocity of gaseous hydrogen-oxygen mix-
tures at initial temperatures from room temperature to the
vicinity of the oxygen vapor saturation point (~110°K) and
initial pressures of 1-15 atm Stoichiometric and hydrogen-
rich mixtures were considered of primary interest The pre-
viously existing experimental data (e g , Refs 2 and 3) thus
have been extended

The tests were conducted with a stainless steel tube, 0 25-
in i d , 0 50-in o d , 20 ft long and coiled in a 10-in diam
(The curvature of the tube was shown to have a negligible
effect on the detonation velocity) The velocity of the
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Fig 1 Experimental detonation velocity UD of hydrogen-
oxygen detonations as a function of the initial tempera-
tme Ti for mole fi action of hydiogen XHZ = 0 500

±0005

detonation wave was measured electronically by utilizing
the ionized gases behind the detonation wave to trigger a time
interval counter This was accomplished by means of three
ionization probes spaced 8 ft apart as input to a thyratron
circuit The hydrogen-oxygen mixtures were cooled to low
temperatures by immersing the detonation coil in a bath
of isopentane, which had been cooled by bubbling liquid
nitrogen through it The determination of the actual mix
ture ratio of H2-02 used for a run was accomplished by meas-
uring the detonation velocity of a given mixture in a straight
detonation tube at 1 atm and 20° C, and comparing the
result to the extensive existing data and to partial pressure
measurements

It was found that the combustion products (water) froze
on the walls of the detonation coil and that, unless the ice was
removed, erroneous results were obtained on the next run
Several methods were tried to eliminate the ice without
removing the coil from the bath including a helium shock
tube driver (gaseous piston), but due to the extremely rapid
freezing process and the minute vapor pressure of ice at low
temperatures, these attempts were not successful Thus,
the detonation coil had to be removed from the bath after
each run, warmed to room temperature, dried, and evacuated
before making the next run

The results of detonation velocities for fully developed
(Chapman-Jouguet) waves vs initial temperature of the
mixtures for initial pressures of 1, 5, 10, 15 atm and 0 500,
0 667, 0 730, 0 800 mole-fraction of hydrogen are presented
in Figs 1-4 The test results indicate that for a given initial
pressure the detonation velocity increases at a slightly
greater than linear rate as the initial temperature is lowered
down to the saturation point of oxygen The results for
stoichiometric H2-02 mixtures are compared with the theo-
retical results of Zeleznik and Gordon4 and with the previous
data of Moyle2 and Gealer3 in Fig 5
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Fig 2 Expeiimental detonation velocity UD of hydrogen-
oxjgen detonations as a function of the initial tempera-

tures Ti for XEU = 0 667 ± 0 0025

Fig 3 Experimental detonation velocity UD of hydrogen-
ox\gen detonations as a function of the initial tempeia-

ture Ti for XH = 0 730 ± 0 005
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Fig 4 Experimental detonation velocity UD of hydrogen-
oxygen detonation as a function of the initial tempera-

ture Ti for Xa9= 0 80 =fc 0 01

In comparing theory with experiment it should be noted
that the size of the detonation tube has a significant effect
on the velocity so that the measured velocity is less than
that predicted by the Chapman-Jouguet plane-wave theory
Fay5 has proposed that this velocity deficit is caused by a
viscous boundary layer on the tube wall within the reaction
zone On the basis of a two-dimensional analysis, Fay ob-
tains the following expression for the velocity deficit AUii

= 2l<r*/D
where

and where
D = diameter of tube in centimeters
a* = boundary-layer displacement thickness
Ui = propagation velocity of the detonation wave
t = thickness of reaction zone
He = viscosity of the gas in the combustion zone at outer

edge of boundary layer
pi = initial (upstream) density

For the stoichiometric hydrogen-oxygen reaction at 1 atm
pressure and room temperature, Fay suggests the values t =
0 35 cm and /*« = 12 3 X 10~4 g-cm-^sec"1 For applica-
tion to this experiment we assume that the thickness of the
reaction zone (t) is primarily determined by a recombination
reaction so that t is inversely proportional to the square of the
initial pressure Also, we assume that /*« does not vary sig-
nificantly with initial pressure and temperature

The results of the velocity deficit calculations are shown
in Table 1 With this correction, good agreement between
theory and experiment is obtained at low pressures At
higher pressures a significant variation between theory and
experiment is apparent which cannot be accounted for by
the tube size effect It is possible that imperfect gas effects
(not considered in the theoretical calculations of Ref 4) can
be the major cause of this discrepancy

This experiment
Theoretical results of Zeleznik
and Gordon (Ref 4)
Moyle's experiment (Ref 2)
Gealer s experiment (Ref 3)
This experiment corrected for tube
size effect using Ref 5

Oxygen saturation line corresponding
to theoretical data
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Fig 5 Comparison of experimental detonation velocity
UD as a function of initial temperature TI at various initial
pressures PI with results of other investigators for stoichio-

metric (Xn 2 = 0 667) Kb — O% mixtures

Table 1 Results of velocity deficit calculations using
theory of Ref 5

PI, atm
1
1
1
5
5
5

10
10
10
15
15
15

rp °TC

293
200
110
293
200
110
293
200
110
293
200
110

AtWi, %

3 1
2 9
2 6
0 17
0 16
0 14
0 049
0 046
0 040
0 024
0 022
0 019

At/i, fps

280
265
240

17
16
14
5
5
4
2
2
2
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