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Prognostic significance of regulatory T cells in tumor
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Since entering the immunological stage several decades ago, regulatory T cell biology has been realized as fundamentally
important in the prevention of autoimmune conditions, induction of transplant tolerance and the immune response to cancer.
The role of regulatory T cells in tumor immunobiology is still being elucidated. Currently, regulatory T cells are implicated in
the dampening of antitumor T-cell responses both through direct and indirect means. A number of investigators have
demonstrated that regulatory T cell density and location may serve as independent prognostic factors in several types of
cancer and are alternately detrimental or beneficial to patient survival. In this article, we will review the characteristics and
functional phenotype of classical regulatory T cells, describe their distribution and quantification in tumor-bearing hosts and
summarize recent studies investigating the prognostic significance of regulatory T cell number and locality in various cancers.

Regulatory T (Tge,) cells are a subpopulation of CD4™ T cells
with suppressive functionality. In healthy individuals, perhaps
the most important role of regulatory T cells is to maintain
immune tolerance to self-antigens, which prevents development
of autoimmune disease. Tgeg cells are also responsible for limit-
ing tissue damage during ongoing and resolving immune
responses, maintaining oral and fetomaternal tolerance and
restraining asthma and allergy. In settings of organ transplant
and cancer, the suppressive function of Tgeg cells is currently
being manipulated to improve patient health and survival. Inves-
tigators of transplantation biology are exploring ways to increase
the number of alloantigen-reactive regulatory T cells in trans-
plant recipients to minimize grafted tissue damage and prevent
organ rejection.’ In cancer patients, where regulatory T cells con-
tribute to the dampening of the antitumor immune response,
combination therapies that include the inhibition of regulatory T
cell function have been explored. Although few Stage III trials of
Tgreg inhibition have reached their clinical endpoints, analysis of
TRreg cells in tumor environments can still yield useful informa-
tion about patient prognosis and tumor growth, and may even-
tually lead to new, more successful treatment regimes.

Definition
Regulatory T cells, originally termed suppressive T cells, were
first described by Gershon et al.>* in the early 1970s as thy-
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mus-derived lymphocytes that tolerized bone marrow-
derived lymphocytes to antigenic challenge. Research in the
laboratory of R.J. North subsequently demonstrated that T
cells expressing CD4 and CD25 from tumor-bearing mice
abrogated tumor rejection; this suggested the existence of a
tumor-suppressor T cell population®*™®. Many years later, after
more than a decade of intense skepticism regarding the sup-
pressive cells’ existence, Sakaguchi et al. ascertained that the
interleukin-2 (IL-2) receptor o-chain (also called CD25)
could be used to identify them.” Later studies in the same
laboratory, as well as studies from Rudensky et al., estab-
lished the transcription factor forkhead box P3 (FoxP3) as
both a key intracellular marker of CD4+ CD25+ regulatory
T cells and necessary factor for development and proper
1% which was described early on as
prevention of autoimmune conditions (e.g., colitis'") and
suppression of CD8+ T cell homeostatic proliferation.'* Be-
ginning with these reports, the field of regulatory T cells has
expanded and progressed rapidly. In fact, several distinct reg-

function of these cells,®

ulatory T cell populations have been proposed, including
CD8+ subsets. These include thymically derived CD8+
CD25+ T cells that utilize cytotoxic T-lymphocyte-associated
antigen-4 (CTLA4) and transforming growth factor f
(TGFB) to suppress cell proliferation and activation," as well
as a CD8+ CD28— T cell population from the periphery
that targets immunoglobulin-like transcripts 3 (ILT3) and 4
(ILT4) on dendritic cells (DCs).'* Our group has identified
CD8+ T cells'>'® in human ovarian cancer that secrete the
suppressive cytokine interleukin-10 (IL-10). Interestingly, a
CD8+ regulatory T cell population specific for heme oxygen-
ase-1 has recently been identified."” This population, isolated
from the peripheral blood of cancer patients, inhibited prolif-
eration, cytotoxicity and cytokine production of other cell
immune cells. Groux et al. identified a FoxP3- CD4+ popula-
tion (termed Tl cells), which may also suppress through IL-

10 in vitro'® Weiner characterized a CD4+TGFp+
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population (Ty3) that exerts suppressive action in vivo
through TGFB."” Both aforementioned populations are likely
derived from the periphery. Classic regulatory T cells (Tgeg)s
CD4+CD25+FoxP3+ T cells, differentiate in the thymus
and migrate to the periphery.”**' They constitutively express
leukocyte common antigen isoform RO (CD45R0), glucocor-
ticoid-induced tumor-necrosis factor receptor-related protein
(GITR) and CTLA-4.2%72¢ Fascinatingly, research from Arne
Akbar’s group has demonstrated that functional Ty, may be
induced from memory CD4+ T cell populations found in
inflamed skin.”” These antigen-specific CD4+ T cells were
isolated, rendered anergic and then tested for suppressive
capacity. Interestingly, in parallel with their newly acquired
suppressive ability, FoxP3+ mRNA and protein expression in
these cells increased profoundly, while CD25, GITR and
CTLA-4 expression were all up-regulated. Finally, a recent pa-
per from the laboratory of Shimon Sakaguchi presents the pos-
sibility of further categorizing naturally occurring Tgeg into
three subgroups: CD45RA+4 FoxP3' resting Treg termed
“rTreg” by the authors, CD45RA— FoxP3™ activated Treg
(aTreg) cells and cytokine-secreting CD45RA-FoxP3'° nonsup-
pressive T cells.*® Ongoing investigations into phenotype, func-
tion and associations with disease states will likely contribute to
knowledge of an even wider range of regulatory T cell popula-
tions in the future. Regardless, it is important to emphasize
that regulatory T cells must be defined not only by phenotypic
markers but also by their suppressive activity in vivo.

Distribution in Tumor-Bearing Hosts

In healthy mice and humans, Tge, cells are found primarily
in the thymus, peripheral blood, lymph nodes and spleen.
They constitute 5-10% of the resident CD4+ T cells in each
of these organs.®' In bone marrow, however, Treg cells
account for a remarkable 25% of CD4+ T cells.*” Bone mar-
row is the preferential site of metastasis for some cancers
(such as breast, lung and prostate), suggesting that the sup-
pressive environment here is conducive to tumor growth. In
tumors themselves, however, there are a number of ways that
Treg cells might accumulate: trafficking to the tumor under
the influence of chemokine ligand 22 (CCL22),*® differentia-
tion'>1024737 or expansionz’g'40 within the tumor stroma and
conversion from normal T cells.*'** Many tumors express
tumor-associated antigens (TAAs), molecules found not only
on tumor cells but also on certain populations of normal
cells. The work of several groups has identified multiple
mechanisms of suppression by TAA-specific Tgeg cells. These
include induction of IL-10, which can drastically suppress
antigen-presenting cell (APC) and T cell function,* induc-
tion of TGFf, which may suppress natural killer (NK) cell
function,*® competitive consumption of interleukin-2 (IL-2),
which is a survival factor for conventional T cells,*>*”** per-
forin- and granzyme-dependent killing of T cells and
APCs,*** CTLA-4 induction of indolamine 2,3-dioxygenase
(IDO)-expressing APCs, which suppress T cell activation and
promote tolerance,”’™*> and finally, induction of B7-H4

Int. J. Cancer: 127, 748-758 (2010) © 2010 UICC

749

expression on APCs, which renders them immunosuppres-
sive.’>** Thus, Treg cells target both T cells and APCs to cre-
ate a generally tolerant tumor microenvironment.

Mouse tumors

Tumor-associated Tgeg cells have been studied largely with
reagents that target Tgeg cells in tumor-bearing mice. Treat-
ment with CD25-specific antibody (PC61) in vivo suppressed
growth of several tumor types.”>® These early studies dem-
onstrated a correlation between reduced Tge, numbers and
reduced tumor volume. Interestingly, depletion of total
CD4+ T cells corroborated these data and lead to improved
tumor immunity and rejection of tumors.”’>* Several groups
confirmed these data with CD25-depletion alone or in con-
cert with other treatments, such as anti-CTLA4 antibody,”®
anti-B7H1 antibodies (Zou et al., unpublished observations),
exogenous interferon-o (IFNa)®® or interleukin-12 (IL-12),%!
adoptive transfer of DCs®”®* and irradiated tumor cells.%’
Adoptive transfer of human® or mouse®*%° Tyeg cells into
mice have also provided a direct functional connection
between Tge, cell presence and reduced tumor immunity.
One study examined B16 melanoma-bearing mice that
received tumor-specific CD8+ T cells with either classic Treg
cells or with CD25— CD4+ T cells.®> CD8+ T-cell-mediated
tumor immunity was abrogated in mice receiving classic Treg
cells, but not CD25— CD4+ T cells. These studies demon-
strate that Tgeg cells inhibit murine TAA-specific immunity.

Human tumors
June et al. observed increased numbers of Tge, cells in
patients with nonsmall cell lung cancer and ovarian carci-
noma when compared to healthy patients.®® Since this study
in 2001, several other groups have made similar observations
in the peripheral blood of patients with various types of can-
cer, including pancreatic and breast cancer,”” colorectal can-
cer (CRC),%%%? gastric and esophageal cancer,”””! leukemia
and lymphoma,”*”?

cer®® and hepatocellular carcinoma.”

74,75 .
melanoma, lung and ovarian can-
6

Quantification of Regulatory T Cells in Tumor

Regulatory T cell numbers may be evaluated in the tumor
and tumor microenvironment in multiple ways. It is common
for these cells to be identified on the basis of CD25 and/or
FoxP3 expression. Quantification may be presented as a per-
centage of CD4+ T cells or total (CD3+) T cells, or as abso-
lute number per area (such as mm?’) in a given tissue, as in
the recent study by Haas et al.”” Additionally, data may take
the form of the ratio of regulatory T cells: effector T cells.
Typically, tissue samples are investigated either by creating
tissue microarrays and using immunohistochemistry or proc-
essing the tissue and examining cell populations via flow
cytometry. Importantly, it is known that cell types other than
Treg cells express what were formerly thought of as unique
Treg markers: both CD25 and FoxP3 can be expressed on
activated T cells.”*® A recent publication has suggested that
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analysis of DNA methylation of the FoxP3+ gene may be a
more conclusive way to identify Tre, cells®': apparently, a
certain region within the FoxP3 gene (TSDR, Tgeg-specific
demethylated region) is demethylated. Because this demethy-
lation is not found in other cell types—including those
known to express FoxP3, like activated T cells—it allows for
enumeration of Treg via DNA quantification methods such
as PCR. When presenting Tge; quantification data, it is im-
portant to consider it in the context of the numbers and
locations of other lymphocytes associated with cancer prog-
noses, such as T-helper-17 (Th17) cells, tumor-associated
macrophages (TAMs), and other APCs, especially DCs.

Association with Pathological and Clinical Outcome
Thus far, we have reviewed the current data on regulatory T
cell phenotype, quantification and function in the tumor
microenvironment. Much of the data suggests that a higher
Treg cell number within the tumor microenvironment would
imply a worse prognosis. In many cases, this is true. How-
ever, regulatory T cell infiltration in and around the tumor
can be beneficial, depending on the type of tumor in
question.

Ovarian cancer

A study in 2003 by Zhang et al. found significant differences
in the distributions of progression-free survival and 5-year
overall survival (OS) of 186 epithelial ovarian cancer patients
according to the presence or absence of intratumoral CD3+
T cells.®” Intratumoral T cells correlated with delayed recur-
rence or death of patients. T cell presence was additionally
associated with microenvironmental expression of lympho-
cyte-attracting chemokines and increased intratumoral levels
of IL-2 and IFNy. While this study did not specifically
address the presence or prognostic significance of Tgeg cells,
it supports the notion that T cell presence within the tumor
is beneficial—the logical hypothesis, then, would be that sup-
pression of intratumoral T cell activation might decrease sur-
vival. A subsequent study from the laboratory of Kunle
Odunsi demonstrated that epithelial ovarian cancer patients
with higher numbers of intraepithelial CD8+ T cells had
improved survival (55 versus 26 months) compared with
patients with lower numbers.*’ Interestingly, no survival asso-
ciation was found for CD3+ tumor infiltrating lymphocytes
(TILs). However, the patients with high versus low intraepi-
thelial CD8+/CD4+ TIL ratios had median survival of 74
and 25 months, indicating that CD4+ TIL (or subpopula-
tions thereof) might negatively influence the actions of
CD8+ TIL. With this in mind, the investigators examined
the survival of patients based upon intratumoral CD8+/Tge,
ratios. They found that patients with high ratios lived more
than two times longer than those with lower ratios (58 vs. 23
months), and the study concluded that Tg., presence in tu-
mor tissue can negatively impact patient prognosis. Our
group published a study in 2004 in which we examined 104
patients with ovarian carcinoma.” In these patients, we

Prognostic significance of Tgeg in tumor

found that human tumor Tgeg cells suppressed tumor-specific
T cell immunity and contributed to tumor growth in vivo.
Treg cells were not only more populous in ascites and tumors
of patients with Stage III and Stage IV disease, but were also
associated with a strikingly high death hazard and reduced
survival-patients with 341 or more Tge, cells per ten high-
power fields (HPF) had a 25-fold higher risk of death than
patients with 131 or fewer Tgeg cells in the same number of
fields. It is important to note that both tumor cells and
TAMs produced the chemokine CCL22, which mediated Tre,
recruitment to the tumor. In 2007, we published a report
describing the relationship between B7-H4, Tge, cells, and
the survival of 103 patients with ovarian cancer.** We had
previously showed that ovarian tumor cells and TAMs
expressed B7-H4.> Our data demonstrated that B7-H4
expression in tumor microenvironmental macrophages was
significantly correlated with intratumoral Ty, numbers, and
that both of these variables were associated with poor patient
outcome. Tumor Tge, cells enabled local macrophages to
spontaneously produce IL-10 and IL-6, through which the
macrophages stimulated their own B7-H4 expression. Along
with the 2004 study’® and our more recent work demonstrat-
ing that T, cells induce B7-H4 on APCs (including macro-
phages),” our data support the notion that Tge, cells may
convey suppressive activity to APCs through B7-H4 induc-
tion in human ovarian cancer. These four studies present a
rather convincing picture that increased Tge, cell presence
and function in ovarian cancer correlates with reduced sur-
vival. The data detailing involvement of other cell types in
Treg cell recruitment and function in the tumor emphasizes
the necessity to comprehensively evaluate the cellular net-
work in the tumor microenvironment.

Gastric cancer

Kawaida et al. published a study in 2005 documenting an
increased number of CD4+ CD25™ T cells in regional lymph
nodes in gastric cancer patients when compared to control
mesenteric lymph nodes from the same patients.** Functional
tests of these cells confirmed inhibitory activity correspond-
ing to Treg cells. A subsequent report by Kono et al. investi-
gated the proportion of CD4+ CD25hi FoxP3 mRNA-
expressing T cells in total PBMC CD4+ T cells in 72 patients
with gastric cancer and 42 patients with esophageal cancer.®
Although they did not provide concrete numbers in the text
of the study, the authors state that there were significant dif-
ferences in the prevalence of CD44CD25hi T cells between
the early and advanced disease stages, both in gastric cancer
(~2% in stage I vs. ~7% in stage IV) and esophageal cancer
(about 2.5% in stage I vs. ~8% in stage IV). They also state
that in both cancers, the patients with a high proportion of
CD4+ CD25hi T cells showed poorer survival rates (about
40 vs. 93% after 6 years for gastric cancer, and 25 vs. 55% in
esophageal cancer) in comparison to those with a low pro-
portion. This study utilized small groups and was not specific
about grouping parameters. A 2008 study by Mizukami et al.
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demonstrated a relationship between the localization of Tre,
cells and clinical outcome in 80 patients with gastric cancer.®”
Although the populations of Foxp3+ cells in patients with
Stage IV cancer (107.4 cells per five randomly selected high-
magnification fields vs. 47.2) were significantly larger than
those with stage I cancer, this study did not find a significant
difference between survival of patients with low levels of Tre,
cells (fewer than 34.5 cells per five randomly selected fields)
and those with high Tge, levels (more than 34.5) in the tu-
mor. Localization patterns of infiltrating Foxp3"* cells in the
tumor were divided into three groups: a peritumour group
(more frequent in Stage I), a diffuse group and a follicular
group (defined as patients in whom the population of
Foxp3™ cells mainly occupied the lymphoid follicles of the
submucosal layer compared with any other region of the tu-
mor; more prevalent in Stages II-IV than Stage I). Interest-
ingly, patients with a diffuse pattern of FoxP3+ cells had sig-
nificantly poorer 10-year survival (60%) than patients with a
peritumoral pattern (90%). This suggests that Tge, location,
rather than number, might be more important when forecast-
ing the survival of patients with gastric cancer. Shortly after-
ward, Mizukami et al. published another report in which
they investigated the frequency of FoxP3+ Tgg within total
CD4+ cells in TILs, regional lymph nodes and peripheral
blood lymphocytes (PBLs) of gastric cancer patients (n =
45).%® As might be expected, the frequency of Treg cells in
TILs was significantly higher than in normal gastric mucosa
(12.4 vs. 4.1%) both in early and late disease. Interestingly,
the frequency of CCL17+ or CCL22+ cells among intratu-
moral CD14+ cells (monocytes and macrophages) was signif-
icantly higher than that of normal gastric mucosa, and this
frequency correlated significantly with tumor-infiltrating Tre,
numbers. The investigators confirmed in an in vitro migra-
tion assay that Tge, cells could be induced to migrate by
CCL17 or CCL22. This study supports the notion suggested
previously by our group™ that chemokines secreted by
monocytes and macrophages within the tumor environment
are important for Tge, trafficking into the tumor. More
recently, Haas et al. published an investigation of T, prog-
nostic significance in 52 patients with intestinal-type gastric
cardiac cancer.”” Although the group found no relationship
between the numbers of Tg, cells (or macrophages) infiltrat-
ing the tumor and patient survival, they did observe that
patients with larger Tr., populations in the tumor stroma
(>125.9 FoxP3+TILs/mm?®) had a median survival time of
58 months while those with smaller populations (<125.9
FoxP3+TILs per mm” of tissue) had a median survival time
of 32 months. Interestingly, they also discovered that patients
with higher (above 2.9) stromal CD68+ (a glycoprotein
expressed on monocytes and macrophages)/FoxP3+ cell
ratios in primary tumor had shorter median survival time
than those with lower ratios. This data again supports the
concept of an immunosuppressive and/or tumor-promoting
role for APC in the tumor microenvironment. Haas ef al.
propose that their findings suggest that inflammatory proc-
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esses within the tumor stroma of gastric cardiac adenocarci-
nomas may have direct effects on patient outcome. In oppo-
sition to the probable protumor role for macrophages, it is
feasible that large numbers of stromal Tge, may inhibit local
cancer-promoting inflammatory processes. Therefore, it is
possible in patients with chronic inflammation-associated
cancers such as gastritis-associated gastric adenocarcinoma
and ulcerative colitis—associated colon cancer (see discussion
below), Tgeg may be protective.

Pancreatic cancer

In 2006, Hiraoka et al. performed a study of the clinical sig-
nificance of Tge, in the progression of pancreatic ductal ade-
nocarcinoma.’” On investigation of tumor tissue and draining
lymph nodes of 198 pancreatic ductal adenocarcinomas, their
associated premalignant lesions and 15 non-neoplastic pan-
creatic lesions, the investigators found an increased Tgeg
prevalence in the ductal adenocarcinomas compared with
that in the stroma of non-neoplastic lesions. This increase
significantly correlated with certain clinicopathologic factors,
including distant metastasis, advanced tumor stage and
higher tumor grade. Interestingly, the investigators docu-
mented that infiltration of intraepithelial CD8+ cytotoxic T
cells into pancreatic ducts was prominent in low-grade pre-
malignant lesions but diminished during the progression of
both pancreatic intraepithelial neoplasias and intraductal pap-
illary-mucinous neoplasms. Conversely, numbers of stromal
Treg cells increased during this progression. Patients with a
low frequency (less than the average 34.6% of total intratu-
moral CD4+ T cells) of tumor-infiltrating Tgeg cells had sig-
nificantly longer survival than those who had a high fre-
quency (more than the average 34.6%) of intratumoral Tge,
cells.

Anal cancer

A study by Grabenbauer et al. explored the prognostic signif-
icance of Treg cells and TIL subsets in 38 anal squamous cell
carcinoma patients treated with radiochemotherapy.”
Although they found no prognostic effects for Tre; or macro-
phages, the investigators did determine that higher numbers
of cytotoxic TIL numbers (>0.6 granzyme B+ TILs per 100
tumor cells) served as indicators of poor prognosis (3-year
survival rate of 47 vs. 89% in patients with fewer than 0.6
granzyme B+ TIL per 100 tumor cells). Additionally, 3-year
survival rates for patients with low numbers of TILs (defined
as <3.8 CD3+ per 100 tumor cells or <1.5 CD4+ per 100
tumor cells) were 89 and 95%, respectively, and 54 and 48%,
respectively, in cases with high numbers (>3.8 CD3+ per
100 tumor cells or >1.5 CD44 per 100 tumor cells). It
appears here that lower numbers of TILs indicate better
patient outcome. However, the prognostic significance of
these cell populations must be considered in light of the fact
that the patients examined had already been treated with
radiochemotherapy, and it is therefore possible that the
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remaining tumor cells may have arisen from radiation-resist-
ant precursors.

Colorectal cancer

A recent study by Salama et al. assessed the survival correla-
tions of CD8+, CD45RO+ and FoxP3+ T cell frequencies in
tumor and normal colonic tissue from 967 patients with
Stage II or Stage III CRC.”’ The investigators found that
CD8+ and CD45RO+ cell densities (cells per mm?) were
lower in tumor than in normal tissue, but FoxP3+ cell den-
sity was higher. FoxP3+ cells were not associated with any
histopathologic features other than tumor stage: interestingly,
lower numbers of FoxP3+ cells correlated with more advance
tumor stages. Further examination demonstrated that tumor
stage, vascular invasion, and FoxP3+ density in normal and
tumor tissue all served as independent prognostic factors.
High FoxP3+ frequency (more than the median value of 44
FoxP3+ cells/mm®) in healthy tissue was associated with
worse prognosis, while higher frequencies of FoxP3+ cells in
tumors (more than the median value of 116 FoxP3+ cells/
mm?) were associated with better survival. In this study,
CD8+ and CD45RO+ T cells did not correlate with patient
outcome. Two other studies have contributed to our knowl-
edge of Tge, cells in CRC in the past year. Sinicrope et al.
investigated the prognostic impact of Tgeg and CD3+ T cell
numbers within 160 Stage II or III colon cancer patients.”>
On comparison with normal colon tissue from the same
patients, the investigators determined that densities of both
Treg and CD3+ T cell populations were increased in tumor
tissue. Although intraepithelial FoxP3+ cell numbers were
not prognostic, higher levels of expression were found to cor-
relate with poor tumor differentiation, advanced patient age
and, interestingly, female gender. As for CD3+ T cells,
patients with smaller intraepithelial populations experienced
reduced disease-free survival (DFS). A low intraepithelial
CD3+/FoxP3+ ratio (lower than the first quartile value of all
patients) also served as a prognostic indicator for reduced
DEFS. Both of these variables were found to be prognostically
stronger for patients with colon carcinoma than either num-
bers of lymph node metastases or tumor stage. More recently,
Frey et al. investigated the prognostic significance of Tgeg
cells in CRC patients after their tumors had been stratified
by mismatch repair (MMR) status.”” They examined 1,197
MMR-proficient and 223 MMR-deficient CRCs. Fascinat-
ingly, high FoxP3+4 numbers (classified as more than 17
FoxP3+ cells per microarray tissue punch, approximately the
same area as one 40x field) in the MMR-proficient patients
correlated with early T stage, tumor location (rectal) and bet-
ter 5-year survival rate. In MMR-deficient CRCs, however,
larger FoxP3+ populations were associated with an absence
of lymph node involvement and absence of vascularization,
along with a better 5-year survival rate. Finally, the investiga-
tors determined that an elevated FoxP3+ cell frequency
served as an independent prognostic factor in MMR-profi-

Prognostic significance of Tgeg in tumor

cient CRC and could predict enhanced survival in these
patients.

Liver cancer

In 2007, Kobayashi et al. examined the infiltration of FoxP3+
Tregs and CD8+ T cells in the tumor stroma and nontumo-
rous liver parenchyma of patients with liver cancer.”* Their
samples included 323 hepatic nodules (including precursor
lesions), early hepatocellular carcinoma (HCC), and advanced
HCC, in addition to 39 intrahepatic cholangiocarcinomas
and 59 metastatic liver adenocarcinomas. The investigators
found that Tg., numbers were significantly higher in HCC
than in non-tumorous liver, and higher in primary HCC
than in metastatic HCC. In both cases, HCC-infiltrating Tre,
cell density was an independent prognostic factor. Tge, fre-
quency was also increased in nontumorous liver (both with
and without hepatitis) bearing primary tumors. Higher Tre,
numbers within tumor tissue correlated with higher tumor
grade and tended to correlate (p = 0.064) with fewer infil-
trating CD8+ T cells. The patient group with a high preva-
lence of Treg (greater than 29% of CD4+ T cells) infiltrating
HCC showed a significantly lower DFS and overall survival
(OS) rate (27.3 and 45.1 months, respectively) than patients
with fewer than 29% of CD4+ T cells identified as Tgeg cells
(36.2 and 60.3 months, respectively). Contrastingly, there was
no significant difference in the OS or DFS between patients
with low numbers of tumor-infiltrating CD8+ T and those
with high numbers. Kobayashi et al. observed that during
hepatocarcinogenesis, the prevalence of Tgeg increased, while
CD8+ T cell numbers decreased. This work supports the
notion that primary hepatic cancers develop in liver that is
immunosuppressed by large populations of Tge, cells. In the
same year, Gao et al. published a manuscript detailing their
investigation into the prognostic value of TILs in 302 HCC
patients after tumor resection.”” Interestingly, numbers of
CD3+, CD4+ and CD8+ TILs were not associated with
patient survival. However, fewer intratumoral Tgey (<2.24
per 400x field) in combination with more (>17.74 per 400x
field) activated CD8+ cytotoxic cells (CTLs, activation as
defined by positive Granzyme B staining), served as an inde-
pendent prognostic factor for both improved DFS and OS.
Patients with high numbers of tumor-infiltrating Tgey and
low numbers of CD8+ CTLs (fewer than 17.74 per 400x
field) had 5-year OS and DFS rates of 24.1 and 19.8%,
respectively, whereas the group with low Tge and high
CD8+ CTLs had rates of 64.0 and 59.4%. Both Tgeg alone
and activated CTLs alone within the tumor served as inde-
pendent predictors for OS. Patients with low numbers of
intratumoral Tgeg had longer OS (70 months) and DFS (69
months) than did those with high numbers of Tgeg, (higher
than 2.24 per 400x field; 51 and 34 months, respectively).
Interestingly, the investigators found a correlation between
high Tgeg cell density and both absence of tumor encapsula-
tion and presence of tumor vascular invasion, which suggests
an association of Tges cells with tumor invasiveness. If a

Int. J. Cancer: 127, 748-758 (2010) © 2010 UICC



Wilke et al.

CD8+ CTL-heavy balance of CTL and Tge in the tumor
microenvironment is indicative of better patient outcome,
then therapy which increases CD8+ number and efficacy
while simultaneously depleting Tge, cells would be ideal. In
2006, Cai et al. explored the potential of intratumoral DCs
and T cells to serve as prognostic indicators in 123 patients
who underwent surgical resection of hepatocellular carci-
noma.”® Although the investigators did not find a significant
correlation between the number grade of infiltrating immune
cells in HCC nodules or pericancerous tissues and DFS, they
observed that an absolute number of DCs in HCC nodules of
25 or more per ten HPF did correlate with DFS. However, 28
or more DCs per ten HPF in pericancerous tissues had no
correlation with survival. As might be expected, more DCs
alone or with T lymphocytes (CD3+, CD45RO+ or CD8+),
or more CD8+ T Ilymphocytes alone in HCC nodules
strongly correlated to longer tumor-free survival time. It is
important to consider this study because it explores numbers
and locations of immune cells other than Tg,, cells that likely
interact with Tgeg in the tumor microenvironment. In 2009,
we published a study of B7-H1 and PD-1 expression in HCC
patients in which we determined not only that B7-H1 expres-
sion on Kupffer cells (KC) was increased in tumor tissues
compared with surrounding nontumor liver tissues, but also
that this expression correlated with poor survival.”” Addition-
ally, numbers of PD-14+ CD8+ T cells were higher in tumor
tissues than in non-tumor tissues, and B7-H1+ KCs and PD-
14+ T cells colocalized in the HCC stroma. PD-14+ CD8+ T
cells had decreased proliferative ability and effector function,
but these attributes were rescued on PD-1/B7-H1 blockade.
In summary, it is clear from the aforementioned studies that
Tregs are not the only prognostic marker of survival in HCC
patients. Zhang et al. recently published a study investigating
the prognostic potential of Th17 cells in 178 patients with
hepatocellular carcinoma.”® The investigators found that
Th17 cell numbers were higher in tumors of HCC patients
than in non-tumor tissue, and that these Th17 displayed an
effector memory phenotype. It was also determined that
intratumoral frequency of IL-17-producing cells, which cor-
related proportionally with tumor microvessel density, could
serve as an independent prognostic factor for OS and DFS.
Other studies have documented a proangiogenic role for IL-
17.°%1% In HCC, intratumoral density of Th17 cells is nega-
tively associated with patient outcome.

Head and neck cancer

In 2006, a study from the laboratory of Eric Tartour investi-
gated the prognostic value of various tumor-infiltrating
CD4+ T-cell populations in 84 untreated patients with head
and neck squamous cell carcinoma.'®’ The investigators
found that larger populations of tumor-infiltrating CD4+
CD69+ (activated) T cells (greater than 2.6 cells per field
using a 40x objective) correlated with both better local con-
trol of the tumor and longer patient survival. Interestingly,
higher numbers of intratumoral regulatory Foxp3+ CD4+ T
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cells (more than 1.5 cells per 40x field) were also positively
associated with and served as an independent prognostic fac-
tor for better regional control of the tumor. CD4+4 CD69+ T
cells made up the only population within the tumor that sig-
nificantly influenced OS: more infiltration correlated with
better patient outcome. In head and neck cancer, Tge, cells
may enact better local tumor control through suppression of
inflammatory intermediates.

Breast cancer

Also in 2006, Bates et al. performed experiments to assess
the clinical significance of Tgeg cells in breast cancer patients
with pure ductal carcinoma in situ (DCIS; n = 62), invasive
breast cancer (n = 237) or from samples of normal breast
tissue (n = 10). The investigators found increased Tge; num-
bers in in situ and invasive breast carcinomas when com-
pared with normal breast tissue, and larger Tr, populations
in invasive tumors than in DCIS. Increased levels (greater
than or equal to 15 positively-stained cells per 1 mm diame-
ter invasive tumor cores) of Tge, cells distinguished both
patients with DCIS at increased risk of relapse and patients
with invasive tumors who would go on to have shorter DFS
and OS. High-grade tumors, patients with lymph node
involvement and estrogen receptor (ER)-negative tumors all
displayed significantly larger numbers of Tgeg cells. Patients
with larger Tge, populations in ER+ tumors were categorized
as high risk. In this study, high numbers of Tgg cells identi-
fied patients at risk of relapse after 5 years. Bates et al. rec-
ommend Tge, as a novel marker for identifying late-relapse
patients who might be good candidates for aromatase therapy
(which suppresses estrogen production) after tamoxifen
treatment.

Lymphoma

Research from the lab of Miguel Piris in 2005 explored the
relevance of Tges and CTL (defined by TIA-1 and Granzyme
B) populations in the reactive background of Hodgkin’s lym-
phoma (HL) samples in the prognosis of 257 patients with
classic HL (cHL).'%? Previous research reported by Oudejans
et al. that increased numbers of CTLs were associated with
poor patient outcome'®* was met with skepticism.'** The 2005
report showed that a smaller population of FoxP3+ cells (low-
est quartile of total patient numbers) combined with higher
numbers of CTL (highest quartile) in the infiltrate served as an
independent prognostic factor that negatively influenced
event-free survival (EFS) and DFS in cHL patients. Alvaro et
al. tested four cases in which patients relapsed and discovered
that these samples tended to have more TIA-1+ cells and a
lower proportion of FoxP3+ cells than at the time of diagnosis.
The results of this investigation suggest that a combination of
more CTLs with small numbers of FoxP3+ cells in the reactive
background may predict a poor outcome in cHL patients.
Three years later, Karube et al. analyzed the expression of
FoxP3 in adult T-cell leukemia and lymphoma.'® Interest-
ingly, 60 (36%) of the 169 cases examined had FoxP3
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expression in lymphoma cells. On closer examination, the
investigators found that FoxP3+ and FoxP3— leukemia/lym-
phoma cases did not differ in clinical stage, age distribution,
lactate dehydrogenase and calcium in serum or in overall sur-
vival. However, a larger proportion of FoxP3+ cases (8/34)
suffered from severe infection; while in FoxP3— cases, only
two of 62 patients did so. Karube et al. also demonstrated that
FoxP3 expression in adult T-cell leukemia/lymphoma indi-
cated certain morphological features (including chromosome
abnormalities) and concluded that this Tg., marker is associ-
ated with patient immunosuppression.

Melanoma

In 2007, Miracco et al. analyzed 66 vertical growth phase pri-
mary cutaneous melanomas for correlation of Tgeg cell pres-
ence with recurrence potential.'’ The investigators discov-
ered that the percentage of Tgey Within tumor parenchyma,
at its periphery, and among TILs at the tumor-stroma
boundary, was significantly higher in patients that experi-
enced recurrence than in those that did not. Interestingly,
many of the Tge, identified in these samples were found in
close proximity to TAMs, the presence of which has been
correlated to poor prognosis in patients with advanced mela-
noma.'”” Although the Miracco study did not analyze such
parameters as distant metastases and patient survival, the
preliminary data point to the possibility of using Tre, quanti-
fication as a prognostic indicator in melanoma.

Conclusions

Although regulatory T cells share functionality and mecha-
nisms of suppression across cancers, it is important to recog-
nize the individual (tumor-specific) nature of the Tges com-
ponent of any given tumor microenvironment. As we have
reviewed above, Treg play an important role in the develop-
ment and maintenance of tumors and in the abrogation of
the immune responses against them. In many cancers, ele-
vated Tgeg cell presence and number imply a worse prognosis
for the patient in question. However, this is not always the
case. As the studies of gastric, colorectal and anal cancer sug-
gest, it seems that Tgeg also have a different role. In these
reports, increased Tre; populations within the tumor tissue
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