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A multiple imputation approach to disclosure
limitation for high-age individuals
in longitudinal studies

Di An**T, Roderick J. A. Little’ and James W. McNally®

Disclosure limitation is an important consideration in the release of public use data sets. It is particularly challenging for
longitudinal data sets, since information about an individual accumulates with repeated measures over time. Research on
disclosure limitation methods for longitudinal data has been very limited. We consider here problems created by high ages in
cohort studies. Because of the risk of disclosure, ages of very old respondents can often not be released; in particular, this is
a specific stipulation of the Health Insurance Portability and Accountability Act (HIPAA) for the release of health data for
individuals. Top-coding of individuals beyond a certain age is a standard way of dealing with this issue, and it may be adequate
for cross-sectional data, when a modest number of cases are affected. However, this approach leads to serious loss of information
in longitudinal studies when individuals have been followed for many years. We propose and evaluate an alternative to top-coding
for this situation based on multiple imputation (MI). This MI method is applied to a survival analysis of simulated data, and
data from the Charleston Heart Study (CHS), and is shown to work well in preserving the relationship between hazard and
covariates. Copyright © 2010 John Wiley & Sons, Ltd.
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1. Introduction

Statistical disclosure control (SDC) procedures deliberately alter data collected by statistical agencies before release to the
public, to prevent the identity of survey respondents from being revealed. These methods have increased in importance,
with the extensive use of computers and the internet. The goal of SDC methods is to reduce the risk of disclosure to
acceptable levels, while releasing a data set that provides as much useful information as possible for researchers. One
aspect of this is the ability to draw valid statistical inferences from the altered data.

Top-coding (TC) is a simple and common SDC method that seeks to prevent disclosure on the basis of extreme
values of a variable, by censoring values above a pre-chosen ‘top-code’. For example, in surveys that include income,
extremely high income values are considered to be sensitive and to have the potential to reveal the identity of respondents.
By recoding income values greater than a selected ‘top-code’ value to that value, the disclosure risk of respondents with
very high income is reduced.

It is left to the analyst to decide how top-coded data are analyzed. One approach is to categorize the variable so
that top-coded cases all fall in to one category—this is sensible, but does not work for analyses that treat the variable
as continuous. Another approach is to ignore the TC and treat the top-coded values as the truth. This method is
straightforward, but clearly the data distribution is distorted and biased estimates will be obtained. A better method is
to treat the extreme values as censored. Under an assumed statistical model, maximum likelihood (ML) estimates can
be obtained using algorithms such as the Expectation-Maximization (EM) algorithm [1]. This method is model-based,
and should yield good inferences if the model is correctly specified. But we expect this method to be quite sensitive to
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model misspecification, especially when the upper tail of the assumed distribution differs markedly from that of the true
distribution. The data users can also apply an imputation method to the top-coded data set and fill in the censored values.
A limitation is that the imputed data fail to reflect imputation uncertainty, and imputations are sensitive to assumptions
about the right tail of the distribution. An and Little [2] propose an alternative to TC based on multiple imputation (MI),
which allow valid inferences to be created based on applying multiple imputation combining rules described by Reiter
[3], while preserving the SDC benefits of TC; for other discussions of MI in the disclosure control setting, see Little
[4], Rubin [5], Raghunathan et al. [6], Little et al. [7], Reiter [8—10]. The methods in An and Little [2] are extended to
handle covariate information in An and Little (2007, unpublished).

We propose here MI for disclosure control in the context of the treatment of age in longitudinal data sets. Because of
the risk of disclosure, ages of very old respondents can often not be released; in particular this is a specific stipulation
of HIPAA regulations [11, 12] for the release of health data for individuals. TC of individuals beyond a certain age
(say 80) is a standard way of dealing with this issue, and it may be adequate for cross-sectional data, since the number
of cases affected may be modest. However, this approach has severe limitations in longitudinal studies, when individuals
have been in the study for many years; for example, consider an individual in a 40-year longitudinal study, who enters
the study at age 42 at time ¢ and is still in the study at age 82 at time ¢ +40. The age at time 440 cannot simply be
replaced by a top code of 80, since age at time 7440 can be inferred by simply adding 40 to the age at time ¢. A strict
application of TC would replace all individuals aged 40 or older at time ¢ by a top code of 40, but this strategy seriously
limits the ability to do longitudinal analysis, particularly survival analyses where chronological age is a key variable of
interest. In particular, since age at entry is a marker for cohorts, differences in outcomes between cohorts aged 40 or
greater at entry can no longer be estimated, since these cohorts are all top-coded to the same value.

This problem arises in the Charleston Heart Study [13], a longitudinal study that collects data over 40 years
(1960-2000). The study was originally conducted to understand the natural aging process in a community-based cohort.
The data include baseline characteristics such as age, race, gender, occupation, education, as well as death information
for respondents. For longitudinal data from this study to be included in the National Archive of Computerized Data
on Aging (NACDA)—the gerontological data archive at the University of Michigan, individual ages beyond age 80
cannot be disclosed because of HIPAA regulation, given the geographic specificity of the respondents. Also, given the
longitudinal nature of the data, a TC approach would need to be applied to all individuals aged 40 or older in 1960,
which has the limitation discussed above.

The goal of this research is to develop MI methods that adequately limit disclosure risk and preserve the relationship
between hazard and covariates in survival analysis. We propose a non-parametric MI method, specifically a stratified
hot-deck (HD) procedure, where we create strata and draw deleted ages with replacement from each stratum. Our method
multiplies imputed values of two age variables—entry age and final age (age at death or age at last contact).

To assess the proposed method, we apply a proportional hazard (PH) model to the multiply imputed data sets, calculate
estimates of regression coefficients for putative risk factors, and compare these estimates, and the corresponding estimates
from top-coded data, with estimates from the PH model applied to the original data prior to SDC. We also present
simulation studies where data are simulated according to a known survival model, and inferences for parameters of this
model are compared with the true values.

The remainder of this paper is organized as follows. Section 2 presents our SDC approaches for longitudinal data
and describes the corresponding methods of inference for regression coefficients. Section 3 describes a simulation study
to evaluate the approaches in Section 2, and Section 4 applies the methods to the Charleston heart study (CHS) data.
Section 5 gives the discussion and future work.

2. Methods

2.1. SDC methods for longitudinal data

An and Little [2] proposed SDC methods for a single variable with extreme values. In this paper, we investigate a more
complicated situation with longitudinal data, where two age variables are subject to TC.

Let Yenq denote participants’ age at the end of study (referred to as final age) and Y, denote their entry age. Let C be
the censoring indicator. Let L represent the length of study and S denote survival time. Individuals with S>> Lare treated
as censored (C =1), and otherwise as died (C =0). We consider individuals with values of Yeyq greater than a particular
value yg to be at risk of disclosure, and refer to these individuals as sensitive cases. Thus, values of Yepng and Y of
the sensitive cases are treated as sensitive values. We consider the following SDC approaches:

(a) TC: Replace values of Y.nq greater than yy by yo and replace values of Yy greater than yo—L by yo—L.
The resulting data set is referred to as ‘top-coded’ data.
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(b) HDMI: Classify sensitive and non-sensitive values into strata, to be defined below. Then delete the values of Yepq,
Ystart, and C for sensitive cases and replace them with random draws from the set of deleted values in the same
stratum. Our stratified HDMI method is similar to the approach described in An and Little (2007, unpublished),
where we assign the deleted data into strata based on the predicted values of either age variables from regression
on other variables, and apply HDMI within each stratum to impute deleted values. The following choices of strata
are considered here:

(i) HD1: Strata are defined by the predicted values of the logarithm of hazard computed from a PHs model for
survival. This choice is motivated by the idea that if survival analysis is a primary analysis involving
the imputed age data, imputing within strata defined by predicted hazard will minimize the distortions
of survival analysis applied to the imputed data.

(i) HD2: We develop a two-way stratification, where strata are defined by both the predicted values of the
logarithm of hazard as in (i), and the predicted values of entry-age from the regression of entry-age
on other variables involved.

(iii) HD3: Stratification depends on the value of C. For individuals that are censored, strata are defined by the
predicted values of entry-age; and for those not censored, strata are defined by both the predicted
values of the logarithm of hazard and the predicted values of entry-age as in (ii).

(iv) HDU: Unstratified HDMI, which we include as a baseline for comparison with the stratified methods.

Note that for methods HD1 and HD2, we delete values of Yepq, Ysart, and C of sensitive cases and jointly impute
these values. HD3 retains values of C and imputes Yepg and Yeart only.

It is worth noting that for the above stratified methods, we perform regression only on the set of sensitive cases with
values deleted to obtain the predicted values. We also considered an alternative way of creating strata, where we perform
regression on the complete data, and then stratify the sensitive cases for imputation. These methods did not perform
as well in terms of empirical bias, root mean squared error (RMSE), and confidence coverage in the simulation study
reported in Section 3, hence we do not consider them further.

2.2. Methods of inference

We consider the properties of the SDC methods for inferences about the regression coefficient, where a PH model is
fitted to the data set before and after imputation. The following estimates and associated standard errors are considered:

(1) Before deletion (BD): The estimates of regression coefficients calculated from original data prior to SDC, used
as a benchmark for comparing SDC methods.
(2) TC: The estimates of regression coefficients calculated from the top-coded data set.

The standard errors for methods (1) and (2) are computed by the bootstrap.
The four remaining methods HD1-HD3 and HDU are as described in Section 2.1, yielding D MI data sets. The MI
estimate is calculated as

D,
Omi=— >0, ey

~(d
where 9( : is the parameter estimate from the dth data set. The MI estimate of variance is
Tyir=Var(byi) =W + B/ D, 6

where W:Zle W@ /D is the average of the within-imputation variances W(?® for imputed data set d, and B=

ZdDzl (9( )—91\/11)2 /(D —1) is the between-imputation variance. Formula (2) differs from the original MI formula for
missing data (where B is multiplied by a factor (D+1)/D, see e.g. Little and Rubin [14], p. 86), for reasons discussed
in Reiter [3].

3. Simulation study

A simulation study was carried out to evaluate the SDC methods in Section 2. We computed estimates of regression
coefficients, their corresponding variances and confidence intervals from the imputed and top-coded data sets, and
compared them with those calculated from the original data set prior to SDC.

I EEE————————————————————————————
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Table I. Hazard rate for simulation study, scenario I and II.

Age at death

3040 40-50 50-60 60-70 70-80 80+
Category 1 0.003 0.005 0.011 0.04 0.06 0.1
Male
Entry-age 3040
Category 2 0.024 0.004 0.0088 0.032 0.048 0.08
Female
Entry-age 30-40
Category 3 0.0075 0.0165 0.06 0.09 0.15
Male
Entry-age 40-50
Category 4 0.006 0.0132 0.048 0.072 0.12
Female

Entry-age 40-50

Table II. Hazard rate for simulation study, scenario III.

Age at death

30-40 40-50 50-60 60-70 70-80 80+
Category 1 (0,0) 0.003 0.005 0.011 0.04 0.06 0.1
Male
Entry-age 30—40
Category 2 (1,0) 0.003 0.005 0.011 0.04 0.06 0.1
Female
Entry-age 30—40
Category 3 (0,1) 0.0075 0.0165 0.06 0.09 0.15
Male
Entry-age 40-50
Category 4 (1,1) 0.006 0.0132 0.048 0.072 0.12
Female

Entry-age 40-50

3.1. Study design

For simplicity we simulated survival data with only two binary covariates, representing gender (male and female) and
entry-age (say 30-40 and 40-50). The values of these variables were simulated from a multinomial distribution for the
four categories. Values of entry-age were generated from a uniform distribution. Survival times (in years) were generated
from piece-wise exponential distributions with hazard rates specified in Tables I and II. An individual was treated as
censored if (s)he survived more than 40 years from age at entry. We investigated the following three scenarios:

Scenario I: Males and females have same entry-age distributions. Entry-age values are generated from the Uniform
distribution with the ranges 30-40 and 40-50. For both males and females, values from the former distribution are 1.5
times those from the latter distribution. Gender and entry-age have additive effects on the log-hazard of survival; hazards
are shown in Table I.

Scenario II: The distribution of entry-age differs for males and females. Males have the same distribution of entry-age
as in Scenario 1. Entry-age values for females are generated in a similar manner, except that 70 per cent of the values
lies within the range of 35-45. Gender and entry-age effects on survival are as for Scenario I.

Scenario III: Males and females have the same entry-age distribution as specified in Scenario I, and there is interaction
between entry-age and gender on the log-hazard of survival; hazards are shown in Table II.

In this study, we considered individuals with final age greater than or equal to 75 years to be at risk of disclosure, and
refer to these individuals as sensitive cases. About 25 per cent of the cases have sensitive values, and about one-third
of the cases are censored. For each simulated data set, we applied the stratified HDMI methods to both final-age and
entry-age variables for sensitive cases as described in Section 2. We also applied the TC method, with the top-code being
75 for final-age and 35 for entry-age (as the length of study is 40 years). We then calculated estimates of regression
coefficients from the PH model, the corresponding empirical bias and RMSE of the estimates, average width of the
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Table III. Simulation study scenario I: inferences for regression coefficients in the PH model.
Entry-age (40-50) Gender (female)

Empirical RMSE Cover Empirical RMSE Cover
Method bias (*104) (*104) Rel-wid (per cent) Bias (*104) (*104) Rel-wid (per cent)
BD 38 570 1 95.2 -38 582 1 92.6
TC 11501 11513 0.94 0 486 746 0.99 84.8
HD1 8 574 1.01 94.6 183 623 1.01 93
HD2 7 569 1.01 95.2 276 645 1.01 91.2
HD3 36 573 1.01 94.8 —-17 585 1 93.6
HDU 7 581 1.03 94.2 325 648 1.01 91

Table IV. Simulation study scenario II: inferences of regression coefficients from the PH model.
Entry-age (40-50) Gender (female)

Empirical RMSE Cover Empirical RMSE Cover
Method  bias (x10%) (x10%) Rel-wid (per cent) Bias (x10%) (x10%) Rel-wid (per cent)
BD 36 583 1 93.6 —15 580 1 93.6
TC 11463 11475 0.94 0 486 737 0.99 83.8
HDI 6 578 1.01 93.8 204 609 1.01 93.2
HD2 13 582 1.01 93.4 560 884 1.01 78.6
HD3 30 581 1.01 93.6 -7 577 1.01 94.2
HDU 96 599 1.03 93.6 225 588 1.02 94.2

*Here ‘RMSE’ refers to root mean squared error. ‘Rel-wid’ refers to ‘relative width’, which is fraction of 95 per cent CI
width comparing with estimate 1. ‘Cover’ refers to the 95 per cent CI coverage.

95 per cent confidence intervals (CIs) based on a normal approximation relative to the CI from the data BD, and the
confidence coverage of these intervals.

3.2. Results

The simulation results are based on 500 data sets of sample size 2000. We set the number of bootstraps B to be 100 for
calculating standard errors of BD and TC estimates; and create D =35 imputed data sets. For stratified HDMI methods,
we create strata with stratum size around 25.

Table III presents the results from scenario I, where entry-age and gender are independent and their log hazards are
additive. TC yields estimate of regression coefficients with serious empirical bias and high RMSE, and zero confidence
coverage for the entry-age variable. The TC estimate of the gender coefficient is less biased, but it still has sizeable
empirical bias, and the CI has below nominal coverage. All stratified HDMI methods produce quite satisfactory results
for the coefficient of entry-age, with negligible empirical bias and close to nominal confidence coverage. The unstratified
method, HDU, also works well in terms of empirical bias and coverage, but it is somewhat less efficient than the
stratified HD methods. HD3 works best for the gender coefficient, yielding an estimate with minimal empirical bias and
good confidence coverage. Estimates from the other HD methods are also acceptable, although they have slightly higher
empirical bias and below nominal confidence coverage. When males and females have different entry-age distributions
as in scenario II (Table IV), most methods perform as in the first scenario, except that HD2 yields larger empirical bias,
RMSE and less coverage for estimate of the regression coefficient of gender. In fact, it has even worse results than the
TC method.

Table V displays the results from scenario III, where there is interaction between the age and gender variables. TC
yields estimates with considerable empirical bias and poor coverage for regression coefficients of age, gender, and
the interaction between these two variables. Among stratified HD methods, HD3 has the best performance and yields
estimates with good inferences for both variables and the age—gender interaction. Estimates from HD1 and HD2 methods
have satisfactory results for all three terms, although they have more empirical bias than HD3. Estimates from HDU
have larger empirical bias and smaller confidence coverage than the stratified HD methods.

In summary, HD3 performs best under all circumstances. Other stratified HD methods yield estimates of regression
coefficients with good inferential properties for the entry-age variable. These methods also provide satisfactory results
for gender, except for HD2 in scenario II. With the presence of interaction between age and gender, estimates for the
interaction term from HD1 and HD2 methods do not have sufficient coverage. HDU tends to be slightly less efficient
than the stratified HD methods, but it works surprisingly well in the first two scenarios, indicating that stratification may
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Table V. Simulation study scenario III: inferences of regression coefficients from the PH model.

Entry-age (40-50) Gender (female) Interaction

Empirical RMSE Cover Empirical RM SE Cover  Empirical RMSE Cover
Method bias (*104) (*104) Rel-width (per cent) Bias (*104) (*104) Rel-width (per cent) Bias (*104) (*104) Rel-width (per cent)
BD 28 781 1 94.2 -39 810 1 94.4 13 1094 1 95
TC 10383 10411 0.95 0 —710 1129 1.07 84.6 2423 2646 0.97 38.6
HD1 —217 836 1.01 92.8 —128 839 1.01 93 501 1277 1.01 90.2
HD2 —241 823 1.01 94 —123 850 1.01 92.8 550 1298 1.01 89.4
HD3 —20 760 1.01 96.4 —67 798 1 94.6 104 1070 1.01 95.4
HDU —706 985 1.04 88.8 —437 854 1.01 91 1452 1646 1.03 81.4

not be necessary in these settings. For the more complicated situation (scenario III), it yields biased estimates with low
confidence coverage.

4. Application to the Charleston Heart Study data

We chose a subset of the CHS data and studied the relationship between hazard rate and certain risk factors. As an
intact data file prior to disclosure control was available to us, the effectiveness of our SDC methods can be readily
assessed.

4.1. Primary data analysis

After deletion of missing values and recoding on some variables, our sample included 1344 individuals, of which 303
survived the study. The variables involved were entry-age, final-age, censoring indicator, race/gender, education level,
current cigarette smoking status, history of myocardial infarction (MI), history of diabetes, history of hypertension,
electro-cardiographic interpretation (EKG), living place between age 20 and 65 and body mass index (BMI). For the
PH regression model, final-age instead of survival time was treated as the time-scale variable.

To examine the effects of our chosen risk factors, we applied the PH model to the data set prior to SDC. Table VI
displays the results from the regression. All the factors have a significant effect on participant’s hazard ratio except
BMI and entry-age (overall). Comparing to individuals that enter the study between 35 and 40 years old, those
with entry-age greater than 50 have about a 30 per cent increase in risk of death. White females tend to have
34 per cent less risk than white males. Achieving education after high school reduces hazard by 30 per cent comparing
to non-high school education. Smoking cigarettes increases death risk by 76 per cent. Participants with a definite
history of MI have twice the risk of death as those without a history. History of diabetes as well as EKG prob-
lems increases the hazard by over 50 per cent, whereas history of hypertension increases risk of death by 17 per
cent. Rural residents have 25 per cent less hazard than urban residents. Most of these coefficients are in the expected
direction.

4.2. Results from SDC methods

As described earlier, variables subject to disclosure limitation are entry-age and final-age variables. Respondents with
final-age greater than or equal to 80 years are considered to be sensitive cases, which leads to top-code values of 40
for entry-age and 80 for final-age. For this data set, TC the age variables has great impact on the analysis, since the
entry-age variable is recoded into only two categories (40 or below 40), in contrast to the five categories for entry-age
in the original data. We applied HDMI methods with D =35 imputed data sets to the data and computed estimates of
regression coefficient from a PH model.

Table VII shows the results from original, top-coded, and imputed data sets based on 500 replications. Figure 1
summarizes these results with box plots of the percentage deviations of the TC and HD estimates of the regression
coefficients from the BD estimates. Estimates of coefficients of entry-age variable have not been plotted as the TC method
cannot differentiate between the age categories. Predictably, TC considerably alters the relationship between hazard and
covariates and yields estimates of the regression coefficients with serious bias, especially for the entry-age variable.
The unstratified HD method, HDU, yields better estimates than TC for some covariates, but one coefficient is seriously
underestimated. The stratified methods all do considerably better, yielding box plots with narrower inter-quartile ranges
and less extreme outliers than TC and HDU. There is not much to choose between the stratified HD methods—HD?2 and
HD3 yield better estimates of the entry-age coefficients than HD1, but HD1 provides better estimates of the regression
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Table VI. Estimates of regression coefficients from PH model, original CHS data.
Parameter estimate Standard error Hazard

(x10%) (x10%) Pr > 2 ratio
Entry-age 1977 1128 0.08 1.22
1 (4044)
Entry-age 1814 1151 0.1 1.2
2 (45-49)
Entry-age 2786 1072 0.009 1.32
3 (50-59)
Entry-age 2878 1242 0.02 1.33
4 (60+)
Race/Gender —4171 955 <0.0001 0.66
2 (white woman)
Race/Gender —241 949 0.8 0.98
3 (black man)
Race/Gender —1870 1031 0.07 0.83
4 (black woman)
Education —1100 832 0.2 0.9
1 (some high school)
Education —3761 1000 0.0002 0.69
2 (after high school)
Current cigarette smoking 5677 701 <0.0001 1.76
1 (yes)
History of MI 3741 3416 0.3 1.45
1 (possible)
History of MI 6949 1889 0.0002 2
2 (definite)
History of diabetes 4330 1602 0.007 1.54
1 (yes)
History of hypertension 1547 750 0.04 1.17
1 (yes)
EKG 4644 947 <0.0001 1.59
1 (with problem)
Living place 20-65 —2947 1028 0.004 0.75
2 (rural)
Living place 20-65 —1361 1467 0.4 0.87
3 (mix of rural and urban)
BMI 28 74 0.7 1

coefficient for gender than HD2 and HD3. Overall, the stratified HD methods all work better than TC in preserving the
relationship between risk of death and the covariates on this data set.

5. Discussion

Longitudinal data raise particular confidential concerns with potentially extensive longitudinal information gathered
over time. We consider a specific application concerning disclosure risk caused by some participants attaining high
ages because of prolonged participation in a longitudinal study, as in the CHS. One of the authors (McNally) has the
responsibility to prepare a public use version of this data set through NACDA that meets HIPAA regulations. As discussed
earlier, the standard approach of TC age has severe limitations in this longitudinal setting, especially for survival analyses
with age being a key variable of interest. HIPPA restrictions make a full public release impossible and require a formal
Limit Use Agreement which imposed significant barriers to accessing the data. We develop MI-based SDC methods for
this particular data setting. Similar to the methods in An and Little (2007, unpublished), our proposed MI methods are
based on stratification, with strata defined by the predicted values of the age variables from a regression model.

Regarding the longitudinal nature of the data set in this study, we have focused on inference about regression
coefficients from Cox’s PH model for survival. As expected, the TC method yields seriously biased estimates, especially
for the entry-age variable. In principle, it is possible to improve the statistical performance of the TC method by treating
top-coded values as censored, but this yields a non-standard problem of survival analysis with censored covariates, and
does not address the problem of severe loss of information from TC in this setting.

Among our stratified HDMI methods, HD3 has the best performance and yields results close to those before deletion
in simulation studies. The other stratified methods also work well overall, except that sometimes they do not quite attain

I EEE————————————————————————————
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Table VII. Estimates of regression coefficients from the PH model, CHS data after SDC.
Estimate (SE) (x10%)

BD

TC

HD1

HD2

HD3

HDU

Entry-age 1 (40—44)

(black man)
Race/Gender 4
(black woman)

smoking 1 (Yes)
History of MI 1
(possible)

History of MI 2
(definite)

History of diabetes
1 (yes)

Living place 20-65
2 (rural)

1992 (1154)

—1876 (1073)

4211 (4548)
7080 (1936)

4616 (2158)

—3042 (1029)

Entry-age 1 (<40)

—1734 (1346)

5360 (6113)
5622 (2766)

6234 (2189)

—3719 (1299)

2597 (1164)

—1984 (1036)

3397 (3515)
4678 (1980)

4013 (1681)

—3297 (1054)

1962 (1157)

—1771 (1054)

2467 (3516)
5029 (1979)

3695 (1676)

—3189 (1058)

1977 (1152)

Entry-age 2 (45-49) 1815 (1153) —792 (975) 1817 (1181) 1872 (1180) 1999 (1178) 2269 (1187)
Entry-age 3 (50-59) 2711 (1056) 1640 (1097) 2371 (1098) 2706 (1090) 2638 (1095)
Entry-age 4 (60+) 2799 (1254) 2393 (1240) 2922 (1262) 3099 (1262) 3716 (1230)
Race/Gender 2 —4200 (913) —3813 (1189) —4724 (1002) —3798 (979) —3971 (965) —2177 (960)
(white woman)

Race/Gender 3 —205 (1004) 982 (1142) —248 (966) 54 (975) 16 (963) 845 (971)

—1660 (1054)

Education 1 —1127 (829) —1347 (1029) —996 (841) —1224 (843) —1257 (846) —924 (847)

(some high school)

Education 2 —3806 (963) —4958 (1257) —3559 (1024)  —3721 (1027)  —3793 (1013)  —3290 (1025)
(after high school)

Current cigarette 5785 (718) 7328 (891) 5763 (714) 5874 (724) 5596 (711) 4875 (706)

2946 (3599)
5280 (1954)

4414 (1674)

History of 1637 (840) 2581 (977) 2006 (775) 1877 (778) 1678 (777) 1823 (778)
hypertension 1 (yes)

EKG 1 (with 4754 (1091) 4717 (1197) 4129 (982) 3936 (982) 3754 (974) 3327 (992)
problem)

—3162 (1047)

Living place 20-65 —1296 (1887) —594 (1969) —1375 (1545) —1239 (1500) —559 (1480) —410 (1519)
3 (mix of rural

and urban)

BMI 28 (81) 20 (98) 57 (76) 61 (76) 13 (75) 10 (76)

1801 (1173)

—1267 (1043)

3863 (3552)
4716 (2017)

4744 (1677)

—2522 (1039)

Note: The BD and TC estimates are bootstrap estimates based on 100 bootstraps.
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Figure 1. Percentage deviation from BD estimates for TC and HD estimates of the regression coefficients from the PH model,
CHS data after SDC.
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the nominal confidence coverage. When there are fewer censored cases, as with the CHS data (number of censored
cases is one-fourth the total sample size), HD3 does not have the obvious advantage over other methods, although it
still yields satisfactory results. The unstratified method, HDU, works almost as well as stratified HD methods in simple
data settings. In situations with more covariates and a larger number of sensitive cases, it yields biased estimates with
below-nominal confidence coverage.

An and Little [2] present two versions of MI methods, the ‘C’ method, which is based on a model fitted to the
complete data; and the ‘D’ method based on a model fitted to the deleted values alone. The ‘D’ method is somewhat
less efficient than the ‘C’ method, but it is more robust to model misspecification, since the model is fitted to the data
that are being deleted. As mentioned in Section 2, we present the results for the ‘D’ method here, since the ‘C’ method
was inferior in simulations.

Note that in this study, the predicted logarithm of the hazard is considered an appropriate factor for stratification,
as the primary focus is survival analysis, and preserving the original relationship between the hazard and covariates.
The current size of strata is selected based on the empirical experience, by trying to maintain a good balance between
limiting disclosure risk, and best retaining the utility of the data. Therefore, it is not a universal recommendation. The
statistical agencies/data producers are encouraged to make reasonable choice of the stratification factor and the size of
strata, based on the interest of the specific data.

Our stratified HDMI methods produce excellent inferences, but they arguably have the limitation as SDC methods
that original values in the data set are retained, although not attached to the right records. As multiply imputed data sets
protect an individual with extremely high-age value from being linked to a specific record, a potential data snooper may
still recognize the fact that this individual is included in the data set, especially for data with geographic specificity.
To address this concern, we will develop parametric MI methods in our future work.

Reiter [9] proposes the use of classification and regression trees (CART) to generate partially synthetic data. For the
CART approach, subpopulations with relatively homogeneous outcome (imputation classes) are created by partitioning
the predictor space. The imputation model is fit on the cases with sensitive values only, and sensitive values of the
outcome can be replaced by random draws from the same class according to the predictor values by Bayesian bootstrap.
This is in spirit quite similar to the stratified HD methods in this paper, where we create strata (imputation classes) based
on some predicted values from a regression model fitted to the cases with sensitive values, and replace sensitive values
with random draws from a set of sensitive values in the same stratum. Both methods are non-parametric, and have been
shown to have good repeated sampling properties. Reiter also suggested an alternative method of drawing samples from
a kernel density estimator based on the random draws from the first step, which yields added protection since it avoids
releasing real data values.

An important issue that is not addressed in this article is quantifying the reduction in disclosure risk from multiple
imputations of the ages of high-age individuals, compared with alternatives such as TC. This is a complex question that
depends on the set of ‘key’ variables available to the intruder from external databases that include the target individuals,
the probability that target individuals are in the sample, and the joint distribution of the key variables for the high-age
individuals. Reiter and Mitra [15] and Drechsler and Reiter [16] describe approaches for addressing this issue with
partially synthesized data, and the future research should address how these methods translate into the longitudinal data
setting.

We have confined attention here to imputing age-related variables for individuals with high-age values, and SDC
methods for other types of variables (such as geography) in longitudinal health data like the CHS data remain a topic
for future research.
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