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FIG. 1. Variation of boundary-layer thickness with time on 
a suddenly moved flat plate with exponential density variation. 

v = (p/Pr)y (9) 

r = f(p/Pr)dt (10) 

where pr is a reference density. Eq. (7) becomes 

du/dr = vr(d
2u/dv

2) (11) 

where vr ~ M/V- This, of course, is the well known one-dimen­
sional heat equation, numerous solutions of which are recorded in 
the literature. Any of these can be used for arbitrary variations 
of density with time, provided only that these variations make 
sense physically. The mathematical requirements on the function 
pit) are simply that it must be integrable and that it must remain 
positive (or negative) so that the transformation given by Eq. 
(10) exists and is one to one. Since in all cases rj is proportional 
to y at any time t, the instantaneous velocity profile—that is, 
the variation of u with y—always has the characteristics of the 
profile in the constant density case, where rj can be identified 
with y. 

For example, a solution given in reference 1 is written in our 
notation 

where 

u = UQ erfc f = u0(l — erf f) 

f = r,/2\/prT 

(12) 

(13) 

which gives a boundary-layer like flow for small r. Eq. (13) 
may represent the solution for a suddenly moved infinite flat 
plate in a region where the density may be supposed to be varied 
in an arbitrary manner by the vertical motion of a plane at a 
distance from the suddenly moved plate which is large compared 
to the thickness of the boundary layer. 

As an interesting case of this solution, assume that the density 
varies in an exponential manner 

P = Premt (14) 

where m is a constant. The boundary-layer thickness, 8, can be 
taken as the value of y for which f = 2. But, from Eqs. (9), 
(10), (13), and (14), we find 

and, therefore, 

r = emty/2\/{vr/m) (emt - 1) 

8 = W~^/m e~mt Vemt - 1 

This relation is plotted in Fig. 1. I t is seen that the thickness 
actually decreases at large values of /. A comparison can be 
made with what might be called the solution for quasi-constant 
density—that is, when f is given by 

r = y/2\/vt 

— Vr{pr/p) = Vr6 

= 4:\/vr/m e~
mt/2 s/mt 

with 

This gives 

which is also plotted in Fig. 1. This too shows a decrease for 
large t, but the effect is considerably delayed and weaker than in 
the exact solution. 

These results may be interpreted as follows. Initially the 
boundary layer on the suddenly moved plate grows rapidly due 
to the high shear and low kinematic viscosity. After a time, 
however, the increasing kinematic viscosity causes a reduction in 
the boundary-layer thickness. This thinning is larger in the 
exact case as a result of the convection of the outer layers of the 
boundary layer toward the plate, as required by continuity. 
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ECORDS WERE OBTAINED of the hot-wire response to velocity 

•>- of fluctuations in the boundary layer of a body of revolution 
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with a hemispherical nose 11.5 in. in diameter, at wind speeds 
up to 134 ft./sec. in the University of Michigan 5 X 7 ft. low-
turbulence tunnel. Sample records at various angles from the 
nose along the same meridian plane are shown in Fig. 1. Two 
sweeps are shown for each condition. Approximate relative 
amplification factors for u' are indicated. The disturbances 
shown were probably produced by surface roughness since they 
did not appear at all meridian planes. The bursts of approxi­
mately sinusoidal fluctuations indicate that the instability is 
probably of the Tollmien-Schlichting type. 

Comparison of the reduced frequency (3rv/ue
2 where /3r = 2-K 

(frequency of the disturbances) and ue is the velocity at the edge 
of the boundary layer versus ueh/v with the flat-plate (Schlichting) 
and with sphere stabilhr theory1 is shown in Fig. 2. Some of 
the points refer to records made with a rough "but ton" at the 
nose. 

The fact that the disturbances appear and grow at Re}molds 
Numbers far below the critical value given by theory indicates 
the existence of a source of instability that is neglected in the 
theory. I suggest that this hitherto unrecognized source is the 
stretching of the vortex filaments in the region of diverging flow 
near the stagnation point. 

Approximate analysis2 of the destabilizing influences of stretch­
ing and surface cooling compared with the stabilizing influence 
of curvature indicates that near the nose the net effect is de­
stabilizing. The analysis uses the Taylor-Gortler vortices 
(which stretch in the favorable pressure gradient) as a model, 
but it is pointed out2 that analogous effects exist for those of the 
Tollmien-Schlichting type. Qualitative agreement between 
theory and the present experiment is obtained for the condition 
of no heat transfer to the bod}^. 

I t is pointed out further2 that, while the effect of cooling a 
flat plate is known to be stabilizing to Tollmien-Schlichting 
disturbances, when convex curvature is introduced the centrifugal 
force acting on a displaced particle causes a destabilizing in­
fluence as well. I t seems reasonable, therefore, tha t if the 
curvature is large enough the effect of cooling a surface may be 
destabilizing to Tollmien-Schlichting disturbances. 

A theoretical and experimental program is under way 
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THE PROBLEM of the incompressible laminar boundar}^ layer on 
a flat plate in a free stream containing a relatively small 

amount of vorticity, w0, has recently been discussed by Glauert1 

and Li.2 In reference 1, Glauert refutes an earlier claim by Li3 

that the free-stream vorticity introduces a pressure gradient 
which should be considered in the solution for the effect of free-
stream vorticity on the boundary-laj^er development. However, 
Glauert did not make an order-of-magnitude estimate of the 
self-induced pressure gradient and, consequent^, Li remained 
unconvinced.2 The purpose of this note, in support of Glauert, 
is to point out that if a self-induced pressure gradient must be 
considered, it is the pressure gradient associated with the displace­
ment thickness of the zero-order (co0 = 0) solution. (The effect of 
the free-stream vorticity on the self-induced pressure gradient is 
of higher order and is negligible.) Criteria for evaluating the 
relative importance of free-stream vortichty as compared with 
the self-induced pressure-gradient effect are also developed 
herein for both incompressible and supersonic flows. Unless 
otherwise specified, the notation of references 1 and 2 is followed. 

Consider first the laminar boundary layer on a flat plate in an 
incompressible uniform stream. Various attempts have been 
made to improve the zero-order (Blasius) solution by expanding 
in inverse powers of the local Re3molds Numbers. Kuo4 has 
shown that a first-order correction may be obtained by including, 
in the usual boundary-layer equation, the pressure gradient in­
duced by the displacement thickness of the zero-order solution. 
The form of the stream function is then 

xP = VtWC IMv) + (1/VZeL) VL/x FL(X, rj) + . . . ] (1) 

where ReL ~ u^L/v, L = plate length, and Fi(x, rj) is of order 1. 
The form of F\{x, rj) is obtained by computing the pressure dis­
tribution due to the zero-order displacement thickness at the 
plate and in the wake. If a small amount of vorticity is in the 
free stream it will have a higher-order effect on the self-induced 
pressure distribution and therefore does not influence Fi(x, rj). 

Now, consider the incompressible free stream to have a small 
amount of vorticity. The stream function can be expressed as1 

rp = Vu0vx [/oW + (coQL/u0\/ReL) Vx/Lfi(yj) + . . . ] (2) 

In order for this perturbation scheme to be valid it is necessary 
that 

co0L/uQ\/ReL « vorticity in free stream/vorticity in 
boundary layer <C 1 (3) 

The relative importance of the self-induced pressure gradient 
and small free-stream vorticity can now be evaluated. Consider­
ing x/L,fi(rj), and Fi(x, rj) to be of order 1, the ratio of the free-
stream vorticity effect to the self-induced pressure effect is 

R~ 
CCQL/UO\/R( eL 

1/VR eL 

WQL 

(4) 

If R is large, only the free-stream vorticity effect need be con­
sidered. If R is small, only the self-induced pressure gradient 
effect need be considered. If R is of the order 1, both effects are 
equally important. However, in this case the resulting solution 
is simply the linear superposition of the pressure-gradient effect 
(as computed by Kuo) and the free-stream vorticity effect (as 
computed by Glauert or Li for the case of zero induced pressure). 

A similar discussion can be made for the case of supersonic flow. 
Assuming a linear viscosity-temperature law, M/MO = C(T/-
TQ), the zero-order displacement thickness can be expressed as 


