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last year or so, however, he has discovered that it is not. Ac­
cordingly, this note has been written to bring it to the attention 
of all. Some remarks as to its significance in the solution of non­
linear differential equations have been added. 

The procedure is most easily understood by following its ap­
plication to a relatively simple case. Consider the second-
order differential equation 

Y" +Mx)Y' +Mx)Y =ft(x) 
(at x = a, Y = b; at x = c, Y = d) (1) 

where the functions, fu /2, and /3, are given, known functions 
and a, b, c, and d are known values. I t is desired to find the 
value of F ' a t x = a [written as Y'(a)\. 

We first obtain the value of Y and its derivatives at the first 
few steps taken, starting at one boundary toward the other. 
This may be done by expanding the unknown function, Y, as a 
Taylor series near the starting boundary. 

(Ax)2 (Ax)s 1 
Y = Y(a) + AxY'(a) + K—^- Y"(a) + K-^- Y'"{a) + | 

Y> = Y'{a) + (Ax)Y»(a) + ^ p Y'"{a) + 

(Ax)3 I 
^ Y""{a) + . . . + , etc. 

The values of the Yn(a)'s are found as follows: One boundary 
condition states that Y(a) is b. Y'(a) is unknown. From Eq. 
(1) we obtain Y"(a) as 

Ma) - Ma) Y'(a) - /2(a) Y(a) 
or 

K"(a) = F2(a) + Y'{a) F22(a) 

The value of Y'"(a) is obtained from Eq. (1) after the latter has 
been differentiated. Thus, 

Y"'(a) = Fz(a) + Y'(a) Fn(a) 

Similarly, the higher derivatives are found by successive dif­
ferentiations of Eq. (1) as 

Y"{a) = Fn(a) + Y'{a) Fnn(a) 

Substitution back into the Eqs. (2) yields 

Y"(x) = Fm(x) + Y'(a)Fmm(x) (3) 

for F a n d its derivatives for the first few steps of integration. 
We are now ready to apply any one of the available methods 

of numerical integration (the author prefers the Milne method2) 
to a step-by-step approach to the outer boundary. Once there, 
we require Eq. (4) to be satisfied. * 

d = F0(c) + Y'(a) Foo(c) (4a) 

or 

Y'(a) = [d - F0(c)]/F0Q(c) (4b) 

The procedure just described is the one used by the author 
many times in manual numerical integrations of boundary-layer 
equations. I t is, of course, directly applicable to digital machine 
computations. I t is not useful, however, in connection with 
analog computer determinations. For the latter, the following 
related approach has been developed: 

Suppose that, instead of carrying Y'(a) along as an unknown 
in our analysis, we assign an arbitrary value, A, to it. Then, at 
the second boundary, we have Eq. (5) instead of Eq. (4a). 

YA(c) = F0(c) + AF0o(c) (5) 

* In a boundary-layer type of problem, c is infinite and therefore unat­
tainable. In such a case, however, the value of Y at large values of x is 
essentially the same as at infinity. We therefore apply Eq. (4b) (in which 
x has been substituted for (c) at several successive, large values of x. When 
the values of Y'(a) so determined do not change significantly with x, we 
have the value of Y'(a) sought. 

where YA(C). differs from the required boundary value, d, and 
F0(c) and FQQ(C) are unknown. 

Now, assign a second arbitrary value, B, to Y'(a) and integrate. 
Eq. (6) is found applicable at the second boundary. 

YB(c) = FQ(c) + BFm{c) (6> 

where YB(C) differs from the required boundary value, d, and 
Fo(c) and Foo(c) are the unknowns of Eq. (5). 

YA{C), YB(C), A, and B being definite numbers, Eqs. (5) and 

(6) constitute a set of simultaneous equations from which the 
values of F0(c) and Fw(c) can be determined.! These values of 
F0(c) and F00(c) are then substituted into Eq. (4b), and the 
proper value for Y'(a) is determined. 

The advantage of these methods is more fully appreciated 
when applied to more complex problems. For example, in a 
current application, two simultaneous fourth-order equations in 
two dependent variables with four boundary values specified 
at each boundary are handled. Because of the four simultaneous 
unknown conditions at each boundary, solution by means of a. 
cut-and-try procedure is a herculean task—even when using an 
analog computer. The methods described, on the other hand, 
simplify the solution procedure to essentially five integrations— 
done simultaneously, if desired—and the subsequent solution of 
four simultaneous linear algebraic equations. 

I t is stimulating to consider the application of the same ideas, 
to the solution of nonlinear total differential equations. A little 
thought on the matter reveals that , in the strictest sense, the 
above linear algebraic equations at the outer boundary are re­
placed by equations of infinite series. (If the step-by-step 
integration were actually carried out, however, we would obtain 
equations of finite, high-powered, polynomials instead because 
of the approximation involved in using steps of finite size.) 
Thus, it is apparent that there are a large number of mathematical 
solutions to a given nonlinear problem. Of course, in general,, 
most of these solutions are complex or imaginary, but there is 
no guarantee that only one real solution exists. In other words, 
whereas we can be sure that the solution obtained to a linear dif­
ferential equation will agree—barring numerical errors—with 
the physical solution, in the case of nonlinear equations, addi­
tional considerations (such as the stability of different solutions) 
must be brought to bear, in general, before we can be sure of such 
agreement. 

Because of the relative directness of the numerical solution of 
linear differential equations, it would appear advantageous to 
solve complex nonlinear differential equations by a procedure 
involving linearization followed by successive perturbations. 
The relative merits of this and related procedures are to be 
studied shortly. 

f In more complex problems having many unknown initial boundary 
conditions, a judicious choice of values for A, B, . . . , etc., greatly simplifies 
the set of simultaneous equations 
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REFERENCES 1 AND 3 POINTED OUT the mathematical diffi­

culties in the customary textbook derivations of the for-



R E A D E R S ' F O R U M 67 

mula for the speed of sound 

= {dp/dp) (1) 

based on the steady one-dimensional equations of nonviscous 
fluids. The difficulties center around the interpretations of 
differentials du, dp, dp, etc., occurring in the momentum, energy, 
and continuity equations. The usual interpretation employed 
in the derivations of these equations of motion—namely, 

(du\ 7 7 (dp\ /dP\ 
du = I — J dx, dp = I — 1 dx, dp = I — J dx 

\ CbX I \CLX/ \dX/ 

etc., with the limiting process dx —>• 0 in mind does not appear 
rigorously applicable. References 1 and 2 (as well as older 
references such as reference 4) have indicated that these difficul­
ties disappear when the sound wave is considered as the limit of 
a shock wave as its strength approaches zero. Thus, if a shock-
strength parameter is considered as the independent variable in 
the limiting process (rather than x) and the increments across 
the shock waves Au,Ap, etc., are related to this parameter, the 
algebraic manipulation of the usual derivations become mean­
ingful and rigorous. (It is believed that this limiting process 
is implied, though without explanation, in some of the textbooks, 
such as reference 5.) 

One purpose of this note is to present clearly the details of 
this approach which are not usually available to the novice in the 
field of compressible flows. A second purpose is to present to 
the same public (which may have been somewhat confused by 
some of the disagreement between references 1, 2, 3, and, more 
recently, 6) the wide area of agreement reached through these 
discussions. I t is felt that the Readers' Forum will further in­
crease its present high usefulness to the general public if the 
positive results of any discussion or controversy are stated and 
emphasized. It is hoped that a precedent may thus be estab­
lished. 

Consider a discontinuity (stationary with respect to an ob­
server) separating downstream flow characterized by U<L, pi, 
p2, and T2, from upstream flow characterized by U\, pi, p\, and 
Ti. The fact that the discontinuity is stationary implies that 
its speed of upstream propagation with respect to the fluid, a, 
is numerically equal to u\. The feasibility of this one-dimen­
sional flow system rests completely on the consistency of the con­
servation laws and the equation of state. 

PlUi — P2U2 

plUi2 + pi = p2U2
2 + p2 

(1^2)«i2 + CPT! = (l/2)u2
2 + CPT* 

pi = Rp\Ti\ p2 = RP2T2 

(C) 
(M) 
(E) 
(S) 

Setting U2 •= U\ + Au, pi — pi -\- Ap, p2 = pi + Ap, and elimi­
nating T from Eq. (E) by the use of Eq. (S), the conservation 
laws can be written in the useful nondimensional incremental 
form 

(C) (a + (?)r 0 
+ (AP/P1) 

(Au/Ui) + (pi/piutfiAp/Pi) = 0 (MO 

1 + K:+( A*A2 

Ui ) J + ' - 1 V P I ^ I V L A Pi J 
0 

(E') 

The conservation laws thus form a system of three equations in 
the four nondimensional quantities: pi/piUi2, Au/ui, Ap/plf 

and Ap/pi, all four of which are measures of the strength of the 
discontinuity. The system of equations is consistent, validating 
the original assumptions. Furthermore, one can arbitrarily 
assign values to one of these quantities (i.e., choose it as the 
strength parameter), say (Ap/pi), and expect that the other three 
will be determined from Eqs. ( C ) , (M') , and (E') . This is 
indeed the case; (Au/ui) is immediately determined from Eq. 
{CO- Substituting for (Au/u\) and (Ap/pi) from Eqs. ( C ) and 
<M') into Eq. (E') yields, for Ap/Pl 5* 0, 

AP -[—teM^ / P LT1 (2) 

Eq. (2) determines the quantity (PI/PIUI2) for every chosen 
value of Ap/pi. Finally, with (pi/piUi2) and (Au/ui) known, 
Eq. (M') determines (Ap/pi). Thus, as the strength parameter 
Ap/pi varies, the nondimensional characteristics of the flow sys­
tem under consideration are completely and uniquely deter­
mined. Mathematically, a sound wave can be defined as a limit 
of shock waves for which the strength parameter approaches 
zero, Ap/pi —• 0. This limiting process applied to Eq. (2) re­
sults in the determination of the speed of propagation of sound 

U12 = a2 = y(pi/pi) (3) 

Eq. (3) leads to a more familiar interpretation of the non-
dimensional quantity pi/piUi2—namely, I/7Mi2—where Mx is 
the upstream Mach Number. Incidentally, Eq. (2) now pro­
vides a useful formula for the compression Ap/pi in a finite shock 
wave 

Ap/pi = {Mi2 - 1)/{1 + [(7 ~ D/2]Mi2} 

Subtracting Eq. (CO from (M')» o n e obtains 

ui2 = {Ap/Ap) [1 + (Ap/P l)] 

Considering, as before, the limit of a weak shock wave and thus 
letting Ap/pi —*- 0, it is seen that for a sound wave Ui2 = 

lim (Ap/Ap). If, as explained previously, the quantities pi, J2, 
A p - * 0 
and Uz in Eq. (C), (M), (E), and (S) are considered as functions 
of a shock-strength parameter Ap/pi, then the limit of the ratio 
can be interpreted as an ordinary derivative. Hence, 

in2 = {dp/dp) (4) 

To show, by the weak-shock-wave approach, that a sound 
wave is isentropic, the entropy change, 

AS = So — Si = Cv log m (5) 

across the discontinuity can be calculated in terms of the strength 
parameter Ap/pi. Elimination of Au/ui, and pi/piUi2 between 
Eq. (C), (M'), and (E') leads to the well-known Hugoniot rela­
tion 

Pi \ 2 P I / / \ 2 J 
(6) 

Since AS in Eq. (4) can now be expressed as a sum of terms of the 
form log(l + const. Ap/pi), it can be easily expanded into a series 
that starts with the cubic term 

AS = •— y{y2 

12 yY - > ( * ) " • » ( * ) ' 
(7) 

Hence, 

lim (AS/Ap) = 0 
Ap-> 0 

and a sound wave viewed as the limit of a weak shock is isen­
tropic. 

I t is thus seen that the familiar expressions (3) and (4) for the 
velocity of sound, as well as isentropy, can be derived by a simple 
means without any of the apparent mathematical inconsistencies 
which a direct differential-equation approach would contain. 
I t should be noted, moreover, that the approach indicated here— 
namely, a shock wave becoming weak—seems to present a 
rather clearer physical picture than the situation implied by the 
use of the differential equations. 

I t is clear that a full presentation of the preceding lengthy an­
alysis in a classroom may, if desired, be omitted if the essence of 
the argument is outlined. 

Professor Clark B. Millikan has indicated to us that the pre­
ceding treatment is conceptually equivalent to the one he uses-
and that it is implied in essence in his recent note.6 
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On the Calculation of the Potential Flow 
Around Airfoils in Cascade 
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T N ORDER TO IMPROVE the aerodynamic properties of airfoils in 

cascade, it is necessary to have a convenient method for the 
calculation of the potential velocity field. The method of con-
formal transformation, in our opinion, is much too complicated 
for practical purposes; only the "singularity method," where 
the airfoil is replaced by a certain distribution of vortices and 
sources and sinks, seems adequate. In some recent papers , 1 - 3 

the singularity method has been applied to airfoils in cascade. 
The calculations on these lines can still be simplified considerably, 
as we have shown in a paper7 to be published shortly in detail 
and an extract of which may be given here. Our method has 
already been applied with good success to the calculation of 
boundary layers on airfoils in cascade.8 

According to the singularity method, each airfoil of the cascade 
is replaced by a continuous distribution of vortices and sources 
(and sinks), situated on the mean line of each profile. The main 
problem is to calculate the field of induced velocities due to these 
singularities. 

In the complex z = x + iy-plane (Fig. 1), an infinite row of 
elements of singularity of strength g-dz' may be given situated 
on a straight line through the origin inclined at the angle X 
against the ;y-axis. The distance of the airfoils being /, these 
elements have the complex coordinate 

zv = ivt e~ix (p = 0, ± 1 , ± 2 , . . . ) 

In the general case, the strength g is complex, g(z) = q(z) + 
iy(z), q(z) meaning the distribution of sources (and sinks) and 

mean Hon ~ct*j 

7(2) meaning the vorticity. The field of induced velocities due 
to a single element g{z') -dz', situated at zv, is 

dwv{z) — duv — i dvv = g dz'/2ir(z — ivte~tX) 

Summing the contributions of all elements of the infinite row 
yields 

dw(z) = 
gdz> 

2te~ix 

1 

1 „ (xz/te~lX) 
(1) 

This infinite sum is identical with the series expansion of hyper­
bolic cotangent with the argument eixirz/t, so that Eq. (1) can 
be written 

dw(z) = — g(z') coth 
Jit 

(?*)*>. (la) 

Summing up overall elements of the mean line, zf = — c/2 to 
+ c/2, finally gives the induced velocity field of the whole cascade 

%+c/2 

W{Z) = -
-c/2 

g{z') coth I (2) 

Here, X is identical with the angle between the direction of the 
mean flow Z7oo* along the x-axis and the normal to the cascade 
axis (Fig. 1). 

For airfoils with small camber (zf ~ x'), and taking the in­
duced velocity at the chord only (x-axis), one gets from Eq. (2) 

eix f+C/2 / x - x'\ 
w(x) = — I g(x') coth ( TT^X ) dx' (3) 

2/ J x'= -c/2 \ t I 
in analogy to the downwash on an isolated airfoil according to 
the theory of Birnbaum and Glauert.4 In the limit t —• 001 Eq. 
(3) simply gives 

r+c/2 , , . 

w{x)\so\. = — / . dx 
Z-K J x'=-c/2 X — X' 

the well-known formula of an isolated airfoil. 
/ —• 0, Eq. (3) can be put into the form 

w(x) = 
2t 

J g(x ) 
Jx'=-c/2 t 

dx' 

(3a) 

In the limit 

(3b) 

where r is the tctal circulation of one airfoil and Y/t is the total 
circulation per unit length of the cascade axis. 

For the numerical evaluation of Eq. (3), the singularity of the 
integrand at x = x' is inconvenient. This singularity is a matter 
of the isolated airfoil only, and therefore it is reasonable to split 
off the induced velocity field of the isolated airfoil from the ve­
locity field of the cascade. Thus, one gets from Eq. (3) 

W ( a 0 c a 8 c — W (* ) i so l . = 

J- / g(x') \eix coth Le^ X—rL) ~ . l ,, dx> 
2t Jx'=-c/2 L \ t / ir(x - x ' ) J 

(4) 

The numerical evaluation of Eq. (4) is convenient because the 
bracket [] is regular in the whole range of integration and is a 
universal function of (x — x')/t and X only, not dependent on the 
special airfoil. This universal function has been tabulated in 
reference 7. The evaluation of the velocity field of the isolated 
airfoil, Eq. (3a), can be done very simply by the method of 
Allen.5 In this way, for a prescribed distribution of vorticity 
and sources, the induced velocity along the chord of the cascade 
airfoils can be easily calculated. 

From Wcasc. = uc&sc. — incase, and with the superposed trans­
verse velocity Um along the x-axis, one gets the total velocity on 
the chord c of the cascade airfoil 

Wc(x) = V( Uo> + Wcasc.)2 + V case. (5) 

Fig. 1; R cascade of airfoils in the complex plane 2 = x + /y. * This is the geometric mean 
and behind the cascade. 

?alue of the directions of flow far in front 


