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+ 

A'ba{K,M,c) = (^Yji1 + j)A'*k(k,M,c) -

C-T^M'-T-'^M'T-''-*. 
(c) Eq. (22) should read 

Abcc(ktM,c) = Aacc{k,M) + Ci4c«(ife,Jkf) -

-(Lfc-)]-(Lf1I-(lf'^)+ 

The numerical results given in the paper are rather inaccurate 
(particularly those for Rba and Iba), and more accurate results are 
referenced in a recent report by Biot, et al.1 

REFERENCE 
1 Karp, S. N., Shu, S. S., Weil, H., and Biot, M. A., Aerodynamics of the 

Oscillating Airfoil in Compressible Flow, F-TR-1167-ND (October, 1947) and 
F-TR-1195-ND (June, 1948), Hq., A.M.C. Wright Field, Dayton, Ohio. 

A = 
XQ — Xi (x0 — Xi)2 

(8) 
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IN MOST PROBLEMS in which an iteration or successive approxi­
mation procedure is used in order to obtain a solution, the 

rate of convergence decreases as the iteration proceeds. Conse­
quently, high orders of accuracy become increasingly difficult 
to achieve, and a large number of iterations may be required. 
In such problems a great deal of time and labor may be saved if 
the values in a small number of successive approximations can 
be used to predict the final correct value. 

In the present method the assumption is made that the suc­
cessive values obtained in an iteration procedure follow closely 
the form of a simple exponential approaching its asymptote. 
That is, if one value is considered as being the first in a series, the 
value obtained after the nth. subsequent iteration is given by, 

x = X + Ae~an (1) 

where X is the asymptotic value and A and a are constants. If 
Xo, Xi, and x2 are three values obtained in successive iterations, we 
may write, 

xQ = X + A (2) 

X! = X + Ae~a (3) 

x2 =X + Ae~2a (4) 

Subtracting Eq. (3) from Eq. (2) gives, 

xo — xi = A (1 — e~a) (5) 

Subtracting Eq. (4) from Eq. (3) gives, 

xi — x2 = Ae~a(l — e~a) (6) 

Dividing Eq. (6) by Eq. (5), 

(xi — x2)/(xQ — xL) = 'e~a (7) 

Substituting Eq. (7) into Eq. (5) we obtain, 

1 — [{xi — X2)/(xu — Xi)} XQ — 2#i + X2 

Substituting Eq. (8) into Eq. (2) yields, finally, 

X = xo — [(x0 — Xi)2/(x0 — 2xi + x2)] (9) 

I t is thus seen that the asymptotic value may be simply deter­
mined from three successive approximations. This asymptotic 
value will not, in general, be the true value being sought, but it 
will frequently lie much closer to it than the three values from 
which it was derived. If greater accuracy is required, the value 
obtained in this way may be used as the starting point for sub­
sequent iterations and further acceleration. 

I t should be noted that the calculation involves small differ­
ences between successive approximate values, so that a fairly 
large number of significant figures must be carried if accuracy is 
to be achieved. 

The method has been applied successfully in the matrix itera­
tion procedure for determining the natural mode shapes and fre­
quencies of vibration of an elastic system. The convergence of 
the mode coefficients to their correct value is accelerated in this 
manner, and it has been found that in many cases two or more 
significant figures are gained in each acceleration cycle. I t is 
frequently necessary to defer the acceleration till five or six itera­
tions have been performed, since the variation in the first two or 
three iterations is sometimes erratic. 

In some iteration solutions successive values oscillate about an 
asymptote. In such cases the acceleration cannot be applied 
directly to successive values but may be applied to alternate 
values. A simple rough test for the applicability of the method 
is that the difference between the second and third values should 
be of the same sign and somewhat smaller than the difference be­
tween the first arid second values in the sequence. 

I t is interesting to note that Aiken's <52 process,1 developed spe­
cifically for application to matrix iteration in the solution of char­
acteristic value problems, yields the same expression as Eq. (9). 
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SEVERAL PAPERS have appeared dealing with the problem of the 
application of the Prandtl-Glauert method to subsonic com­

pressible flow over three-dimensional bodies.1 - 4 Attempts have 
been made using this notion to establish a compressibility cor­
rection factor for three-dimensional bodies similar to the familiar 
compressibility correction factor (1 — M2)~^2 applied to two-
dimensional bodies. I t is generally agreed that the Prandtl-
Glauert method will not yield a universal correction factor for 
three-dimensional bodies which is independent of the shape of 
the body. I t is also generally agreed that the effects of com­
pressibility on the surface pressures of a body in a subsonic 
stream become less pronounced as the body is made more slender. 
This latter behavior has been illustrated by examining the maxi­
mum surface velocity in the field of flow about ellipsoids while 
varying thickness ratios, aspect ratios, and free-stream sub­
sonic Mach Number. 

The statement is made by Sauer6 that , to a first approxima­
tion, the surface pressures over a slender axially symmetric body 
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of revolution situated in a compressible stream remain unchanged 
from the surface pressures experienced in an incompressible 
stream at the same velocity. This statement is supported by 
an analysis employing appropriate source-sink distributions to 
approximate the presence of a body in the stream. 

The mechanisms of this particular analysis remain somewhat 
obscure. The purpose of this note is to present a clearer illus­
tration of the statement that to a first approximation there is no 
effect of compressibility on the surface pressures of a slender 
axially symmetric body in a subsonic stream. 

The partial differential equation of continuity for the pertur­
bation velocity potential in an incompressible stream in cylin­
drical coordinates is, for axially symmetric flow: 

ay ay ia^/ 

bx'2 br'2 rW 
0 

where 4>' = antigradient of perturbation velocities, 
solution of Eq. (1) is 

c/2 i fc/2 

^J -c/2 
fWZ 

V V ~ £)2 + r'2 

(1) 

A general 

(2) 

where /(£) is a function representing the strength distribution of 
sources and sinks distributed continuously along the x-axis be­
tween the vertex of any given body a t x ' = — c/2 and the end 
of the body at x' — c/2. 

Prandtl and Glauert are credited with introducing the follow­
ing affine transformation relating the incompressible space x', 
r't<ti' with a compressible space x,r,co 

x — x 
r = 7/3 r'\ 
03 = CO 

<f> = K<t>' 

(3) 

where K is any multiplying factor. 
Employing this transformation in conjunction with Eq. (1), 

there results the linearized partial differential equation of con­
tinuity for the perturbation velocity potential in a compressible 
stream for axially symmetric flow. 

b2<j> d V 1 b<f> 
32 — + — H - = 0 

bx2 br2 r br 
(4) 

where 0 = \/l — M2 and M = free-stream Mach Number. 
Corresponding to Eq. (2), a solution to Eq. (4) using transforma­
tion (3) is 

"e/2 

ftt) dZ/V(x - £)2 + fi*r* (5) 
-c/2 

(K/4*) L 
Eq. (5) for slender bodies is subject to the boundary condition 
that the flow at the body surface must be tangent to the body 
surface. 

<j>r/(U + 4>x) = (<f>r/U)r-*o = tan 6 (6) 

where 0 = angle between tangent to surface of body and x-axis 
and U — free-stream velocity. 

If the given body is to retain its shape no matter what the 
variation of free-stream Mach Number, then 

t a n 0 = (<t>r/U)r-

Returning to Eq. (5) 

K(32r ^c/2 

• o = constant 

4>r = 
4TT 

, rc/2 

J -c/2 

fWS 
l(x - £)2 + 0V2] 

SA 

(7) 

(8) 

This integral is to be evaluated as r approaches a small quantity 
hereafter designated as r —> e. This can be done in a more lucid 
manner than the process employed by Sauer.5 

<f>r — 
4:wr f. 

'c/2 

c/2^ 

f(& Wflr) 

[(x - £ ) / » 2 - f - 1} 
(9) 

let 

then 

0r 

x + (c/2) 

(3r — a> 
(c/2) 

(3r 
= b 

4:irr 
f(x - M) 

dt 

(t2 + l ) V a (10) 

Eq. (10) is evaluated now as r —> e by taking advantage of the 
mean value theorem. As r —> e, a —> &>, b —» - c o , and f(x — 
Pr&) —>f(xi), where Xi is some value of x between x — c/2 and 
x = c/2 

(4>r)r 
-Kf(xi) 

4?rr 

dt 

U2 + 1] 
3A 

Kflpg) 

2irr 
(ID 

Eq. (11), with eq. (7), yields 

Kf(xi)/2vr = t / t a n 6 (12) 

Eq. (12) illustrates that no compensating factor K containing 
Mach Number is needed in the equation to preserve the required 
independence of Mach Number. 

Within the rigor of the linearization implied in Eq. (4), the 
expression for the ratio of the compressible stream pressure co­
efficient to the incompressible stream pressure coefficient at any 
subsonic free stream velocity U is 

( C p J r ^ A C , , ) , , _ , , , = « / « ' (13) 

From Eqs. (2) and (5) for slender bodies with K = 1, 

(<t> x')r 

and therefore, 

= (4>x)r • = 1 fc/2 ±1 
^ J -c/2 (X f)2 

\^Pm)r —» e ~ \^Po)r' . 

(14) 

(15) 

The practical importance of this knowledge lies in the con­
sideration of the effects of thickness ratio or aspect ratio on the 
compressibility phenomena. Simply stated, the more slender 
the body, the less apparent are the effects of compressibility. 
Thus the airflow over fuselages will be less influenced by the 
consideration of the compressibility effects than will the airflow 
over wing and tail surfaces with higher aspect ratio. 
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I HAVE READ with great interest Mr. Shanley's paper (in the 
March, 1949, issue of the JOURNAL OF THE AERONAUTICAL 

SCIENCES) on the "Principles of Structural Design for Minimum 
Weight." The conclusions regarding the most economical de-




