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Obviously, AI = co2, where w is defined by (3.1).
A solution of the foregoing equation satisfying the initial

conditions (4.2) is the cosine-type Jacobian elliptic function

with

r(t)

o>* = [Ai + A3(AA)2]1/2

2[Ai + A3(AA)2]

(4.5)

(4.5.1)

Since the period of the linear vibrations is T = 27r/Ai1/2

the ratio of periods of nonlinear and linear vibrations is ob-
tained as

7T[1
(4.6)

In Fig. 3, the relation (4.6) is plotted for two types of
orthotropy discussed previously and, for the sake of com-
parison, also for the isotropic case. For definiteness, it is as-
sumed a = h/a = 0.01, and posed j = 10 and X = 40. An
inspection reveals a known sharp decrease of the period of
vibrations with an increasing amplitude. Also, graphs for
isotropic case and for the II type of orthotropy are plotted

assuming j = 4 and X = 2. Apparently, the mode patterns
influence the period of the nonlinear vibrations more than the
degree of anisotropy (at least for the two types of orthotropy
considered).
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Flutter of Thin Plates under Combined Shear and Normal
Edge Forces
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Stability boundaries are obtained for several cases of simply supported rectangular panels
as follows: unbuckled plates subjected to in-plate shear, unbuckled plates under in-plane
shear and normal edge forces, unbuckled plates with sweepback, and panels buckled by equal
compressive stresses in both the span wise and chordwise directions. For the unbuckled case,
small deflection thin plate theory and Galerkin's method are used. Aerodynamic forces are
based upon the static approximation for the most part with aerodynamic damping added in
certain cases. For the buckled plate, large deflection thin plate theory and static strip theory
aerodynamics are used in a static stability analysis. It has been concluded for the unbuckled
plate that the shear edge loading can have a drastic effect on flutter speeds. It also was found
that the use of static aerodynamic forces can lead to spurious values for the flutter boundary in
certain circumstances. The addition of aerodynamic damping helps to establish the correct-
boundary. In the base of buckled plate, it has been concluded that the static stability bound-
ary bears a significant relationship to the flutter boundary.

Nomenclature

a, 6 = plate dimensions in x and y directions, respectively
Crs = coefficients of series expansions for unbuckled

panel deflection
D = plate stiffness parameter, Eh3/I2(l — p2)
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E = Young's modulus for plate material
h _ = plate thickness
k,k = frequency parameter, ua2(psh/D)1/2, and &/V2,

respectively
M = Mach number
Nx,Ny,Nxy = normal and shear edge loads per unit length (Fig. 1)
p = aerodynamic pressure
q = dynamic pressure, Jpo^72

Q = X/7T4

r = aspect ratio, b/a
Rx,Ry,Rxy = Nxa2/D, Nyaz/D, and Nxya*/D, respectively
RX)Ry,Rxy — Rx/ir2, Ry/irz, and Rxy/ir*, respectively
t — time
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u,v,w = panel displacements in the x,y, and z directions,
respectively

u0, v0 = edge displacements at x = a and y. — 6, respec-
tively (buckled panel)

U = freestream velocity
xty,z,x,y = coordinates denned in Fig. 1
a, 7 = nondimensional amplitudes of assumed modes for

displacement w (buckled panel)
|8 = (M* - 1)1/2

£,17 = x/a and y/b, respectively
0 = buckling parameter
X = dynamic pressure parameter, 2qa3/(3D', for piston

theory X = 2qa*/MD
IJL = mass ratio, psh/poa
v = Poisson's ratio
Po = undisturbed air density
ps = plate mass density
^ = angle of panel rotation with respect to flow direc-

tion
co,co = frequency and reduced frequency, coa/U, respec-

tively
cr = subscript to denote critical values

IMy

1 ! J I

I. Introduction

ONE of the major obstacles to a complete understanding
of supersonic panel flutter has been that the flutter

boundary is sensitive to the influence of a large number of
parameters. At the present time the difficulty in isolating
many of these effects in an experimental study has prevented
satisfactory correlation between existing experimental and
theoretical results. Those problems that have been studied
have been reviewed, and an extensive bibliography has been
presented by Fung.1 It appears that many questions re-
main to be answered, even for the case of simply supported
rectangular plates. No known flutter studies have included
the influence of shear edge loading, for example, and informa-
tion regarding the sensitivity of the stability boundary to
such factors as sweepback and buckling is still incomplete.

The effects of in-plane shear are particularly significant for
thin panels, since they are the shear-resistant elements of
aircraft and missile structures. Also, the edges of skin panels
generally will not be oriented parallel to the flow; therefore,
the inclusion of sweepback, or rotation of the panel in its plane,
is apropos.

Shear and sweepback have been introduced on unbuckled
panels as extensions of the work of Hedgepeth2 by including
additional structural and aerodynamic terms in the equations
of motion. Solutions of rather large stability determinants
were required to establish convergence for these results. The
buckled simply supported panels have been studied to deter-
mine the effects of finite aspect ratio using a static stability
analysis.

II. Unbuckled Simply Supported Plates under
Combined Shear and Normal Edge Forces with

Sweepback Included

From small deflection, thin plate theory, the nondimen-
sional differential equation of equilibrium for a rectangular
plate placed in a supersonic airstream as shown in Fig. 1 is

/_« V d4w &w
\b) V x dl2

— I — +b I ^ o -r
psha4

CD

where w(£,ri,t) is the lateral deflection of the plate, p(£,i7,0
is the lateral aerodynamic loading, and the other quantities

Fig. 1 Edge load and coordinate system (z axis out of
page)

are defined in the Nomenclature.
plates, let

For simply supported

(2)

and apply Galerkin's method. The result is

m2 - k2} Cm

s = 0

Kn,r,«, = 1 2 . . . ) (3)

where Nmn,rs = 4mnrs/(ra2 — r2)(n2 — s2) if (m + r) and
(n + s) are odd, otherwise Nmn,rs = 0.

The generalized airforce terms Lmn,rS in Eq. (3) have been
calculated using several aerodynamic theories. Static strip
theory, static surface theory, and linear piston theory have
been used in various situations for reasons given in the dis-
cussion of results. Static strip theory is the easiest to apply
and may be obtained directly from Ref . 2 with a slight modi-
fication to account for rotation of the plate. The result is

L = cos^Lmr + (a/6) sm\f/Lns (4)

where Lmr = 4™/7r(r2 — m2) if (m + r) is odd and n = s,
otherwise Lmr = 0; Ln8 = 4sri/7r(s2 — n2) if (n + s) is odd
and m = r, otherwise Lns = 0. Static surface theory was
used only for the nonrotated plate, and thus Lmn,rs may be
obtained from Ref. 2 without modification. Appropriate
values from linear piston theory, again for the nonrotated
plate, are

= lL (5)

where Lmr has been defined following Eq. (4) and Lmn =
— (OJ/TT) when m = r and n = s, otherwise Lmn = 0. It
should be noted that the definition of X in Eq. (3) is changed
slightly between the static aerodynamic theories and piston
theory. For piston theory, ft is replaced by M, a difference
that becomes less significant as M increases.

The flutter boundary may be determined from Eq. (3),
after including terms from the appropriate aerodynamic
theory, by setting the determinant of the coefficients of Cmn
equal to zero.

For static aerodynamic theories, all roots of the character-
istic equation are real for sufficiently small values of X. If
X then is increased gradually, a point will be reached where
two roots coalesce, and any further increase in X makes these
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Fig. 2 Variation of critical dynamic pressure parameter
with shear parameter

two roots complex. The point at which the two roots coalesce
defines the critical value of X and hence the flutter boundary
for that particular set of conditions.

For piston theory aerodynamics, the characteristic equa-
tion is complex, and the airforces are now a function of re-
duced frequency. Here the roots may be interpreted in a
manner analogous to the classical V-g flutter solutions. In
order to specify this problem completely, it is necessary to
fix the parameter 1/juM in addition to those quantities that
already have been specified for calculations with static strip
theory.

By setting A = 0, Eq. (3) determines the natural frequen-
cies and associated mode shapes in vacuo. Also by setting
X = 0 and k2 = 0, the equations determine the critical buck-
ling loads. The critical buckling loads are of interest, since
they establish a boundary for combinations of shear and nor-

Simply supported (unbucKled)
Rx =Ry = 0
* =0

Strip theory aerodynamics
(h Order analysis
Flutter points

Rxy=0

Simply supported (unbuckled) I
Rx = Ry = 0 I
* = 0

Strip theory ae rodynamics
I6tn Order analysis

+ Flutter points

Fig. 4 Lower mode frequencies vs X for increasing values
of shear parameter

mal edge loads beyond which small deflection theory is no longer
valid. When critical edge loadings are exceeded, nonlinear
equations must be used as described in the section on the sta-
bility of buckled rectangular plates.

III. Buckled Simply Supported Plates of Finite
Aspect Ratio (Static Stability)

The static stability of a two-dimensional buckled plate in a
supersonic flow has been discussed in several reports by
Fung,3"6 by Eisley,7 and previous to that by Miles8 and
Isaacs.9 In the following, the static stability of a simply
supported rectangular plate of finite aspect ratio in a super-
sonic flow is considered.

The .nonlinear equations of von Karman for a thin plate
with in-plane shear neglected (Fig. 1) may be written in terms
of the displacements u, v, and w10 as

o2v , dw 52w , dw o2w———— _j_ —— ——— _J_ p —— ———— — Q
dxdy ox do;2 dy dxdy

o2u
——
do;2

, . ,
:r-7 + V ^——~ + —— r-r + V —— ̂ ~— = 0oy2 oxoy oy oy2 ox oxoy

4
V W I _ ^2 (^2 ^2 ' 2 \QX ) dx2

[ dv d2w 1 /dw\2 d2w~\— — + — ( — I ——dy dx2 2 \dy / dx2 _]

(6)

!_ (oui\2 Ww rou Ww 1 /d^
2 \dy) dy2 v \_bx by2 2 \d*

The boundary conditions for a simply supported rectangu-
lar plate that is buckled by displacement of the edges at
x = a and y = b are

= 0 u(a,y) = UQ

v(x,y) = 0 v(x,b) = v0 (7)
w(Q,y) = w(a,y) = w(ar,0) = w(x,b) = 0

. o2w b2w . .. _

Fig. 3 CKiange in flutter mode for increasing values of
; shear parameter

The edge displacements UQ and v0 will be related subsequently
to the critical buckling load.

If the displacement w is assumed to be

. . TTX . Try 2irx . -ny ,w(x,y) = ah sin — sin — + yh sin —— sin — (8)a b a o

the first two equations of Eqs. (6) can be solved for u and v.
If these expressions and Eq. (8) are substituted into the third
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of Eqs. (6), and if p(x,y) is chosen as the static strip theory
value for supersonic flow, application of Galerkin's method
gives

FLUTTER OF THIN PLATES

where

623

where

(A, + A2a* + A372)<* - f(X/7T4)7 = 0

f(X/7r> + (A, + A572 + ^Ua2)7 = 0

Al = (1 - 0)[1 + (1/r2)]2

(9)

A6 = 12

r = b/a

The symbol 0 in the foregoing equations is the buckling
parameter defined as

0 (10)

where

ah*7r2

12(1 + v)

1 + rj
^ 6V12(1 +

Equation (10) is for the case of buckling under uniform edge
stress in both directions such as would occur for a uniformly
heated plate restrained on all edges.

For a nontrivial solution of Eqs. (9), the determinant of the
coefficients of a and 7 is set equal to zero. After substituting

0,2 = r T2 = ff (n)

the expansion of the determinant is

«o + froo" + Cof + ^oo"2 + 60 f <r + /of2 = 0 (12)

where

00= AxA 4 + [|(X/7T4)]2

+ A2 A 4,
dQ =

fo = Az Az
From the definitions following Eqs. (9), it may be seen that
c£0, eQj and /0 are all greater than zero. Also if 0 is sufficiently
small but greater than one, 60 and CQ are greater than zero.
Since for static stability both f and a- must be real and posi-
tive [imaginary values of a and 7 would indicate that the
shape assumed in Eq. (8) could not exist], it follows as a
necessary condition for this special case that

0 (13)
From the definitions following Eqs. (9) and (12), the in-
equality expressed by Eq. (13) may be written as

02 + ei0 + e2 < 0 (14)

This inequality establishes an upper bound on the value of
X beyond which static stability cannot exist. This maxi-
mum value of X will be called Xcr and is found from the relation

- 4e2 > 0 (15)
Numerical results obtained using this relation are described
inSec.IVD.

IV. Numerical Solutions

Numerical flutter solutions have been obtained for special
cases of the buckled and unbuckled simply supported panels
treated in the previous sections. These results are discussed
below under appropriate subheadings.

A. Unbuckled Rectangular Plates with Shear
Loading Only

In_order to determine the effects of shear edge forces alone,
set Rx = Ry = 0, 0 < Rxy < RXVef, and $ = 0. Flutter
boundaries for these conditions are shown in Fig. 2 for a/b of
^, 1, and 2. The very drastic effect on dynamic pressure
parameter as shear is introduced is evident for all panel aspect
ratios shown.

The unusual shape of the flutter boundary for a/b of \ is
due to the manner in which the flutter mode changes with
Rxy. This can be seen by comparing the pairs of modes
whose frequencies coalesce at flutter in Figs. 3 and 4. For
a/b of %, a variation in Rxy can alter the pair of modes which
becomes critical, but for_a/6 of 2, the lowest two modes
coalesce at flutter for all Rxy. This behavior can be ration-
alized by an examination of the aerodynamic coupling be-
tween the vibration mode shapes both with and without
shear. The area under the dashed portion of the curve for
a/b of | (Fig. 2) is a stable region, but, for a very small
amount of shear edge loading, the critical flutter speed shifts
from a value in agreement with Hedgepeth2 to a significantly
lower value.

1. Number of terms required in series

The results described previously were obtained from six-
teenth-order solutions that included the first four spanwise
and chordwise terms in the double sine series representing
plate deflection (m,n,r,s, = 1,2,3,4). However, the number
of terms required for satisfactory convergence has been con-
sidered, and the results of this investigation are presented
in Fig. 5. The terms used in each of the solutions presented
are defined in Table 1. For an a/b of 1, the sixteenth-order
solution shows satisfactory convergence when compared with
the single point calculated using 24 terms. However, for an
a/b of |, the selection of terms by an orderly increase of series
indices, as was done for the square plate, omits some very
low frequency modes. For example, in a vacuum with zero
edge loads, fc2 for the Ci$ term is 52.5, whereas k2 for the C4i
term is 264.

The normal sixteenth-order analysis excludes the Ci5 term
but includes the (741 term. Therefore, an analysis was per-
formed where terms were selected on a frequency basis. The
seventeenth-order analysis shown in Table 1 was obtained
for an a/b of | by including all terms for p < 176 (zero edge
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Fig. 5 Effect of the number of terms included in the series
representing panel deflection

loads and airspeed). Comparison with sixteenth-order re-
sults in Fig. 5 shows virtually no difference in Xcr except at
low Rxy, where a discrepancy might have been anticipated
since Hedgepeth2 shows that the C4i term can have a sig-
nificant effect on flutter speeds when shear is zero.

Another indication of having proper terms included in the
analysis can be obtained from the prediction of critical
buckling loads. The critical buckling loads from the six-
teenth-order analyses are in good agreement with Refs. 11
and 12, even though some higher order terms included in
these references are excluded from the present analyses.
The magnitudes of the coefficients omitted were small for
the buckling modes shown in Refs. 11 and 12, at least for the
a/b reported herein, and the detrimental effect on the pre-
diction of RxyCr also was found to be small. Judging from the
buckling shapes in Refs. 11 and 12, a re-examination of the
terms required in the series would be desirable for a much
greater range of a/b than reported here. Nevertheless,
all other results presented for unbuckled plates are based upon
16 terms specified by an orderly increase of series indices.

2. Effect of surface theory aerodynamics

It has been shown by Hedgepeth2 that strip theory is satis-
factory when the plate is loaded with normal edge forces
only, but it was believed appropriate to re-evaluate the effect
of spanwise aerodynamic coupling with the addition of shear
edge loads. Fortunately, the aerodynamic coefficients corn-
Table 1 Terms used in series representing panel deflection

for solutions of various orders

Order of
solution

8
16

17

24
36

Chordwise
terms (r,m)

1,2,3,4
1, 2, 3, 4

jl

Y(3

1, 2, 3, 4, 5, 6
1, 2, 3, 4, 5, 6

Spanwise
terms (s,n)

1,2
1, 2, 3, 4

1, 2, 3, 4, 5, 6, 7
1,2,3,4,5,6
1,2 3,4

1, 2, 3, 4
1,2,3,4,5,6

a / b = l
Simply supported (unbuckled)
R x = R y , 0
* = 0
16th Order analyses

Strip theory

Surface theory M = 4.I2

1.2

Fig. 6 Comparison of flutter boundaries for static strip
and static surface theory aerodynamics

puted in Ref. 2 using the full three-dimensional static aero-
dynamic pressure relation could be used here. A com-
parison of results for strip theory and surface theory aero-
dynamics is shown in Fig. 6 for If = 2.24 and 4.12. Values
for strip theory aerodynamics are unconservative with respect
to surface theory results by as much as 12% at M = 2.24.
However, the agreement is improved for M = 4.12, and the
flutter boundary for surface theory aerodynamics appears
to be converging rapidly to that for strip theory aerodynamics
as M is increased.
3. Coupling of higher modes: inclusion of
aerodynamic damping

The sharp dips in \cr shown as dashed lines in Fig. 6 ̂ repre-
sent flutter boundaries computed in those intervals of Rxy for

Table 2 Vibration modes that coalesce at flutter for Rxy
near 0.915 (also corresponding flutter modes)

Rxy
£2

Cii
C'i2
C18
C'»

Cn
C/22

C23
C24

Cai
C32c»
C',4

C'41

C42
C43c«

0.91
116.6

-0
0
1
0

0
-0

0
-0

1
0
0
0

0
-0

0
-0

Vibration

0.92
116.9

10

o o - - - - ,
i
I
i

79-- 'i
05

00

15

05

.04

modes

0.91

Flutter

0.92
117.0 116.3

0
0.
0
0.

0.
0

---1.
0

0
---1.

0
-0.

0.
0

-0.
0

20

20

20

00a

00

14

19

14

0 .91
116.8

-0
0
0
0

0
-0

0
-0

0
1
0

-0

0
-0
-0
-0

09
21
90
18

18
76
97
05

92
00
13
14

18
06
14

.04

modes

0 92
116.6

0
0

-0.
0.

0
0
1
0

-0
0

-0
-0

0
0

-0
0

07
19
91
19

23
65
00
04

88.
96
15
14

21
02
13
04

a Dashed lines show aerodynamic coupling between larger terms in vibra-
tion modes.
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Fig. 7 Flutter boundaries with shear edge forces both
with and without normal edge loads; R% or Ry equal to

+ 3 is approximately 75% critical compression load

both strip theory and surface theory aerodynamics. Ex-
amination of the changes in still air modal frequencies as
the shear parameter is increased reveals that frequencies of
two of the higher vibration modes cross as Rxy traverses the
vicinity of each of the dips. For one specific value of Rxy in
the range where each of the dips occurred, two vibration
modes have identical frequencies. If these modes whose
frequencies cross are aerodynamically coupled, extremely low
values of Xcr might be expected (0.001 was the minimum
value obtained.) That aerodynamic coupling does exist
can be seen in a qualitative fashion from the modal columns
shown in Table 2. The vibration modes that coalesce and
the resulting flutter modes are presented for a point on each
leg of the dip in XCr for Rxy in the vicinity of 0.915. It can
be demonstrated easily using static strip theory that the
largest terms in these vibration modes are coupled aero-
dynamically as indicated by the dashed lines in Table 2.
Some smaller coefficients in the modal columns also contrib-
ute to the aerodynamic coupling between these modes, but
the coupling shown was believed sufficient to illustrate the
point. The dips in Xcr for value of Rxy near 0.64 and 0.59

Simply supported

Strip theory aerodynamics

16th Order analyses

=Ry =

a / b = 3/4 (ref. 13,4th Order)

a /b= l /2

0 10 20 30 40
+ -Degrees

Fig. 8 Flutter boundaries for plates rotated with respect
to flow

0.4 0.6

Fig. 9 Flutter boundary for buckled rectangular plates

can be rationalized using the same argument; hence the
dashed boundaries in Fig. 6 appear to be legitimate flutter
boundaries for the system as represented.

Two refinements in the mathematical model were considered
in an effort to eliminate the apparent drastic reductions in
instability speeds. (One might imagine an even more radical
boundary represented by the envelope of all dips from still
higher vibration mode crossings not included in this study.)
First, since the modes whose frequencies cross are of higher
frequency, and hence more complex, it might be reasoned
that their frequencies are not predicted accurately by the
sixteenth-order analyses, and the frequency crossings in
reality do not exist. For this reason, vibration analyses were
performed using the 36-term representation for plate deflec-
tion shown in Table 1. Results from the iterative solutions
showed that, although the frequencies of the higher modes
were lowered somewhat, the frequency crossings still were
present.

The second possibility considered was to add aerodynamic
damping to the system by inserting the expression for piston
theory aerodynamics, Eq. (5), into Eq. (3). Solutions using
piston theory did produce the desired smooth flutter bound-
aries, and although the curve for strip theory on Fig. 6 was
not duplicated the results appeared to be converging to this
boundary with increasing values of the parameter /zM.
Therefore, the possibility of sharp dips occurring was ig-
nored subsequently whenever frequencies of higher modes
were nearly equal.

The flutter modes included in Table 2 are shown as a
matter of interest. Since these flutter modes are almost a
direct sum of the two vibration modes tabulated, they
clearly show the pha_sing differences between vibration
modes at flutter when Rxy equals 0.91 or 0.92. Presumably,
the phase shift is caused by the crossing of frequencies of these
two modes as Rxy is increased from 0.91 to 0.92 (zero air-
speed). Hence, for frequency coalescence of these vibration
modes, the sign of the aerodynamic stiffnesses (coupling
terms) must change when the lower and higher frequency
modes are interchanged.

B. Unbuckled Rectangular Plates under Combined
Shear and Normal Edge Loads

To evaluate the effect of shear edge loads in the presence
of normal edge forces in both the chordwise and spanwise
directions, a series of computations was made as follows

1) Rx = 0
2) Rx = 0
3) Rx = 0.75 Rxc_r (approx.)
4) Rx= - 0.75 Rxcr (approx.)

Ry = 0.75 Rycr (approx.)
Ry = — 0.75 Rycr (approx.)
Ry = 0
Ry = 0

RXcr is the critical compressive load for Ry == 0 and Rxy = 0;
Rycr is defined in an analogous fashion, and RXVcr is the critical
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shear load for the particular normal edge loading specified.
The results from these calculations for a/b of 1 are compared
in Fig. 7 with those previously described for no normal edge
loading. The detrimental effect of shear edge loads when
combined with either spanwise or chordwise edge loading is
evident for this aspect ratio. It has been concluded in Ref.
2 that the nutter boundary is unaffected by spanwise normal
edge loads, but this is shown to be no longer true when shear
loading is added. Generally speaking, tension edge loads
are beneficial, whereas compression normal edge loads are
detrimental, with the loads applied in the chordwise direction
being the most influential. As the critical values of shear
are approached, it makes less difference whether the normal
edge loading is in the chordwise or spanwise direction.

C. Unbuckled Rectangular Plates with Sweepback

The flutter of unbuckled rectangular plates rotated with
respect to flow direction has been investigated_for zero shear
and normal edge forces. For this case Rx = Ry = Rxy = 0
and \(/ ^ 0. These results are shown in Fig. 8 for flow angles
from 0 to 7T/4 and several values of a/b. The range of \j/
is not extended beyond 7T/4, since X then would be based
upon a panel dimension that is oriented more in the spanwise
direction than in the chordwise sense. Generally speaking,
sweepback is seen to be detrimental for low a/b and bene-
ficial for higher values of a/b.

The dashed continuation of the flutter boundary for a/b of
| is somewhat analogous to that already described for this
same a/b with shear edge loading. The variation of modal
frequencies with dynamic pressure parameter shown in Fig.
3 for Rxy = 0 applies here for ̂  = 0. If the panel is rotated
a small amount, the spanwise component of flow couples
the two lowest frequency modes (Cn and Ci2) that are un-
coupled for zero sweepback, and a plot of k2 vs X would be
similar to that shown for small Rxy. It is interesting to note
that a small amount of either shear or sweepback produces
the same drop in Xcr from the zero shear, zero sweepback
case. This appears to be another example of the delicate
nature of panel flutter, and unless the complete absence of
shear and sweepback is insured it would seem more rational
to use the lower curve to define the flutter boundary.

During the time that this investigation was being per-
formed, Ref. 13 was published which in essence treats this
same special case of the more general problem described in
the flutter theory for unbuckled panels. Reference 13 con-
tains results for a rather complete variation of panel aspect
ratio; however, only four terms were used in the series repre-
senting plate deflection. Although proper trends are com-
puted with the lower order analyses, Fig. 8 shows by com-
parison with the results for sixteenth-order analyses that
significant changes in flutter boundaries are obtained with
the inclusion of higher terms. The sixteenth-order analyses
used herein are not regarded as having a minimum number of
terms required for convergence, but the results are believed
to represent converged boundaries for practical purposes.

D. Buckled Rectangular Plates

The theory developed for buckled plates treats the case
where the plate is buckled by uniform compressive stresses of
equal magnitudes in the spanwise and chordwise directions.
This type of loading is of practical significance, since it repre-
sents the stresses that would occur in a uniformly heated

plate restrained on all edges. For r
inequality of Eq. (15) establishes that

Xcr = 109.6

o (a/b -+ 0), the

or

Qcr = Xcr/7T4 = 1.125

No statically stable configuration exists for larger values of
X. This agrees with the value obtained by Fung3"6 for a
two-mode solution of the infinite aspect ratio case.

Values of XCr for various values of a/b have been deter-
mined, and the results are plotted in Fig. 9 together with the
envelope of experimental results given in Ref. 14. In addi-
tion, the critical value obtained in Ref. 7 by a two-mode
solution for infinite aspect ratio clamped plates is shown.
The ordinate for these curves is one that frequently is used
to present experimental data, and for this parameter the re-
gion below the curves is unstable.

It should be noted that the effects of the use of strip theory
aerodynamics become more pronounced as a/b gets larger.
Also, the problem of convergence has not been settled; how-
ever, in Ref. 6 it is shown that a six-mode solution of the in-
finite aspect ratio case results in Qcr = 1.172, which indicates
that the first two modes are sufficient as a first approximation.

From these results, it appears that the static stability
boundary has practical significance in relation to the flutter
boundary. A full dynamic analysis is in preparation.
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