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CHAPTER I

Introduction

It is well-known that the ring of polynomials (in one variable) over a field is

a Euclidean domain, so that the multiplicative semigroup of this ring has unique

prime factorization, and hence for instance any two elements have a greatest common

divisor and a least common multiple. In this thesis we shall consider a different

operation on the collection of nonzero polynomials over a field, namely the operation

of functional composition: f(x) ◦ g(x) := f(g(x)). This collection of polynomials

again forms a semigroup, which turns out to enjoy several appealing properties. For

instance, any two polynomials (over a field) have a greatest common divisor and a

least common multiple under this operation. Moreover, for certain fields (such as C

or Q) there are even results describing the full extent of nonuniqueness of “prime

factorization” in this semigroup.

These questions were originally studied for polynomials with complex coefficients,

in the context of finding polynomial solutions of functional equations. The founders

of modern iteration theory (Fatou, Julia, and Ritt) made intensive studies of these

questions; for instance, the Julia set originally arose from such considerations, as a

consequence of Julia’s result that two commuting polynomials (under composition)

have the same Julia set. The methods of Fatou, Julia, and Ritt involved geometric
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and analytic techniques, so it was something of a surprise that their results could

be extended to polynomials over fields other than the complex numbers. This was

achieved by suitably “algebraicizing” these complex techniques, and was done by

Engstrom [Eng41], Levi [Lev42], Fried and MacRae [FM69], Fried [Fri74], Dorey

and Whaples [DW74], Schinzel [Sch82, Sch00], Tortrat [Tor88], and Zannier [Zan93].

Their results have numerous applications to various areas of mathematics. These

applications include:

1. Bilu and Tichy’s classification [BT00] of f, g ∈ Z [t] for which the Diophantine

equation f(x) = g(y) has infinitely many integer solutions.

2. Ghioca, Tucker, and Zieve’s classification [GTZ08, GTZ] of complex polynomials

having orbits with infinite intersection

3. Medvedev-Scanlon’s classification [MS09] of affine varieties having an endomor-

phism which acts as a nonlinear univariate polynomial on each coordinate.

4. Pakovich’s classification [Pak08] of compact subsets A,B ⊂ C and f, g ∈ C [x]

such that f−1(A) = g−1(B).

5. Fried’s classification [Fri70] of polynomials in Z [x] which induce a permutation

on Z/pZ for infinitely many primes p (see also [Tur95]).

In order to generalize and refine the arithmetic applications 1 and 5 above, some

authors have studied polynomial decomposition in case the coefficient ring is an

integral domain (see, for example, [Tur95], [Gus88], [DG06]). This theory is in its in-

fancy – for instance, prior to the present thesis, the extent of nonuniqueness of prime

factorization in Z [x] under the operation of functional composition was a complete

mystery. We will resolve this and develop the arithmetic of functional composition

over arbitrary (even noncommutative!) rings. In the process, we introduce many
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new techniques, and surprisingly, we find that several results remain true for quite

general classes of rings. It turns out that, in order to obtain a rich theory, one must

restrict to the semigroup of monic polynomials (with coefficients in a specified ring

R) under the operation of functional composition; we call this semigroup MR. In

MR, the identity is x. The units (invertible elements) are the linear polynomials,

and the irreducible elements (which we will refer to as indecomposable) are those

F ∈ MR of degree at least 2 such that if F = F1 ◦ F2 (with F1 and F2 in MR) then

one of F1 and F2 is necessarily linear.

We show in Theorem V.8 that in many situations any two elements of MR have

a least common multiple:

Theorem. If R is a ring with no Z-torsion, then every pair f, g ∈ MR has a least

common MR-composite whose degree is either 0 or lcm(deg(f), deg(g)).

In Theorem VI.10, we show the existence of greatest common divisors in MR for

a slightly more restrictive class of rings R:

Theorem. Suppose R is a commutative ring with no Z-torsion and no nonzero

nilpotents. Then if f, g ∈ MR have a nonconstant common MR-composite, there

exists a greatest common MR-divisor of f and g having degree gcd(deg(f), deg(g)).

Our two main results are analogous to the two theorems of Ritt, which character-

ized nonuniqueness of decomposition for polynomials in C [x]. First, we show that

if there are two “prime factorizations” of the same polynomial, then they have the

same length and involve indecomposables of the same degrees, though possibly in

different orders. Moreover, any two such decompositions are related to each other

by a sequence of “swaps”. More specifically, for rings R with no nonzero nilpotents,
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if we write

h1 ◦ h2 ◦ ... ◦ hr = f = g1 ◦ g2 ◦ ... ◦ gs,

for indecomposables hi, gj ∈ MR, then r = s, and a decomposition related to (we

will define an equivalence relation on decompositions in Chapter VII) g1 ◦ g2 ◦ ... ◦ gr

can be obtained from h1 ◦ h2 ◦ ... ◦ hr by a sequence of steps, each of which involves

replacing two adjacent indecomposables by two new indecomposables with the same

composite and with the same degrees as the original indecomposables but in the

reverse order. In other words, we apply the substitution

a ◦ b = c ◦ d

for some indecomposables a, b, c, d ∈ MR with deg(a) = deg(d) and deg(b) = deg(c).

These exchanges are often called “Ritt swaps” in the case of fields.

The precise statement below is given as Theorem VII.5, which holds over any ring

with no nonzero nilpotents. The result is reminiscent of the Jordan-Hölder theorem.

Theorem. Let R be a ring with no nonzero nilpotents. Then if F = G1◦G2◦...◦Gr =

H1 ◦ H2 ◦ ... ◦ Hs, where F,Gi, Hi ∈ MR and where Gi, Hi are indecomposable over

MR and are of degree > 1, and where the degree of F in R (i.e., 1 + 1 + 1 + ...+ 1,

deg(F ) times) is neither 0 nor a zero divisor in R, it follows that r = s and that

the sequences 〈deg(Gi)〉i≤r, 〈deg(Hi)〉i≤r are permutations of each other. Moreover,

there exists a finite chain of decompositions F = F
(j)
1 ◦ ... ◦ F (j)

r (1 ≤ j ≤ n) with

F
(j)
i ∈ MR indecomposable over MR such that

1. 〈F (1)
i 〉i≤r = 〈Gi〉i≤r,

2. there exist invertible linear L1, ..., Lr−1 ∈ MR such that

(a) H1 = F
(n)
1 ◦ L1
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(b) Hj = L−1
j−1 ◦ F

(n)
j ◦ Lj, for 1 < j < r

(c) Hr = L−1
r−1 ◦ F

(n)
r

3. for each j < n, there exists k < r such that

F
(j)
k ◦ F (j)

k+1 = F
(j+1)
k ◦ F (j+1)

k+1 ,

with deg(F
(j)
k ) = deg(F

(j+1)
k+1 ) coprime to deg(F

(j)
k+1) = deg(F

(j+1)
k ), and for each

i 6= k, k + 1, we have F
(j)
i = F

(j+1)
i . That is, the decompositions 〈F (j)

i 〉i≤r and

〈F (j+1)
i 〉i≤r differ only by having two consecutive terms with the same composi-

tion and reversed coprime degrees.

We provide counterexamples to this theorem for rings with nonzero nilpotents,

namely in Z [T ] /〈T 2〉 (Example VII.9). We also provide counterexamples in some

rings where deg(F ) in R is 0 or a zero divisor. For instance, we exhibit counterex-

amples in Z [T ] /〈2T 〉 (Example VII.8) and in any ring of characteristic p prime

(Example VII.7).

Our second main result characterizes Ritt swaps in integral domains. That is, we

solve the functional equation a◦b = c◦d where deg(a) = deg(d) and deg(b) = deg(c).

When reduced to the case gcd(deg(a), deg(b)) = 1, there is a surprisingly restrictive

solution set to this functional equation when R is an integral domain. Namely, up

to composing on both sides by linears, the only solutions are

xn ◦ xrh(xn) = xr(h(x))n ◦ xn

Dn(x, tm) ◦Dm(x, t) = Dm(x, tn) ◦Dn(x, t),

where n,m, r ∈ Z>0 and h ∈ MR, and where Dn(x, t) is the Dickson polynomial

of degree n and parameter t (see Definition VII.10). Dickson polynomials are a

generalization of Chebychev polynomials.
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More precisely,

Theorem. Let R be an integral domain, and let A,B,G,H ∈ MR satisfy deg(A) =

deg(H) = n > 1 and deg(B) = deg(G) = m > n, where gcd(m,n) = 1 and G′H ′ 6= 0.

Then G ◦ A = H ◦ B if and only if there exist linear L1, L2, L3, L4 ∈ MR such that

either of the following holds:

1. For some P ∈ MR and r > 0,

(a) L1 ◦G ◦ L2 = xrP (x)n,

(b) L−1
2 ◦ A ◦ L3 = xn,

(c) L1 ◦H ◦ L4 = xn, and

(d) L−1
4 ◦B ◦ L3 = xrP (xn).

2. For some t ∈ R and m,n > 0,

(a) L1 ◦G ◦ L2 = Dm(x, tn),

(b) L−1
2 ◦ A ◦ L3 = Dn(x, t),

(c) L1 ◦H ◦ L4 = Dn(x, tm), and

(d) L−1
4 ◦B ◦ L3 = Dm(x, t).

We present an example showing that this result fails in a nondomain with few

other notable properties - namely, in Z [a, b] /〈ab〉 (Example VII.23).

Over fields, the proofs of many of these results depend on a theorem of Lüroth,

which states that for any field K, if a field L satisfies K < L < K(x) where x is

transcendental over K, then L = K(y) for some y. In the language of algebraic

geometry, Lüroth showed that unirational (dominated by projective space) curves

are rational (birational to projective space). For any f, g ∈ K [t], applying Lüroth’s

theorem to the subfields K(f(t)) ∩ K(g(t)) and K(f(t), g(t)) of K(t) shows (after
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a short ramification argument) that f and g have a least common composite and a

greatest common divisor (see, for example, [Sch00, Theorem 5]). Conversely, the ex-

istence of least common composites and greatest common divisors seems only slightly

weaker than the full Lüroth theorem. In this thesis, we provide a Lüroth-free proof

of several consequences (in the case R is a field) of Lüroth’s theorem. We hope that

this may point to an analog of Lüroth’s theorem in a more general setting, namely

to other one-dimensional schemes such as the affine line over certain rings.

In the following chapter, a guide to the definitions and notational conventions

used throughout the thesis is provided. In Chapter III, several preliminary results

regarding polynomial decomposition are presented. In Chapter IV, we consider de-

compositions and common composites over extension rings and their relationship to

decompositions and common composites over a base ring. In Chapter V, we prove

existence of least common composites in various settings, and we provide results

about the degrees of common composites. Chapter VI gives a proof of the existence

of greatest common divisors in certain classes of polynomial rings, and results are

presented describing when the greatest common divisor has optimal degree. Lastly,

results describing nonuniqueness of factorization in MR are presented in Chapter

VII.



CHAPTER II

Preliminaries

In this chapter, we introduce several definitions and establish notation that will

be used throughout this thesis.

R is a ring, not necessarily commutative, with 1. Given R, we denote by PR the

monoid of polynomials in R [x] under the operation of functional composition. We

denote by MR the submonoid of PR consisting of monic polynomials. We do not

consider 0 to be monic.

We denote the degree of a polynomial F by |F |. Let S ∈ {MR,PR}, and suppose

A,F ∈ S. We refer to H = A ◦ F as a left S-composite of F and as a right S-

composite of A. Similarly, we say that F is a right S-divisor of H and that A is a left

S-divisor of H. In the following chapters, we present results about left composites

and right divisors, but we do not give any results regarding right composites and

left divisors. Therefore, we omit the left and right when discussing composites and

divisors. Namely, H = A ◦ F is an S-composite of F , and F is an S-divisor of H.

We say that H is a common S-composite of polynomials F,G ∈ R [x] if H is an

S-composite of both F and G. Note that 1 is an S-composite of every polynomial in

S, hence a common S-composite of all pairs of polynomials in S. For F,G ∈ S, we

say that H is a least common S-composite of F and G if H is a common S-composite

8
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of F and G and if every common S-composite H0 of F and G is also an S-composite

of H.

Similarly, we say that F ∈ S is a common S-divisor of H and G if H and G

are S-composites of F . If F ∈ S is a common S-divisor of H and G such that all

common S-divisors of H and G are also S-divisors of F , then we say F is a greatest

common S-divisor of H and G. We note that when S = MR, the notions of least

common S-composite and greatest common S-divisor coincide with those of the least

common multiple and greatest common divisor in MR.

A polynomial F ∈ S is indecomposable over S if |F | is at least 2 and if F = F1◦F2

(with F1, F2 ∈ S) implies |F1| = 1 or |F2| = 1. If |F | ≥ 2 and F is not indecomposable

over S, we say that F is decomposable over S.

A decomposition of a polynomial F over S is a tuple (F1, F2, ..., Fn) such that

Fi ∈ S and F = F1 ◦ F2 ◦ ... ◦ Fn.

We denote by OR(xn) the collection of polynomials in R [x] whose degrees do

not exceed n. Where the context is otherwise clear, we denote this collection of

polynomials by O(xn). For brevity, we often write f(x) = O(xn), meaning that

f(x) ∈ O(xn). This allows such sentences as “f(x) = p(x) +O(xn)” as a convenient

shorthand for “f(x) = p(x) + q(x) for some polynomial q(x) ∈ O(xn)”.

We denote by R{x1, x2, ..., xk} the set of polynomials in the noncommuting vari-

ables {x1, ..., xk} with coefficients in R. Though the indeterminates do not commute

with each other, we require that they commute with all elements of R.

Let R be a commutative ring and M an R-module. An element m ∈ M is an

R-torsion element if there exists r ∈ R that is neither 0 nor a zero divisor such that

rm = 0. Then the R-torsion submodule TorR(M) = {m ∈ M : rm = 0 for some

nonzero r ∈ R}. All rings may be considered as Z-modules (by their abelian group
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structure). We write Tor(R) as a shorthand for TorZ(R). We say that a ring R has

no Z-torsion if Tor(R) = {0}.

We say that a nonzero element r ∈ R is a zero divisor in R if there exists a

nonzero s ∈ R such that rs = 0 or sr = 0. In particular, we do not regard 0 as a

zero divisor.

For a nonnegative integer k, we refer to the element 1 + 1 + 1 + ...+ 1 (k times)

of R as the image of k in R, and we denote this element by kR.



CHAPTER III

Polynomial Decomposition

In this chapter, we begin our classification of decompositions of polynomials. The

main result is Theorem III.3, which states that given a polynomial H ∈ MR and

m,n ∈ Z>0 such that mn = |H| is neither 0 nor a zero divisor in R, there is at most

one pair F,G ∈ MR with |F | = n and |G| = m such that H = F ◦G.

To this end, we first describe a subset of the coefficients of F ◦G in terms of the

coefficients of F and G.

Lemma III.1. Given m,n ≥ 1, there are polynomials ri ∈ Z{xi+1, xi+2, ..., xm−1} for

0 ≤ i ≤ m− 1 and sj ∈ Z{yn−1, yn−2, ..., yj+1, x0, x1, ..., xm−1} for 1 ≤ j ≤ n− 1 with

the property that: for any ring R and any a0, ..., an−1, b0, ..., bm−1 in R, the coefficient

of xnm−` in

(
xn +

n−1∑
i=0

aix
i

)
◦

(
xm +

m−1∑
j=0

bjx
j

)
equals

1. nbm−` + rm−`(bm−`+1, bm−`+2, ..., bm−1) if 1 ≤ ` ≤ m− 1,

2. an−k + sn−k(an−1, an−2, ..., an−k+1, b0, b1, ..., bm−1) if ` = km with 2 ≤ k ≤ n, and

3. nb0 + an−1 + r0(b1, b2, ..., bm−1) if ` = m.

Proof. Let an = bm = 1, and let f =
n−1∑
i=0

aix
i, and let g =

m∑
j=0

bjx
j. Note that

f ◦ g = xn ◦ g +O(xnm−m), so that for each k < m, the coefficient of xnm−k contains

no terms dependent on a0, a1, ..., an−1. Consider the highest degree term of xn ◦ g

11



12

with coefficient depending on bm−k. It is clear that the degree of this term is (m −

k)+(n−1)m = nm−k. This observation implies that the coefficient of xnm−k in f ◦g

contains no terms dependent on bm−k−1, ..., b0. Moreover, the term of this coefficient

dependent on bm−k is
(

n
1

)
bm−k = nbm−k, and it follows that for 1 ≤ k ≤ m − 1, the

coefficient of xnm−k in f ◦ g is nbm−k + rm−k(, where rm−k(bm−k+1, bm−k+2, ..., bm−1)

for some rm−k ∈ Z{xm−k+1, xm−k+2, ..., xm−1}.

For 2 ≤ k ≤ n, to consider the coefficient of xnm−km in f ◦ g, notice that

f ◦ g =

(
n∑

i=n−k+1

aix
i

)
◦ g + an−kx

n−k ◦ g +O(xnm−(k+1)m)

=

(
n∑

i=n−k+1

aix
i

)
◦ g +

(
an−kx

nm−km +O(xnm−km−1)
)

+O(xnm−(k+1)m).

It follows that the coefficient of xnm−km in f ◦ g is

an−k + sn−k(an−k+1, an−k+2, ..., an−1, b0, b1, ..., bm−1) for some

sn−k in Z{x1, x2, ..., xk−1, y0, y1, ..., ym−1} whose coefficients depend only on m and n.

Lastly, we compute the coefficient of xnm−m in f ◦ g.

f ◦ g = xn ◦ g + an−1x
n−1 ◦ g +O(xnm−2m)

= xn ◦ g + (an−1x
nm−m +O(xnm−m−1)) +O(xnm−(k+1)m)

= (nb0 + q(b1, ..., bm−1) + an−1)x
nm−m +O(xnm−m−1),

for some polynomial q ∈ Z{y1, ..., ym−1} whose coefficients depend only on m and n.

The lemma follows directly.

A corollary of Lemma III.1 is that we can find approximate decompositions. Given

polynomials A and f with the degree of f dividing the degree of A, we can obtain a

polynomial g so that f ◦ g agrees with A in the high-order terms.

Corollary III.2. Let A ∈ MR have degree nm, where nR is a unit in R. If f ∈ MR

is of degree n, then there exists a unique g ∈ MR such that |g| = m and |A− f ◦ g| <
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m(n − 1). Also, for any element r ∈ R there exists a unique monic g ∈ MR such

that |g| = m, g(0) = r, and |A− f ◦ g| ≤ m(n− 1).

Proof. Write f(x) =
n∑

i=0

aix
i, g(x) =

m∑
j=0

bjx
j, and A(x) =

nm∑
i=0

cix
i. The bj’s are

undetermined, except that bm = 1. By Lemma III.1, for 1 ≤ l ≤ m−1, the coefficient

of xnm−l in f ◦g is nbm−l +rm−l for some element rm−l ∈ Z{bm−k+1, bm−k+2, ..., bm−1}.

The unique solution to cnm−l = nbm−l +rm−l is bm−l = 1
n
(cnm−l−rm−l) ∈ R, since nR

is a unit. Solving for b1, ..., bn−1 in this manner, we ensure that A and f ◦ g agree in

all terms of degree greater than nm−m. Again by Lemma III.1, we have cnm−m =

nb0 + an−1 + r0 for some element r0 ∈ Z{b1, b2, ..., bm−1}. We may solve, obtaining

b0 = 1
n
(cnm−m−an−1−r0) to obtain g(x) such that |A−f ◦g| < m(n−1). If instead,

we assert that b0 = g(0) = r, we obtain g(x) such that |A− f ◦ g| ≤ m(n− 1).

It is crucial that nR be neither 0 nor a zero divisor. For example, if char(R) = p

prime, the for every g ∈ PR, we see that xp ◦ g only has terms of degree divisible by

p. Therefore for every g, we have that

|(x2p + x2p−1)− xp ◦ g| ≥ 2p− 1.

Though Corollary III.2 requires n to be a unit in R, we can often work around

this issue by passing to an extension ring in which n is invertible. For example,

we do exactly this when proving the following theorem, which states that given a

polynomial H ∈ MR and degrees m and n such that mn = |H|, there is only one

ordered pair of monic polynomials of degrees m and n respectively (up to a constant

shift) whose composite agrees with H in the coefficients described by Lemma III.1.

Theorem III.3. Let H ∈ MR, and let m,n be positive integers such that mn = |H|

and nR is neither 0 nor a zero divisor. Then for any r ∈ R, there exist unique

F,G ∈ MR[ 1
n ] such that
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1. |F | = n,

2. |G| = m,

3. G(0) = r, and

4. H and F ◦ G agree in the coefficients of xmn−k for 1 ≤ k ≤ m − 1 and in the

coefficients of xmn−km for 1 ≤ k ≤ n.

Remark III.4. R
[

1
n

]
makes sense whenever nR is neither 0 nor a zero divisor.

Proof. By Lemma III.1, we may use the coefficients of xmn−k inH (for 1 ≤ k ≤ m−1)

to solve uniquely for the coefficients of xm−k in G. Then we use the coefficients of

xmn−km in H (for 1 ≤ k ≤ n) to solve uniquely for the coefficients of xn−k in F .

Note that F ◦ G may not equal H, but this theorem suggests an (efficient) algo-

rithm for finding decompositions of a polynomial H ∈ R [x]. Namely, find all pairs of

positive integers m,n such that mn = |H|. Then for each pair m,n, find the unique

F and G guaranteed by Corollary III.3. Finally, compute F ◦ G to see if it agrees

with H in all coefficients. This algorithm was presented in a 1989 paper of Kozen

and Landau [KL89]. Of course, given a pair m,n, if nR is 0 or a zero divisor, an

alternate approach is required. See, for example, papers of Barton and Zippel [BZ85]

and von zur Gathen [vzG91]. Finding a practical, efficient decomposition algorithm

when HR is 0 or a zero divisor remains an open problem.



CHAPTER IV

Decomposition and Common Composites over Extension
Rings

In this chapter, we study the relationship between polynomial decomposition over

a ring and polynomial decomposition over an extension ring. In Section 4.1, the

general theme is that in many instances, when polynomials are related by some

composition, we can show that the coefficients of one polynomial are elements of a

subring S of R if the coefficients of one or more of the other polynomials also lie in

S. In Section 4.2, we consider the relationship between common composites over an

extension ring and common composites over a base ring.

4.1 Decomposition over Extension Rings

In our first such result, we prove that if g is nonconstant and both f ◦ g and g

have coefficients in some subring S of R, then the coefficients of f are also in S.

Lemma IV.1. Suppose S is a subring of a ring R. If f =
n∑

i=0

aix
i ∈ MR has degree

n and g =
m∑

j=0

bjx
j ∈ MS has degree m > 0, and if f ◦ g ∈ MS, then f ∈ MS.

Proof. If n = 0, the result is clear, so assume n > 0. We show by induction on

k that an−k ∈ S for 0 ≤ k ≤ n. The base case k = 0 is clear; since f is monic,

an = 1 ∈ S. Now assume that 1 ≤ k ≤ n and that an, an−1, an−2, ..., an−k+1 ∈ S.

15
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By Lemma III.1, the coefficient of xnm−km in f ◦ g is an−k + sn−k, where sn−k ∈

Z{an−k+1, ..., an−1, b0, b1, ..., bm−1}. Since {an−k+1, ..., an−1, b0, b1, ..., bm−1} ⊂ S, it

follows that sn−k ∈ S, and hence an−k ∈ S.

Remark IV.2. The condition m > 0 is necessary, since otherwise for any subring

S of R and any r ∈ S \ R, the polynomials f(x) = x2 + rx − r ∈ MR \ MS and

g(x) = 1 ∈ MS, we have f ◦ g = 1 ∈ MS.

We also note that if both f ◦ g and f have coefficients in some subring S of R,

it does not follow that the coefficients of g are in S, as illustrated by the following

example.

Example IV.3. Let R = Z [t] /〈t2〉, and let S be the subring of R generated by

{1, 2t}. Now

x2 ◦ (x2 + tx) = x4 + 2tx3.

Both x2 and x4 + 2tx3 are elements of MS, but t /∈ S, so x2 + tx ∈ MR \MS.

We now show that, under certain conditions, if a composite H = F ◦G ∈ MS and

F,G ∈ MR, then the coefficients of F and G, while not necessarily in S, are integral

over S.

We first remind the reader of the notion of ring elements integral over a subring.

Definition IV.4. Let S be a subring of R. An element r ∈ R is integral over S if r

is the root of a polynomial in MS.

The elements of a commutative ring R that are integral over S form a subring of

R. This proof can be found in a number of algebra textbooks, e.g. [DF99, p.666,

Cor. 19]. We include the proof for the reader’s convenience.

Proposition IV.5. Let S be a subring of a commutative ring R. The set IS of

elements of R integral over S is a subring of R containing S.
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Proof. An element r ∈ R is integral over S if and only if S [r] is a finitely generated

S-module. If r, s ∈ R are both integral over S, then S [r] and S [s] are both finitely

generated S-modules; hence, so is S [r, s]. Since r − s and rs are both elements of

S [r, s], it follows that S [r − s] and S [rs] are finitely generated S-modules, so r − s

and rs are integral over S. Hence IS is a subring of S. The result follows, since all

elements of S are clearly integral over R.

The set IS is called the integral closure of S in R.

We now present the main result of this section.

Theorem IV.6. Let S be a subring of R. If F = G ◦ H with G,H ∈ MR and

F ∈ MS, and if for some root α of G we have F (x) = A(x) · (H(x) − α) where A

and H(x)−α factor into monic linears in MR, then the coefficients of H are integral

over S. If |G|S is neither 0 nor a zero divisor, then the coefficients of G are elements

of S
[
b0, b1, ..., b|H|−1

] [
|G|−1

S

]
, where bj is the coefficient of xj in H.

Proof. Let G(x) =
∑n

i=0 aix
i ∈ MR and H(x) =

∑m
j=0 bjx

j ∈ MR. Now let IS be the

integral closure of S in R, and suppose that F (x) = G(H(x)) and that G(α) = 0.

Suppose further that F (x) = A(x) · (H(x)−α) for some A ∈ MR and that both A(x)

and H(x) − α factor into linears in MR. Now, H(x) − α is the product of monic

linear factors of the form (x − r). Each such r is integral over S, since F (r) = 0.

Since the elements of R that are integral over S form a subring, it follows that the

coefficients of H(x)−α are integral over S; hence both α and the coefficients of H(x)

are in IS. Since the coefficients of F are contained in S ⊂ IS, Lemma IV.1 implies

that the coefficients of g are also in IS, proving the result.

Now, suppose that nS is neither 0 nor a zero divisor. By Lemma III.1, there are

integer polynomials si (for 0 ≤ i ≤ n − 2) and r0 depending only on m and n such



18

that the coefficient of xnm−` in g(h(x)) equals

• an−k + sn−k(an−1, ..., an−k+1, b0, b1, ..., bm−1) if ` = km with 2 ≤ k ≤ n, and

• nb0 + an−1 + r0(b1, b2, ..., bm−1) if ` = m.

It follows that for 0 ≤ i ≤ n−1, we have ai ∈ S [b0, b1, ..., bm−1]
[
n−1

S

]
, as desired.

When S is an integral domain and R is a field containing S, the above result is

due to Turnwald [Tur95, Proposition 2.2.(ii)].

4.2 Common Composites and Extension Rings

We now consider the relationship between common composites over an extension

ring and common composites over a base ring. Let S be a ring, and let R be an

extension of S.

We use Lemma IV.1 to show that if F and G are monic polynomials with coeffi-

cients in S, then if F and G have a common MR-composite of degree lcm(|F |, |G|),

then they have a common MS-composite of the same degree.

Proposition IV.7. Let S be a subring of R, and suppose that F,G ∈ MS have

a common MR-composite of degree lcm(|F |, |G|). Then F and G have a common

MS-composite of degree lcm(|F |, |G|).

Proof. Suppose H = A ◦F = B ◦G is a degree-lcm(|F |, |G|) common MR-composite

of F and G. First, we show that H ∈ MS + R. Suppose not, and let ckx
k be the

lowest degree nonconstant term of H which is not in S [x]. This term has degree

divisible by |F |; in particular k will be |F | times the degree of the highest degree term

in A with coefficient in R\S. By symmetry we see that k is divisible by |G|, hence by

lcm(|F |, |G|). But since gcd(|A|, |B|) = 1, the degree of A ◦ F equals lcm(|F |, |G|).
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Hence k = |A ◦ F |, but since A ◦ F is monic, it follows that ck = 1 ∈ R \ S, which is

a contradiction. Thus, H ∈ MS +R. Now

H −H(0) = (A−H(0)) ◦ F = (B −H(0)) ◦G

is a common composite of F and G which has all coefficients in S. By Lemma

IV.1, we conclude that A−H(0) and B −H(0) are also elements of MS, hence that

H −H(0) is a common MS-composite of F and G of degree lcm(|F |, |G|).

The conclusion of Proposition IV.7 need not hold, however, if the condition

gcd(|A|, |B|) = 1 is not satisfied.

Example IV.8. Let R = Z [t] /〈t2〉, and let S be the subring of R generated by

{1, 2t}. Then

(x2 + tx) ◦ (x4 + 2tx2) = x8 + 4tx6 + tx4 = (x4 + 4tx3 + tx2) ◦ x2

is not an element of MS but is a common MR-composite of x4 + 2tx2 and x2.

Take F,G ∈ PR, and suppose F and G have a least common PR-composite of

degree n. Do F and G necessarily have a least common PS-composite of degree n?

The following theorem answers this question in the affirmative in case S and R are

fields.

Theorem IV.9. Let K be a field, and let K̄ be the algebraic closure of K. Then

if f1, f2 ∈ PK have a nonconstant common PK̄-composite, they have a nonconstant

common PK-composite. Moreover, the minimal degree of any nonconstant common

PK̄-composite equals the minimal degree of any nonconstant common PK-composite.

This was proved first by McConnell [McC74] in case K is infinite and by Bremner

and Morton [BM78] in the general case. See also [BWZ09].
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We provide a counterexample to the analogous statement for rings. More precisely,

we exhibit a ring S, an extension R ⊃ S, and cubic polynomials f, g ∈ S [x] such

that f and g have no common MS-composite of degree 6 but have a common MR-

composite of degree 6.

Example IV.10. Let R = F2 [a1, f1, f2] /〈f 2
2 , f

3
1 , a1f1, a1f2 + f 2

1 , f
2
1 f2, a

2
1〉, and S =

F2 [f1, f2] /〈f 2
2 , f

3
1 , f

2
1 f2〉. That S embeds in R can be checked easily by noticing

that S = {c0 + c1f1 + c2f2 + c3f
2
1 + c4f1f2 : ci ∈ F2}, that R = {c0 + c1f1 +

c2f2 + c3f
2
1 + c4f1f2 + c5a1 : ci ∈ F2}, and that inclusion is a ring map. Then

f(x) = x3 + f2x
2 + f1x + 1 and g(x) = x3 have no common MS-composite of

degree 6 but have a common MR-composite of degree 6. For a, b, c, d ∈ R, we have

(x2 + bx+ a) ◦ (x3 + f2x
2 + f1x+ 1) = (x2 + dx+ c) ◦ (x3) if and only if c = a+ b+ 1,

d = b, bf1 = 0, and bf2 + f 2
1 = 0. However, no element b ∈ S satisfies both bf1 = 0

and bf2 + f 2
1 = 0 (this can be checked exhaustively, since S is finite). In R, though,

b = a1 simultaneously solves bf1 = 0 and bf2 + f 2
1 = 0. So, for example, we have

(x2 + a1x+ 1) ◦ f = (x2 + a1x+ a1) ◦ g.

However, f and g do have a degree-12 common MS-composite (namely, x2 ◦ (x2 +

a1x+ 1) ◦ f).

We do not know if it is possible for f and g to have a nonconstant common

composite in an extension ring but no nonconstant common composite in the base

ring.



CHAPTER V

Least Common Composites and Degrees of Common
Composites

In this chapter, we study when two elements of MR have a left least common

MR-composite, and if so, what is the degree of this least common composite. The

first part of this chapter leads us to the main result of the chapter (Theorem V.8).

Namely, if R is a ring with no Z-torsion, then F and G in MR have a least common

MR-composite whose degree is either 0 or lcm(|F |, |G|).

In other words, in a (necessarily characteristic 0) ring with no Z-torsion, if monic

F and G have any nonconstant common composite, then they have a least common

composite of degree lcm(|F |, |G|). We also present similar results for rings with Z-

torsion, including those of positive characteristic (see, for example, Proposition V.1,

Corollary V.2, and Corollary V.7).

We conclude the chapter with a discussion of common composites of monic quadrat-

ics.

Any common composite of monic F and G has degree a multiple of lcm(|F |, |G|).

The following result shows that if F and G have a nonconstant common composite,

say of degree d·lcm(|F |, |G|), then we may remove the “coprime to the characteristic”

part of d. That is, when char(R) > 0, there exists a common composite of degree

d′ · lcm(|F |, |G|), where d′ is the largest divisor of d such that every prime factor of

21
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d′ also divides char(R). And if char(R) = 0, there is a common composite of F and

G of the lowest possible degree, namely lcm(|F |, |G|), provided that dR is neither 0

nor a zero divisor.

Proposition V.1. Suppose A,F,B,G ∈ MR are such that A ◦F = B ◦G, and let d

be any common divisor of |A| and |B| such that dR is neither zero nor a zero divisor.

Then there exist a, b in MR such that a ◦ F = b ◦G and |a| = |A|
d

.

Proof. Let k be the largest common divisor of |A| and |B| such that kR is neither 0

nor a zero divisor, and note that d | k. Also note that R
[

1
k

]
makes sense since kR is

neither 0 nor a zero divisor. Let p be an arbitrary degree k polynomial in MR (e.g.,

p(x) = xk). By Corollary III.2, there are â, b̂ with no constant term in MR[ 1
k ]

such

that |A− p ◦ â| ≤ |A|
k

(k − 1) and |B − p ◦ b̂| ≤ |B|
k

(k − 1). Composing with F and G

respectively yields

|A ◦ F − p ◦ â ◦ F | ≤ |A ◦ F |
k

(k − 1)

and

|B ◦G− p ◦ b̂ ◦G| ≤ |B ◦G|
k

(k − 1).

Since A ◦ F = B ◦G, it follows that

|p ◦ (â ◦ F )− p ◦ (b̂ ◦G)| ≤ |A ◦ F |
k

(k − 1) = |â ◦ F |(k − 1).

By Corollary III.2, there exists a unique H ∈ MR[ 1
k ]

such that both H(0) = 0 and

|p◦ â◦F −p◦H| ≤ |â◦F |(k−1). Since â◦F and b̂◦G both satisfy the conditions for

H, it follows that â◦F = b̂◦G. We now show that â, b̂ ∈ MR (and not just in MR[ 1
k ]

).

If char(R) 6= 0, then k is coprime to char(R), whence 1
k
∈ R, so â and b̂ are in MR,

as desired. So suppose char(R) = 0. Then k = gcd(|A|, |B|), so gcd(|â|, |b̂|) = 1, it

follows from Proposition IV.7 that â, b̂ ∈ R [x]+S. Since â and b̂ have constant term

0 by construction, â, b̂ ∈ MR.
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Now let d be any common divisor of A and B such that dR is neither 0 nor a zero

divisor. It follows that d | k, so say that k = dn. Now let a = xn ◦ â and b = xn ◦ b̂,

and notice that |a| = n|A|
k

= |A|
d

and that a ◦ F = b ◦G.

Corollary V.2. Suppose A,B ∈ MR have a nonconstant common composite. If

char(R) = 0 and R has no Z-torsion, then A and B have a common composite of

degree lcm(|A|, |B|). If char(R) > 0, then A and B have a common composite of

degree r · lcm(|A|, |B|), where r is a product of primes dividing char(R).

In [BWZ09], the authors show that if F is a field of positive characteristic p, and

if A,B ∈ PF have a nonconstant common composite, then A and B have a common

composite of degree pt · lcm(|A|, |B|). Their proof relies on Galois theory, but the

authors ask for an elementary proof of this result. Our result is the first such.

Example V.3. When dR is 0 or a zero divisor, the conclusion of Proposition V.1

may fail. Notice that x2 ◦ (x2 + Tx) = (x2 + T 2x) ◦ x2 in Z [T ] /〈2T 〉 [x], but that

x2 + Tx and x2 do not have a monic common composite of degree 2. Here dR = 2 is

a zero divisor. If R were instead F2, then we construct a similar example with d = 2,

whence dR = 0. We see that (x2 + x) ◦ x2 = x2 ◦ (x2 + x), but x2 and x2 + x have no

common composite of degree 2.

Proposition V.1 allowed us to find a new common composite a ◦ F = b ◦G given

A ◦F = B ◦G. We now work toward showing that there is a P such that A = P ◦ a

and B = P ◦ b. The following lemma presents a kind of compositional division

algorithm, which will be utilized toward this end.

Lemma V.4. For 1 6= a ∈ MR and A ∈ PR \ R, there exist unique polynomials

P,Q ∈ PR simultaneously satisfying:

(1) A = P ◦ a+Q, and
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(2) no term of Q has degree divisible by |a|.

Proof. Let k be the largest integer such that k|a| ≤ |A|. Then for −1 ≤ i ≤ k, we

construct Pi, Qi ∈ PR such that A = Pi ◦ a + Qi where Qi has no terms of degree

j|a| for j ≥ k− i. Then the lemma is established by taking P = Pk and Q = Qk. So

take P−1 = 0 and Q−1 = A. Continue inductively, defining Pi = Pi−1 + rix
k−i and

Qi = A−Pi ◦ a, where ri is the coefficient of x(k−i)|a| in Qi−1. From the definition of

Qi, it is clear that (Pi ◦ a) + Qi = A, and it remains to show that Qi has no terms

of degree j|a| for j ≥ k− i. This is immediate in the case i = −1, so we assume this

for i− 1 and consider i. Then

Qi = A− (Pi ◦ a)

= A− ((Pi−1 + rix
k−i) ◦ a)

= A− (A−Qi−1)− (rix
k−i ◦ a)

= Qi−1 − (rix
k−i ◦ a).

Since a is monic, thatQi−1−(rix
k−i◦a) has no terms of degree j|a| for j ≥ k−i follows

from the definition of ri and from the inductive hypothesis, proving existence. For

uniqueness, suppose that A = P ◦a+Q = P ′◦a+Q′. Then 0 = (P−P ′)◦a+(Q−Q′).

First Q−Q′ must be 0, since otherwise |Q−Q′| is divisible by |a|, contradicting (2).

Then (P − P ′) ◦ a = 0, which implies P = P ′, since a is monic.

Remark V.5. We note that condition (2) implies that Q(0) = 0. Moreover, if we

require that |a| divides |A|, then if A is monic, P will also be monic. We also remark

that the condition that a ∈ MR is crucial. Indeed, if the leading coefficient of a is a

zero divisor and we can write A = P ◦ a+Q, the choice of P and Q are not unique.
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For example, if rs = 0 in R, then (rx) ◦ (sxk) = 0 for every k ≥ 0. Hence if s is the

leading coefficient of a, we have that

A = P ◦ a+Q

= (P + r(x− a(0))) ◦ a+ (Q− r(a− a(0)))

We now show that, if F and G have a common composite H whose degree divides

the degrees of all other common composites, then H is a least common composite.

In other words, if the set of degrees of the common composites of F and G does

not contradict the existence of a least common composite, then a least common

composite of F and G exists.

Proposition V.6. If H is a nonconstant common MR-composite of F,G ∈ MR,

then the following are equivalent:

1. H is a least common MR-composite of F and G.

2. H is a least common PR-composite of F and G.

3. Each common PR-composite of F and G has degree divisible by |H|.

Moreover, if these properties hold and we write H = a ◦ F = b ◦ G, then for any

A,B ∈ PR such that A ◦ F = B ◦ G, there exists P ∈ PR such that A = P ◦ a and

B = P ◦ b.

Proof. Suppose that H = a ◦ F = b ◦G.

(3 =⇒ 1) Suppose that each common PR-composite of F and G has degree divisible

by |H|, and let A ◦ F = B ◦ G be a common MR-composite of F and G. If |A| =

|B| = 0, then A = B = 1, and H = F = G. The result is clear. So suppose A is

nonconstant. We use Lemma V.4 to write A = P ◦ a + Q, where no term of Q has
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degree divisible by |a|. Assume Q is nonzero. Composing with F gives

A ◦ F = P ◦ a ◦ F +Q ◦ F, so

Q ◦ F = A ◦ F − P ◦ a ◦ F

= B ◦G− P ◦ b ◦G

= (B − P ◦ b) ◦G.

Thus Q◦F is a common PR-composite of F and G, which implies |Q||F | is a multiple

of k = |a||F |. Hence |Q| is a multiple of |a|, which is a contradiction. Thus, Q = 0,

and it follows that A = P ◦ a. Moreover, since 0 = Q ◦ F = (B − P ◦ b) ◦G with G

monic, we have B = P ◦ b. Hence H is a least common MR-composite of F and G.

(1 =⇒ 2) Suppose H is a least common MR-composite of F and G. Let Q be

any common PR-composite of F and G, and let P be a common MR-composite with

|P | > |Q| (take P = xN ◦ H for sufficiently large N , for example). Then P + Q is

also a common MR-composite of F and G, so both P and P +Q are MR-composites

of H. It follows that Q = (P +Q)− P is a PR-composite of H.

(2 =⇒ 3) is clear, since H is monic.

Now if the above hold and A,B ∈ PR are such that A ◦ F = B ◦G, then since H

is a least common PR-composite of F and G, there exists P ∈ PR such that

A ◦ F = P ◦ (a ◦ F ) = P ◦ (b ◦G),

whence A = P ◦ a and B = P ◦ b.

We can now combine the previous results to show that the existence of a monic

common composite of F and G of degree k · lcm(|F |, |G|), where kR is neither 0 nor a

zero divisor, implies the existence of a monic least common composite of the smallest

degree possible: lcm(|F |, |G|). In particular, when R has no Z-torsion, existence of a
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nonconstant monic common composite implies the existence of a monic least common

composite of degree lcm(|F |, |G|).

Corollary V.7. If F,G ∈ MR have a common MR-composite of degree k·lcm(|F |, |G|)

where kR is neither 0 nor a zero-divisor, then F and G have a least common MR-

composite of degree lcm(|F |, |G|).

Proof. Let F,G ∈ MR, and suppose P is a common MR-composite of F and G of

degree k · lcm(|F |, |G|), where kR is neither 0 nor a zero-divisor. Take A,B ∈ MR

such that P = A ◦F = B ◦G. Then by Proposition V.1 there exist monic a, b ∈ MR

such that p = a◦F = b◦G has degree lcm(|F |, |G|). Since all common mr-composites

of F and G have degree divisible by lcm(|F |, |G|), the hypotheses of Proposition V.6

are satisfied, and it follows that p is a least common MR-composite of F and G.

This result enables us to exhibit a large class of rings in which any two monic

polynomials have a monic least common composite.

Theorem V.8. Suppose that R is a ring with no Z-torsion, and let F,G ∈ MR. Then

F and G have a least common MR-composite whose degree is either 0 or lcm(|F |, |G|).

Proof. If all common MR-composites of F and G are degree 0, then 1 is a least com-

mon MR-composite of F and G. Otherwise, F and G have a nonconstant common

MR-composite, and its degree must be k · lcm(|F |, |G|) for some positive integer k.

Since R has no Z-torsion, kR is neither 0 nor a zero divisor, so Corollary V.7 implies

that F and G have a least common MR-composite of degree lcm(|F |, |G|).

Sometimes, even if monic F,G ∈ PR are such that the set of degrees of their

common PR-composites is the set of nonnegative multiples of an integer k, a common

MR-composite of degree k may not exist. Such is the case in the following example,

where the hypotheses of Proposition V.6 cannot be satisfied.
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Example V.9. Over R = Z/4Z, the polynomials F = x2 and G = x2 + 2x have a

monic degree-4 common composite, since x2 ◦ F = x4 = x2 ◦ G. However, F and

G also have a nonmonic degree-2 common composite, since 2x ◦ F = 2x2 = 2x ◦ G.

This gives rise to a second degree-4 common PR-composite of F and G, namely

(x2 + 2x) ◦ F = x4 + 2x2 = (x2 + 2x) ◦G.

Since F is monic, all common PR-composites of F and G have even degree. However,

there is no degree-2 common MR-composite of F and G, so there is no least common

MR-composite of F and G by Proposition V.6.

More generally, if a − b is a zero divisor in a commutative ring R, then the

polynomials A = x2+ax and B = x2+bx do not have a least common MR-composite.

We will show in Proposition V.12 that A and B have a common MR-composite of

degree 2k if and only if k(a− b) = 0. However, then

kx ◦ (x2 + ax) = kx2 + kax

= kx2 + kbx

= kx ◦ (x2 + bx)

is a degree-2 common PR-composite of A and B that cannot be a PR-composite of

any common MR-composite of A and B, as any monic common composite of A and

B has degree strictly greater than 2.

On the other hand, our results enable us to show the existence of least common

composites over fields.

Theorem V.10. Let K be a field, and let F,G ∈ PK \ K. Then F and G have a

least common PK-composite.
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Proof. Without loss of generality, we assume F and G to be monic, since otherwise

we may consider monic ux ◦F and vx ◦G, where u, v ∈ K. If a ◦ ux ◦F = b ◦ vx ◦G

is a least common PK-composite of ux ◦F and vx ◦G, then it is also a least common

PK-composite of F and G, since A ◦ F = B ◦G implies

(A ◦ u−1x) ◦ (ux ◦ F ) = (B ◦ v−1x) ◦ (vx ◦G).

Since a ◦ ux ◦ F = b ◦ vx ◦G is a least common PK-composite of ux ◦ F and vx ◦G,

we can rewrite the above as

P ◦ (a ◦ ux) ◦ F = P ◦ (b ◦ vx) ◦G

for some P ∈ PK , whence we see that a ◦ ux ◦ F = b ◦ vx ◦G is also a least common

PK-composite of F and G.

If char(K) = 0, then K has no Z-torsion, and the result follows from Theorem

V.8. So assume that char(K) = p. If F and G have no nonconstant common

PK-composites, then 1 is a least common PK-composite, so choose a common PK-

composite of F and G of degree k · lcm(|F |, |G|) for some positive integer k. By

Proposition V.1, F and G have a common PK-composite of degree pβ · lcm(|F |, |G|).

Let βmin be the smallest nonnegative integer β such that there exists a common PK-

composite of F and G of degree pβ ·lcm(|F |, |G|). Call this common PK-composite H.

It follows, again by Proposition V.1, that pβmin | k, so every common K-composite of

F and G has degree a multiple of pβmin lcm(|F |, |G|). Moreover, by considering xn◦H,

we see that there is a common PK-composite of F andG of degree npβmin lcm(|F |, |G|)

for each n, hence that the set of degrees of all common PK-composites of F and G

is the set of nonnegative multiples of pβmin lcm(|F |, |G|). Hence the hypotheses of

Proposition V.6 are satisfied, and it follows that H is a least common PK-composite

of F and G.



30

Remark V.11. We point out that while Theorem V.10 was known previously, the

above is the first proof that does not depend on Lüroth’s theorem.

We now show that any two monic quadratic polynomials over a commutative ring

R of positive characteristic have a nonconstant common MR-composite.

Proposition V.12. Suppose R is a commutative ring. Fix a, b ∈ R and k ∈ Z≥0.

Then the polynomials x2 + ax and x2 + bx in R [x] have a common MR-composite of

degree 2k if and only if k(a− b) = 0.

Proof. (⇒). Suppose x2 + ax and x2 + bx have a monic common MR-composite of

degree 2k. If k = 0, then k(a − b) = 0, so suppose k > 0. Then there exist monic

degree-k polynomials p, q such that p ◦ (x2 + ax) = q ◦ (x2 + bx). The coefficient of

x2k−1 in p ◦ (x2 + ax) is ka, and the coefficient of x2k−1 in q ◦ (x2 + bx) is kb. Since

these coefficients must be equal, it follows that k(a− b) = 0.

(⇐). Suppose char(R) = 2 and k(a − b) = 0. If k is odd, then a − b = 0. It

follows that x2 + ax = x2 + bx, and the result holds. If k is even, then (x2 + b(a +

b)x) ◦ (x2 + ax) = (x2 + a(a + b)x) ◦ (x2 + bx), and the theorem follows. Hence we

may assume that char(R) 6= 2. Let r denote the additive order of a − b in R. Note

that r | k and in particular r is finite since k(a− b) = 0.

For each f ∈ R [x], define ρf : R [x] → R [x] by h(x) 7→ h(f(x)). Note that ρf is a

ring homomorphism and that ρf◦g(h) = ρg(ρf (h)). Let H = 〈ρ−x−a〉. Notice that H

is a group of order two; i.e., ρ−x−a is an involution. Let G = 〈ρ−x−a, ρ−x−b〉. Since

ρ−x−a ◦ ρ−x−b = ρx+a−b, it follows that G also equals 〈ρ−x−a, ρx+a−b〉. Noting that

ρ−x−a ◦ ρx+a−b ◦ ρ−x−a = ρx+b−a = ρ−1
x+a−b,

we see that G is a dihedral group of order 2r.
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Let T be a set of representatives for the distinct right cosets of H in G. Then

every element of G can be written in precisely one way as ρhρt with ρh ∈ H, ρt ∈ T

(where h, t ∈ R [x]).

Then, writing products to denote multiplication in R [x], we have

ψ(x) :=
∏

ρg∈G

ρg(x)

=
∏
ρt∈T

∏
ρh∈H

ρhρt(x)

=
∏
ρt∈T

∏
ρh∈H

t(h(x))

=
∏
ρt∈T

t(x) · t(−x− a).

Writing t(x) =
∑

i≥0 tix
i, we compute

t(x) · t(−x− a) =

(∑
i≥0

tix
i

)(∑
j≥0

tj(−x− a)j

)
=

∑
i≥0

t2i (−x2 − ax)i +
∑

0≤i<j

titj(x
i(−x− a)j + xj(−x− a)i)

=
∑
i≥0

t2i (−x2 − ax)i +
∑

0≤i<j

titj(−x2 − ax)i((−x− a)j−i + xj−i).

Since (−x−a)j−i+xj−i is symmetric in x and−x−a, the Fundamental Theorem on

Symmetric Functions implies that (−x−a)j−i +xj−i may be written as a polynomial

in the elementary symmetric functions on x and −x − a, namely −a and −x2 − ax

[DF99, p. 589]. Thus t(x) · t(−x − a) ∈ R [−a,−x2 − ax] = R [x2 + ax], whence

ψ(x) ∈ R [x2 + ax]. By symmetry, ψ(x) ∈ R [x2 + bx], so ψ(x) is a common R-

composite of x2 + ax and x2 + bx. The leading coefficient of ψ is either 1 or −1, so

either ψ or −ψ is a monic common MR-composite of x2 + ax and x2 + bx of degree

|G| = 2r, which divides 2k.

This result implies that any two quadratics in MR have a nonconstant common

composite in MR whenever R has positive characteristic. The analogous statement
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for cubics, however, is false, as shown in the following example.

Example V.13. The cubics x3 + x2 and x3 + 2x2 + x have no nonconstant common

composite, for suppose F ◦ (x3 + x2) = G ◦ x3 + 2x2 + x, and say that axn is the

lowest degree nonconstant term of F . Then the lowest degree nonconstant term of

G must be ax2n. However, noting that (x3 + x2) ◦ (−1 − x) = −(x3 + 2x2 + x), we

see that

F ◦ −(x3 + 2x2 + x) = F ◦ (x3 + x2) ◦ (−1− x)

= G ◦ (x3 + 2x2 + x) ◦ (−1− x)

= G ◦ −(x3 + x2).

Recalling that the lowest degree nonconstant term of G is ax2n we now observe that

the lowest degree nonconstant term of F must be ax4n. Hence n = 0, a contradiction.

In light of Example V.9, we remark that the two quadratics need not have a least

common PR-composite nor a least common MR-composite. In the case of commuta-

tive rings of prime characteristic p, however, we can show that x2 + ax and x2 + bx

have a monic least common PR-composite of degree 2p, so long as a− b is neither 0

nor a zero divisor.

Corollary V.14. If R is a commutative ring of prime characteristic p and a, b ∈ R

are such that a− b is neither 0 nor a zero divisor, then x2 + ax and x2 + bx have a

monic least common PR-composite of degree 2p.

Proof. By Proposition V.12, x2 +ax and x2 + bx have a monic common R-composite

H of degree 2p. Now take any common R-composite F ◦ (x2 + ax) = G ◦ (x2 + bx)

of degree 2s. Let u be the coefficient of xs in F . Clearly u is the leading coefficient

of G as well. Notice that the coefficient of x2s−1 in F ◦ (x2 + ax) is usa and that the
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coefficient of x2s−1 in G◦(x2+bx) is usb. These coefficients are equal, so us(a−b) = 0.

If p - s, then s ∈ R∗, and u(a − b) = 0, which is a contradiction. Hence p | s. But

then the degrees of all common composites are the nonnegative multiples of 2p, so

H is a least common PR-composite of x2 + ax and x2 + bx by Proposition V.6.

Notice that this fails when a − b is a zero divisor, though, since if c(a − b) = 0,

then

cx ◦ (x2 + ax) = cx ◦ (x2 + bx).

This is a nonmonic common composite of degree 2, which violates the hypotheses of

Proposition V.6. If H = F ◦ (x2 + ax) = G ◦ (x2 + bx) is a monic common composite

of degree 2p, then it cannot be a least common composite, as (F + cx) ◦ (x2 + ax) =

(G+ cx) ◦ (x2 + bx) is also a monic common composite of degree 2p that cannot be

a composite of H.

We rely heavily on commutativity in the proof of Proposition V.12. In noncommu-

tative rings, quadratics are not guaranteed to have nonconstant common composites

as shown in the following example.

Example V.15. Let R′ be a ring, and let R = R′{a, b}. Then x2 + ax and x2 + bx

cannot have a nonconstant common R-composite. To the contrary, suppose that

F ◦ (x2 + ax) = G ◦ (x2 + bx) with F,G ∈ PR \R. Let pxn be the lowest degree term

of F , and let qxm be the lowest degree term of G. Then the lowest degree term of

F ◦(x2 +ax) is panxn and the lowest degree term of G◦(x2 +bx) is qbmxm. Therefore

n = m and pan = qbn. However, an and bn have no nonzero (left) common multiples

in R, which is a contradiction.



CHAPTER VI

Greatest Common Divisors

In this chapter, we develop a theory of greatest common divisors in univariate

polynomial rings under composition. In particular, our results lead us to the following

theorem (Theorem VI.10) which, besides its intrinsic interest, is also integral in our

study of unique factorization in MR (Chapter VII): Suppose R is a commutative ring

with no Z-torsion and no nonzero nilpotents. Then if f, g ∈ MR have a nonconstant

common MR-composite, there exists a greatest common MR-divisor of f and g having

degree gcd(|f |, |g|).

Engstrom [Eng41] proved, as a consequence of Lüroth’s theorem, that polynomials

f, g ∈ F [x] with a non-constant common PF -composite have a greatest common PF -

divisor of degree gcd(|f |, |g|) when F has characteristic 0. His argument extends to

F having characteristic p (cf. [Sch00, Thm. 5]) so long as f and g have a nonconstant

common PF -composite of degree coprime to p. We now show the analogous result

for integral domains.

The following lemma will be useful in the proof.

Lemma VI.1. Let R be an integral domain, and F = Frac(R). Then if a, b ∈ MF

and h ∈ MF \ {1} satisfy

1. gcd(|a|, |b|) = 1,

34
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2. a ◦ h and b ◦ h are elements of R [x], and

3. h(0) ∈ R

then a, b, h ∈ MR.

Proof. Let n = |a| and m = |h|. Write h = r +
∑d

i=1 hix
i. Then for 1 ≤ k ≤

d − 1, by Lemma III.1, the coefficient of xnd−k in a ◦ h is nhd−k + rd−k, where

rd−k ∈ Z{hd−k+1, hd−k+2, ..., hd−1}, and the coefficient of xmd−k in b ◦ h is mhd−k +

sd−k, where sd−k ∈ Z{hd−k+1, hd−k+2, ..., hd−1}. Let j be the degree of the highest

degree nonconstant term of h with coefficient in F \ R. Then rj, sj ∈ R, since

{hj+1, hj+2, ..., hd−1} ⊂ R. Since all coefficients of a ◦ h and b ◦ h are elements of R,

it follows that nhj ∈ R and mhj ∈ R. Since gcd(m,n) = 1, there are integers p, q

such that pm + qn = 1. Thus, hj = (pm + qn)hj ∈ R, which is a contradiction.

Hence, h ∈ MR, as desired, and by Corollary IV.1, a, b ∈ MR as well, completing the

proof.

Theorem VI.2. Let R be an integral domain of characteristic p ≥ 0. Let c, d, f, g ∈

MR \ {1} be such that c ◦ f = d ◦ g, and let r ∈ R. Suppose that p does not divide

|c| · |f |. Then there exists h ∈ MR with |h| = gcd(|f |, |g|) and h(0) = r such that h is

a greatest common MR-divisor of f and g. In other words, if f, g are MR-composites

of H ∈ MR, then h is a MR-composite of H.

Proof. Let F = Frac(R). Since f and g have a nonconstant common PF -composite

of degree coprime to p, there exists a greatest common PF -divisor ĥ ∈ PF of f and

g such that |ĥ| = gcd(|f |, |g|) [Sch00, Theorem 5]. If e is the leading coefficient of ĥ,

then h := e−1(ĥ − ĥ(0) + er) is also a greatest common PF -divisor. Note that h is

monic, hence h is a greatest common MF -divisor of f and g, and note that h(0) = r.
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Say f = a ◦ h and g ◦ h in MF , where |a| = n and |b| = m are coprime. Now, by

Lemma VI.1, a, b, h ∈ MR.

Note that the above result does not imply that any two monic polynomials over

a characteristic 0 integral domain have a greatest common divisor. Instead, under

a stronger hypothesis (existence of a nonconstant common composite), the above

implies a stronger conclusion (existence of a greatest common divisor of degree

gcd(|f |, |g|).

We will prove next that there are much less restrictive settings where polynomials

have greatest common divisors. Namely, over any ring R, if monic f and g have

degrees coprime to char(R), then f and g have a greatest common R-divisor. We do

not require that f and g have a nonconstant common composite. However, it is not

necessarily the case that the degree of the greatest common divisor is gcd(|f |, |g|).

Proposition VI.3. If f, g ∈ MR are such that |f |R and |g|R are neither 0 nor zero

divisors, then f and g have a greatest common MR-divisor.

Proof. To the contrary, choose some f, g ∈ MR such that |f |R and |g|R are neither 0

nor zero divisors and such that f and g do not have a greatest common MR-divisor.

Since x is a common MR-divisor of f and g, there must be common MR-divisors

c, d ∈ MR of f and g such that c and d have no common MR-composite that is a

common MR-divisor of f and g. However, f is a common MR-composite of c and d,

and |f |R is neither zero nor a zero divisor. So by Corollary V.7, c and d have a least

common MR-composite - call it p - and since f and g are common MR-composites of c

and d, we see that p is a common MR-divisor of f and g. This is a contradiction.

It is an immediate corollary that any two monic polynomials in rings with no

Z-torsion have a greatest common divisor.
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Corollary VI.4. Suppose that R has no Z-torsion. Then any two elements of MR

have a greatest common MR-divisor.

We remark here that even in the case R = Q, this is the first proof of the existence

of greatest common divisors that does not depend on Lüroth’s theorem.

The following example illustrates that a greatest common divisor of f and g can

have degree other than gcd(|f |, |g|), even when f and g have a nonconstant common

MR-composite.

Example VI.5. Let R = Z [t] /〈t2〉. Then f(x) = x4 + 2tx and g(x) = x6 + 3tx3

have the common MR-composite

x3 ◦ f = x12 + 6tx9 = x2 ◦ g.

However, we will show that f and g have no common MR-divisor of degree gcd(|f |, |g|) =

2. In fact, f is indecomposable, since if f were (x2 + ax) ◦ (x2 + bx), then by com-

paring the coefficients of x3 we obtain 2b = 0 and thus b = 0. Hence, f would be a

polynomial in x2, which is a contradiction.

This example depends crucially on the fact that R contains nonzero nilpotent

elements.

Definition VI.6. An element r ∈ R is nilpotent if rn = 0 for some positive integer

n.

Definition VI.7. The nilradical of a ring R, denoted Nil(R) is the set of nilpotent

elements of R.

All rings - even noncommutative - without nonzero nilpotents embed in a (possi-

bly infinite) product of domains, which in many cases makes them easier to under-

stand. In particular, by embedding commutative rings without nonzero nilpotents
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in a product of integral domains, we will be able to invoke results about greatest

common divisors in integral domains and apply them to commutative rings without

nonzero nilpotents.

Theorem VI.8. Nil(R) = (0) if and only if R embeds in a direct product of domains.

Proof. This is Theorem 12.7 in [Lam01].

The following proposition allows us to embed commutative rings without nonzero

nilpotents and with no Z-torsion in a product of characteristic 0 integral domains,

where we will be able to apply Theorem VI.2.

Proposition VI.9. Let R be a commutative ring with no Z-torsion and no nonzero

nilpotents. Then R embeds in a product of characteristic 0 integral domains. In

particular, let P be the set of prime ideals of R lying over the ideal (0) of Z; that

is, P ∈ P implies that P ∩ Z = 0. Then there is an injective ring homomorphism

φ : R→
∏

P∈P R/P .

Proof. Let P be the set of prime ideals in R lying over the ideal (0) of Z. We’ll show

that R ↪→
∏

P∈P R/P . Notice that if P is a prime ideal in R lying over (0), then

R/P is an integral domain of characteristic 0. There is a canonical homomorphism

φ : R→
∏
R/P , and it remains to show that the kernel of φ is 0.

Let S = Z− {0}. Then S is closed under mutiplication, and since S contains no

zero divisors in R it follows that R embeds in the localization of R at S ([DF99, p.

678]). That is, ı : R → S−1R is injective. We claim that the prime ideals in S−1R

are of the form S−1P where P ∈ P . To see this, first notice that if P is a prime ideal

in R that contains a nonzero integer n, then 1 = n−1n ∈ S−1P , so S−1P = S−1R.

Second, let Q be a prime ideal in S−1R, and let P = Q ∩ R. It is clear that P is
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a prime ideal in R, since P = ı−1(Q), and the pullback of a prime ideal is prime.

Lastly notice that Q = S−1P .

Conversely, suppose that P ∈ P. Then S−1P is an ideal in S−1R since P is

an ideal in R. Moreover, S−1P is a prime ideal in S−1R, since for any r1, r2 ∈ R

and s1, s2 ∈ S such that r1

s1

r2

s2
∈ S−1P , there exists s ∈ S and p ∈ P such that

sr1r2 = s1s2p ∈ P . Since P lies over (0), we see that s /∈ P . However, P is prime,

which implies either r1 or r2 is an element of P . It follows, then, that either r1

s1
or r2

s2

is an element of S−1P . Hence S−1P is a prime ideal.

Notice that S−1R has no nonzero nilpotents, since ( r
s
)n = 0 implies rn = 0, and

R has no nonzero nilpotents. Since in any commutative ring R, we have that Nil(R)

is the intersection of the prime ideals of R [DF99, p. 651, Prop. 9], and since the

prime ideals of S−1R are of the form S−1P , where P is a prime ideal in R lying over

(0), it follows that ∩P∈PS
−1P = Nil(S−1R) = 0. Thus ∩P∈PP = ker(φ) = 0.

We now use the embedding into a product of integral domains of characteristic

0 to show that when R is a commutative ring with no Z-torsion and no nonzero

nilpotents, then any two monic polynomials have a greatest common divisor of degree

gcd(|f |, |g|).

Theorem VI.10. Suppose R is a commutative ring with no Z-torsion and no nonzero

nilpotents. Then if f, g ∈ MR have a nonconstant common MR-composite, there ex-

ists a greatest common MR-divisor of f and g having degree gcd(|f |, |g|).

Proof. Let P be the set of prime ideals in R lying over (0). By Proposition VI.9, there

exists an injective map φ : R →
∏

P∈P R/P . For P ∈ P , let φP be the natural map

R [x] → (R/P ) [x]. Notice that each φP preserves the degree of monic polynomials;

i.e., for any monic a ∈ R [x], we have |φP (a)| = |a|. For each P ∈ P , the quotient
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R/P is a characteristic 0 integral domain, so Theorem VI.2 implies that φP (f) and

φP (g) have a monic greatest common (R/P )-divisor of degree gcd(|φP (f)|, |φP (g)|) =

gcd(|f |, |g|); call this polynomial dP , and note that (again by Theorem VI.2) we may

assume that dP (0) = 0. Say φP (f) = aP ◦ dP and φP (g) = bP ◦ dP .

For any monic polynomial p ∈ R [x] and positive integers m,n such that mn =

|p|, Corollary III.3 determines monic polynomials p1, p2 ∈ R
[

1
n

]
[x] that are unique

subject to the conditions:

1. |p1| = n,

2. |p2| = m,

3. p2(0) = 0, and

4. p and p1 ◦ p2 agree in the coefficients of xmn−k for 1 ≤ k ≤ m − 1 and in the

coefficients of xmn−km for 1 ≤ k ≤ n.

Let S = R
[

gcd(|f |,|g|)
|f |

]
, and take f1, f2 ∈ S [x] to be the unique monics satisfying

1-4 above for p = f and m = gcd(|f |, |g|). Similarly, let g1, g2 be the unique monics

in S [x] satisfying 1-4 above when p = g and m = gcd(|f |, |g|). Notice that for each

P ∈ P , we have φP (f1) ◦ φP (f2) and aP ◦ dP satisfying properties 1-4 above for p =

φP (f) (where the relevant rings are (R/P ) [x] and (R/P )
[

gcd(|f |,|g|)
|f |

]
[x] respectively).

Uniqueness implies φP (f1) = aP and φP (f2) = dP . Likewise, we see that φP (g1) = bP

and φP (g2) = dP . But then injectivity of φ yields f2 = g2.

Moreover, φP (f) = aP◦dP = φP (f1◦f2), so again by the injectivity of φ, f = f1◦f2,

and similarly, g = g1 ◦ g2 = g1 ◦ f2. We see that f and g have a greatest common

MR-divisor by Proposition VI.3, and f2 = g2 is a common MS-divisor of f and g

of the greatest possible degree. Hence f2 is a greatest common MS-divisor of f, g,

and it remains only to show that f2 is an MR-divisor of f and g. However, since the
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degrees of f1 and g1 are coprime, this is immediate by Lemma VI.1. Hence f2 is a

greatest common MR-divisor of f and g of degree gcd(|f |, |g|).

Polynomials F and G with a nonconstant common MR-composite need not have

a greatest common MR-divisor of degree gcd(|F |, |G|) if R has nonzero nilpotents or

Z-torsion.

Example VI.11. Suppose that R = Z [T ] /〈T 2〉. Then

x3 ◦ (x4 + 2Tx) = x12 + 6Tx9 = x2 ◦ (x6 + 3Tx3),

so x4 + 2Tx and x6 + 3Tx3 have a nonconstant common MR-composite. However,

x4 +2Tx is indecomposable over MR, for if it decomposed into two quadratics, f ◦ g,

then by noting that the coefficients of x3 and x2 are 0, we see that g must be x2, but

this is impossible.

Example VI.12. Suppose that R = Z [T ] /〈2T 〉. Then

x2 ◦ (x2 + Tx) = x4 + T 2x2 = (x2 + T 2x) ◦ x2.

So x2 and x2 + Tx have a nonconstant common MR-composite. However, they have

no degree-2 common MR-divisor.



CHAPTER VII

Nonuniqueness of Decomposition

In this chapter, we develop results describing the extent of nonuniqueness of de-

composition of monic polynomials over rings. Recall that a polynomial F is inde-

composable in MR if |F | is at least 2 and if F = F1 ◦ F2 (with F1, F2 ∈ MR implies

|F1| = 1 or |F2| = 1. In Section 7.1, we describe a relationship between any two

decompositions of a polynomial in MR into indecomposables when R is a ring with-

out nonzero nilpotent elements (Theorem VII.5). In particular, we show that the

number of indecomposables in any two such decompositions is the same and that we

can obtain a relationship among all such decompositions; namely, starting with any

decomposition of F , by a sequence of “Ritt swaps” in which we replace polynomials

a ◦ b in the decomposition by c ◦ d, where |a| = |d| and |b| = |c|, we can obtain any

other decomposition, up to composition by linears and their inverses. We provide

examples of rings with nonzero nilpotents where this conclusion does not hold. In

section 7.2, we characterize solutions to a ◦ b = c ◦ d for a, b, c, d ∈ MR with R a

domain. We also show that this characterization does not extend beyond domains.

42
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7.1 A Characterization of Decompositions over Rings without Nonzero
Nilpotents

Recall that a decomposition of a polynomial F over S is a tuple (F1, F2, ..., Fn)

such that Fi ∈ S and F = F1 ◦ F2 ◦ ... ◦ Fn.

Definition VII.1. A complete MR-decomposition is a decomposition into MR-indecomposables.

For a given F , there may be several complete MR-decompositions. Indeed, if

F = F1 ◦ F2 with F1 and F2 indecomposable in MR, and if L is a linear (which,

in MR, is necessarily invertible), then F = (F1 ◦ L) ◦ (L−1 ◦ F2) is another com-

plete MR-decomposition of F . To address this, we define an equivalence relation on

decompositions that accounts for this type of nonuniqueness.

Definition VII.2. For S ∈ {MR,PR}, two decompositions of a polynomial F over

S, say F = F1◦F2◦...◦Fr and F = G1◦G2◦...◦Gr (with Fi, Gj ∈ S) are S-equivalent,

symbolically 〈F1, F2, ..., Fr〉 ∼S 〈G1, G2, ..., Gr〉 or 〈Fi〉i≤r ∼S 〈Gi〉i≤r, if there exist

invertible linear L1, ..., Lr−1 ∈ S such that

G1 = F1 ◦ L1,

Gj = L−1
j−1 ◦ Fj ◦ Lj, for 1 < j < r, and

Gr = L−1
r−1 ◦ Fr.

Definition VII.3. A Ritt quadruple in MR is a quadruple of indecomposable poly-

nomials (a, b, c, d) such that a ◦ b = c ◦ d with |a| = |d| and |b| = |c|.

Definition VII.4. Given a Ritt quadruple (a, b, c, d), a Ritt swap is the replacing of

〈..., a, b, ...〉 by 〈..., c, d, ...〉 in a decomposition. That is, a Ritt swap replaces a pair

of consecutive indecomposable polynomials in the decomposition with a new pair of

indecomposables with the same composite and same degrees but in reversed order.
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Even taking into account the nonuniqueness caused by linears, however, polyno-

mial decomposition is not unique. For example

x2 ◦ (x3 + x) = (x3 + 2x2 + x) ◦ x2.

But we now show that when R is a ring without nonzero nilpotents or Z-torsion,

then any two complete MR-decompositions of F are related to each other. In par-

ticular, the two decompositions involve the same number of indecomposables, and

the multiset of degrees of the indecomposables is the same. Both the statement and

proof of the following theorem bear similarities to the Jordan–Hölder theorem.

Theorem VII.5. Let R be a commutative ring with no nonzero nilpotents. Suppose

F = G1 ◦G2 ◦ ...◦Gr = H1 ◦H2 ◦ ...◦Hs, where F,Gi, Hi ∈ MR and where Gi, Hi are

indecomposable, and where |F |R is neither 0 nor a zero divisor. Then r = s and the

sequences 〈|Gi|〉i≤r, 〈|Hi|〉i≤r are permutations of each other. Moreover, there exists

a finite chain of decompositions F = F
(j)
1 ◦ ... ◦ F (j)

r (1 ≤ j ≤ n) with F
(j)
i ∈ MR

indecomposable such that

1. 〈F (1)
i 〉i≤r = 〈Gi〉i≤r,

2. 〈F (n)
i 〉i≤r ∼MR

〈Hi〉i≤r, and

3. for each j < n, there exists k < r such that

F
(j)
k ◦ F (j)

k+1 = F
(j+1)
k ◦ F (j+1)

k+1 ,

with |F (j)
k | = |F (j+1)

k+1 | coprime to |F (j)
k+1| = |F (j+1)

k |, and for each i 6= k, k + 1,

we have F
(j)
i = F

(j+1)
i . That is, the decomposition 〈F (j+1)

i 〉i≤r is obtained from

〈F (j)
i 〉i≤r by a Ritt swap.



45

Remark VII.6. For many rings, monics can be indecomposable over MR but not

indecomposable over PR. For instance, take R = Z/15Z, and notice that

(6x2 − x) ◦ (5x2 + x) = x2 − x.

That is, x2−x decomposes into two (nonmonic) quadratics over PR; however, x2−x is

indecomposable over MR. Thus, there seems to be no hope of generalizing Theorem

VII.5 to PR-decompositions, at least if R has zero divisors.

Proof. We proceed by induction on the degree of F . If |F | ≤ 3, then r = s = 1

and we are done. So suppose not, and assume that |Gr| and |Hs| are not coprime.

Then by Theorem VI.10, Gr and Hs have a common MR-divisor of degree at least 2.

Indecomposability of Gr and Hs implies that Hs = L ◦ Gr for some linear L ∈ MR.

Then

G1 ◦G2 ◦ ... ◦Gr−1 = H1 ◦H2 ◦ ... ◦Hs−2 ◦ (Hs−1 ◦ L),

so by the inductive hypothesis, r − 1 = s − 1 (hence r = s), and there exists a

finite chain of decompositions F = F
(j)
1 ◦ ... ◦ F (j)

r−1(1 ≤ j ≤ n) with F
(j)
i ∈ MR

indecomposable such that

1. 〈F (1)
i 〉i≤r−1 = 〈G1 ◦G2 ◦ ... ◦Gr−1〉,

2. 〈F (n)
i 〉i≤r−1 ∼MR

〈H1 ◦H2 ◦ ... ◦Hr−2 ◦ (Hr−1 ◦ L)〉, and

3. for each j < n, there exists k < r − 1 such that

F
(j)
k ◦ F (j)

k+1 = F
(j+1)
k ◦ F (j+1)

k+1 ,

with |F (j)
k | = |F (j+1)

k+1 | coprime to |F (j)
k+1| = |F (j+1)

k |, and for each i 6= k, k+ 1, we

have F
(j)
i = F

(j+1)
i .
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It is immediate that if

〈A1, A2, ..., An〉 ∼MR
〈B1, B2, ..., Bn〉,

then for any P ∈ MR,

〈A1, A2, ..., An, P 〉 ∼MR
〈B1, B2, ..., Bn, P 〉.

Therefore 〈F (j)
1 , F

(j)
2 , ..., F

(j)
r−1, Gr〉j is a finite chain of decompositions satisfying

1. 〈F (1)
i 〉i≤r = 〈G1 ◦G2 ◦ ... ◦Gr〉,

2. 〈F (n)
i 〉i≤r−1 ∼MR

〈H1 ◦H2 ◦ ... ◦Hr−2 ◦ (Hr−1 ◦L) ◦Gr〉 ∼MR
〈H1 ◦H2 ◦ ... ◦Hr〉,

and

3. for each j < n, there exists k < r − 1 such that

F
(j)
k ◦ F (j)

k+1 = F
(j+1)
k ◦ F (j+1)

k+1 ,

with |F (j)
k | = |F (j+1)

k+1 | coprime to |F (j)
k+1| = |F (j+1)

k |, and for each i 6= k, k+ 1, we

have F
(j)
i = F

(j+1)
i .

Hence we may assume that |Gr| and |Hs| are coprime. By Corollary V.7, Gr and

Hs have a least common MR-composite P of degree lcm(|Gr|, |Hs|). Thus there are

A,B ∈ MR such that P = A ◦Gr = B ◦Hs, where |A| = |Hs| and |B| = |Gr|.

We show now that A and B are indecomposable. For, suppose to the contrary

that, without loss of generality, A = A1 ◦ A2, where |A1|, |A2| > 1. We then have

A1 ◦ A2 ◦Gr = B ◦Hs.

Since Hs and A2 ◦Gr have a nonconstant common MR-composite, by Theorem VI.10

they have a nonconstant common MR-divisor (since |A2| divides |Hs|). Since Hs is

indecomposable, it follows that Hs is a MR-divisor of A2 ◦ Gr, but then A2 ◦ Gr
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is a common MR-composite of Gr and Hs of lesser degree than A ◦ Gr, which is a

contradiction. Hence A and B are indecomposable.

Since F is a common MR-composite of Gr and Hs, it is also an MR-composite of

P , so we may write F = C1 ◦C2 ◦ ... ◦Ct ◦A ◦Gr, where Ci ∈ MR is indecomposable.

It follows that C1 ◦ C2 ◦ ... ◦ Ct ◦ A = G1 ◦ G2 ◦ ... ◦ Gr−1 is a polynomial of degree

less than |F |. Hence by the inductive hypothesis, r = t+ 2. Similarly,

F = C1 ◦ C2 ◦ ... ◦ Ct ◦B ◦Hs = H1 ◦H2 ◦ ... ◦Hs−1 ◦Hs,

so s = t+ 2, whence r = s.

Moreover, the inductive hypothesis provides a finite chain of decompositions F =

F
(j)
1 ◦ ... ◦ F (j)

r−1(1 ≤ j ≤ n) with F
(j)
i ∈ MR indecomposable over MR such that

1. 〈F (1)
i 〉i≤r−1 = 〈Gi〉i≤r−1,

2. 〈F (n)
i 〉i≤r−1 ∼MR

〈C1, C2, ..., Cr−2, A〉, and

3. for each j < n, there exists k < r − 1 such that

F
(j)
k ◦ F (j)

k+1 = F
(j+1)
k ◦ F (j+1)

k+1 ,

with |F (j)
k | = |F (j+1)

k+1 | coprime to |F (j)
k+1| = |F (j+1)

k |, and for each i 6= k, k+ 1, we

have F
(j)
i = F

(j+1)
i .

Note that 〈F (n)
i 〉i≤r−1 ∼MR

〈C1, C2, ..., Cr−2, A〉 implies that there exist linear L1, ..., Lr−2 ∈

MR such that

1. G1 = C1 ◦ L1,

2. Gr−1 = L−1
r−2 ◦ A, and

3. for 2 ≤ i ≤ r − 2, we have Gi = L−1
i−1 ◦ Ci ◦ Li.
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By appending Gr to each of these compositions, we get a chain

Cj = 〈F (j)
1 , F

(j)
2 , ..., F

(j)
r−1, Gr〉j

such that

1. C1 = 〈Gi〉1≤i≤r,

2. Cn = 〈(C1 ◦ L1), (L
−1
1 ◦ C2 ◦ L2), ..., (L

−1
r−3 ◦ Cr−2 ◦ Lr−2), (L

−1
r−2 ◦ A), Gr〉, and

3. for 1 ≤ i ≤ n− 1, we have that Ci differs from Ci+1 by only a Ritt swap.

Since A ◦Gr = B ◦Hs, it follows that

(C1◦L1)◦(L−1
1 ◦C2◦L2)◦...◦(L−1

r−3◦Cr−2◦Lr−2)◦(L−1
r−2◦A)◦Gr = C1◦C2◦...◦Cr−2◦B◦Hr.

Hence we may write

Cn+1 = 〈(C1 ◦ L1), (L
−1
1 ◦ C2 ◦ L2), ..., (L

−1
r−3 ◦ Cr−2 ◦ Lr−2), (L

−1
r−2 ◦B), Hs〉,

and notice that Cn+1 differs from Cn by only a Ritt swap, since (A,Gr, B,Hs), and

hence (L−1
r−2 ◦ A,Gr, L

−1
r−2 ◦B,Hs), is a Ritt quadruple.

Now, since

C1 ◦ C2 ◦ ... ◦ Cr−2 ◦B = H1 ◦H2 ◦ ... ◦Hr−1,

by the inductive hypothesis, there is a finite chain of decompositions

F = F
(n+j+1)
1 ◦ ... ◦ F (n+j+1)

r−1 (1 ≤ j ≤ m)

with F
(n+j+1)
i ∈ MR indecomposable such that

1. 〈F (n+2)
i 〉i≤r−1 = 〈C1, C2, ..., Cr−2, B〉,

2. 〈F (n+m+1)
i 〉i≤r−1 ∼MR

〈Hi〉i≤r−1, and
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3. for each j < m, there exists k < r − 1 such that

F
(n+j)
k ◦ F (n+j)

k+1 = F
(n+j+1)
k ◦ F (n+j+1)

k+1 ,

with |F (n+j)
k | = |F (n+j+1)

k+1 | coprime to |F (n+j)
k+1 | = |F (n+j+1)

k |, and for each i 6=

k, k + 1, we have F
(n+j)
i = F

(n+j+1)
i .

Hence, the chain of decompositions Dj = 〈F (n+j)
1 , F

(n+j)
2 , ..., F

(n+j)
r−1 , Hr〉j is such that

D1 = 〈C1, C2, ..., Cr−2, B,Hr〉, that Dm ∼MR
〈Hi〉i≤r, and that Di only differs from

Di+1 by a Ritt swap.

It follows that C1, ..., Cn, Cn+1 = D1,D2,D3, ...,Dm is a finite chain of decomposi-

tions such that C1 = 〈Gi〉i≤r, that Dm ∼MR
〈Hi〉i≤r, and that consecutive decompo-

sitions in the chain differ only by a Ritt swap.

When |F |R is 0 or a zero divisor, or when R contains nonzero nilpotents, F may

decompose into chains of indecomposables of different lengths, as illustrated in the

following examples.

Example VII.7. If R is a ring of characteristic p prime, then

xp+1 ◦ (xp + x) ◦ (xp − x) = (xp2 − x)p+1

= (xp2 − xp2−p+1 − xp + x) ◦ xp+1.

Certainly xp+1 will decompose into the same number of factors in both decomposi-

tions. It is clear that both xp + x and xp − x are indecomposable over MR, since

they have prime degree. Moreover, (xp2 − xp2−p+1 − xp + x) is indecomposable over

MR since if it were decomposable over MR, it would necessarily decompose into two

degree-p polynomials. So suppose that f =

p∑
i=0

aix
i and g =

p∑
j=0

bjx
j are two monic
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degree p polynomials. Then

f ◦ g = (xp +O(xp−1)) ◦

(
p∑

j=0

bjx
j

)

= xp ◦

(
p∑

j=0

bjx
j

)
+O(xp2−p)

=

(
p∑

j=0

bpjx
pj

)
+O(xp2−p)

= xp +O(xp2−p).

Hence (xp2 − xp2−p+1 − xp + x) cannot decompose into two degree-p monics and is

thus indecomposable over MR. The two decompositions of (xp2 − x)p+1 into inde-

composables, then, have different lengths.

This example, in the case of fields, is due to Dorey and Whaples [DW74]. This

analog to Ritt’s first theorem can fail due to Z-torsion even in characteristic 0.

Example VII.8. Let R = Z [T ] /〈2T 〉. Then

x2◦(x2+x)◦(x2+Tx) = x8+2x6+(T 4+1)x4+T 2x2 = (x4+2x3+(T 4+1)x2+T 2x)◦x2.

We now show that x4 + 2x3 + (T 4 + 1)x2 + T 2x is indecomposable. So suppose to

the contrary that

x4 + 2x3 + (T 4 + 1)x2 + T 2x = (x2 + ax) ◦ (x2 + cx)

= x4 + 2cx3 + (c2 + a)x2 + (ac)x.

Note that we may always assume that the factors have no constant term, since oth-

erwise we may compose with linears to eliminate them. Then, equating coefficients,

• 2c = 2

• c2 + a = T 4 + 1
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• ca = T 2.

The first equation yields c =
∑k

i=0 eiT
i with e0 = ek = 1 and ei ∈ {0, 1}. From

the second equation, we see that a = T 4 + 1 − c2, and substituting into the third

equation, gives

c(T 4 + 1− c2) = T 2.

The only possibility is that k = 2, so c = 1+e1T +T 2. Substituting into the previous

equation gives

(1 + e1T + T 2) · (e21T 2) = T 2,

a contradiction.

The following example shows that nonzero nilpotents can cause decompositions

of different lengths, even if |F |R is neither 0 nor a zero divisor.

Example VII.9. If R = Z [T ] /〈T 2〉, then

x3 ◦ (x4 + 2Tx) = x12 + 6Tx9 = x2 ◦ (x6 + 3Tx3) = x2 ◦ (x2 + 3Tx) ◦ x3.

But x4+2Tx is indecomposable (cf. Example VI.11), so x12+6Tx9 has two complete

MR-decompositions of different lengths.

7.2 A Characterization of “Ritt Swaps” over Domains

Theorem VII.5 describes the relationship between any two complete MR-decompositions

of a polynomial, for certain ringsR, in terms of the collections of indecomposablesA,B,G,H ∈

MR such that G◦A = H ◦B with |G| = |B| and gcd(|G|, |A|) = 1. In this section, we

determine all such A,B,G,H in case R is an integral domain whose characteristic

does not divide |G ◦A|. In fact, we do this without assuming the indecomposability

or coprimality hypotheses above.
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One example of such A,B,G,H is the commuting polynomials

xn ◦ xm = xm ◦ xn.

A more complicated example comes from the fact that the square of an odd polyno-

mial is an even polynomial, or in other words,

x2 ◦ xP (x2) = x(P (x))2 ◦ x2.

These two examples are special cases of the more general example

(7.1) xn ◦ xrP (xn) = xrP (x)n ◦ xn

where P (x) is an arbitrary polynomial. We will prove that, if R is an integral domain,

then all A,B,G,H ∈MR which satisfy G◦A = H ◦B and |G| = |B| can be obtained

from the examples in (7.1) and certain variants of Chebychev polynomials, which we

now define.

Definition VII.10. For fixed t ∈ R, the Dickson polynomials with parameter t,

denoted Dn(x, t), are the polynomials in R [x] defined recursively by:

D0(x, t) = 2, D1(x, t) = x,Dn(x, t) = xDn−1(x, t)− aDn−2(x, t).

Lemma VII.11. For n ≥ 1, we have Dn(x, t) =

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−t)ixn−2i.

Proof. By induction on n.

Corollary VII.12. Let n ≥ 0 and t ∈ R. Then if n is even, Dn(x, t) = gn(x2) for

some monic polynomial gn ∈ R [x], and if n is odd, then Dn(x, t) = xhn(x2) for some

monic polynomial hn ∈ R [x].

Proof. This is clear from Lemma VII.11.
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Remark VII.13. Many further properties of Dickson polynomials can be found in

[ACZ00, LMT93].

It is well-known that Dickson polynomials commute under functional composition

(see, for instance, [LMT93]). Namely,

Dn(x, tm) ◦Dm(x, t) = Dm(x, tn) ◦Dn(x, t),

providing a further example of polynomials A,B,G,H ∈ MR satisfying G◦A = H◦B

and |G| = |B|. We now show that these examples, together with those in (7.1), are

the source of all examples when R is an integral domain whose characteristic does

not divide |G ◦ A|.

Corollary VII.14. Let R be an integral domain of characteristic p ≥ 0. Suppose

A,F,B,G ∈ MR satisfy |A| = |G| and p - |A| · |F |. Then A ◦ F = B ◦G if and only

if there exist U, V,A0, F0, B0, G0 ∈ MR such that

1. A = U ◦ A0,

2. F = F0 ◦ V ,

3. B = U ◦B0,

4. G = G0 ◦ V , and

5. gcd(|A0|, |B0|) = 1 = gcd(|F0|, |G0|),

and either

1. 〈A0, F0〉 ∼MR
〈xrP (x)n, xn〉,

〈B0, G0〉 ∼MR
〈xn, xrP (xn)〉, where P ∈ MR and r > 0, or

2. 〈A0, F0〉 ∼MR
〈Dm(x, tn), Dn(x, t)〉,

〈B0, G0〉 ∼MR
〈Dn(x, tm), Dm(x, t)〉, where t ∈ R.
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In view of Theorems V.8 and VI.10, it suffices to prove this result in case |A| and

|F | are coprime. Thus, the result is a consequence of the following result.

Theorem VII.15. Let R be an integral domain, and let A,B,G,H ∈ MR satisfy

|A| = |H| = n > 1 and |B| = |G| = m > n, where gcd(m,n) = 1 and G′H ′ 6= 0.

Then G ◦ A = H ◦B if and only if there exist linear L1, L2 ∈ MR such that

1. 〈L1 ◦G,A ◦ L2〉 ∼MR
〈xrP (x)n, xn〉,

〈L1 ◦H,B ◦ L2〉 ∼MR
〈xn, xrP (xn)〉, where P ∈ MR and r > 0, or

2. 〈L1 ◦G,A ◦ L2〉 ∼MR
〈Dm(x, tn), Dn(x, t)〉,

〈L1 ◦H,B ◦ L2〉 ∼MR
〈Dn(x, tm), Dm(x, t)〉, where t ∈ R.

Note that in Theorem VII.15, we replace the condition char(R) - |G| · |H| by the

much weaker condition G′H ′ 6= 0.

When R is a field, Theorem VII.15 is an easy consequence of the following result

of Zannier (see [Sch00, Zan93]), which is an extension of previous work of Ritt, Levi,

and Dorey and Whaples.

Theorem VII.16 (Zannier). Let K be a field, and let A,B,G,H ∈ PK satisfy

|A| = |H| = n > 1 and |B| = |G| = m > n, where gcd(m,n) = 1 and G′H ′ 6= 0.

Then G ◦ A = H ◦B if and only if there exist linear L1, L2 ∈ PK such that either

1. 〈L1 ◦G,A ◦ L2〉 ∼PK
〈xrP (x)n, xn〉,

〈L1 ◦H,B ◦ L2〉 ∼PK
〈xn, xrP (xn)〉, where P ∈ K [x] and r > 0, or

2. 〈L1 ◦G,A ◦ L2〉 ∼PK
〈Dm(x, tn), Dn(x, t)〉,

〈L1 ◦H,B ◦ L2〉 ∼PK
〈Dn(x, tm), Dm(x, t)〉, where t ∈ K.

We prove Theorem VII.15 with the following 3 lemmas. The strategy will be to

use Theorem VII.16 to write the (implicit and explicit) linears with coefficients in

Frac(R) and then to show that we can choose all of the polynomials to be monic.
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Lemma VII.17. Let R be an integral domain, and let A,B,G,H ∈ MR satisfy

|A| = |H| = n > 1 and |B| = |G| = m > n, where gcd(m,n) = 1 and G′H ′ 6= 0. Let

F = Frac(R), and suppose that there exist linear L1, L2 ∈ PF such that

〈L1 ◦G,A ◦ L2〉 ∼PF
〈xrP (x)n, xn〉

and

〈L1 ◦H,B ◦ L2〉 ∼PF
〈xn, xrP (xn)〉

for some P ∈ PF and r > 0. Then there exist linear M1,M2 ∈ MR such that

〈M1 ◦G,A ◦M2〉 ∼MR
〈xrQ(x)n, xn〉

and

〈M1 ◦H,B ◦M2〉 ∼MR
〈xn, xrQ(xn)〉,

for some Q ∈ MR.

Proof. Suppose that there exist linear L1, L2 ∈ PF such that

〈L1 ◦G,A ◦ L2〉 ∼PF
〈xrP (x)n, xn〉

and

〈L1 ◦H,B ◦ L2〉 ∼PF
〈xn, xrP (xn)〉

for some P ∈ PF and r > 0. Then there are linears L3, L4 ∈ PF such that

G = L−1
1 ◦ xrP (x)n ◦ L−1

3

A = L3 ◦ xn ◦ L−1
2

H = L−1
1 ◦ xn ◦ L−1

4

B = L4 ◦ xrP (xn) ◦ L−1
2 ,
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where P ∈ PF and r = m − n|P | > 0. Notice that gcd(r, n) | r + n|P | = m; hence,

gcd(r, n) | gcd(m,n) = 1, which implies that gcd(r, n) = 1.

We write

L−1
1 = ax+ b

L−1
2 = µ(x+ ν)

L3 = ex+ f

L−1
4 = c(x+ d)

with with a, b, c, d, e, f, µ, ν ∈ F , so that:

G = (ax+ b) ◦ xrP (x)n ◦ (
x− f

e
)

A = (ex+ f) ◦ xn ◦ µ(x+ ν)

H = (ax+ b) ◦ xn ◦ c(x+ d)

B = (
x

c
− d) ◦ xrP (xn) ◦ µ(x+ ν).

Now, A = f+eµn(x+ν)n, and since A is monic, eµn = 1, whence A = f+(x+ν)n.

Notice that the coefficient of xn−1 in A is nν. Since A ∈ MR, it follows that nν ∈ R.

Writing P (x) =

|P |∑
j=0

pjx
j, we see that

B = −d+
1

c

|P |∑
j=0

pjµ
nj+r(x+ ν)nj+r.

By expanding (x+ ν)nj+r, we observe that

B =
p|P |
c
µn|P |+rxn|P |+r +

p|P |
c
µn|P |+r(n|P |+ r)νxn|P |+r−1 +O(xn|P |+r−2).

Again, since B is monic, we see that
p|P |

c
µn|P |+r = 1, so

B = xn|P |+r + (n|P |+ r)νxn|P |+r−1 +O(xn|P |+r−2),
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and since B ∈ MR, we have that (n|P | + r)ν ∈ R. Since nν ∈ R by the above

analysis, rν ∈ R, and since gcd(r, n) = 1, it follows that ν ∈ R.

Since ν ∈ R, we see that

−d+
1

c

|P |∑
j=0

pjµ
nj+rxnj+r = B ◦ (x− ν) ∈ MR,

whence d ∈ R and for 0 ≤ j ≤ |P |, we have gj :=
pj

c
µnj+r ∈ R. Then B has the

desired form. That is,

B = (x− d) ◦ (xrp̂(xn)) ◦ (x+ ν),

where d, ν, gj ∈ R and where p̂(x) =
∑|P |

j=0 gjx
j).

Similarly, f + xn = A ◦ (x − ν) ∈ MR, so f ∈ R, and A has the desired form.

Namely,

A = (x+ f) ◦ xn ◦ (x+ ν),

where f, ν ∈ R.

Moreover, H = b + acn(x + d)n, and since H is monic, acn = 1, whence H =

b + (x + d)n. We showed d ∈ R above, so by noting that H ◦ (x − d) ∈ MR, we
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conclude that b ∈ R and that H = (x+ b)◦xn ◦ (x+d); b, d ∈ R. Lastly, we compute

G = b+ a
1

er
(x− f)r

 |P |∑
j=0

pj
(x− f)j

ej

n

= b+ a
1

er
(x− f)r

 |P |∑
j=0

(
cgj

µnj+r
)
(x− f)j

ej

n

= b+
1

er
(x− f)r

 |P |∑
j=0

(
gj

µnj+r
)
(x− f)j

ej

n

(since acn = 1)

= b+
1

er
(x− f)r

 |P |∑
j=0

(
gj

µr
)(x− f)j

n

(since eµn = 1)

= b+ (x− f)r

 |P |∑
j=0

gj(x− f)j

n

(since eµn = 1)

= (x+ b) ◦ xr

 |P |∑
j=0

gjx
j

n

◦ (x− f),

where b, f, gj ∈ R. This establishes the lemma.

Lemma VII.18. Let R be an integral domain, and let A,B,G,H ∈ MR satisfy

|A| = |H| = n > 1 and |B| = |G| = m > n, where gcd(m,n) = 1 and G′H ′ 6= 0. Let

F = Frac(R), and suppose that there exist linear L1, L2 ∈ PF such that

〈L1 ◦G,A ◦ L2〉 ∼PF
〈Dm(x, tn), Dn(x, t)〉

and

〈L1 ◦H,B ◦ L2〉 ∼PF
〈Dn(x, tm), Dm(x, t)〉

for some t ∈ F . Then there exist ν ∈ R and b, d, f, T ∈ F such that

G = (x+ b) ◦Dm(x, T n) ◦ (x− f)

A = (x+ f) ◦Dn(x, T ) ◦ (x+ ν)

H = (x+ b) ◦Dn(x, Tm) ◦ (x+ d)

B = (x− d) ◦Dm(x, T ) ◦ (x+ ν).
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Proof. Suppose that there exist linear L1, L2 ∈ PF such that

〈〈L1 ◦G,A ◦ L2〉 ∼PF
〈Dm(x, tn), Dn(x, t)〉

and

〈L1 ◦H,B ◦ L2〉 ∼PF
〈Dn(x, tm), Dm(x, t)〉

for some t ∈ F . Then there are linear L3, L4 ∈ PF such that

G = L−1
1 ◦Dm(x, tn) ◦ L−1

3

A = L3 ◦Dn(x, t) ◦ L−1
2

H = L−1
1 ◦Dn(x, tm) ◦ L−1

4

B = L4 ◦Dm(x, t) ◦ L−1
2 .

We write

L−1
1 = ax+ b

L−1
2 = µ(x+ ν)

L3 = ex+ f

L−1
4 = c(x+ d)

with with a, b, c, d, e, f, µ, ν ∈ F , so that:

G = (ax+ b) ◦Dm(x, tn) ◦ (
x− f

e
)

A = (ex+ f) ◦Dn(x, t) ◦ µ(x+ ν)

H = (ax+ b) ◦Dn(x, tm) ◦ c(x+ d)

B = (
x

c
− d) ◦Dm(x, t) ◦ µ(x+ ν).

with a, b, c, d, e, f, µ, ν ∈ F .
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Notice that

B = −d+
1

c

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(−t)iµm−2i(x+ ν)m−2i

=
1

c
µmxm +

1

c
µmmνxm−1 +O(xm−2).

Since B is monic, we see that µm

c
= 1 and that B = xm +mνxm−1 +O(xm−2). Hence

mν ∈ R. Similarly,

A = f + e

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−t)iµn−2i(x+ ν)n−2i

= eµnxn + eµnnνxn−1 +O(xn−2),

and since A is in MR, we see that eµn = 1. It follows that nν ∈ R, and coprimality

of m and n yields ν ∈ R.

Rewriting, we see that

B = −d+
1

c

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(−t)iµm−2i(x+ ν)m−2i

= −d+

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(
−t
µ2

)i(x+ ν)m−2i

= (x− d) ◦Dm(x,
t

µ2
) ◦ (x+ ν)

and

A = f + e

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−t)iµn−2i(x+ ν)n−2i

= f +

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(
−t
µ2

)i(x+ ν)n−2i

= (x+ f) ◦Dn(x,
t

µ2
) ◦ (x+ ν).
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Considering G and H, we see that

G = b+ a

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(−tn)i(

1

e
)m−2i(x− f)m−2i

= b+

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(−tn)ie2i(x− f)m−2i (

a

em
= 1 since G is monic)

= b+

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(−(

t

µ2
)n)i(eµn)2i(x− f)m−2i

= b+

bm
2
c∑

i=0

m

m− i

(
m− i

i

)
(−(

t

µ2
)n)i(x− f)m−2i

= (x+ b) ◦Dm(x, (
t

µ2
)n) ◦ (x− f)

H = b+ a

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−tm)icn−2i(x+ d)n−2i

= b+

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−tm)ic−2i(x+ d)n−2i (acn = 1 since H is monic)

= b+

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−(

t

µ2
)m)i(

µm

c
)2i(x+ d)n−2i

= b+

bn
2
c∑

i=0

n

n− i

(
n− i

i

)
(−(

t

µ2
)m)i(x+ d)n−2i

= (x+ b) ◦Dn(x, (
t

µ2
)m) ◦ (x+ d).

Summarizing, we have that ν ∈ R and b, d, f, t
µ2 ∈ F . Moreover,

G = (x+ b) ◦Dm(x, (
t

µ2
)n) ◦ (x− f)

A = (x+ f) ◦Dn(x,
t

µ2
) ◦ (x+ ν)

H = (x+ b) ◦Dn(x, (
t

µ2
)m) ◦ (x+ d)

B = (x− d) ◦Dm(x,
t

µ2
) ◦ (x+ ν)

Taking T = t
µ

proves lemma.
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Lemma VII.19. Under the hypotheses of Lemma VII.18, if additionally n > 2, then

there exist linear M1,M2 ∈ MR such that

〈M1 ◦G,A ◦M2〉 ∼MR
〈Dm(x, un), Dn(x, u)〉

and

〈M1 ◦H,B ◦M2〉 ∼MR
〈Dn(x, um), Dm(x, u)〉,

for some u ∈ R.

Proof. By Lemma VII.18, there exist ν ∈ R and b, d, f, T ∈ F such that

G = (x+ b) ◦Dm(x, T n) ◦ (x− f)

A = (x+ f) ◦Dn(x, T ) ◦ (x+ ν)

H = (x+ b) ◦Dn(x, Tm) ◦ (x+ d)

B = (x− d) ◦Dm(x, T ) ◦ (x+ ν).

It suffices to show that b, d, f, T ∈ R. Since ν ∈ R, the composites B ◦ (x − ν) and

A ◦ (x− ν) lie in MR. Noting that m > 2, we see that B ◦ (x− ν) = xm−mTxm−2 +

O(xm−3). So mT ∈ R, and likewise nT ∈ R. Since m and n are coprime, it follows

that T ∈ R. Hence, Dm(x, T ) ∈ R [x], and it follows that d ∈ R. Since n > 2,

similar analysis of A ◦ (x− ν) yields that f ∈ R. But since f and T are in R, both

Dm(x, T n) and G ◦ (x + f) = (x + b) ◦Dm(x, T n) lie in MR. It follows that b ∈ R,

proving the result.

Note that Lemma VII.19 is not generally true when min(m,n) = 2:

Example VII.20. Let R = Z, and take G = x3−x2, A = x2+1, B = x3+x,H = x2.

Then G ◦ A = H ◦ B. It is straightforward to verify that there is only one solution
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set t, b, d, f, ν ∈ Q to

G = b+Dm(x− f, tn)

A = f +Dn(x+ ν, t)

H = b+Dn(x+ d, tm)

B = −d+Dm(x+ ν, t),

and that the solution (t = −1
3
, b = − 2

27
, d = ν = 0, f = 1

3
) is not in Z.

However, we handle the case of min(m,n) = 2 (not covered by Lemma VII.19) by

showing that any such A,B,G,H satisfy the hypotheses of Lemma VII.17.

Lemma VII.21. Under the hypotheses of Lemma VII.18, if additionally n = 2, then

there exist linear M1,M2 ∈ MR such that

〈M1 ◦G,A ◦M2〉 ∼PF
〈xrP (x)n, xn〉

and

〈M1 ◦H,B ◦M2〉 ∼PF
〈xn, xrP (xn)〉

for some P ∈ PF and r > 0.

Proof. Coprimality of m and n implies that m is odd. It follows from the definitions
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that D2(x, u) = x2 − 2u, so Lemma VII.18 yields:

A = (x+ f) ◦D2(x, T ) ◦ (x+ ν)

= (x+ f) ◦ (x2 − 2T ) ◦ (x+ ν)

= (x+ f − 2T ) ◦ x2 ◦ (x+ ν)

H = (x+ b) ◦D2(x, T
m) ◦ (x+ d)

= (x+ b) ◦ (x2 − 2Tm) ◦ (x+ d)

= (x+ b− 2Tm) ◦ x2 ◦ (x+ d)

G = (x+ b) ◦Dm(x, T 2) ◦ (x− f)

= (x+ b− 2Tm) ◦
(
Dm(x− 2T, T 2) + 2Tm

)
◦ (x− f + 2T )

B = (x− d) ◦Dm(x, T ) ◦ (x+ ν)

From G ◦ A = H ◦B, we conclude that

(Dm(x− 2T, T 2) + 2Tm) ◦ x2 = x2 ◦Dm(x, T ).

By Corollary VII.12, there exists a polynomial h ∈ MF such that Dm(x, T ) = xh(x2).

But then

(Dm(x− 2T, T 2) + 2Tm) ◦ x2 = x2 ◦Dm(x, T )

= x2 ◦ xh(x2)

= x2h(x2)2

= xh(x)2 ◦ x2,
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whence Dm(x− 2T, T 2) + 2Tm = xh(x)2. But then, we have that

G = (x+ b− 2Tm) ◦ xh(x)2 ◦ (x− f + 2T )

A = (x+ f − 2T ) ◦ x2 ◦ (x+ ν)

H = (x+ b− 2Tm) ◦ x2 ◦ (x+ d)

B = (x− d) ◦ xh(x2) ◦ (x+ ν),

with b− 2Tm, f + 2T, d ∈ F, ν ∈ R. Now notice, though, that

〈(x− b+ 2Tm) ◦G,A ◦ (x− ν)〉 ∼PF
〈xh(x)2, x2〉

and

〈(x− b+ 2Tm) ◦H,B ◦ (x− ν)〉 ∼PF
〈x2, xh(x2)〉.

Lemma VII.17 now implies the result.

Lemmas VII.17-VII.21 now directly yield Theorem VII.15, which in turn implies

Corollary VII.14.

Remark VII.22. The hypothesis G′H ′ 6= 0 of Theorem VII.15 is certainly satisfied

if char(R) does not divide |G| · |H|.

We conclude with an example suggesting that we would have to add more items

to the conclusion of Theorem VII.15 to find an analog in rings which are not integral

domains. We exhibit polynomials in one of the simplest examples of a commutative

ring with zero divisors, namely Z [a, b] /〈ab〉, that violate the conclusions of Theorem

VII.15.

Example VII.23. Let R = Z [a, b] /〈ab〉. Then

(x4 +3bx3 +(4a3 +3b2)x2 + b3x)◦ (x3 +3ax) = (x3 +6a2x2 +9a4x)◦ (x4 +4ax2 + bx).
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are two different complete MR-decompositions that do not satisfy the conclusion of

Theorem VII.15.
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