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CHAPTER I

Introduction

It is well-known that the ring of polynomials (in one variable) over a field is
a Euclidean domain, so that the multiplicative semigroup of this ring has unique
prime factorization, and hence for instance any two elements have a greatest common
divisor and a least common multiple. In this thesis we shall consider a different
operation on the collection of nonzero polynomials over a field, namely the operation
of functional composition: f(z) o g(z) := f(g(x)). This collection of polynomials
again forms a semigroup, which turns out to enjoy several appealing properties. For
instance, any two polynomials (over a field) have a greatest common divisor and a
least common multiple under this operation. Moreover, for certain fields (such as C
or Q) there are even results describing the full extent of nonuniqueness of “prime
factorization” in this semigroup.

These questions were originally studied for polynomials with complex coefficients,
in the context of finding polynomial solutions of functional equations. The founders
of modern iteration theory (Fatou, Julia, and Ritt) made intensive studies of these
questions; for instance, the Julia set originally arose from such considerations, as a
consequence of Julia’s result that two commuting polynomials (under composition)

have the same Julia set. The methods of Fatou, Julia, and Ritt involved geometric



and analytic techniques, so it was something of a surprise that their results could
be extended to polynomials over fields other than the complex numbers. This was
achieved by suitably “algebraicizing” these complex techniques, and was done by
Engstrom [Eng4l], Levi [Lev42], Fried and MacRae [FM69], Fried [Fri74], Dorey
and Whaples [DW74], Schinzel [Sch82, Sch00], Tortrat [Tor88], and Zannier [Zan93].
Their results have numerous applications to various areas of mathematics. These

applications include:

1. Bilu and Tichy’s classification [BT00] of f,g € Z[t] for which the Diophantine

equation f(x) = ¢g(y) has infinitely many integer solutions.

2. Ghioca, Tucker, and Zieve’s classification [GTZ08, GTZ] of complex polynomials

having orbits with infinite intersection

3. Medvedev-Scanlon’s classification [MS09] of affine varieties having an endomor-

phism which acts as a nonlinear univariate polynomial on each coordinate.

4. Pakovich’s classification [Pak08] of compact subsets A, B C C and f,g € C|z]

such that f~!(A) = g~ !(B).

5. Fried’s classification [Fri70] of polynomials in Z [x] which induce a permutation

on Z/pZ for infinitely many primes p (see also [Tur95]).

In order to generalize and refine the arithmetic applications 1 and 5 above, some
authors have studied polynomial decomposition in case the coefficient ring is an
integral domain (see, for example, [Tur95], [Gus88], [DG06]). This theory is in its in-
fancy — for instance, prior to the present thesis, the extent of nonuniqueness of prime
factorization in Z [x] under the operation of functional composition was a complete
mystery. We will resolve this and develop the arithmetic of functional composition

over arbitrary (even noncommutative!) rings. In the process, we introduce many



new techniques, and surprisingly, we find that several results remain true for quite
general classes of rings. It turns out that, in order to obtain a rich theory, one must
restrict to the semigroup of monic polynomials (with coefficients in a specified ring
R) under the operation of functional composition; we call this semigroup Mg. In
Mg, the identity is x. The units (invertible elements) are the linear polynomials,
and the irreducible elements (which we will refer to as indecomposable) are those
F € My, of degree at least 2 such that if FF' = F} o Fy (with F; and Fy in Mg) then
one of F| and Fj is necessarily linear.

We show in Theorem V.8 that in many situations any two elements of Mg have

a least common multiple:

Theorem. If R is a ring with no Z-torsion, then every pair f,g € Mg has a least

common Mg-composite whose degree is either 0 or lem(deg(f),deg(g)).

In Theorem VI.10, we show the existence of greatest common divisors in Mg for

a slightly more restrictive class of rings R:

Theorem. Suppose R is a commutative ring with no Z-torsion and no nonzero
nilpotents. Then if f,g € M have a nonconstant common Mpg-composite, there

exists a greatest common Mg-divisor of f and g having degree ged(deg(f), deg(g)).

Our two main results are analogous to the two theorems of Ritt, which character-
ized nonuniqueness of decomposition for polynomials in C [z]. First, we show that
if there are two “prime factorizations” of the same polynomial, then they have the
same length and involve indecomposables of the same degrees, though possibly in
different orders. Moreover, any two such decompositions are related to each other

by a sequence of “swaps”. More specifically, for rings R with no nonzero nilpotents,



if we write

hiohgo..oh,=f=¢g 0gy0...0gs,

for indecomposables h;, g; € Mg, then r = s, and a decomposition related to (we
will define an equivalence relation on decompositions in Chapter VII) g; 0 gs0...0g,
can be obtained from hj o hy o ... 0 h, by a sequence of steps, each of which involves
replacing two adjacent indecomposables by two new indecomposables with the same
composite and with the same degrees as the original indecomposables but in the

reverse order. In other words, we apply the substitution
aob=cod

for some indecomposables a, b, ¢, d € Mg with deg(a) = deg(d) and deg(b) = deg(c).
These exchanges are often called “Ritt swaps” in the case of fields.
The precise statement below is given as Theorem VIIL.5, which holds over any ring

with no nonzero nilpotents. The result is reminiscent of the Jordan-Holder theorem.

Theorem. Let R be a ring with no nonzero nilpotents. Then if ' = G10G0...0G, =
Hyo Hyo..oH,, where F,G;, H; € Mg and where G;, H; are indecomposable over
Mg and are of degree > 1, and where the degree of F in R (i.e., 1+1+1+ ...+ 1,
deg(F) times) is neither O nor a zero divisor in R, it follows that r = s and that
the sequences (deg(G;))i<,, (deg(H;))i<, are permutations of each other. Moreover,
there exists a finite chain of decompositions F' = Fl(j) o..o0 Fr(j)(l < j < n) with

E(j) € Mg indecomposable over M such that

2. there exist invertible linear Ly, ..., L,_1 € Mg such that

(CL) H1 == Fl(n) OL1



(b) Hy=L  oF" oL,  forl<j<r

(c) H, = Lr_—ll © Fr(n)
3. for each j < mn, there exists k < r such that

P o R, = FOY o RS

with deg(F,gj)) = deg(F,ﬁﬁl)) coprime to deg(F,gi)l) = deg(F,EjH)), and for each
i # k,k+1, we have Fi(j) = Fi(jH). That is, the decompositions <F<(j)>i§,, and

)

<F;(j+1)>igr differ only by having two consecutive terms with the same composi-

tion and reversed coprime degrees.

We provide counterexamples to this theorem for rings with nonzero nilpotents,
namely in Z[T] /(T?) (Example VIL.9). We also provide counterexamples in some
rings where deg(F') in R is 0 or a zero divisor. For instance, we exhibit counterex-
amples in Z[T] /(2T) (Example VII.8) and in any ring of characteristic p prime
(Example VIL.7).

Our second main result characterizes Ritt swaps in integral domains. That is, we
solve the functional equation aob = cod where deg(a) = deg(d) and deg(b) = deg(c).
When reduced to the case ged(deg(a),deg(b)) = 1, there is a surprisingly restrictive
solution set to this functional equation when R is an integral domain. Namely, up

to composing on both sides by linears, the only solutions are

"oz "h(z") = a"(h(z))" ox”
Dy (xz,t™) o Dy (z,t) = Dpy(z,t") o Dy(x,t),
where n,m,r € Zso and h € Mg, and where D, (z,t) is the Dickson polynomial

of degree n and parameter ¢ (see Definition VII.10). Dickson polynomials are a

generalization of Chebychev polynomials.



More precisely,

Theorem. Let R be an integral domain, and let A, B,G, H € My satisfy deg(A) =
deg(H) =n > 1 and deg(B) = deg(G) = m > n, where gcd(m,n) =1 and G'H' # 0.
Then G o A = H o B if and only if there exist linear Ly, Lo, L3, Ly € Mpg such that

either of the following holds:
1. For some P € Mg and r > 0,
(a) Ly oG o Ly = x"P(x)",
(b) Lyt o Ao Ly = a™,
(¢c) Lyo HoLy=2a", and
(d) Ly' o Bo Ly = 2" P(a™).
2. For somet € R and m,n > 0,

(a) Ly oG o Ly = D,,(z,t"),
(b) Ly o Ao Ly = D,(x,1),
(¢c) LyoHoLy= D,(x,t™), and

(d) Ly' o Bo Ly = D,,(x,1).

We present an example showing that this result fails in a nondomain with few
other notable properties - namely, in Z [a, b] /{ab) (Example VII.23).

Over fields, the proofs of many of these results depend on a theorem of Liiroth,
which states that for any field K, if a field L satisfies K < L < K(z) where z is
transcendental over K, then L = K(y) for some y. In the language of algebraic
geometry, Liiroth showed that unirational (dominated by projective space) curves
are rational (birational to projective space). For any f, g € K [t], applying Liiroth’s

theorem to the subfields K (f(t)) N K(g(t)) and K(f(t),g(t)) of K(t) shows (after



a short ramification argument) that f and g have a least common composite and a
greatest common divisor (see, for example, [Sch00, Theorem 5]). Conversely, the ex-
istence of least common composites and greatest common divisors seems only slightly
weaker than the full Liiroth theorem. In this thesis, we provide a Liiroth-free proof
of several consequences (in the case R is a field) of Liiroth’s theorem. We hope that
this may point to an analog of Liiroth’s theorem in a more general setting, namely
to other one-dimensional schemes such as the affine line over certain rings.

In the following chapter, a guide to the definitions and notational conventions
used throughout the thesis is provided. In Chapter III, several preliminary results
regarding polynomial decomposition are presented. In Chapter IV, we consider de-
compositions and common composites over extension rings and their relationship to
decompositions and common composites over a base ring. In Chapter V, we prove
existence of least common composites in various settings, and we provide results
about the degrees of common composites. Chapter VI gives a proof of the existence
of greatest common divisors in certain classes of polynomial rings, and results are
presented describing when the greatest common divisor has optimal degree. Lastly,

results describing nonuniqueness of factorization in Mg are presented in Chapter

VIL



CHAPTER II

Preliminaries

In this chapter, we introduce several definitions and establish notation that will
be used throughout this thesis.

R is a ring, not necessarily commutative, with 1. Given R, we denote by Pg the
monoid of polynomials in R [x] under the operation of functional composition. We
denote by My the submonoid of Py consisting of monic polynomials. We do not
consider 0 to be monic.

We denote the degree of a polynomial F' by |F|. Let S € {Mg,Pr}, and suppose
AJF € S. We refer to H = Ao F as a left S-composite of F' and as a right S-
composite of A. Similarly, we say that F'is a right S-divisor of H and that A is a left
S-divisor of H. In the following chapters, we present results about left composites
and right divisors, but we do not give any results regarding right composites and
left divisors. Therefore, we omit the left and right when discussing composites and
divisors. Namely, H = Ao F is an S-composite of F', and F' is an S-divisor of H.

We say that H is a common S-composite of polynomials F,G € R[z] if H is an
S-composite of both F' and GG. Note that 1 is an S-composite of every polynomial in
S, hence a common S-composite of all pairs of polynomials in S. For F,G € S, we

say that H is a least common S-composite of F' and G if H is a common S-composite



of F' and G and if every common S-composite Hy of F' and G is also an S-composite
of H.

Similarly, we say that F' € S is a common S-divisor of H and G if H and G
are S-composites of F. If F € S is a common S-divisor of H and G such that all
common S-divisors of H and G are also S-divisors of F', then we say F' is a greatest
common S-divisor of H and GG. We note that when S = Mg, the notions of least
common S-composite and greatest common S-divisor coincide with those of the least
common multiple and greatest common divisor in M.

A polynomial F' € S is indecomposable over S if |F| is at least 2 and if F' = FyoF,
(with Fy, Fy € S) implies |Fy| = 1 or |Fy| = 1. If |F| > 2 and F is not indecomposable
over S, we say that F'is decomposable over S.

A decomposition of a polynomial F' over S is a tuple (Fy, Fy, ..., F},) such that
F,eSand F=F,oFy,o..0F,.

We denote by Og(z™) the collection of polynomials in R [z] whose degrees do
not exceed n. Where the context is otherwise clear, we denote this collection of
polynomials by O(z™). For brevity, we often write f(x) = O(2™), meaning that
f(z) € O(z™). This allows such sentences as “f(z) = p(x) + O(z™)” as a convenient
shorthand for “f(x) = p(x) + ¢(x) for some polynomial ¢(z) € O(z™)”.

We denote by R{x1,za, ..., z1} the set of polynomials in the noncommuting vari-
ables {z1, ..., x;} with coefficients in R. Though the indeterminates do not commute
with each other, we require that they commute with all elements of R.

Let R be a commutative ring and M an R-module. An element m € M is an
R-torsion element if there exists r € R that is neither 0 nor a zero divisor such that
rm = 0. Then the R-torsion submodule Torgr(M) = {m € M : rm = 0 for some

nonzero r € R}. All rings may be considered as Z-modules (by their abelian group
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structure). We write Tor(R) as a shorthand for Torz(R). We say that a ring R has
no Z-torsion if Tor(R) = {0}.

We say that a nonzero element r € R is a zero divisor in R if there exists a
nonzero s € R such that rs = 0 or sr = 0. In particular, we do not regard 0 as a
zero divisor.

For a nonnegative integer k, we refer to the element 1 +1+ 1+ ... + 1 (k times)

of R as the image of k in R, and we denote this element by kg.



CHAPTER III

Polynomial Decomposition

In this chapter, we begin our classification of decompositions of polynomials. The
main result is Theorem III.3, which states that given a polynomial H € My and
m,n € Zso such that mn = |H| is neither 0 nor a zero divisor in R, there is at most
one pair F,G € Mg with |F| = n and |G| = m such that H = F o G.

To this end, we first describe a subset of the coefficients of F' o GG in terms of the

coeflicients of F' and G.

Lemma III.1. Givenm,n > 1, there are polynomials r; € Z{x; 1, Tisa, ..., Tm_1} for
0<i<m—1and s; € Z{Yn—1,Yn—2, s Yj+1, X0, T1, ---, Tm—1} for 1 < j <n—1 with

the property that: for any ring R and any ag, ..., ay_1,bo, ..., b;m—1 tn R, the coefficient

n—1 m—1
of "™t in (x” + Z aixi) o <xm + Z bj$j> equals
i=0 J=0
1. by, + Tmff(bmf€+1>bm*€+27 ~->bmfl) flst<m—1,

2. Gpg+ Sn—k(Qn_1,0n-2, ey Gpn_ty1, 00,01, .o, byn_1) if £ = km with 2 < k < n, and

3. nbo + Qp_1 + To(bl, bg, ceey bmfl) ng =m.

n—1 m
Proof. Let a, = b,, = 1, and let f = Zaixi, and let g = ijxj. Note that
=0 j=0

fog=a"og+ O(x" ™), so that for each k < m, the coefficient of 2"™~* contains

no terms dependent on ag, ay, ...,a,_1. Consider the highest degree term of x™ o g

11
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with coefficient depending on b,, . It is clear that the degree of this term is (m —
k)4 (n—1)m = nm—k. This observation implies that the coefficient of 2" ¥ in fog
contains no terms dependent on b,,_y_1, ..., bgp. Moreover, the term of this coefficient
dependent on b,,_;, is (’11) by—r = Nby,_r, and it follows that for 1 < k < m — 1, the
coefficient of ™™~ % in f o g is nby_i + Tm_r(, Where 7,1 (bm—rs1, Om—ts2, s 1)
for some 7,1 € Z{Trm—ks1, Tmn—kt2y s Ton—1}-

For 2 < k < n, to consider the coefficient of 2"™~*™ in f o g, notice that

f 0g = ( Z aixi) 0g+ an—kﬁn_k 0g+ O(l’nm_(k+1)m)

i=n—k+1

= ( Z aixi) o g+ (an_kxnm—km+0($nm—km—l)) —I—O(Zlfnm_(k+1)m)

i=n—k+1

It follows that the coefficient of "™ %™ in f o g is
(p—k + Sn—k(an—k—‘rla An—k+25 -+ An—1, bo, bla ) bm—l) for some
Sp—k I Z{x1, Toy ooy Tho1, Yo, Y1, -+, Ym—1} Whose coefficients depend only on m and n.

Lastly, we compute the coefficient of 2"~ ™ in f o g.
fog = a"og+a,1z" og+ 0" M)
= 2" 0 g+ (Ap_12"™ ™ 4+ O(z"™ L)) 4 O(gmm kDM
= (nbo +q(by, .-, 1) + Gp1)2™ T+ O,

for some polynomial ¢ € Z{y1, ..., ym_1} whose coefficients depend only on m and n.

The lemma follows directly. [

A corollary of Lemma III.1 is that we can find approximate decompositions. Given
polynomials A and f with the degree of f dividing the degree of A, we can obtain a

polynomial g so that f o g agrees with A in the high-order terms.

Corollary II1.2. Let A € Mg have degree nm, where ng is a unit in R. If f € Mg

is of degree n, then there exists a unique g € My such that |g| = m and |A— fog| <
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m(n —1). Also, for any element r € R there ezists a unique monic g € Mg such

that |g| = m, g(0) =r, and |A — fog| <m(n—1).

Proof. Write f(z) = Zaixi, g(x) = ijxj, and A(z) = Z:czauZ The b;’s are
i=0 =0 i=0

undetermined, except that b,, = 1. By Lemma III.1, for 1 <[ < m—1, the coefficient

"m=lin fogis nbpy_;+ 7, for some element 7, € Z{bym 111, bym—kr2, -, Om1}-

of x
The unique solution to ¢,m—; = Nby_1+7m_1 18 by = %(cnm_l —Tm-1) € R, since ng
is a unit. Solving for by, ..., b,_1 in this manner, we ensure that A and f o g agree in
all terms of degree greater than nm — m. Again by Lemma III.1, we have c¢,,,_,, =
nby + a,_1 + o for some element rq € Z{by, by, ...,b,—1}. We may solve, obtaining

bo = +(Crm—m — an—1 — 7o) to obtain g(x) such that |[A— fog| < m(n—1). If instead,

we assert that by = ¢g(0) = r, we obtain g(x) such that |[A — fog| <m(n—1). O

It is crucial that ngr be neither 0 nor a zero divisor. For example, if char(R) = p
prime, the for every g € Py, we see that 2P o g only has terms of degree divisible by

p. Therefore for every g, we have that
|(2% + 2*P71) —aPog| > 2p — 1.

Though Corollary II1.2 requires n to be a unit in R, we can often work around
this issue by passing to an extension ring in which n is invertible. For example,
we do exactly this when proving the following theorem, which states that given a
polynomial H € My and degrees m and n such that mn = |H|, there is only one
ordered pair of monic polynomials of degrees m and n respectively (up to a constant

shift) whose composite agrees with H in the coefficients described by Lemma III.1.

Theorem I11.3. Let H € Mg, and let m,n be positive integers such that mn = |H|
and ng s neither 0 nor a zero divisor. Then for any r € R, there exist unique

F.Ge MRH such that

n
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1. |F| =n,
2. |G| =m,
3. G(0) =r, and

4. H and F o G agree in the coefficients of ™% for 1 < k < m — 1 and in the

coefficients of ™ F™ for 1 < k < n.
Remark 111.4. R [ﬂ makes sense whenever np is neither 0 nor a zero divisor.

Proof. By Lemma II1.1, we may use the coefficients of 2™ % in H (for1 <k < m—1)
to solve uniquely for the coefficients of 2% in G. Then we use the coefficients of

™= Fm in H (for 1 < k < n) to solve uniquely for the coefficients of "% in F. O

Note that F' o G may not equal H, but this theorem suggests an (efficient) algo-
rithm for finding decompositions of a polynomial H € R [z]. Namely, find all pairs of
positive integers m,n such that mn = |H|. Then for each pair m,n, find the unique
F and G guaranteed by Corollary II1.3. Finally, compute F' o G to see if it agrees
with H in all coefficients. This algorithm was presented in a 1989 paper of Kozen
and Landau [KL89]. Of course, given a pair m,n, if ng is 0 or a zero divisor, an
alternate approach is required. See, for example, papers of Barton and Zippel [BZS85]
and von zur Gathen [vzG91]. Finding a practical, efficient decomposition algorithm

when Hp is 0 or a zero divisor remains an open problem.



CHAPTER IV

Decomposition and Common Composites over Extension
Rings

In this chapter, we study the relationship between polynomial decomposition over
a ring and polynomial decomposition over an extension ring. In Section 4.1, the
general theme is that in many instances, when polynomials are related by some
composition, we can show that the coefficients of one polynomial are elements of a
subring S of R if the coefficients of one or more of the other polynomials also lie in
S. In Section 4.2, we consider the relationship between common composites over an

extension ring and common composites over a base ring.

4.1 Decomposition over Extension Rings

In our first such result, we prove that if ¢ is nonconstant and both f o g and ¢

have coefficients in some subring S of R, then the coefficients of f are also in S.

Lemma IV.1. Suppose S is a subring of a ring R. If f = Zaixi € Mg has degree
i=0

n and g = ij:cj € Mg has degree m > 0, and if f o g € Mg, then f € Mg.
§=0

Proof. It n = 0, the result is clear, so assume n > 0. We show by induction on
k that a,_, € S for 0 < k < n. The base case k = 0 is clear; since f is monic,

a, =1 € S. Now assume that 1 < k£ < n and that a,,a,_1,0,_2,...,0p_g41 € S.

15
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By Lemma III.1, the coefficient of 2" *™ in f o g is ap_i + Snp_k, Where s, 5 €
Z{an—k}-i-la "'7an—17b0ab17 '~-7bm—1}~ Since {an—k-i-la "'7an—17b07b1a "'7bm—1} C Sa it

follows that s,_, € S, and hence a,,_; € S. O

Remark IV.2. The condition m > 0 is necessary, since otherwise for any subring
S of R and any r € S\ R, the polynomials f(z) = z*> + ro — r € Mg \ Mg and

g(x) =1 € Mg, we have fog=1 € Mg.

We also note that if both f o g and f have coefficients in some subring S of R,
it does not follow that the coefficients of g are in S, as illustrated by the following

example.

Example IV.3. Let R = Z|[t] /(t?), and let S be the subring of R generated by
{1,2t}. Now

2o (2% 4 tx) = o* + 2t
Both 2% and z* + 2tx? are elements of Mg, but ¢ ¢ S, so #? + tz € My \ M.

We now show that, under certain conditions, if a composite H = F oG € Mg and
F. G € Mg, then the coefficients of F' and G, while not necessarily in S, are integral
over S.

We first remind the reader of the notion of ring elements integral over a subring.

Definition IV.4. Let S be a subring of R. An element r € R is integral over S if r

is the root of a polynomial in Mg.

The elements of a commutative ring R that are integral over S form a subring of
R. This proof can be found in a number of algebra textbooks, e.g. [DF99, p.666,

Cor. 19]. We include the proof for the reader’s convenience.

Proposition IV.5. Let S be a subring of a commutative ring R. The set Is of

elements of R integral over S is a subring of R containing S.
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Proof. An element r € R is integral over S if and only if S [r] is a finitely generated
S-module. If 7, s € R are both integral over S, then S [r] and S [s] are both finitely
generated S-modules; hence, so is S [r,s]. Since r — s and rs are both elements of
S [r, s], it follows that S [r — s] and S [rs] are finitely generated S-modules, so r — s
and rs are integral over S. Hence Ig is a subring of S. The result follows, since all

elements of S are clearly integral over R. n

The set Ig is called the integral closure of S in R.

We now present the main result of this section.

Theorem IV.6. Let S be a subring of R. If ' = G o H with G,H € Mg and
F € Mg, and if for some root a of G we have F(x) = A(x) - (H(z) — a) where A
and H(z) — « factor into monic linears in Mg, then the coefficients of H are integral

over S. If |G|s is neither O nor a zero divisor, then the coefficients of G are elements

of S [bo, by, ..., b|H|,1] [|G|§1], where b; is the coefficient of 27 in H.

Proof. Let G(x) = Y ;_a;x’ € Mg and H(z) = > bja’ € Mp. Now let Is be the
integral closure of S in R, and suppose that F(z) = G(H(z)) and that G(«) = 0.
Suppose further that F(x) = A(x)-(H(x)— «) for some A € Mg and that both A(x)
and H(x) — « factor into linears in M. Now, H(z) — a is the product of monic
linear factors of the form (z — ). Each such r is integral over S, since F(r) = 0.
Since the elements of R that are integral over S form a subring, it follows that the
coefficients of H(x)—« are integral over S; hence both a and the coefficients of H (z)
are in Ig. Since the coefficients of F' are contained in S C Ig, Lemma IV.1 implies
that the coefficients of g are also in Ig, proving the result.

Now, suppose that ng is neither 0 nor a zero divisor. By Lemma III.1, there are

integer polynomials s; (for 0 < i < n — 2) and ry depending only on m and n such
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that the coefficient of z"~¢ in g(h(x)) equals
® Gk + Sn—k(An_1, ey Anps1, 00, b1,y ooy byp—1) if € = km with 2 < k <n, and
e nby + an_1 +1o(b1,ba, ... bppq) if £ =m.
It follows that for 0 < i < n—1, we have a; € S [bg, by, ..., by—1] [ngl}, as desired. [

When §' is an integral domain and R is a field containing S, the above result is

due to Turnwald [Tur95, Proposition 2.2.(ii)].

4.2 Common Composites and Extension Rings

We now consider the relationship between common composites over an extension
ring and common composites over a base ring. Let S be a ring, and let R be an
extension of S.

We use Lemma IV.1 to show that if F' and G are monic polynomials with coeffi-
cients in S, then if F' and G have a common Mg-composite of degree lem(|F|, |G]),

then they have a common Mg-composite of the same degree.

Proposition IV.7. Let S be a subring of R, and suppose that F,G € Mg have
a common Mpg-composite of degree lem(|F|,|G|). Then F and G have a common

Mg-composite of degree lem(|F|, |G]).

Proof. Suppose H = Ao F' = BoG is a degree-lem(| F|, |G|) common Mg-composite
of F and G. First, we show that H € Mg + R. Suppose not, and let ¢;z* be the
lowest degree nonconstant term of H which is not in S[z]. This term has degree
divisible by | F'|; in particular k& will be |F'| times the degree of the highest degree term
in A with coefficient in R\ S. By symmetry we see that k is divisible by |G|, hence by

lem(|F|,|G]). But since ged(|A[, |B|) = 1, the degree of A o F' equals lem(|F|, |G]).
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Hence k = |Ao F|, but since A o F' is monic, it follows that ¢, =1 € R\ S, which is

a contradiction. Thus, H € Mig + R. Now
H—-—H0)=(A—H(0))oF=(B—H(0))oG

is a common composite of F' and G which has all coefficients in S. By Lemma
IV.1, we conclude that A — H(0) and B — H(0) are also elements of Mg, hence that

H — H(0) is a common Mg-composite of F' and G of degree lem(|F|, |G]). O

The conclusion of Proposition IV.7 need not hold, however, if the condition

ged(|Al,|B|) = 1 is not satisfied.

Example IV.8. Let R = Z|[t] /(t?), and let S be the subring of R generated by

{1,2t}. Then
(2% + tx) o (z* + 2t2?) = 2® + 4ta® + tz* = (2* + 4t2® + t2?) o 2
is not an element of Mg but is a common Mgz-composite of 2 + 2tz? and 22

Take F,G € Pg, and suppose F' and G have a least common Pg-composite of
degree n. Do F and G necessarily have a least common Pg-composite of degree n?

The following theorem answers this question in the affirmative in case S and R are

fields.

Theorem IV.9. Let K be a field, and let K be the algebraic closure of K. Then
if f1, fo € Px have a nonconstant common Pg-composite, they have a nonconstant
common Pg-composite. Moreover, the minimal degree of any nonconstant common

Px-composite equals the minimal degree of any nonconstant common Py -composite.

This was proved first by McConnell [McC74] in case K is infinite and by Bremner

and Morton [BMT78] in the general case. See also [BWZ09].
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We provide a counterexample to the analogous statement for rings. More precisely,
we exhibit a ring S, an extension R O S, and cubic polynomials f,g € S [z] such
that f and ¢g have no common Mg-composite of degree 6 but have a common Mgz-

composite of degree 6.

Example IV.10. Let R = Fy [ay, f1, fo] /{f2, f2 a1 fr,arfo + fE, fifo,al), and S =
Fy [f1, fo] /{f3, f2, f?f2). That S embeds in R can be checked easily by noticing
that S = {co + c1fi + cofo + c3f2 + cafifo : ¢; € Fy}, that R = {co + a1 f1 +
Cofo + c3ff + cafifo + csa; 1 ¢; € Fy}, and that inclusion is a ring map. Then
f(x) = 23 + for? + fix + 1 and g(x) = 2 have no common Mg-composite of
degree 6 but have a common Mz-composite of degree 6. For a,b,c,d € R, we have
(22 +bx+a)o (23 + for’ + frx+1) = (2> +dx+c)o(2®) ifand only if c = a+b+1,
d="0b,bf1 =0, and bfy + f2 = 0. However, no element b € S satisfies both bf; = 0
and bfy + f2 = 0 (this can be checked exhaustively, since S is finite). In R, though,
b = a; simultaneously solves bf; = 0 and bfs + fZ = 0. So, for example, we have
(22 +az+1)of=(@*+amz+a))og.

However, f and g do have a degree-12 common Mg-composite (namely, z%o (22 +

a1z + 1) o f).

We do not know if it is possible for f and g to have a nonconstant common
composite in an extension ring but no nonconstant common composite in the base

ring.



CHAPTER V

Least Common Composites and Degrees of Common
Composites

In this chapter, we study when two elements of M have a left least common
M g-composite, and if so, what is the degree of this least common composite. The
first part of this chapter leads us to the main result of the chapter (Theorem V.8).
Namely, if R is a ring with no Z-torsion, then F' and G in My have a least common
Mg-composite whose degree is either 0 or lem(|F|, |G]).

In other words, in a (necessarily characteristic 0) ring with no Z-torsion, if monic
F and G have any nonconstant common composite, then they have a least common
composite of degree lem(|F|,|G]). We also present similar results for rings with Z-
torsion, including those of positive characteristic (see, for example, Proposition V.1,
Corollary V.2, and Corollary V.7).

We conclude the chapter with a discussion of common composites of monic quadrat-
ics.

Any common composite of monic F' and G has degree a multiple of lem(|F|, |G|).
The following result shows that if F' and G have a nonconstant common composite,
say of degree d-lem(|F|,|G]), then we may remove the “coprime to the characteristic”
part of d. That is, when char(R) > 0, there exists a common composite of degree

d" -lem(|F|,|G]), where d' is the largest divisor of d such that every prime factor of

21
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d also divides char(R). And if char(R) = 0, there is a common composite of F' and
G of the lowest possible degree, namely lem(|F|,|G]), provided that dp is neither 0

nor a zero divisor.

Proposition V.1. Suppose A, F, B,G € My are such that Ao F = BoG, and let d
be any common divisor of |A| and |B| such that dg is neither zero nor a zero divisor.

Then there ezist a,b in Mg such that ao F' =bo G and |a| = ‘7‘3'.

Proof. Let k be the largest common divisor of |A| and |B| such that kg is neither 0
nor a zero divisor, and note that d | k. Also note that R [%] makes sense since kg is
neither 0 nor a zero divisor. Let p be an arbitrary degree k polynomial in Mg (e.g.,

p(z) = z¥). By Corollary IIL.2, there are é,b with no constant term in MR[l] such

k

that |[A—poal < ‘%I(k —1)and [B—pob| < %(k —1). Composing with F' and G
respectively yields

|Ao F—poaoF| <

|Ao F|
— (k-1
° 1)

and

|Bo (|
k

|BoG—poBoG|§ (k—1).

Since Ao F = B o G, it follows that

|Ao F|

[po(aoF)—po(boG) < —

(k—1)=l|ao F|(k —1).

By Corollary II1.2, there exists a unique H € MR[%] such that both H(0) = 0 and
lpoaoF —poH| < |aoF|(k—1). Since ao F and bo@ both satisfy the conditions for
H, it follows that a0 F' = boG. We now show that @, b € My (and not just in MR[H)'
If char(R) # 0, then k is coprime to char(R), whence ; € R, so a and b are in Mg,
as desired. So suppose char(R) = 0. Then k = ged(|A[, |B]), so ged(|al, [b]) = 1, it
follows from Proposition IV.7 that @,b € R [z]+S. Since & and b have constant term

0 by construction, d,i) € M.
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Now let d be any common divisor of A and B such that dp is neither 0 nor a zero
divisor. It follows that d | k, so say that k = dn. Now let a = 2" oa and b = 2" o l;,

and notice that |a| = % = % and that ao F =boG. O

Corollary V.2. Suppose A, B € Mpg have a nonconstant common composite. If
char(R) = 0 and R has no Z-torsion, then A and B have a common composite of
degree lem(|A|, |B|). If char(R) > 0, then A and B have a common composite of

degree r - lem(|A|, | B]), where r is a product of primes dividing char(R).

In [BWZ09], the authors show that if F is a field of positive characteristic p, and
if A, B € Pr have a nonconstant common composite, then A and B have a common
composite of degree p - lem(|A|,|B]|). Their proof relies on Galois theory, but the

authors ask for an elementary proof of this result. Our result is the first such.

Example V.3. When dp is 0 or a zero divisor, the conclusion of Proposition V.1
may fail. Notice that z? o (z* + Tx) = (2% + T?z) o z* in Z[T] /(2T) [z], but that
2?4+ Tx and 22 do not have a monic common composite of degree 2. Here dp = 2 is
a zero divisor. If R were instead Iy, then we construct a similar example with d = 2,
whence dr = 0. We see that (22 + ) o2? = 22 o (2% + ), but z* and x? + = have no

common composite of degree 2.

Proposition V.1 allowed us to find a new common composite a o F' = bo G given
Ao F = BoG. We now work toward showing that there is a P such that A= Poa
and B = P ob. The following lemma presents a kind of compositional division

algorithm, which will be utilized toward this end.

Lemma V.4. For 1 # a € Mg and A € Pr \ R, there exist unique polynomials

P, Q € Pr simultaneously satisfying:

(1) A=Poa+Q, and
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(2) no term of Q has degree divisible by |al.

Proof. Let k be the largest integer such that k|a| < |A]. Then for —1 < i < k, we
construct P;, Q); € Pr such that A = P; o a 4+ ); where ); has no terms of degree
jla| for j > k —i. Then the lemma is established by taking P = P, and @ = Q. So
take P.; = 0 and Q_; = A. Continue inductively, defining P, = P,_; + r;z"* and
Q; = A — P,oa, where r; is the coefficient of z*=9lel in @, ;. From the definition of
Q;, it is clear that (P;oa) + @; = A, and it remains to show that @); has no terms
of degree jla| for j > k —i. This is immediate in the case i = —1, so we assume this

for 7 — 1 and consider 7. Then

Qi = A—(Poa)
= A-— ((Pi,1 + Til’kii) o CL)
= A—(A—Qi_1) — (ra" " oa)

= Qi1 — (rz" o).

Since a is monic, that Q; 1 — (2% %oa) has no terms of degree j|a| for j > k—i follows
from the definition of r; and from the inductive hypothesis, proving existence. For
uniqueness, suppose that A = Poa+@Q = P'oa+@Q'. Then 0 = (P—P')oa+(Q—Q").
First @ — Q" must be 0, since otherwise |Q) — @)'| is divisible by |a|, contradicting (2).
Then (P — P’) o a = 0, which implies P = P’, since a is monic.

O

Remark V.5. We note that condition (2) implies that Q(0) = 0. Moreover, if we
require that |a| divides |A|, then if A is monic, P will also be monic. We also remark
that the condition that a € My is crucial. Indeed, if the leading coefficient of a is a

zero divisor and we can write A = P oa+ (@), the choice of P and () are not unique.
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For example, if rs = 0 in R, then (rz) o (sz¥) = 0 for every k > 0. Hence if s is the

leading coefficient of a, we have that

A = Poa+Q

= (P+r(x—a(0))oa+(Q—r(a—al0)))

We now show that, if F' and G have a common composite H whose degree divides
the degrees of all other common composites, then H is a least common composite.
In other words, if the set of degrees of the common composites of F' and G does
not contradict the existence of a least common composite, then a least common

composite of F and G exists.

Proposition V.6. If H is a nonconstant common Mpg-composite of F,G € Mg,

then the following are equivalent:
1. H is a least common Mpg-composite of F' and G.
2. H is a least common Pgr-composite of F' and G.
3. Each common Pr-composite of F' and G has degree divisible by |H|.

Moreover, if these properties hold and we write H = ao F = bo G, then for any
A, B € Pr such that Ao F' = B o @, there exists P € Pr such that A = P oa and

B=Pob.

Proof. Suppose that H =ao FF=b0o(G.

(3 = 1) Suppose that each common Pg-composite of F' and G has degree divisible
by |H|, and let Ao F' = B o G be a common Mg-composite of F' and G. If |A| =
|B| =0, then A = B =1, and H = F = G. The result is clear. So suppose A is

nonconstant. We use Lemma V.4 to write A = P o a + @, where no term of () has
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degree divisible by |a|. Assume @ is nonzero. Composing with F' gives

AoF = PoaoF+QoF, so
QoF = AoF —PoaolF
= BoG—PoboG

= (B—Pob)oG.

Thus Qo F' is a common Pgz-composite of F' and G, which implies |Q||F| is a multiple
of k = |a||F|. Hence |Q| is a multiple of |a|, which is a contradiction. Thus, @ = 0,
and it follows that A = P o a. Moreover, since 0 = Q o F = (B — Pob) oG with G
monic, we have B = P ob. Hence H is a least common Mg-composite of F' and G.
(1 = 2) Suppose H is a least common Mg-composite of F' and G. Let @ be
any common Pg-composite of F' and G, and let P be a common M g-composite with
|P| > |Q| (take P = 2 o H for sufficiently large N, for example). Then P + Q is
also a common Mz-composite of F' and GG, so both P and P + () are M g-composites
of H. It follows that Q = (P + Q) — P is a Pg-composite of H.
(2 = 3) is clear, since H is monic.

Now if the above hold and A, B € Pg are such that Ao FF = B o (G, then since H

is a least common Pg-composite of F' and G, there exists P € Py such that
AoF =Po(aoF)=Po(boQq),

whence A = Poagand B= Pob. O

We can now combine the previous results to show that the existence of a monic
common composite of F' and G of degree k-lem(|F|, |G|), where kg is neither 0 nor a
zero divisor, implies the existence of a monic least common composite of the smallest

degree possible: lem(|F|,|G|). In particular, when R has no Z-torsion, existence of a
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nonconstant monic common composite implies the existence of a monic least common

composite of degree lem(|F|, |G|).

Corollary V.7. If F,G € My have a common Mg-composite of degree k-lem(|F|, |G])
where kg is neither 0 nor a zero-divisor, then F' and G have a least common Mg-

composite of degree lem(|F|,|G]).

Proof. Let F,G € Mg, and suppose P is a common Mpg-composite of F' and G of
degree k - lem(|F|,|G|), where kg is neither 0 nor a zero-divisor. Take A, B € Mg
such that P = Ao ' = BoG. Then by Proposition V.1 there exist monic a,b € Mg
such that p = ao F' = boG has degree lem(|F,|G]). Since all common mr-composites
of F' and G have degree divisible by lem(|F[, |G]), the hypotheses of Proposition V.6

are satisfied, and it follows that p is a least common Mg-composite of F' and G. [

This result enables us to exhibit a large class of rings in which any two monic

polynomials have a monic least common composite.

Theorem V.8. Suppose that R is a ring with no Z-torsion, and let F,G € M. Then

F and G have a least common M g-composite whose degree is either 0 orlem(|F|, |G|).

Proof. If all common Mg-composites of F' and G are degree 0, then 1 is a least com-
mon Mg-composite of F' and G. Otherwise, F' and G have a nonconstant common
Mg-composite, and its degree must be k - lem(|F|,|G]|) for some positive integer k.
Since R has no Z-torsion, kg is neither 0 nor a zero divisor, so Corollary V.7 implies

that F' and G have a least common Mg-composite of degree lem(|F|, |G]). O

Sometimes, even if monic F,G € Pgi are such that the set of degrees of their
common Pg-composites is the set of nonnegative multiples of an integer k, a common
Mg-composite of degree k£ may not exist. Such is the case in the following example,

where the hypotheses of Proposition V.6 cannot be satisfied.
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Example V.9. Over R = Z/4Z, the polynomials F = z? and G = 2% + 2z have a

4 = 22 o G. However, F' and

monic degree-4 common composite, since 22 o F' = x
G also have a nonmonic degree-2 common composite, since 2z o F' = 22% = 2z 0 G.

This gives rise to a second degree-4 common Pg-composite of F' and G, namely
(22 +21) 0o F = 2* + 22% = (2* + 27) o G.

Since F'is monic, all common Pz-composites of F' and G have even degree. However,
there is no degree-2 common M g-composite of F' and G, so there is no least common
M g-composite of F' and G' by Proposition V.6.

More generally, if a — b is a zero divisor in a commutative ring R, then the
polynomials A = 2?+ax and B = 2%+ bx do not have a least common M-composite.
We will show in Proposition V.12 that A and B have a common Mgz-composite of

degree 2k if and only if k(a — b) = 0. However, then

kro(2* +ar) = ka®+ kax
= ka2’ + kbx
= kwo (2% + br)
is a degree-2 common Pg-composite of A and B that cannot be a Pr-composite of

any common Mg-composite of A and B, as any monic common composite of A and

B has degree strictly greater than 2.

On the other hand, our results enable us to show the existence of least common

composites over fields.

Theorem V.10. Let K be a field, and let F,G € Px \ K. Then F and G have a

least common Py -composite.



29

Proof. Without loss of generality, we assume F' and G to be monic, since otherwise
we may consider monic ux o F' and vx o G, where u,v € K. If aouro F =bovxoG
is a least common Pg-composite of ux o F' and vx o G, then it is also a least common

Px-composite of F' and G, since Ao F'= B o G implies
(Aou™'z)o(uro F) = (Bov 'x)o (vroQ).

Since aoux o F'=bowvxr o is a least common Pg-composite of ux o I and vr o G,

we can rewrite the above as
Po(aour)oF =Po(bovzr)ol

for some P € Py, whence we see that aouz o F' = bowvx o is also a least common
Px-composite of F' and G.

If char(K) = 0, then K has no Z-torsion, and the result follows from Theorem
V.8. So assume that char(K) = p. If F' and G have no nonconstant common
Px-composites, then 1 is a least common Px-composite, so choose a common Pg-
composite of F' and G of degree k - lem(|F|,|G|) for some positive integer k. By
Proposition V.1, F' and G have a common Pg-composite of degree p? - lem(|F|,|G]).
Let B,.in be the smallest nonnegative integer 3 such that there exists a common Pg-
composite of F' and G of degree p?-lem(|F|,|G|). Call this common P-composite H.
It follows, again by Proposition V.1, that p®ni» | k, so every common K-composite of
F and G has degree a multiple of p?min lem(|F|, |G|). Moreover, by considering 2" o H
we see that there is a common Pg-composite of F' and G of degree np®mir lem(| F|, | G])
for each n, hence that the set of degrees of all common Px-composites of F' and G
is the set of nonnegative multiples of pnin lem(|F|, |G|). Hence the hypotheses of
Proposition V.6 are satisfied, and it follows that H is a least common Pg-composite

of F and G. OJ
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Remark V.11. We point out that while Theorem V.10 was known previously, the

above is the first proof that does not depend on Liiroth’s theorem.

We now show that any two monic quadratic polynomials over a commutative ring

R of positive characteristic have a nonconstant common M z-composite.

Proposition V.12. Suppose R is a commutative ring. Fiz a,b € R and k € Z>.
Then the polynomials x* 4+ ax and x* + bz in R [x] have a common Mg-composite of

degree 2k if and only if k(a — b) = 0.

Proof. (=). Suppose 2 + ax and z? + bz have a monic common Mp-composite of
degree 2k. If kK = 0, then k(a — b) = 0, so suppose k > 0. Then there exist monic
degree-k polynomials p, ¢ such that po (2 + ax) = qo (z* + bx). The coefficient of
2?*~Vin po (2% + az) is ka, and the coefficient of 2?*~1 in ¢ o (2? + bx) is kb. Since
these coefficients must be equal, it follows that k(a — b) = 0.

(«<). Suppose char(R) = 2 and k(a —b) = 0. If k is odd, then a — b = 0. It
follows that 2% + ax = 2% + bz, and the result holds. If k is even, then (2% + b(a +
b)z) o (z? + ax) = (22 + a(a + b)x) o (x? + bx), and the theorem follows. Hence we
may assume that char(R) # 2. Let r denote the additive order of a — b in R. Note
that r | k and in particular r is finite since k(a — b) = 0.

For each f € R|[z], define ps : R[z] — R[z] by h(x) — h(f(z)). Note that py is a
ring homomorphism and that pros(h) = py(ps(h)). Let H = (p_,_,). Notice that H
is a group of order two; i.e., p_,_, is an involution. Let G = (p_, 4, p_s_p). Since

P—a © Pez—b = Prra—b, it follows that G also equals (p_, 4, pria_s). Noting that

-1
P—z—a © Pr+a—b O P—z—a = Pztb—a = Priq—b>

we see that GG is a dihedral group of order 2r.
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Let T be a set of representatives for the distinct right cosets of H in G. Then
every element of G can be written in precisely one way as ppp; with p, € H,p, € T
(where h,t € R [z]).

Then, writing products to denote multiplication in R [z], we have

H pg()

pg€G

H H prpi(T)
IT I (=)
H t(z) - t(—x —a).

Writing t(z) = Y, tia’, we compute

t(x) - t(—x —a) = (Zm) (Zt —r—a )

>0 >0
Z t3(—2* —azx) + Z titj(z'(—x — a)! + 27 (—x — a)")
i>0 0<i<j
Zt2 —2? —ax)' + Z titj(—2? —az) ((—x — a)’ ™"+ 2777).
i>0 0<i<y

Since (—x—a)’~"+27~" is symmetric in x and —x—a, the Fundamental Theorem on
Symmetric Functions implies that (—x —a)’~" 4+ 27" may be written as a polynomial
in the elementary symmetric functions on x and —z — a, namely —a and —2? — az
[DF99, p. 589]. Thus #(z) - t(—z — a) € R[—a,—2? — ax] = R[z? + az|, whence
Y(x) € R[z*+ ax]. By symmetry, ¢(z) € R[2z®+ bz|, so ¢(x) is a common R-
composite of 22 + ax and z? + bx. The leading coefficient of 1) is either 1 or —1, so
either 1) or —1) is a monic common M g-composite of 2% + ax and x? + bx of degree

|G| = 2r, which divides 2k. O

This result implies that any two quadratics in Mz have a nonconstant common

composite in Mg whenever R has positive characteristic. The analogous statement
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for cubics, however, is false, as shown in the following example.

Example V.13. The cubics 23 + 22 and 2 + 22 4+ x have no nonconstant common
composite, for suppose F o (23 + 2?) = G o 2% + 22? + z, and say that az™ is the
lowest degree nonconstant term of F'. Then the lowest degree nonconstant term of
G must be az®". However, noting that (z® + 2?) o (=1 — z) = — (23 + 22% + z), we

see that

Fo—(2*+2r*+2) = Fo(2®+2%)o(~1—1)
= Go(2*+22* +1)o(~1—12)

= Go—(2*+27).

Recalling that the lowest degree nonconstant term of G is ax®® we now observe that

the lowest degree nonconstant term of F' must be az**. Hence n = 0, a contradiction.

In light of Example V.9, we remark that the two quadratics need not have a least
common Pr-composite nor a least common Mgz-composite. In the case of commuta-
tive rings of prime characteristic p, however, we can show that 22 + ax and 22 + bz
have a monic least common Pgr-composite of degree 2p, so long as a — b is neither 0

nor a zero divisor.

Corollary V.14. If R is a commutative ring of prime characteristic p and a,b € R
are such that a — b is neither 0 nor a zero divisor, then x* 4+ ax and x* + bx have a

monic least common Pr-composite of degree 2p.

Proof. By Proposition V.12, 22 + az and x? + bz have a monic common R-composite
H of degree 2p. Now take any common R-composite F o (z? + ax) = G o (z* + bx)
of degree 2s. Let u be the coefficient of x° in F. Clearly u is the leading coefficient

of G as well. Notice that the coefficient of %*~! in F o (2% + ax) is usa and that the
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coefficient of 2271 in Go(2?+bx) is usbh. These coefficients are equal, so us(a—b) = 0.
If p1s, then s € R*, and u(a — b) = 0, which is a contradiction. Hence p | s. But
then the degrees of all common composites are the nonnegative multiples of 2p, so

H is a least common Pz-composite of 22 + az and 2? + bx by Proposition V.6. [

Notice that this fails when a — b is a zero divisor, though, since if ¢(a — b) = 0,
then

cx o (v* + ax) = cx o (z* + bx).

This is a nonmonic common composite of degree 2, which violates the hypotheses of
Proposition V.6. If H = F o (2z?+az) = G o (z* + bx) is a monic common composite
of degree 2p, then it cannot be a least common composite, as (F + cz) o (2% + ax) =
(G + cx) o (2% + br) is also a monic common composite of degree 2p that cannot be
a composite of H.

We rely heavily on commutativity in the proof of Proposition V.12. In noncommu-
tative rings, quadratics are not guaranteed to have nonconstant common composites

as shown in the following example.

Example V.15. Let R be a ring, and let R = R'{a,b}. Then z* + ax and z* + bz
cannot have a nonconstant common R-composite. To the contrary, suppose that
Fo(z*+azx) = Go (z* 4 bzr) with F,G € Pr\ R. Let pz" be the lowest degree term
of F'; and let gz™ be the lowest degree term of G. Then the lowest degree term of
Fo(2?+ar) is pa™z™ and the lowest degree term of G o (22 +bz) is ¢gb™a™. Therefore
n = m and pa™ = ¢b". However, a™ and 0" have no nonzero (left) common multiples

in R, which is a contradiction.



CHAPTER VI

Greatest Common Divisors

In this chapter, we develop a theory of greatest common divisors in univariate
polynomial rings under composition. In particular, our results lead us to the following
theorem (Theorem VI.10) which, besides its intrinsic interest, is also integral in our
study of unique factorization in Mg (Chapter VII): Suppose R is a commutative ring
with no Z-torsion and no nonzero nilpotents. Then if f, g € M have a nonconstant
common M g-composite, there exists a greatest common M g-divisor of f and ¢ having
degree ged(|f], |g])-

Engstrom [Eng41] proved, as a consequence of Liiroth’s theorem, that polynomials
f,g € F [z] with a non-constant common Pg-composite have a greatest common Pp-
divisor of degree ged(|f|, |g|) when F' has characteristic 0. His argument extends to
F having characteristic p (cf. [Sch00, Thm. 5]) so long as f and g have a nonconstant
common Pp-composite of degree coprime to p. We now show the analogous result
for integral domains.

The following lemma will be useful in the proof.

Lemma VI.1. Let R be an integral domain, and F' = Frac(R). Then if a,b € Mp

and h € Mg\ {1} satisfy
1. ged(jal, ) =1,

34



35

2. aoh and bo h are elements of R[z], and
3. h(0) € R
then a,b, h € Mpg.

Proof. Let n = |a| and m = |h|. Write h = 7+ 3. hga’. Then for 1 < k <
d — 1, by Lemma IIL1, the coefficient of "% in a o h is nhy_ + r4_p, where
ra—t € Z{ha_k+1,Pa—ks2,-.-, ha_1}, and the coefficient of 2™4~% in bo h is mhq_p +
Sq—k, where sq_ € Z{hg—k+1,ha—k+2,.--»ha—1}. Let j be the degree of the highest
degree nonconstant term of h with coefficient in F' \ R. Then r;,s; € R, since
{hjt1,hj42, ..., ha—1} C R. Since all coefficients of a o h and b o h are elements of R,
it follows that nh; € R and mh; € R. Since ged(m,n) = 1, there are integers p, ¢
such that pm + gn = 1. Thus, h; = (pm + gn)h; € R, which is a contradiction.
Hence, h € Mg, as desired, and by Corollary IV.1, a,b € My as well, completing the

proof. O]

Theorem VI.2. Let R be an integral domain of characteristic p > 0. Let c,d, f,g €
Mg \ {1} be such that co f = do g, and let r € R. Suppose that p does not divide
lc| - |f]. Then there exists h € Mg with |h| = ged(|f], |g]) and h(0) = r such that h is
a greatest common Mg-diwvisor of f and g. In other words, if f,g are Mg-composites

of H € Mg, then h is a Mg-composite of H.

Proof. Let F = Frac(R). Since f and g have a nonconstant common Pg-composite
of degree coprime to p, there exists a greatest common Pg-divisor h € Pr of f and
g such that |h| = ged(|f], |g]) [Sch00, Theorem 5]. If ¢ is the leading coefficient of A,
then h = 6*1(3 — fAL(O) + er) is also a greatest common Pp-divisor. Note that h is

monic, hence h is a greatest common Mg-divisor of f and g, and note that h(0) = r.
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Say f =aoh and goh in Mg, where |a| = n and |b|] = m are coprime. Now, by

Lemma VI.1, a,b, h € M. O

Note that the above result does not imply that any two monic polynomials over
a characteristic 0 integral domain have a greatest common divisor. Instead, under
a stronger hypothesis (existence of a nonconstant common composite), the above
implies a stronger conclusion (existence of a greatest common divisor of degree
ged(|f1, 191)-

We will prove next that there are much less restrictive settings where polynomials
have greatest common divisors. Namely, over any ring R, if monic f and g have
degrees coprime to char(R), then f and g have a greatest common R-divisor. We do
not require that f and ¢g have a nonconstant common composite. However, it is not

necessarily the case that the degree of the greatest common divisor is ged(|f], |g])-

Proposition VI.3. If f, g € Mg are such that |f|r and |g|r are neither 0 nor zero

divisors, then f and g have a greatest common Mg-divisor.

Proof. To the contrary, choose some f, g € Mg such that |f|g and |g|r are neither 0
nor zero divisors and such that f and g do not have a greatest common Mg-divisor.
Since x is a common Mpg-divisor of f and g, there must be common Mpg-divisors
c,d € My of f and g such that ¢ and d have no common Mg-composite that is a
common Mg-divisor of f and g. However, f is a common Mg-composite of ¢ and d,
and |f|g is neither zero nor a zero divisor. So by Corollary V.7, ¢ and d have a least
common M g-composite - call it p - and since f and g are common M z-composites of ¢

and d, we see that p is a common Mg-divisor of f and g. This is a contradiction. [

It is an immediate corollary that any two monic polynomials in rings with no

Z-torsion have a greatest common divisor.
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Corollary VI.4. Suppose that R has no Z-torsion. Then any two elements of Mg

have a greatest common Mpg-divisor.

We remark here that even in the case R = Q, this is the first proof of the existence
of greatest common divisors that does not depend on Liiroth’s theorem.

The following example illustrates that a greatest common divisor of f and g can
have degree other than ged(|f], |g|), even when f and g have a nonconstant common

M z-composite.

Example VL.5. Let R = Z[t] /(t*). Then f(x) = 2* 4+ 2tz and g(z) = 2° + 3ta?

have the common M -composite
Pof=a24+6ta" =2%0yg.

However, we will show that f and g have no common M g-divisor of degree ged(] f|, |g|)
2. In fact, f is indecomposable, since if f were (2 + ax) o (z? 4 bx), then by com-
paring the coefficients of 2® we obtain 2b = 0 and thus b = 0. Hence, f would be a

polynomial in 22, which is a contradiction.

This example depends crucially on the fact that R contains nonzero nilpotent

elements.

Definition VI.6. An element r € R is nilpotent if ™ = 0 for some positive integer

n.

Definition VI.7. The nilradical of a ring R, denoted Nil(R) is the set of nilpotent

elements of R.

All rings - even noncommutative - without nonzero nilpotents embed in a (possi-
bly infinite) product of domains, which in many cases makes them easier to under-

stand. In particular, by embedding commutative rings without nonzero nilpotents
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in a product of integral domains, we will be able to invoke results about greatest
common divisors in integral domains and apply them to commutative rings without

nonzero nilpotents.
Theorem VI.8. Nil(R) = (0) if and only if R embeds in a direct product of domains.
Proof. This is Theorem 12.7 in [Lam01]. O

The following proposition allows us to embed commutative rings without nonzero
nilpotents and with no Z-torsion in a product of characteristic 0 integral domains,

where we will be able to apply Theorem VI.2.

Proposition V1.9. Let R be a commutative ring with no Z-torsion and no nonzero
nilpotents. Then R embeds in a product of characteristic 0 integral domains. In
particular, let P be the set of prime ideals of R lying over the ideal (0) of Z; that

15, P € P implies that P N 7Z = 0. Then there is an injective ring homomorphism

¢: R — [Ipep R/P.

Proof. Let P be the set of prime ideals in R lying over the ideal (0) of Z. We’ll show
that R < []p.p R/P. Notice that if P is a prime ideal in R lying over (0), then
R/P is an integral domain of characteristic 0. There is a canonical homomorphism
¢: R— [[R/P, and it remains to show that the kernel of ¢ is 0.

Let S =Z — {0}. Then S is closed under mutiplication, and since S contains no
zero divisors in R it follows that R embeds in the localization of R at S ([DF99, p.
678]). That is, 2 : R — S™'R is injective. We claim that the prime ideals in S™'R
are of the form S~!P where P € P. To see this, first notice that if P is a prime ideal
in R that contains a nonzero integer n, then 1 = n='n € S7'P, so S7'P = S7'R.

Second, let @ be a prime ideal in S7'R, and let P = Q N R. It is clear that P is
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a prime ideal in R, since P = 171(Q), and the pullback of a prime ideal is prime.
Lastly notice that Q = S™1P.

Conversely, suppose that P € P. Then S™'P is an ideal in S™'R since P is
an ideal in R. Moreover, S™'P is a prime ideal in S™'R, since for any r1,7, € R
and sp,se € S such that 2—12—3 € S71P, there exists s € S and p € P such that
sriTeg = $159p € P. Since P lies over (0), we see that s ¢ P. However, P is prime,
which implies either r; or 75 is an element of P. It follows, then, that either tor 2
is an element of S~'P. Hence S™'P is a prime ideal.

Notice that S~!'R has no nonzero nilpotents, since (£)" = 0 implies r" = 0, and
R has no nonzero nilpotents. Since in any commutative ring R, we have that Nil(R)
is the intersection of the prime ideals of R [DF99, p. 651, Prop. 9], and since the

prime ideals of S7!R are of the form S~!'P, where P is a prime ideal in R lying over

(0), it follows that NpepS™'P = Nil(S™'R) = 0. Thus NpepP = ker(¢) = 0. O

We now use the embedding into a product of integral domains of characteristic
0 to show that when R is a commutative ring with no Z-torsion and no nonzero

nilpotents, then any two monic polynomials have a greatest common divisor of degree

ged(|f1 lgl)-

Theorem VI1.10. Suppose R is a commutative ring with no Z-torsion and no nonzero
nilpotents. Then if f,g € Mg have a nonconstant common Mpg-composite, there ex-

ists a greatest common Mg-diwvisor of f and g having degree ged(|f], |g])-

Proof. Let P be the set of prime ideals in R lying over (0). By Proposition V1.9, there
exists an injective map ¢ : R — [[p.p R/P. For P € P, let ¢p be the natural map
R[z] — (R/P)[z]. Notice that each ¢p preserves the degree of monic polynomials;

i.e., for any monic a € R[z]|, we have |¢p(a)| = |a|. For each P € P, the quotient
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R/P is a characteristic 0 integral domain, so Theorem VI.2 implies that ¢p(f) and
¢p(g) have a monic greatest common (R/P)-divisor of degree ged(|op(f)|, |op(9)]) =
ged(|f|, |g]); call this polynomial dp, and note that (again by Theorem VI1.2) we may
assume that dp(0) = 0. Say ¢p(f) = apodp and ¢p(g) = bp o dp.

For any monic polynomial p € R[z] and positive integers m,n such that mn =
Ip|, Corollary II1.3 determines monic polynomials py,ps € R [ﬂ [z] that are unique

subject to the conditions:
L ;| =n,
2. |p2| = m,
3. p2(0) =0, and

4. p and p; o py agree in the coefficients of 2™ % for 1 < k < m — 1 and in the

coefficients of 2™ %™ for 1 < k < n.

Let S =R [wy and take fi, fo € S|[x] to be the unique monics satisfying
1-4 above for p = f and m = ged(|f], |g|). Similarly, let g1, go be the unique monics
in S [z] satisfying 1-4 above when p = g and m = ged(]f|, |g]). Notice that for each
P € P, we have ¢p(f1) o ¢p(f2) and ap o dp satisfying properties 1-4 above for p =
op(f) (where the relevant rings are (R/P) [z] and (R/P) [%] [z] respectively).
Uniqueness implies ¢p(f1) = ap and ¢p(fs) = dp. Likewise, we see that ¢p(g1) = bp
and ¢p(g2) = dp. But then injectivity of ¢ yields fo = go.

Moreover, ¢op(f) = apodp = ¢pp(fiofs), so again by the injectivity of ¢, f = fiofs,
and similarly, g = g1 0 go = g1 o fo. We see that f and g have a greatest common
M g-divisor by Proposition VI.3, and fy = ¢» is a common Mg-divisor of f and ¢

of the greatest possible degree. Hence f; is a greatest common Mg-divisor of f, g,

and it remains only to show that f5 is an Mz-divisor of f and ¢g. However, since the
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degrees of f; and g; are coprime, this is immediate by Lemma VI.1. Hence f; is a

greatest common Mg-divisor of f and g of degree ged(|f], |g])- O

Polynomials F' and G with a nonconstant common Mg-composite need not have
a greatest common Mg-divisor of degree ged(|F|,|G|) if R has nonzero nilpotents or

Z-torsion.

Example VI.11. Suppose that R = Z[T] /(T?). Then
2% o (2t +2T2) = 2'2 + 6T2° = 2% o (2° + 3T2?),

so z* + 2Tx and 2° 4+ 3T2® have a nonconstant common Mg-composite. However,
x* 4+ 2Tz is indecomposable over Mg, for if it decomposed into two quadratics, f o g,
then by noting that the coefficients of 2® and 22 are 0, we see that g must be 22, but

this is impossible.

Example VI1.12. Suppose that R = Z [T /(2T). Then
o (2? + Tx) = 2" + T%2* = (2* + T?z) 0 2%

So 2% and 2% + T'x have a nonconstant common Mpz-composite. However, they have

no degree-2 common Mg-divisor.



CHAPTER VII

Nonuniqueness of Decomposition

In this chapter, we develop results describing the extent of nonuniqueness of de-
composition of monic polynomials over rings. Recall that a polynomial F' is inde-
composable in My, if |F| is at least 2 and if F' = F} o F, (with Fy, Fy € My implies
|Fi] = 1 or |Fy| = 1. In Section 7.1, we describe a relationship between any two
decompositions of a polynomial in Mg into indecomposables when R is a ring with-
out nonzero nilpotent elements (Theorem VIL5). In particular, we show that the
number of indecomposables in any two such decompositions is the same and that we
can obtain a relationship among all such decompositions; namely, starting with any
decomposition of F', by a sequence of “Ritt swaps” in which we replace polynomials
a o b in the decomposition by ¢ o d, where |a| = |d| and |b| = |c|, we can obtain any
other decomposition, up to composition by linears and their inverses. We provide
examples of rings with nonzero nilpotents where this conclusion does not hold. In
section 7.2, we characterize solutions to a ob = cod for a,b,c,d € Mg with R a

domain. We also show that this characterization does not extend beyond domains.

42
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7.1 A Characterization of Decompositions over Rings without Nonzero
Nilpotents

Recall that a decomposition of a polynomial F' over S is a tuple (F, Fy, ..., F},)

such that F; € Sand "= Fyo Fyo...0F),.
Definition VII.1. A complete M p-decomposition is a decomposition into M g-indecomposables.

For a given F', there may be several complete Mz-decompositions. Indeed, if
F = Fy o Fy with F} and F5 indecomposable in Mg, and if L is a linear (which,
in Mg, is necessarily invertible), then F' = (F} o L) o (L™ o F}) is another com-
plete M g-decomposition of F. To address this, we define an equivalence relation on

decompositions that accounts for this type of nonuniqueness.

Definition VIIL.2. For S € {Mg, Pr}, two decompositions of a polynomial F' over
S,say F'= FioFyo..0F, and F' = G10Gy0...0G, (with F;, G; € S) are S-equivalent,
symbolically <F17F2, ...,FT> ~g <G17G27 ...,GT> or <E>Z§T‘ ~g <Gi>i§7"7 if there exist

invertible linear L, ..., L,_; € S such that

Gi = Fioly,
G; = Lj__llonoLj, for 1 < j <r,and

G, = L1 oF,.

Definition VII.3. A Ritt quadruple in My is a quadruple of indecomposable poly-

nomials (a, b, ¢,d) such that a o b = cod with |a| = |d| and |b| = |¢|.

Definition VII.4. Given a Ritt quadruple (a, b, ¢, d), a Ritt swap is the replacing of
(...,a,b,...) by (...;c,d,...) in a decomposition. That is, a Ritt swap replaces a pair
of consecutive indecomposable polynomials in the decomposition with a new pair of

indecomposables with the same composite and same degrees but in reversed order.
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Even taking into account the nonuniqueness caused by linears, however, polyno-

mial decomposition is not unique. For example
2o (2% 4+ ) = (2% + 222 + 2) 0 22

But we now show that when R is a ring without nonzero nilpotents or Z-torsion,
then any two complete Mlg-decompositions of F' are related to each other. In par-
ticular, the two decompositions involve the same number of indecomposables, and
the multiset of degrees of the indecomposables is the same. Both the statement and

proof of the following theorem bear similarities to the Jordan—-Holder theorem.

Theorem VIL.5. Let R be a commutative ring with no nonzero nilpotents. Suppose
F=GioGy0...0G, = HHoHyo0...0H,, where F,G;, H; € Mg and where G;, H; are
indecomposable, and where |F|g is neither 0 nor a zero divisor. Then r = s and the
sequences (|Gil)i<r, (| H;|)i<r are permutations of each other. Moreover, there ezists
a finite chain of decompositions F' = Fl(j) 0..0 F,gj)(l < j < n) with Fi(j) € Mp

indecomposable such that

3. for each j < n, there exists k <r such that

FO o B, = U0 E

with |F,§j)| = |Fk(ﬂ1)| coprime to |F,§i)1| = |F,§j+1)|, and for each i # k,k + 1,

we have Fi(j) = ﬂ(j+1). That is, the decomposition (E-(jﬂ))igr is obtained from

<F»(j)>ig7« by a Ritt swap.

]
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Remark VII.6. For many rings, monics can be indecomposable over My but not

indecomposable over Pg. For instance, take R = Z/157Z, and notice that
(62? — z) o (52 +x) = 2* — m.

That is, 22—z decomposes into two (nonmonic) quadratics over Pg; however, r2 —z is
indecomposable over Mz. Thus, there seems to be no hope of generalizing Theorem

VIL5 to Pr-decompositions, at least if R has zero divisors.

Proof. We proceed by induction on the degree of F. If |F| < 3, then r = s = 1
and we are done. So suppose not, and assume that |G,| and |H;| are not coprime.
Then by Theorem VI.10, G, and Hg have a common Mg-divisor of degree at least 2.
Indecomposability of G, and H, implies that Hy, = L o GG, for some linear L € M.
Then

Gi0Ggo0..0G,y=HjoHyo..0oH; 50 (Hs 10L),

so by the inductive hypothesis, r — 1 = s — 1 (hence r = s), and there exists a
finite chain of decompositions F' = Fl(j) 0.0 Fr@1(1 < j < n) with Fi(j) € Mg

indecomposable such that
1. <F'(1)>i§'r—1 = <G1 o G2 6...0 GT_1>,
2. <F»(n)>i§r,1 ~Mp <H1 o H2 O©...0Mly_90 (Hr,1 o L)>, and

3. for each j < n, there exists k£ < r — 1 such that

P o FiD, = FOY o R

with |Fk(j)| = \F,sﬁl)\ coprime to \Féi)l = |F,§j+1)\, and for each ¢ # k, k+ 1, we

have F7) = TV,

7
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It is immediate that if
(A1, Agy ooy Ay) ~uy, (B, Ba, ..oy By,
then for any P € Mg,
(A1, Agy .y Ay, P) ~yy, (B, Ba, ..., By, P).

Therefore (Fl(] ), FQ(j ) FY )1, G,); is a finite chain of decompositions satisfying

1. <F'(1)>i§r = <G1 e} G2 0...0 GT>,

)

2. (F.(n)>i§r,1 ~yy (HioHyo...oH, 90 (H,_10L)oG,) ~y, (H oHso..0H,),

)

and

3. for each 7 < n, there exists k£ < r — 1 such that

PO o BD, = EPY o B

with |F,§j)| = |F,§ﬂ1)| coprime to |F,§]+)1 = |F,§j+1)|, and for each i # k, k+ 1, we

have Ffﬂ = FUtY,

)

Hence we may assume that |G, | and |H,| are coprime. By Corollary V.7, G, and
H; have a least common Mg-composite P of degree lem(|G, |, |Hs|). Thus there are
A, B € Mg such that P = Ao G, = Bo Hg, where |A| = |Hg| and |B| = |G,|.

We show now that A and B are indecomposable. For, suppose to the contrary

that, without loss of generality, A = A; o Ay, where |A;|, |As| > 1. We then have
AjoAyoG, = BoH,.

Since H; and A; oG, have a nonconstant common M g-composite, by Theorem VI.10
they have a nonconstant common Mpg-divisor (since |As| divides |H|). Since Hy is

indecomposable, it follows that H, is a Mg-divisor of A5 o G,., but then A; o G,
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is a common Mg-composite of GG, and H, of lesser degree than A o G,., which is a
contradiction. Hence A and B are indecomposable.

Since F'is a common Mg-composite of GG, and Hy, it is also an M g-composite of
P, so we may write F' = Cj;0C50...0C,0 Ao G,, where C; € My is indecomposable.
It follows that Cf1 o (Cy0...0Cy0 A= Gyo0Gyo...0G,_1 is a polynomial of degree

less than |F'|. Hence by the inductive hypothesis, r = ¢ + 2. Similarly,
F=CioCy0..0C;oBoH;,=Hi0oHyo..oH, 10H,,

so s =t + 2, whence r = s.
Moreover, the inductive hypothesis provides a finite chain of decompositions F' =

Fl(j) 0..0 Fr@1(1 < j < n) with Fi(j) € Mp indecomposable over M such that

2. (F™)icr—1 ~ (C1, Ca, ..., Cya, A), and
3. for each j < n, there exists k£ < r — 1 such that

P o FiD, = FOY o RS

with \F,Sj)] = \F,gﬂl)\ coprime to \Fk(i)l = |F,§j+1)\, and for each ¢ # k, k +1, we

have E(]) _ E(j+1).

Note that <F~(n))i§7~_1 ~up (Ch, Oy, ..., Cy_g, A) implies that there exist linear Ly, ..., L,_o €

)

Mg such that
1. Gl = Cl o Ll:
2. G,y =L 0A, and

3. for2<i<r—2 wehave G; =L} 0Cio L.

1—



48

By appending G, to each of these compositions, we get a chain
¢, =(FY FY . FY\. G,),

such that
1. C = (Gi)1<i<rs
2. C,={(C10Ly),(Li'oCy0 Ly),.... (L 500, 50 L. ), (L, 0A),G,), and
3. for 1 <1i <n —1, we have that C; differs from C;;; by only a Ritt swap.

Since Ao G, = B o H,, it follows that
(CyoLy)o(Li oChoLy)o...o( L yoC, _yoL,_5)o(L; ,0A)0G, = CioCho...0C,_y0BoH,.
Hence we may write
Co1={(C1oLy),(Li 0 Ch0 Ly), ..., (L 30 Crg o L,_s), (L, "}y 0 B), H),

and notice that C,; differs from C, by only a Ritt swap, since (A, G,., B, H), and
hence (L%, 0 A, G,, L', 0 B, H,), is a Ritt quadruple.
Now, since

CioCyo..0(C,_ o0oB=HioHyo..0oH,_q,

by the inductive hypothesis, there is a finite chain of decompositions

F=F"o o FOHH(1 <5 <m)

with Fi("ﬂ ™) € My, indecomposable such that

1. <F'(n+2)>i§7‘—1 = (C1,Cy, ...,Cr9, B),

)

2. <Fi(n+m+1)>i94 ~Mp (Hz'>z‘§r—1, and
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3. for each j < m, there exists k < r — 1 such that

Fk(”“‘j) o F]gi‘{]) — F]gn+j+1) o F]gi‘;j'i‘l),

with |Fk(n+j)| = |F,€(T{j+1)| coprime to |F,€(Tf])| = |F,§"+j+1)|7 and for each i #

k,k + 1, we have F"H) = pmt7th),

Hence, the chain of decompositions D; = (F"™) F™) F"H) [ ). is such that
D, = (C1,Cy,...,Cr_5, B, H,), that D,, ~y,, (H;)i<,, and that D; only differs from
D;11 by a Ritt swap.

It follows that Cy,...,C,,Cphi1 = D1, Dy, D3, ..., D,, is a finite chain of decomposi-
tions such that C; = (Gi)i<,, that D,, ~m, (H;)i<,, and that consecutive decompo-

sitions in the chain differ only by a Ritt swap. O]

When |F|g is 0 or a zero divisor, or when R contains nonzero nilpotents, F' may
decompose into chains of indecomposables of different lengths, as illustrated in the

following examples.

Example VIL.7. If R is a ring of characteristic p prime, then

o (@ +a)o(a? —x) = (2 — )t

2 2
= (2 — 2P P — 2P 4 x) 0Pt

Certainly 27! will decompose into the same number of factors in both decomposi-
tions. It is clear that both P + x and 2P — x are indecomposable over Mg, since
they have prime degree. Moreover, ([L’p2 B A x) is indecomposable over
Mg since if it were decomposable over Mg, it would necessarily decompose into two

p p
degree-p polynomials. So suppose that f = Z a;z" and g = Z bjxj are two monic
i=0 7=0
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degree p polynomials. Then

fog = (@*+0("1))o (Z bjx])

j=0

= zPo (Xp: bjxj> + O(xptp)

§=0

P
= ( b];xp]> + 02 7P)

J=0

= 2P+ O(x*"’Q’p).

Hence (:Ij'p2 — PP g g x) cannot decompose into two degree-p monics and is
thus indecomposable over Mg. The two decompositions of (z#° — 2)P*! into inde-

composables, then, have different lengths.

This example, in the case of fields, is due to Dorey and Whaples [DW74]. This

analog to Ritt’s first theorem can fail due to Z-torsion even in characteristic 0.

Example VIL.8. Let R =7Z[T]/(2T). Then
o(v?+x)o(2?+Tx) = 2®+220 (T4 1)z +T%2% = (24223 +(T*+1) 2+ T?x) 0x®.

We now show that z* + 22% + (T% + 1)2% + Tz is indecomposable. So suppose to

the contrary that
ot +22° + (T + 1)a* + T?2 = (2 +ax) o (2% + cx)

= 2" +2c2® + (¢ + a)2® + (ac)x.

Note that we may always assume that the factors have no constant term, since oth-

erwise we may compose with linears to eliminate them. Then, equating coefficients,
o 2c=2

e l4+a=T*+1
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e ca="T2

The first equation yields ¢ = Zf:o e;T" with eg = e, = 1 and ¢; € {0,1}. From
the second equation, we see that a = T% 4+ 1 — ¢?, and substituting into the third
equation, gives

c(T*+1—c%) =T%
The only possibility is that k = 2, so ¢ = 1 +e,;T+T?. Substituting into the previous
equation gives
(1+e T +T% - (e3T?) = T?,

a contradiction.

The following example shows that nonzero nilpotents can cause decompositions

of different lengths, even if |F'|g is neither 0 nor a zero divisor.

Example VIL.9. If R = Z[T] /(T?), then
3o (2t 4+ 2T2) = 2" + 6T = 2% o (2% + 3T2%) = 2 o (2% + 3T'x) 0 2°.

But #1427z is indecomposable (cf. Example VI.11), so 2!+ 6Tz" has two complete

M g-decompositions of different lengths.

7.2 A Characterization of “Ritt Swaps” over Domains

Theorem VII.5 describes the relationship between any two complete M z-decompositions
of a polynomial, for certain rings R, in terms of the collections of indecomposablesA, B, G, H €
Mg, such that Go A = Ho B with |G| = |B| and ged (|G, |A]) = 1. In this section, we
determine all such A, B, G, H in case R is an integral domain whose characteristic
does not divide |G o A|. In fact, we do this without assuming the indecomposability

or coprimality hypotheses above.
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One example of such A, B, G, H is the commuting polynomials

A more complicated example comes from the fact that the square of an odd polyno-

mial is an even polynomial, or in other words,

2?0 wP(2?) = 2(P(x))? o 2°.
These two examples are special cases of the more general example
(7.1) " ox"P(z") = 2" P(x)" o 2"

where P(z) is an arbitrary polynomial. We will prove that, if R is an integral domain,
then all A, B, G, H € Mg which satisfy GoA = Ho B and |G| = | B| can be obtained
from the examples in (7.1) and certain variants of Chebychev polynomials, which we

now define.

Definition VII.10. For fixed t € R, the Dickson polynomials with parameter t,

denoted D, (x,t), are the polynomials in R [z] defined recursively by:

Dy(z,t) =2, D1(x,t) =z, Dy(z,t) = 2Dy (x,t) — aDy_o(x, ).

l3] ,
Lemma VII.11. For n > 1, we have D,(z,t) = n : (n o 2) (_t)ixn—%'

NIE

- n-—1
=0

Proof. By induction on n. O]

Corollary VIL.12. Let n > 0 and t € R. Then if n is even, D, (z,t) = g,(x?) for
some monic polynomial g, € R [z], and if n is odd, then D, (z,t) = xh,(x?) for some

monic polynomial h,, € R [x].

Proof. This is clear from Lemma VII.11. O]
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Remark VII.13. Many further properties of Dickson polynomials can be found in

[ACZ00, LMT93].

It is well-known that Dickson polynomials commute under functional composition

(see, for instance, [LMT93]). Namely,
Dy (z,t™) o Dy (z,t) = Dpp(x,t") 0 Dy (2, ),

providing a further example of polynomials A, B, G, H € Mp satistying GoA = HoB
and |G| = |B|. We now show that these examples, together with those in (7.1), are
the source of all examples when R is an integral domain whose characteristic does

not divide |G o A.

Corollary VII.14. Let R be an integral domain of characteristic p > 0. Suppose
A, F,B,G € Mg, satisfy |A| = |G| and pt|A|-|F|. Then Ao F = Bo G if and only

if there exist U, V, Ay, Fy, By, Go € M such that

].A:UOA(),
Q.F:FQOV,
3. B=Uo By,

4. G=GooV, and
9. ged([Aol, |Bol) = 1 = ged(|Fol, [Gol),
and either
1. (Ao, Fo) ~my, (2" P(x)™, 2™),
(By, Go) ~mp, (2™, 2" P(a™)), where P € Mg and r > 0, or

2. <A0,F0> ~Mp <Dm(1‘7t"),Dn(l‘,t)>,

(Bo, Go) ~mp (Dn(x,t™), Dy (2,t)), where t € R.
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In view of Theorems V.8 and VI.10, it suffices to prove this result in case |A| and

|F’| are coprime. Thus, the result is a consequence of the following result.

Theorem VII.15. Let R be an integral domain, and let A, B,G, H € Mg satisfy
|A| = |[H| = n > 1 and |B| = |G| = m > n, where gcd(m,n) = 1 and G'H' # 0.
Then G o A= H o B if and only if there exist linear Ly, Ly € Mg such that

1. (L1 oG, Ao Ly) ~y,, (x"P(x)™, z™),

(Lyo H,Bo L) ~y, (", 2" P(x™)), where P € Mg and r > 0, or

2. (Ly oG, Ao Ly) ~y, (Dl %), Dula, 1)),

(Li o H,Bo Ly) ~wy, (Dy(x,t™), Dy (x,t)), wheret € R.

Note that in Theorem VII.15, we replace the condition char(R) 1 |G| - |H| by the
much weaker condition G'H' # 0.

When R is a field, Theorem VII.15 is an easy consequence of the following result
of Zannier (see [Sch00, Zan93]), which is an extension of previous work of Ritt, Levi,

and Dorey and Whaples.

Theorem VII.16 (Zannier). Let K be a field, and let A,B,G,H € Pk satisfy
|A| = |[H| = n > 1 and |B| = |G| = m > n, where gcd(m,n) =1 and G'H" # 0.
Then G o A= H o B if and only if there exist linear Ly, Ly € Py such that either
1. (L1 oG, Ao Ly) ~p, (z"P(z)",z"),
(Lo H,Bo Ly) ~p, (x",2"P(z™)), where P € K [x] and r > 0, or
2. (Ly oG, Ao Ly) ~py (Din(,t"), Dy(z, 1)),
(Lo H,Bo Ly) ~p, (Dp(z,t™), Dy(x,t)), wheret € K.
We prove Theorem VII.15 with the following 3 lemmas. The strategy will be to

use Theorem VII.16 to write the (implicit and explicit) linears with coefficients in

Frac(R) and then to show that we can choose all of the polynomials to be monic.
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Lemma VIIL.17. Let R be an integral domain, and let A, B,G,H € Mg satisfy
|A| = |H| =n > 1 and |B| = |G| = m > n, where gcd(m,n) =1 and G'H' # 0. Let

F = Frac(R), and suppose that there exist linear Ly, Ly € Pr such that
(L1 oG,Ao Ly) ~p, (x"P(z)", z")

and

(Lo H,Bo Ly) ~p, (z", 2" P(z"))

for some P € Pr and r > 0. Then there exist linear My, My € Mg such that
(My oG, Ao My) ~y, ("Q(2)", 2™)

and

(Myo H,B o My) ~yy, (", 27Q(z")),
for some Q € Mp.

Proof. Suppose that there exist linear L, Ly € Pg such that
(L oG, Ao Ly) ~p, (z"P(z)",z")

and

(Lo H,Bo Ly) ~p, (z", 2" P(a"))
for some P € Pr and r > 0. Then there are linears L3, L, € Pr such that
= Li'oa"P(z)" o Ly"

n -1
Lyox™o L,

T o @
Il

. —1 n —1
= L ox"ol,

Sy
|
h
N
O
&

rp(xn) o L;l,
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where P € Pr and » = m — n|P| > 0. Notice that ged(r,n) | r + n|P| = m; hence,
ged(r,n) | ged(m,n) = 1, which implies that ged(r,n) = 1.

We write

L' = ar+b
Lyt = plr+v)
Ly = ex+ f

L' = c(z+d)

with with a,b,c,d, e, f, u,v € F, so that:

r—f

= (ax+b)oz"P(x)" o .

)
= (ex+f)oa"op(x+v)

(ax +b)oz" oc(x +d)

= o= Q@
I

T

= <c —d)oz"P(a") o u(x 4+ v).

Now, A = f+eu™(z+v)", and since A is monic, ey™ = 1, whence A = f+(z+v)™.

Notice that the coefficient of 2" ! in A is nv. Since A € M, it follows that nv € R.

|P|
Writing P(x) = ijxj, we see that
=0
1 1P|
B — —d - L nj+r anrr.
+ - ;pj,u (x4 v)

By expanding (z + )" we observe that

B= ]%u"'P'”x"‘P‘” + ]%u”“)'”(an\ + )P 4 Ol PIHT2),

. . . . p
Again, since B is monic, we see that %u"‘m” =1, so

B = xn\P\+r + (n|P| + T)Vxn\P\-i-r—l + O(an|P|+T—2)7
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and since B € Mg, we have that (n|P| 4+ r)v € R. Since nv € R by the above
analysis, rv € R, and since ged(r,n) = 1, it follows that v € R.

Since v € R, we see that

1P|

ijp"j”a:”j” = Bo(x —v) € Mg,
=0

1
—d+ -
c
whence d € R and for 0 < j < |P|, we have g; := %,"*" € R. Then B has the

desired form. That is,
B = (z—d)o (" p(a")) o (x +v),

where d,v, g; € R and where p(z) = ZEO g;x?).
Similarly, f 4+ 2™ = Ao (z —v) € Mg, so f € R, and A has the desired form.
Namely,

A= (x4 f)oz"o(x+v),

where f,v € R.
Moreover, H = b+ ac"(x + d)", and since H is monic, ac” = 1, whence H =

b+ (z 4+ d)". We showed d € R above, so by noting that H o (z — d) € Mg, we
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conclude that b € R and that H = (x+b)ox" o (z+d);b,d € R. Lastly, we compute

n
1P|

1 x— f)
G = bta(z—f) ij< jf)
e = e
P A\
_ , cgi (@ —f)
= b+(1_(x_f> j;o(lunjqrr) el
1P| A\
1 r 9j (37 B f)J : n
= b+ —(v—f) ;(unjw) = (since ac™ = 1)
] L A\
= b= [ Xy (since epi" = 1)
5=0
1P| \"
= b+ (x—f) Zgj(:c — f) (since ep™ = 1)
§=0
1P| "
= (z+bjoa” [ Y gl | o(x—),
5=0
where b, f, g; € R. This establishes the lemma. O

Lemma VII.18. Let R be an integral domain, and let A, B,G,H € Mg satisfy
|A| = |H| =n > 1 and |B| = |G| = m > n, where gcd(m,n) =1 and G'H' # 0. Let
F = Frac(R), and suppose that there exist linear Ly, Ly € P such that

<L1 o) G, Ao L2> ~Pp <Dm($’, tn), Dn($, t)>

and

(Lyo H,Bo Ly) ~p, (Dy(x,t™), Dp(x,t))
for some t € F. Then there exist v € R and b,d, f,T € F such that

G = ($+b)oDm(5E,Tn)O(x_f>

A = (x4 floDy(z,T)o (x+v)
H = (x+b)oD,(z,T™) o (z+d)
B = (x—d)oDy(z,T)o(x+v).
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Proof. Suppose that there exist linear Ly, Ly € Pg such that
((Ly oG, Ao Ly) ~p, (Dy(z,t"), Dp(x,t))

and

<L1 e} H, Bo L2> ~Pp <Dn<$, tm), Dm($, t)>
for some t € F. Then there are linear L3, L, € Pr such that
= Li'oDy(z,t") o L3*

Lz o D,(z,t) o Ly*

S S
|

= Li'oDy(z,t™)o L}’

B = LyoD,(z,t)o Ly
We write

L' = ar+b
Lyt = plr+v)
Ly = ex+ f
L' = c(z+d)
with with a,b,c,d, e, f, u,v € F, so that:
x—f
-

(ex + f) o Dy(x,t) o u(x 4+ v)

G = (ax+b)oDy(x,t") o

X
Il

H = (ax+0b)o Dy(z,t™)oc(x+d)
B

= (% —d) o Dp(x,t) o u(z +v).

with a,b,c,d,e, f,u,v € F.
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Notice that

L) .
1 — . . .
B = —d+-Y — ,(m, Z)(—t)mm—%(ﬁy)m—?%

- m —1 1
=0

NE

1
— —mem—f——umml/l'm_l—f—O(fL’m_Q).
C C

Since B is monic, we see that % =1 and that B = 2™ +mvz™ !+ O(2™%). Hence

my € R. Similarly,

5]

A= frey 2 (n._i)(—t)m"—%(:wu)”—%

el () 7
=0

= eu"a" +ep"nva™ "t + O(2"?),
and since A is in Mg, we see that ep™ = 1. It follows that nv € R, and coprimality
of m and n yields v € R.

Rewriting, we see that

1 —1 . . .
B = —d+-) — ,(m Z)(—t)mm—%(ﬁy)m—?%

and
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Considering G and H, we see that

5 m [(m—1 90 Uy %
¢ = b+a ("7 e

= b+ 2w\ i (—(E)")l(fc e
= (e+b)0 Dyl () o (e =)
2] — . . .
H = b+a)_ nTi - (n . ) (=™ (@ + d)"
5] —1 , , .
= b+ Z ni . (n ; )(—tm) ¢ (x+d)"*  (ac™ =1 since H is monic)
12 s " |
= b+ Z ni ; (n ; ) (—(%)m)’(ﬂc ) (z +a)"*
5] —1 , ,
= 03 (M)
= (z+0) o Dp(x,(—)") o (z+d)

Summarizing, we have that v € R and b, d, f, ;% € F. Moreover,

G = (@+8)oDulo ()" ole = 1)
4 - (;c—|—f)oDn(x,%)o(x+y)
H = (x+b)ODn(x,(%)m)o(x+d>
B — (x—d)oDm(x,%)O(erl/)

Taking T' = ﬁ proves lemma.

(—t™)e (@ — f)" % (i = 1 since G is monic)
em
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Lemma VII.19. Under the hypotheses of Lemma VII. 18, if additionally n > 2, then

there exist linear My, My € Mg such that
(My0G, Ao My) ~yy, (D (x,u"), Dy(,u))

and

<M1 o H7 Bo M2> ~Mpg <Dn(x,um),Dm(x,u)>,
for some u € R.

Proof. By Lemma VII.18, there exist v € R and b,d, f,T € F such that

G = (z+b)oDy(z,T") o (x—f)
A = (z+ f)oDy(z,T)o (x+v)
H = (x+b)oD,(x,T™)o(x+d)

B = (z—d)oDy(z,T)o (z+v).

It suffices to show that b,d, f,T € R. Since v € R, the composites B o (x — v) and
Ao (z—v) lie in M. Noting that m > 2, we see that Bo (z —v) = 2™ —mTx™ 2 +
O(z™3). So mT € R, and likewise nT € R. Since m and n are coprime, it follows
that 7' € R. Hence, D,,(z,T) € R|z], and it follows that d € R. Since n > 2,
similar analysis of A o (x — v) yields that f € R. But since f and T are in R, both
Dy(x,T") and Go (x + f) = (x + b) o Dy, (2, T™) lie in Mp. It follows that b € R,

proving the result. [
Note that Lemma VII.19 is not generally true when min(m,n) = 2:

Example VII.20. Let R = Z, and take G = 2> —2%, A = 2?41, B = 23+ 2, H = 2°.

Then Go A = H o B. It is straightforward to verify that there is only one solution
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set t,b,d, f,v e Q to

G =b+ Dy(xz— f,t")
A =f+Dy(x+uv,1)
H =b+Dy(x+d,t")

B=—d+ D,(z+v,t),

and that the solution (t = —%, b= —%,d =v=0f= %) is not in Z.

However, we handle the case of min(m,n) = 2 (not covered by Lemma VII.19) by

showing that any such A, B, G, H satisfy the hypotheses of Lemma VII.17.

Lemma VII.21. Under the hypotheses of Lemma VII. 18, if additionally n = 2, then

there exist linear My, My € My such that
(My0G, Ao My) ~p, (x"P(z)",z")

and

(My o H,Bo M) ~p, (z",z"P(z"))
for some P € Pr and r > 0.

Proof. Coprimality of m and n implies that m is odd. It follows from the definitions
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that Dy(z,u) = 22 — 2u, so Lemma VIIL.18 yields:

A = (x+f)oDy(x,T)o (x+)
= (x+flo(@*-2T)o(z+v)
= (x+f-2T)oz’0c(z+v)
H = (z+b)oDy(x,T™) o (z +d)
= (z+b)o (2> —2T™) o (x +d)
= (z+b—2T")oa?0 (z +d)
G = (z+b)oDy(x,T%) 0 (z - f)
= (x4+b—2T") o (Dp(x — 2T, T%) + 2T™) o (z — f + 2T

B = (z—d)oDy(z,T)o(z+v)
From G o A = H o B, we conclude that
(Dp(z — 2T, T?) 4+ 2T™) 0 2* = 2> 0 D, (2, T).

By Corollary VII.12, there exists a polynomial h € My such that D,,(x, T) = zh(z?).

But then

(Dp(x — 2T, T*) 4+ 2T™) 0 2> = 220 D, (x,T)
= 2% o zh(z?)
— xzh(x2)2

= zh(r)?o2?
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whence D,,(x — 2T, T?) + 2T™ = xh(z)?. But then, we have that

= (z+b—2T")oxh(x)*o (x — f +2T)

(x+f—-2T)oz%0 (v +v)

T = Q
I

= (x+b—2T") oo (z +d)

B = (z—d)oxh(x?) o (zv+v),
with b —27T™, f +2T,d € F,v € R. Now notice, though, that
{(x —=b+2T™) 0 G, Ao (v —v)) ~p, (zh(x)? z%)

and

{(x—b+2T™)o H,Bo (x —v)) ~p, (z% zh(z?)).
Lemma VII.17 now implies the result. O]

Lemmas VII.17-VIL.21 now directly yield Theorem VII.15, which in turn implies

Corollary VII.14.

Remark VII.22. The hypothesis G'H’ # 0 of Theorem VII.15 is certainly satisfied

if char(R) does not divide |G| - |H].

We conclude with an example suggesting that we would have to add more items
to the conclusion of Theorem VII.15 to find an analog in rings which are not integral
domains. We exhibit polynomials in one of the simplest examples of a commutative
ring with zero divisors, namely Z [a, b] /(ab), that violate the conclusions of Theorem

VII.15.

Example VII.23. Let R = Z[a,b] /{(ab). Then

(z* +3ba® + (4a® + 30*)2* + b)) o (2° + 3ax) = (2° +6a*x* + 9a’z) o (v + 4ax® + bx).
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are two different complete Mlz-decompositions that do not satisfy the conclusion of

Theorem VII.15.
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