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CHAPTER I

Introduction

This dissertation presents work at the intersection of scientific computing and

computational chemistry. The focus is on the development and application of fast

Cartesian multipole treecode algorithms for evaluating coulombic (or electrostatic)

interactions in molecular dynamics (MD) simulations.

MD simulations provides a means to study the dynamical and structural proper-

ties of a system of particles by numerically following the path of the system in phase

space. We can verify the theories and models underlying our simulations by com-

paring the simulation results to experimental results. Having verified the underlying

theories and models, MD simulations then provides us a means to computationally

study systems which will otherwise be too difficult or impossible to probe experi-

mentally and to have confidence in the results of our study.

Tracing the path of a system in phase space involves propagating the system in

space by a time-stepping method according to Newton’s equations of motion. For

a system of N particles interacting through a potential V , MD simulations entails

solving Newton’s equations of motion

(1.0.1) mir̈i = fi,

in time for each particle, i, in the system with 1 ≤ i ≤ N , mi the particle mass and

1
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ri the position of particle. The force fi on particle i is given as

(1.0.2) fi = −∇riV.

The interaction potential V usually includes electrostatic interactions because of the

high prevalence of charged species in most systems of interest. The computation of

the electrostatic interactions are frequently the bottleneck of MD simulations because

they require interactions between all particles to achieve an acceptable accuracy. As

a result methods that speed up the computation of electrostatic interactions are

very important. Fast methods for electrostatic interactions are especially important

in the modeling of chemical systems and biological molecules where the number of

atoms in a system is routinely greater than 104. Simulations using explicit particle-

particle interactions will take very long times, hence the need for faster and accurate

alternative methods [11, 26, 38].

In addition to MD simulations, treecode algorithms can also be employed in several

other fields including Monte Carlo [2, 25], dissipative particle dynamics [23] and fluid

dynamics [38] simulations where N -body interactions are prevalent.

1.1 Thesis Contributions

The Particle Mesh Ewald (PME) method is the state of the art for performing fast

coulombic interactions in systems with periodic boundary conditions. The overarch-

ing goal of this work is to advance a treecode alternative or addition to the Particle

Mesh Ewald (PME) method [12, 21]. This thesis presents three related projects in

furtherance of this goal.

• The first project validates the Cartesian treecode Ewald (CTE) method [16]

by comparing the results of molecular dynamics (MD) simulations using CTE

to those using PME. The algorithms are compared based on the computed
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structural and dynamical properties of liquid methyl chloride, CH3Cl, and on

cpu time. The thesis also investigates the possibility of a hybrid CTE-PME

algorithm.

• The second project develops a cluster-cluster Cartesian treecode algorithm. This

is in response to the original particle-cluster CTE being slower than PME for

the same sized system. The leaf-cluster Cartesian treecode algorithm, a variant

of cluster-cluster, is shown to be about twice as fast as the particle-cluster

algorithm for the free space Coulomb potential at the same accuracy level.

• The third project addresses the efficiency of CTE by parallelizing the algo-

rithm. The goal is to incorporate CTE in DL POLY 2 [52, 53] and DL POLY 3

[55, 54], which are parallel software packages for performing MD simulations.

Two different parallel treecode algorithms are developed since DL POLY 2 and

DL POLY 3 are based on two different paradigms for parallel algorithms. In

DL POLY 2, the replicated data strategy, where all particles are replicated on

all nodes, is used to achieve load balancing. DL POLY 3 load balances via a

decomposition of the simulation space into the nodes. This approach is known

as domain decomposition where only subsets of the full system are stored on

each node and the union of all these subsets produces the whole system.

1.2 Overview

The thesis is organized as follows. Chapter II presents a derivation of the Ewald

sum for handling the Coulomb potential for periodic boundary conditions. We also

develop the particle mesh Ewald method and Cartesian treecode Ewald method in

this chapter. In Chapter III, we explain the approach for handling periodic boundary

conditions for CTE and provide results from MD simulation of liquid CH3Cl which
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validates the CTE algorithm when compared to PME. The chapter also provides

time comparison and studies of a hybrid CTE-PME algorithm. The cluster-cluster

algorithm is presented in Chapter IV including the development, error analysis, the

code and comparisons to particle-cluster. Chapter V presents the parallel CTE

algorithms and provides scaling results for the two different algorithms. We conclude

in Chapter VI with a summary and provide directions for possible future work.



CHAPTER II

Coulomb Potential in Periodic Boundary Conditions

2.1 Molecular Dynamics (MD)

Molecular dynamics involves simulating the time evolution of a system of chem-

ical species by integrating the classical equations of motion of the microscopic con-

stituents of the species, usually atoms and molecules. Insights into the behavior

of the system are gained from computing statistical ensemble averages of relevant

structural and dynamical functions [2, 25].

Molecular dynamics (MD) simulations of biomolecular systems and liquids with

charged species usually involve computing Coulomb pair potentials due to electro-

static interactions. The total Coulomb pair potential of N charged particles in free

space, is given as

(2.1.1) V =
1

2

N∑
i 6=j

qiqj
4πεo | xi − xj |

,

where qi and xi ∈ R3 are the charge and position of particle i respectively and εo = 1

is the dielectric constant

In practice, to study bulk liquids, simulations are frequently carried out by con-

sidering a system of net zero total charge,

(2.1.2)
N∑
i=1

qi = 0,

5
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in a cubic box of size L. Periodic boundary conditions (PBC) are then employed to

model the bulk liquid and to minimize surface effects. Periodic boundary conditions

are implemented by replicating the fundamental system periodically in space to form

an infinite system as depicted in (Figure 2.1) in two dimensions.

1,1,0 )

+

+

 

( 0,0,0 )( 1,0,0 )

( 0, 1,0 ) ( 1, 1,0 )

( 1,0,0 )

( 1,1,0 )( 0,1,0 )

( 1, 1,0 )

L

+

+

 

+

+

 

+

+

 

+

+

 

+

+

 

+

+

 

+

+

 

+

+

 

(

Figure 2.1: The fundamental cell has net zero charge meaning the image cells also
have net zero charge. Thus, the net charge of the infinite system is zero.

The total Coulomb potential is then a sum over the fundamental cell and its

infinite periodic images,

(2.1.3) V =
1

2

N∑
i,j=1

qiqj

′∑
n

1

4πεo | xi − xj + nL |
,

where n = (n1, n2, n3) identifies a unique cell. Here, ni ∈ Z for i = 1, 2, 3 and the

prime refers to the fact that the i = j term is omitted when n = (0, 0, 0) which is the

fundamental cell. The series in Equation 2.1.3 is a conditionally convergent infinite

series and hence it converges slowly.
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2.2 The Ewald Sum

Because of the long range effect of the potential in Equation 2.1.3, cutoff methods

employed in computing short range potentials are not suitable for computing the

Coulomb potential [2, 45]. In addition, the sum in Equation 2.1.3 depends on the

order of summation since the series is conditionally convergent [13, 32].

Ewald summation [22] provides an efficient method for evaluating Equation 2.1.3.

The summation arises from being able to rewrite the series in Equation 2.1.3 as a

sum of an absolutely convergent series in real space, another absolutely convergent

series in reciprocal space and a finite sum. Here, we give a self-contained derivation

of the Ewald sum following the development in [32]. An alternative derivation is

given in [13].

We can rewrite Equation 2.1.3 as the sum of interactions where i 6= j, meaning

that xi−xj 6= 0, and interactions where i = j which means that xi−xj = 0 yielding

(2.2.1) V =
1

2

N∑
i 6=j

qiqj
∑
n

1

4πεo | xi − xj + nL |
+

1

2

N∑
i=1

q2
i

∑
n6=0

1

4πεo | nL |
.

The first summation in Equation 2.2.1 runs over all values of n since i 6= j, while

the second summation with i = j excludes the n = 0 term. Now note that

(2.2.2)
∑
n

1

4πεo | xi − xj + nL |

is a divergent lattice sum for all x = xi−xj, however, it makes sense as a distribution

in the form

(2.2.3) −∆
∑
n

1

4π | x + nL |
=
∑
n

δ(x + nL),

where we have set εo = 1. Additionally, when n 6= 0,

(2.2.4) −∆
∑
n6=0

1

4π | x + nL |
=
∑
n

{δ(x + nL)} − δ(x).
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This means that, we can reformulate the problem of evaluating the series in Equa-

tion 2.2.1 as a problem of finding the potential functions ψ(x) and ψ̃(x) induced by

point charge densities ρ(x) and ρ̃(x) respectively from

−∆ψ(x) = ρ(x) =
∑
n

δ(x + nL)− 1

L3
,(2.2.5)

−∆ψ̃(x) = ρ̃(x) = ρ(x)− δ(x),(2.2.6)

with periodic boundary conditions. We evaluate ψ̃(x) at x = xi−xj = 0 and replace

the divergent lattice sums in Equation 2.2.1 by the respective induced potentials

ψ(x) and ψ̃(0) then Equation 2.2.1 becomes

(2.2.7) V =
1

2

N∑
i 6=j

qiqjψ(xi − xj) +
1

2

N∑
i=1

q2
i ψ̃(0).

Poisson’s equation with periodic boundary conditions is solvable if the system is

charge neutral, which is why the charge density in Equation 2.2.5 is augmented by

the constant term −1
L3 . Then, integrating the charge density over the fundamental

cell or any of the images, with volume L3, results in

(2.2.8)

∫
cell

ρ(x)dx =

∫
cell

∑
n

δ(x + nL)dx− 1

L3

∫
cell

dx = 1− 1 = 0,

which shows that each cell and hence the bulk system is charge neutral.

Similarly, the charge density ρ̃(x) in Equation 2.2.6 also yields a charge neutral

system. To show this we note that ρ̃(x) is only defined for n 6= 0. We expand ρ̃(x)

from Equation 2.2.6 to arrive at

ρ̃(x) =
∑
n

δ(x + nL)− 1

L3
− δ(x)

=
∑
n6=0

δ(x + nL)− 1

L3
+ δ(x)− δ(x)

=
∑
n6=0

δ(x + nL)− 1

L3
,(2.2.9)
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which is charge neutral from the same arguments used in Equation 2.2.8 where the

fundamental cell, i.e. n = 0 is not part of the cells we consider.

We will find the potential function ψ(x) from Equation 2.2.5 as a sum of two

absolutely convergent series and a finite series. First, we rewrite ρ(x) as

(2.2.10) ρ(x) =
∑
n

[δ(x + nL)− f(x + nL)]+
∑
n

f(x+nL)− 1

L3
= ρ1(x)+ρ2(x),

where f(x) is a Gaussian with width α,

(2.2.11) f(x) =
α3

π3/2
e−α

2|x|2 ,

and

(2.2.12)

∫
R3

f(x)dx = 1.

We should note that other forms of f(x) can be used and that the choice made here

is only specific to Ewald sums. Figure 2.2 shows the split of the charge density ρ(x)

in Equation 2.2.10. The effect of −f(x) is to screen a point charge, δ(x), in ρ(x) and

this effect is nullified by adding f(x). So we now have two charge densities ρ1(x)

which is short range and ρ2(x) which is smooth.

Figure 2.2: The figure on the left hand side of the equation is the original density
ρ(x). The first figure on the right hand side of the equation is ρ1(x)
which is the Gaussian screenings the delta functions. The last figure
on the right hand side is ρ2(x) which is a combination of the nullifying
Gaussians and the constant term that ensures charge neutrality.

We note that both ρ1(x) and ρ2(x) individually satisfy the necessary condition of
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charge neutrality with,∫
cell

ρ1(x)dx =

∫
cell

∑
n

[δ(x + nL)− f(x + nL)] dx,(2.2.13)

=

∫
R3

{δ(x)− f(x)dx} = 0,(2.2.14) ∫
cell

ρ2(x)dx =

∫
cell

[∑
n

f(x + nL)− 1

L3

]
dx,(2.2.15)

=

∫
R3

f(x)dx− 1

L3

∫
cell

dx = 0.(2.2.16)

In effect, the problem of finding ψ(x) has been reformulated into finding ψ1(x)

and ψ2(x) where,

(2.2.17) ψ(x) = ψ1(x) + ψ2(x),

such that

−∆ψ1(x) = ρ1(x) =
∑
n

[δ(x + nL)− f(x + nL)](2.2.18)

−∆ψ2(x) = ρ2(x) =
∑
n

f(x + nL)− 1

L3
,(2.2.19)

with periodic boundary conditions. We can solve for ψ1(x) and ψ2(x) up to an

additive constant. We enforce the conditions∫
cell

ψ1(x)dx = = 0,(2.2.20) ∫
cell

ψ2(x)dx = = 0,(2.2.21)

in order to fully determine ψ1(x) and ψ2(x).

We now show that

ψ1(x) =
∑
n

erfc(α | x + nL |)
4π | x + nL |

− 1

4L3α2
,(2.2.22)

ψ2(x) =
∑
k 6=0

e−
π2|k|2

L2α2 +2πik·x/L

4π2L|k|2
(2.2.23)
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satisfy Equations 2.2.18 and 2.2.19 respectively with k = (k1, k2, k3) and ki ∈ Z for

i = 1, 2, 3. ψ1(x) and ψ2(x) are both absolutely convergent series with ψ1(x) defined

in real space and ψ2(x) defined in reciprocal space.

To prove Equation 2.2.18, first note that

(2.2.24) erfc(αr) = 1− erf(αr) = 1− 2√
π

∫ αr

0

e−s
2

ds.

Then,

−∆ψ1(x) = −∆
∑
n

1

4π | x + nL |
+ ∆

∑
n

erf(α | x + nL |)
4π | x + nL |

,(2.2.25)

=
∑
n

[
δ(x + nL) +

1

r2
∂r(r

2∂r)
erf(αr)

4πr

]
,(2.2.26)

=
∑
n

[
δ(x + nL)− α3

π3/2
e−α

2r2
]
,(2.2.27)

=
∑
n

[δ(x + nL)− f(x + nL)] ,(2.2.28)

= ρ1(x).(2.2.29)

which proves Equation 2.2.18. The constant term, C = − 1
4L3α2 , in Equation 2.2.22

is accounted for by the requirement from Equation 2.2.20 that∫
cell

ψ(x)1dx = 0,(2.2.30)

which gives,∫
cell

[∑
n

erfc(α | x + nL |)
4π | x + nL |

+ C

]
dx = 0,∫

R3

erfc(αx)

4π|x|
dx + C · L3 = 0,

− 1

L3
·
∫
S

∫ ∞
0

erfc(αr)

4πr
r2drdΩ = C,

− 1

L3α2
·
∫ ∞

0

erfc(s)sds = C.
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By integration by parts,∫ ∞
0

erfc(s)sds =

∫ ∞
0

2√
π

∫ ∞
s

e−t
2

dtsds(2.2.31)

=
2√
π

[
s2

2

∫ ∞
s

e−t
2

dt

]∞
0

+
2√
π

∫ ∞
0

s2

2
e−s

2

ds,(2.2.32)

=
1√
π

∫ ∞
0

s2e−s
2

ds =
1

4
,(2.2.33)

which proves that C = − 1
4L3α2 .

To prove Equation 2.2.19 we first expand ρ2(x) and ψ2(x) in Fourier basis as

ρ2(x) =
∑
n

f(x + nL)− 1

L3
=

∑
k

ρ̂2(k)e2πik·x/L,(2.2.34)

ψ2(x) =
∑
k

ψ̂2(k)e2πik·x/L,(2.2.35)

where ρ̂2(k) and ψ̂2(k) are the Fourier coefficients of ρ2(x) and ψ2(x) respectively.

We will then find ψ2(x) expressed by the Fourier series in Equation 2.2.35.

We relate the ψ̂2(k) to ρ̂2(k), by taking a Fourier transform of Equation 2.2.19

which yields the relationship

(2.2.36)
4π2|k|2

L2
ψ̂2(k) = ρ̂2(k).

From Equation 2.2.34, we observe that for k = 0,

(2.2.37) ρ̂2(0) =
1

L3

∫
cell

ρ2(x)dx = 0,

because of the charge neutrality of ρ2(x) shown in Equation 2.2.16 to Equation 2.2.15.

Setting ψ̂2(0) = 0 enforces
∫

R3 ψ2(x)dx = 0, as demanded by Equation 2.2.21. We

will now find ρ̂2(k) from using (2.2.34) and combine the result with (2.2.36) to find

ψ̂2(k). We recall the definition of ρ2(x) from Equation 2.2.34 and with k 6= 0, we
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obtain

ρ̂2(k) =
1

L3

∫
cell

ρ2(x)e−2πik·x/Ldx(2.2.38)

=
1

L3

∫
cell

(∑
n

f(x + nL)− 1

L3

)
e−2πik·x/Ldx(2.2.39)

=
1

L3

∫
R3

α3

π3/2
e−α

2|x|2−2πik·x/Ldx(2.2.40)

=
1

L3

∫
R3

α3

π3/2
e−α

2|x+ πik
Lα2 |2−π

2|k|2

L2α2 dx(2.2.41)

=
1

L3
e−

π2|k|2

L2α2 .(2.2.42)

Then from Equation 2.2.36, we obtain

(2.2.43) ψ̂2(k) =
e−

π2|k|2

L2α2

4π2L|k|2
,

which together with Equation 2.2.35 yields Equation 2.2.23 and hence shows that

ψ2(x) satisfies Equation 2.2.19.

Thus,

(2.2.44) ψ(x) =
∑
n

erfc(α | x + nL |)
4π | x + nL |

− 1

4L3α2
+
∑
k 6=0

e−
π2|k|2

L2α2 +2πik·x/L

4π2L|k|2
,

is the potential function induced by ρ(x) in Equation 2.2.5.

To find the potential ψ̃(x) induced by the density ρ̃(x) from Equation 2.2.6, we

write

ρ̃(x) = ρ(x)− δ(x) = ρ1(x) + ρ2(x)− δ(x),

=
∑
n

(δ(x + nL)− f(x + nL)) +
∑
n

f(x + nL)− 1

L3
− δ(x)

=
∑
n6=0

(δ(x + nL)− f(x + nL)) +
∑
n

f(x + nL)− 1

L3
+ δ(x)− f(x)− δ(x)

=
∑
n6=0

(δ(x + nL)− f(x + nL)) +
∑
n

f(x + nL)− 1

L3
− f(x)

= ρ̃1(x)− f(x).(2.2.45)
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Then, the potential induced by ρ̃1(x) is similar to the potential ψ(x) from Equa-

tion 2.2.44 induced by ρ(x) except that in this instance n 6= 0. The potential g(x)

induced by the density f(x) was shown in Equations 2.2.25 to 2.2.29 to be

(2.2.46) g(x) =
erf(α|x|)

4πx
.

Thus, from

(2.2.47) ψ̃(x) = ψ(x)− g(x),

we obtain,

(2.2.48) ψ̃(x) =
∑
n6=0

erfc(α|x + nL|)
4π|x + nL|

− 1

4L3α2
+
∑
k 6=0

e
−π2|k|2

L2α2 +2πik·x/L

4π2L|k|2
− erf(α|x|)

4πx
.

Now since i = j, we set x = xi − xj = 0 and obtain

ψ̃(0) =
∑
n6=0

erfc(α|nL|)
4π|nL|

− 1

4L3α2
+
∑
k 6=0

e
−π2|k|2

L2α2

4π2L|k|2
− lim
|x|→0

erf(α|x|)
4πx

,(2.2.49)

=
∑
n6=0

erfc(α|nL|)
4π|nL|

− 1

4L3α2
+
∑
k 6=0

e
−π2|k|2

L2α2

4π2L|k|2
− 1

4π

2√
π
α.(2.2.50)

With ψ(x) and ψ̃(0) available from Equation 2.2.44, and Equation 2.2.50 respec-

tively, and using the splitting from Equation 2.2.7, we obtain

V =
1

2

N∑
i 6=j

qiqjψ(xi − xj) +
1

2

N∑
i=1

q2
i ψ̃(0)(2.2.51)

=
1

2

N∑
i 6=j

qiqj

∑
n

erfc(α | x + nL |)
4π | x + nL |

− 1

4L3α2
+
∑
k 6=0

e−
π2|k|2

L2α2 +2πik·x/L

4π2L| k |2

(2.2.52)

+
1

2

N∑
i=1

q2
i

∑
n6=0

erfc(α | nL |)
4π | nL |

− 1

4L3α2
+
∑
k 6=0

e−
π2|k|2

L2α2

4π2L| k |2
− 2α

4π3/2

 .

This result can be simplified by noting that

(2.2.53)
N∑
i 6=j

qiqj
1

4L3α2
+

N∑
i=1

q2
i

1

4L3α2
=

1

4L3α2

N∑
i=1

qi

N∑
j=1

qj = 0,
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so we arrive at

(2.2.54) V = V r + V k + V s,

with

V r =
1

2

∑
n

N∑
i,j=1

′

qiqj
erfc(α | xi − xj + nL |)

4π | xi − xj + nL |
,(2.2.55)

V k =
1

2

N∑
i,j=1

qiqj
∑
k 6=0

e−
π2|k|2

L2α2 +2πik·(xi−xj)/L

4π2L| k |2
,(2.2.56)

V s =
−α

4π3/2

N∑
i=1

q2
i .(2.2.57)
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(b) e−
k2

α2

Figure 2.3: Figures (a), and (b) show erfc(αx) and e−
k2

α2 respectively for different
values of α. When the value of α increases, erfc decays faster whiles the

decay rate of e−
k2

α2 slows down.

2.3(a) shows how erfc(αx) varies with α. The larger the α value, the faster the

decay rate of erfc(αx). The decay rate of erfc(αx) dominates and thus determines

the rate of convergence of the real space sum V r in Equation 2.2.55. As a result, we

can adjust the rate of convergence of V r by varying the value of α.

On the other hand, the effect of α on e−
k2

α2 is opposite of the effect on erfc(αx).

The larger the value of α, the slower the decay rate of e−
k2

α2 . The decay rate of e−
k2

α2
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also dominates and and hence determines the rate of convergence of the reciprocal

space sum V k in Equation 2.2.56. As such, the rate of convergence of V k can be

adjusted by varying the value of α.

Though V r and V k are both absolutely convergent, V r decays faster with larger

α while the rate of decay of V k decreases with larger α. As such, for any choice of

α value, we can determine the length scales for which contributions to V r and V k

are significant. Then in computing the total potential, V , in Equation 2.2.54, the

contributions to V r or V k of interactions between particles which are separated by a

distance greater than the length scales for significant contributions can be ignored.

Even though we can vary V r, V k and clearly V s by varying the value of α, the total

potential energy, V , is independent of the choice of α > 0. This opposite behavior of

the convergence rates of V r and V k as a function of α is at the crux of approaches

for computing the Ewald Sum efficiently.

V r and V k are computed to a desired accuracy by specifying values for α, the

real space cutoff, rc, where |xi − xj + nL| < rc and a reciprocal space cutoff kc with

|k| < kc. For N-body interactions, the cost of computing V in Equation 2.2.54 with

cutoffs is O(N2). Perram et al. [41] have shown that this cost can be reduced to

O(N3/2) by a certain choice of α, rc and kc as functions of N . Kolafa and Perram

[33] have derived and verified analytical error estimates in potential and forces for

both V r and V k as a function of α, rc and kc.

Toukmaji and Board [57] have provided an overview of several approaches to

computing the Ewald. One approach is to pick a large α value that makes it possible

to compute V r to a desired accuracy in O(N) time using direct summation. This

is because V r decays quickly for large α values. However V k decays slowly in this

regime and the cost of computation is O(N2). Darden and co-workers [12, 21, 42]
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developed the Particle Mesh Ewald (PME) method which employs interpolation and

fast Fourier transforms to reduce the cost of computing V k to O(N logN). Thus the

overall cost of computing V is O(N logN).

Yet another way to compute V is to choose a small value of α. In this regime V k

can be evaluated at a cost of O(N) to the desired accuracy, but the cost of evaluating

V r is O(N2). Duan and Krasny [16] developed the particle-cluster Cartesian treecode

Ewald (CTE) algorithm which employs a three dimensional Taylor expansion and

the hierarchical tree structure of Barnes and Hut [4] to reduce the cost of computing

V r to O(N logN). Hence, the overall cost is also O(N logN). The CTE method is a

major focus of this thesis.

The next two sections will explain the PME method and CTE method, respec-

tively.

2.3 Particle Mesh Ewald (PME) Method

The first version of PME with Lagrange interpolation is detailed in [12], while the

present and most used version, also called smooth Particle Mesh Ewald (sPME) is

described in [21]. The thesis’ focus is on comparison with smooth PME which we

simply refer to as PME. The exposition here is taken from several authors [12, 21,

57, 30, 53].

The Particle Mesh Ewald method is most efficient in the regime where most of

the computational work is shifted onto the reciprocal space sum (large α). The work

for the real space sum becomes O(N) by specifying a value of rc which together with

the specified desired error, ε, in the real space sum, determines the value of α from

the relation

(2.3.1) ε ≈ erfc(αrc)

4πrc
.
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With α computed, then the relation

(2.3.2) ε ≈ e−
π2k2c
L2α2

4π2Lk2
c

determines the reciprocal space cutoff kc [53]. Petersen [42] derived analytical error

estimates for the energy and forces when the reciprocal space sum is approximated

by PME.

We now express V k from Equation 2.2.56 in an equivalent form which is more

convenient for computation,

V k =
1

2

N∑
i,j=1

qiqj
∑
k 6=0

e−
π2|k|2

L2α2 +2πik·(xi−xj)/L

4π2L| k |2
,(2.3.3)

=
1

2

∑
k 6=0

e−
π2|k|2

L2α2

4π2L| k |2
N∑

i,j=1

qiqje
2πik·(xi−xj)/L,(2.3.4)

=
1

2

∑
k 6=0

e−
π2|k|2

L2α2

4π2L| k |2
N∑
i=1

qie
2πik·xi/L

N∑
j=1

qje
−2πik·xj/L,(2.3.5)

=
1

2

∑
k 6=0

e−
π2|k|2

L2α2

4π2L| k |2
|S(k)|2 ,(2.3.6)

where,

(2.3.7) S(k) =
N∑
j=1

qje
2πik·xj/L,

is called the structure factor [57]. The main idea in PME is in approximating the

structure factor, S(k), on a rectangular grid that fills the simulation cell. To perform

this approximation,

• The complex exponentials in Equation 2.3.7 are interpolated on to the grid using

Euler exponential splines which involve Cardinal B-splines.

• Then the charge of each particle is also interpolated onto a grid, also with

Cardinal B-splines to form a charge array.
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• Finally S(k) is approximated on the rectangular grid using the interpolation of

the complex exponentials and the charges.

Before we present a detailed explanation of the three steps outlined above, we intro-

duce the Cardinal B-spline.

The Cardinal B-splines form a basis for a vector space consisting of polynomial

splines of a specified order with equally spaced knots [21]. The nth order Cardinal

B-spline, Mn(u), is defined by

(2.3.8) Mn(u) =
u

n− 1
Mn−1(u) +

n− u
n− 1

Mn−1(u− 1) for n > 2,

which is n− 2 times differentiable and the derivative is given by

(2.3.9)
d

du
Mn(u) = Mn−1(u)−Mn−1(u− 1).

The starting function, M2(u) is defined as

(2.3.10)

M2(u) =


1− |u− 1| if 0 ≤ u ≤ 2

0 if u < 0 or u > 2

which is shown in Figure 2.4 together with Cardinal B-splines up to n = 7. Mn(u)

has compact support with non-zero values in the interval 0 ≤ u ≤ n.

In order to interpolate the complex exponentials on to a grid, the simulation cell is

filled with a uniform grid withK1×K2×K3 dimensions wheremax{K1, K2, K3} = kc.

With the fundamental cell of length L centered at (0, 0, 0), the fractional coordinates

xj/L = (xj1/L, xj2/L, xj3/L) = (fj1, fj2, fj3) of each particle, j, in the definition of

S(k) in Equation 2.3.7 are scaled to give uji such that

(2.3.11) ujm = Km

xjk
L
, for m = 1, 2, 3.
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Figure 2.4: The B-splines Mn(u) with non-zero values for 0 ≤ u ≤ n.

Then the structure factor can be rewritten as

(2.3.12) S(k) =
N∑
j=1

qje
2πi
“
k1
K1

uj1+
k2
K2

uj2+
k3
K3

uj3

”
.

Each complex exponential in the structure factor, S(k), is approximated on the grid

using an Euler exponential spline

(2.3.13) e
2πi

kj
Kj

ujm ≈ bj(kj)
∞∑

l=−∞

Mn(ujm − l)e
2πi

kj
Kj

l
,

where Mn(u) are the previously introduced Cardinal B-splines and the factor

(2.3.14) bj(kj) = e2πi(n−1)kj/Kj

[
n−2∑
l=0

Mn(l + 1)e2πikj l/Kj

]−1

.

The Cardinal B-splines are evaluated at ujm − l and are thus dependent on Km

where m ∈ {1, 2, 3}. However, since Mn(u) has compact support, the infinite sum in

Equation 2.3.13 becomes a finite sum over the finite number of points, ujm − l, for

which Mn(u) is non-zero.
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The charge of each particle, j, with scaled fractional coordinate (uj1, uj2, uj3) is

then interpolated on to a grid which spans the simulation cell and its periodic images

specified by (n1, n2, n3), which usually are just the nearest images. The charge array,

Q, from this interpolation is given by

(2.3.15)

Q(l1, l2, l3) =
N∑
i=1

qj
∑

n1,n2,n3

Mn(uj1−l1−n1K1)Mn(uj2−l2−n2K2)Mn(uj3−l3−n3K3),

where uji − li − niKi are evaluation points of the Cardinal B-spline on the grid that

spans the fundamental cell and the periodic images.

With the complex exponentials and charges interpolated on their respective grids,

the structure factor can then be approximated on the grid. Recall from Equa-

tion 2.3.12 that

(2.3.16) S(k) =
N∑
j=1

qje
2πi

k1
K1

uj1 e
2πi

k2
K2

uj2e
2πi

k1
K1

uj3

Then, using the approximation of the exponential splines in Equation 2.3.13, S(k)

is approximated as

(2.3.17) S(k) ≈ Ŝ(k) = b1(k1)b2(k2)b3(k3)

×
∑
l1,l2,l3

N∑
j=1

qj
∑

n1,n2,n3

Mn(uj1 − l1 − n1K1)Mn(uj2 − l2 − n2K2)

×Mn(uj3 − l3 − n3K3)e
2πi
“
k1
K1

l1+
k2
K2

l2+
k3
K3

l3
”
,

Thus, from Equation 2.3.15,

S(k) = b1(k1)b2(k2)b3(k3)
∑
l1,l2,l3

Q(l1, l2, l3)e
2πi
“
k1
K1

l1+
k2
K2

l2+
k3
K3

l3
”
,(2.3.18)

= b1(k1)b2(k2)b3(k3)F(Q)(k1, k2, k3).(2.3.19)

where F(Q)(k1, k2, k3) is the discrete Fourier transform of Q(l1, l2, l3). Then, from

Equation 2.3.6, setting

(2.3.20) B(k1)B(k2)B(k3) = |b1(k1)|2|b2(k2)|2|b3(k3)|2,
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V k ≈ 1

2

∑
k 6=0

e−
π2|k|2

L2α2

4π2L| k |2
B(k1, k2, k3)F(Q)(k1, k2, k3)F(Q)(−k1,−k2,−k3),(2.3.21)

=
1

2

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

H(k1, k2, k3)F(Q)(k1, k2, k3),(2.3.22)

where

(2.3.23) H(k1, k2, k3) =
e−

π2|k|2

L2α2

4π2L| k |2
B(k1, k2, k3)F∗(Q)(k1, k2, k3),

and F∗(Q)(k1, k2, k3) = F(Q)(−k1,−k2,−k3) is the complex conjugate of F(Q)(k1, k2, k3).

The gradient of V k from Equation 2.3.22 will require three Fourier transforms, one for

each coordinate, so we will rewrite V k in a form which requires no Fourier transform

upon taking the gradient.

We note that the discrete Fourier transform, F(Q)(k1, k2, k3) is defined as

(2.3.24) F(Q)(k1, k2, k3) =

K1−1∑
l1=0

K2−1∑
l2=0

K3−1∑
l3=0

Q(l1, l2, l3)e
2πi
“
k1
K1

l1+
k2
K2

l2+
k3
K3

l3
”
.

Then, from Equation 2.3.22 and using the definition in Equation 2.3.24, V k can be

rewritten as

V k ≈ 1

2

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

H(k1, k2, k3)

K1−1∑
l1=0

K2−1∑
l2=0

K3−1∑
l3=0

Q(l1, l2, l3)e
2πi
“
k1
K1

l1+
k2
K2

l2+
k3
K3

l3
”

=
1

2

K1−1∑
l1=0

K2−1∑
l2=0

K3−1∑
l3=0

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

H(k1, k2, k3)e
2πi
“
l1
K1

k1+
l2
K2

k2+
l3
K3

k3
”
Q(l1, l2, l3)

where in the last equation the inner sum over (k1, k2, k3) defines F(H), the discrete

Fourier transform of H. V k has thus been rewritten as

(2.3.25) V k ≈ 1

2

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

F(H)(k1, k2, k3)Q(k1, k2, k3),

and the force from the reciprocal sum on the jth particle is approximated by

(2.3.26) fj = −∇xjV
k ≈ −1

2

K1−1∑
k1=0

K2−1∑
k2=0

K3−1∑
k3=0

F(H)(k1, k2, k3)∇xjQ(k1, k2, k3).
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Hence, approximating the reciprocal space interactions with PME consists of con-

structing the charge array Q(k1, k2, k3) , finding F(H)(k1, k2, k3) and applying equa-

tions Equation 2.3.25 and Equation 2.3.26.

The accuracy of PME improves with increasing number of grid points and increas-

ing order of the interpolation. Since PME employs fast Fourier transforms, the algo-

rithm works best for uniform particle distributions with a decrease in efficiency for

non-uniform distributions [27]. Also, the fact that Mn(u) is n−2 times continuously

differentiable means that to be able to compute the forces using Equation 2.3.26, the

interpolation must be at least order 3.

2.4 Cartesian Treecode Ewald (CTE) Method

Treecode algorithms have been applied to several three dimensional N -body prob-

lems in astrophysics [48, 20], fluid-dynamics [37, 38] and molecular dynamics [6, 7]

to cut the O(N2) cost to O(N logN). The basic idea, first introduced by Pincus and

Scheraga [43], is the recognition that particle interactions can be split into near and

far-field interactions. In a system of interacting particles, a majority of a particle’s in-

teraction can be designated as far-field. A speed-up in computation time is achieved

by evaluating these far-field interactions approximately and computing the near-field

interactions exactly. For distance-dependent potentials, like the Coulomb potential,

for which the effect of other particles on a target cluster falls off with increasing

distance, the approximation of the designated far-field interactions can be made to

achieve any required level of accuracy. The designated near-field interactions are

computed exactly.

To determine a criterion for deciding whether a particular interaction is near

or far-field, methods based on a hierarchical clustering of the system of particles
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were developed by Barnes and Hut [4, 5], Appel [3], and Greengard and Rokhlin

[26, 11]. The algorithms of Barnes and Hut [4, 5] and Appel [3] have been shown to

have complexity O(N logN) and are much simpler to code than the Fast Multipole

method (FMM)[26, 11] of Greengard and Rokhlin which is theoretically O(N). Ding

et al. [14, 15] have also presented the Cell Multipole Method (CMM) which is also

claimed to be O(N). The Parallel Multipole Treecode Algorithm (PMTA), a hybrid

of Barnes-Hut and FMM was developed by Board et al. [6, 7]. This thesis will

present another hybrid of Barnes-Hut, Appel and FMM in Chapter IV.

The particle-cluster Cartesian Treecode Ewald method first introduced in [16] is

a Barnes-Hut type algorithm. Similar algorithms for the Coulomb [17, 18] and the

screened Coulomb [36] potential have also been developed. All of these were preceded

and inspired by a particle-cluster treecode developed for vortex sheet motion [37, 38].

Error analysis of several variants of the Cartesian treecode algorithm are given in

[37, 38, 47].

As pointed out in the introduction, the CTE method is designed for a variant of

the Ewald sum where the bulk of the computational work has been shifted on to V r,

the real space. CTE reduces the time to compute V r from O(N2) to O(N logN).

The reduction in computing time is achieved by

• Restructuring the system into a hierarchical tree of clusters of particles to per-

form particle-cluster interactions,

• Approximating the interactions between a target particle and a distant cluster

of particles by a three dimensional Taylor expansion,

• Fast recurrence relations to quickly obtain the Taylor coefficients needed for the

expansion.
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We will now give a discussion of the three processes outlined above.

2.4.1 The Hierarchical Tree: Construction and Characteristics

The process of constructing the tree is independent of the particle distribution.

However, in this thesis, we apply the Cartesian treecode algorithm for uniformly

distributed liquid in a cubic box, and all descriptions in this thesis refer to a cubic

box.

The construction of a two-dimensional hierarchical tree is depicted in Figure 2.5.

In three dimensions the cubic box of particles is recursively divided into a hierarchical

Level 2

Level 1

Level 0

Figure 2.5: Hierarchical clustering to create a tree. The division starts at level zero
and continues for each branch until the number of particles in a leaf is
less or equal to a preassigned number, No. Alternatively we can halt the
division of a branch when a preassigned level is attained. In this figure,
the division stops at level 2.

oct-tree of clusters of particles. The original cubic box is the root or level 0 of the
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tree. In three-dimensions the root is first divided into eight children which form level

1. Each of these eight children are then further divided into eight smaller children

to form level 2. The recursive division continues until a preassigned number of levels

is attained. Alternatively, the division can proceed until the number of particles in

a child is less or or equal to a preassigned number, No. A cluster at the deepest or

last level of each branch of a tree is called a leaf. Each cluster or node stores its

geometric center, xc, radius, rc and moments, Mk
C , for order k = 0 up to order k = p,

where p is the order of the multipole approximation. We will define the moments in

the next section.

The next paragraph gives an overview of the procedure to compute the force on

a particle. An exhaustive description of this procedure with pseudocode is given in

[16].

To compute the force on the particles, the tree is traversed downward for each

target particle, i, by a call to a recursive subroutine. At each level of the tree, the

algorithm checks whether a cluster on that level is well separated from the target

particle. A cluster is well separated from a particle if r
R
≤ θ, where r is the radius of

the cluster, R is the distance from the geometric center of the cluster to the particle,

and θ < 1 is a preassigned parameter. We refer to the condition r
R
≤ θ as the

multipole acceptance criterion. If a cluster is well separated from the particle, the

force on the particle due to the cluster is approximated using the particle-cluster

Taylor approximation, else the algorithm descends to the children of the cluster and

applies the same criterion. If a cluster turns out to be a leaf, i.e. on the last level,

then the force on the target particle, i, due to the cluster, C, is computed by direct

summation.

Figure 2.6 shows an interaction between a particle and a cluster.
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Rx xc

C

r

i

Figure 2.6: The particle at xi interacts with cluster C if the multipole acceptability
criterion, i.e. r

R
≤ θ is satisfied.

A small θ value forces the algorithm to descend deeper into the tree which results

in higher accuracy but longer computation times. As with all numerical methods, a

balance between accuracy and speed is essential.

2.4.2 Multipole Approximation

The three dimensional pth order Taylor approximation for the real space potential

energy, V r
i,C , and the force, Fr

i,C , on particle i, due to cluster C as shown in Figure 2.6

are generated below. The particle positions, ri, rj are scaled by α such that xi = αri

and xj = αrj. The real space potential

(2.4.1) φ(x) =

√
π

2

erfc(|x|)
|x|

from Equation 2.2.55 is expanded about the center xc = (xc1 , xc2 , xc3) of cluster C.

The potential energy V r
i,C at position xi due to cluster C, scaled by 4πεo then follows
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as,

V r
i,C =

∑
j∈C

qiqj
erfc(α|ri − rj|)
|ri − rj|

(2.4.2)

=
2α√
π

∑
j∈C

qiqjφ(xi − xj)

≈ 2α√
π

∑
j∈C

qiqj

p∑
||k||6=0

1

k!
Dk

xφ(xi − xc)(xj − xc)
k

=
2α√
π
qi

p∑
||k||6=0

1

k!
Dk

xφ(xi − xc)
∑
j∈C

qj(xj − xc)
k

=
2α√
π
qi

p∑
||k||6=0

akM
k
C ,(2.4.3)

where the vector k is given as

k = (k1, k2, k3), and(2.4.4)

k! = k1!k2!k3!,(2.4.5)

||k|| = k1 + k2 + k3.(2.4.6)

The operator Dk
x is a multi-dimensional derivative given as

(2.4.7) Dk
x =

∂||k||

∂k1x1∂
k2
x2∂

k3
x3

= Dk1
x1

Dk2
x2

Dk3
x3

while

(2.4.8) (xj − xc)
k = (xj1 − xc1)k1(xj2 − xc2)k2(xj3 − xc3)k3 .

The coefficients ak are the kth order Taylor coefficients of the potential given by

(2.4.9) ak =
1

k!
Dk

xφ(xi − xc),

and Mk
C is the kth multipole moment of cluster C defined as

(2.4.10) Mk
C =

∑
j∈C

qj(xj − xc)
k.
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The cluster moments depend only on the particles in the cluster, thus Mk
C can be

computed and stored when the tree is built. The force Fr
i,C on particle i at position

xi due to cluster C is obtained as the gradient of the potential energy V r
i,C from

Equation 2.4.3 and is given by,

Fr
i,C = −∇xiV

r
i,C(xi − xj)(2.4.11)

≈ −2α2

√
π
qi

p∑
||k||=0

(∇xiak)Mk
C(2.4.12)

= −2α2

√
π
qi

p∑
||k||=0


(k1 + 1)ak+e1

(k2 + 1)ak+e2

(k3 + 1)ak+e3


Mk

C ,(2.4.13)

with e1 =< 1, 0, 0 >, e2 =< 0, 1, 0 > and e3 =< 0, 0, 1 >.

A check on the convergence of the Ewald sum is to compute the electrostatic

contribution to the virial, Vs, of the system defined as

(2.4.14) Vs =
1

2

N∑
i=1

N∑
j 6=i

Fij · rij,

where Fij is the force on particle i due to particle j and rij = ri−rj.When the Ewald

sum has converged, the relationship

(2.4.15) Vs = −V,

holds [30]. That is, the total Coulomb potential energy, V , is the negative of the

system virial, Vs. The total system virial , Vs is as expected made up of contributions

from a real space virial, V r
s and reciprocal space virial V k

s such that

(2.4.16) Vs = V r
s + V k

s .

In the treecode algorithm, when the multipole acceptance criterion is satisfied for

a particle-cluster pair, the virial contribution, V r
s of the real space potential energy
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V r is computed with the approximation Fr
i,C derived in Equation 2.4.13 otherwise Fr

i

is computed directly. Then from Equation 2.4.14, V r
s , due to the real space potential

energy is computed as

(2.4.17)

V r
s =

1

2

N∑
i=1

∑
j∈C

Fr
i,C · rij ≈ −

α2

√
π

∑
C

N∑
i=1

qiri,C ·
p∑

||k||=0


(k1 + 1)ak+e1

(k2 + 1)ak+e2

(k3 + 1)ak+e3


Mk

C ,

where ri,C is the vector from the target particle to the center of cluster C.

In the reciprocal space, V k
s is computed as

(2.4.18) V k
s =

1

2

N∑
i=1

∑
j∈C

Fk
i · rij,

where

(2.4.19) Fk
i = −∇xiV

k

and V k is defined in Equation 2.2.56.

2.4.3 Recurrence Relation

The recurrence relation

(2.4.20) ak =
1

|x|2

{(
1

||k||
− 2

) 3∑
i=1

xiak−ei
−
(

1− 1

||k||

) 3∑
i=1

ak−2ei
+ bk

}

is employed in computing the Taylor coefficients ak defined in Equation 2.4.9 where

the bk terms are the Taylor coefficients of the function

(2.4.21) ψ(x) =
1

2
e−|x|

2

.

The derivation of the above reccurrence is outlined in [16] but we will give a full

derivation here. We note that the Taylor coefficients ak are those of the solution to
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the Poisson equation with a source term composed of a point charge screened by a

Gaussian. The recurrence relation for ak provides a convenient way to compute the

Taylor coefficients and the derivatives of the solution to the Poisson equation

(2.4.22) −∆φ(x) = ρ(x),

where

(2.4.23) ρ(x) = δ(x)− α3

π3/2
e−α

2|x|2

and

(2.4.24) φ(x) =

√
π

2

erfc(|x|)
|x|

.

To find the recurrence relation for ak we will first find a recurrence relation for

the Taylor coefficients bk of ψ(x). Let x = xi − xc and

(2.4.25) ψ(x) =
1

2
e−|x|

2

= e−(x2
1+x2

2+x2
3).

With the definition of ψ(x) in Equation 2.4.25, the identity

(2.4.26)
∂ψ(x)

∂xi
+ 2xiψ(x) = 0, for i = 1, 2, 3

holds. We apply Dk−ei
x to Equation 2.4.26, and using Leibniz’s rule for differentiating

a product we get

Dk−ei
x

{
∂ψ(x)

∂xi

}
= Dk

xψ(x)(2.4.27)

for the first term and,

Dk−ei
x [2xiψ(x)] = 2xiD

k−ei
x ψ(x) +

(
ki − 1

1

)
∂(2xi)

∂xi
·Dk−2ei

x ψ(x)

= 2xiD
k−ei
x ψ(x) + 2(ki − 1)Dk−2ei

x ψ(x),(2.4.28)
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for the second term. When we put Equation 2.4.27 and Equation 2.4.28 together,

we get

(2.4.29) Dk
xψ(x) + 2xiD

k−ei
x ψ(x) + 2(ki − 1)Dk−2ei

x ψ(x) = 0, for i = 1, 2, 3.

Multiplying Equation 2.4.29 by 1
k!

yields,

(2.4.30)
1

k!
Dk

xψ(x) +
2

k!
xiD

k−ei
x ψ(x) +

2(ki − 1)

k!
Dk−2ei

x ψ(x) = 0,

The coefficients of the kth order term in the Taylor expansion of ψ(x) are defined as

(2.4.31) bk =
1

k!
Dk

xψ(x),

and as a result, the identities

Dk−ei
x ψ(x) = bk−ei · (k− ei)! and(2.4.32)

Dk−2ei
x ψ(x) = bk−2ei · (k− 2ei)!(2.4.33)

hold. Hence, Equation 2.4.30 becomes

(2.4.34) bk +
2xi
ki
bk−ei +

2

ki
bk−2ei = 0, for i = 1, 2, 3,

where bk = 0 when any one of k1, k2 or k3 is negative. If we write Equation 2.4.34 as

(2.4.35) kibk + 2xibk−ei + 2bk−2ei = 0,

and enumerate for i = 1, 2, 3, then

k1bk + 2x1bk−e1 + 2bk−2e1 = 0,(2.4.36)

k2bk + 2x2bk−e2 + 2bk−2e2 = 0,(2.4.37)

k3bk + 2x3bk−e3 + 2bk−2e3 = 0.(2.4.38)

The sum of Equations 2.4.36 - 2.4.38 results in

(2.4.39) (k1 + k2 + k3)bk = −2
3∑
i=1

xibk−ei −
3∑
i=1

bk−2ei ,
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which can be written as

(2.4.40) bk = − 2

||k||

3∑
i=1

{xibk−ei + bk−2ei} .

Next we will find the recurrence relation for the Taylor coefficients in the three-

dimensional Taylor expansion of φ(x), where

(2.4.41) φ(x) =

√
π

2

erfc(|x|)
|x|

=

√
π

2|x|

{
2√
π

∫ ∞
|x|

e−s
2

ds

}
=

1

|x|

∫ ∞
|x|

e−s
2

ds.

The partial derivative of φ(x) with respect to xi is

∂φ(x)

∂xi
=

1

|x|2

{
−|x| ·

(
e−|x|

2
)
·
(
xi
|x|

)
− xi
|x|

∫ ∞
|x|

e−s
2

ds

}
(2.4.42)

=
xi
|x|2

{
−e−|x|

2 − 1

|x|

∫ ∞
|x|

e−s
2

ds

}
(2.4.43)

=
xi
|x|2
{−2ψ(x)− φ(x)} .(2.4.44)

By using Equation 2.4.26, Equation 2.4.44 becomes

(2.4.45) |x|2∂φ(x)

∂xi
+ xiφ(x) =

∂ψ(x)

∂xi
.

We note that

(2.4.46) Dk−e1
x = Dk3

x3
Dk2
x2

Dk1−1
x1

,

(2.4.47) Dk−e2
x = Dk3

x3
Dk2−1
x2

Dk1
x1
,

and

(2.4.48) Dk−e3
x = Dk3−1

x3
Dk2
x2

Dk1
x1
.

Then Dk−ei
x is applied to (2.4.45) for each i = 1, 2, 3 to give

(2.4.49) Dk−ei
x

{
|x|2∂φ(x)

∂xi

}
+ Dk−ei

x {xiφ(x)} = Dk−ei
x

{
∂ψ(x)

∂xi

}
= Dk

xψ(x).
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We will now compute Equation 2.4.49 for i = 1. The following procedure can be

done for i = 2 and i = 3. We will appeal to this argument later on to complete the

derivation. First, we compute the first term of Equation 2.4.49 for i = 1.

(2.4.50) Dk−e1
x

{
|x|2∂φ(x)

∂x1

}
= Dk3

x3
Dk2
x2

Dk1−1
x1

{
|x|2∂φ(x)

∂x1

}
.

The action of the first operator Dk1−1
x1

is given by Leibniz’s rule for differentiation of

products as

(2.4.51) Dk1−1
x1

{
|x|2∂φ(x)

∂x1

}
=

= |x|2Dk1
x1
φ(x) +

(
k1 − 1

1

)
∂|x|2

∂x1

Dk1−2
x1

(
∂φ(x)

∂x1

)
+

(
k1 − 1

2

)
∂2|x|2

∂2x1

Dk1−3
x1

(
∂φ(x)

∂x1

)
= |x|2Dk1

x1
φ(x) + 2(k1 − 1)x1D

k1−1
x1

φ(x) + 2

{
(k1 − 1)(k1 − 2)

2

}
Dk1−2
x1

φ(x).

The action of the operator Dk3
x3

Dk2
x2

on the resultant in Equation 2.4.51 is then given

as

Dk3
x3

Dk2
x2

Dk1−1
x1

{
|x|2∂φ(x)

∂x1

}
= Dk3

x3
Dk2
x2

{
|x|2Dk1

x1
φ(x)

}
(2.4.52)

+ 2(k1 − 1)x1D
k−e1
x φ(x) + (k1 − 1)(k1 − 2)Dk−2e1

x φ(x).

The first term of Equation 2.4.52 when expanded yields

Dk3
x3

Dk2
x2

{
|x|2Dk1

x1
φ(x)

}
= Dk3

x3
|x|2Dk2

x2
Dk1
x1
φ(x)(2.4.53)

+

(
k2

1

)
∂|x|2

∂x2

Dk3
x3

Dk2−1
x2

Dk1
x1
φ(x) +

(
k2

2

)
∂2|x|2

∂2x2

Dk3
x3

Dk2−2
x2

Dk1
x1
φ(x)

= |x|2Dk
xφ(x) +

(
k3

1

)
∂|x|2

∂x3

Dk3−1
x3

Dk2
x2

Dk1
x1
φ(x)

+

(
k3

2

)
∂2|x|2

∂2x3

Dk3−2
x3

Dk2
x2

Dk1
x1
φ(x) + 2k2x2D

k−e2
x φ(x) + k2(k2 − 1)Dk−2e2

x φ(x)

= |x|2Dk
xφ(x) + 2k3x3D

k−e3
x φ(x) + k3(k3 − 1)Dk−2e3

x φ(x)

+ 2k2x2D
k−e2
x φ(x) + k2(k2 − 1)Dk−2e2

x φ(x).
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Now, going back to compute the second term of Equation 2.4.49 yields

Dk−e1
x x1φ(x) = x1D

k−e1
x φ(x) +

(
k1 − 1

1

)
∂x1

∂x1

Dk−2e1
x φ(x),(2.4.54)

= x1D
k−e1
x φ(x) + (k1 − 1)Dk−2e1

x φ(x).(2.4.55)

Hence, when Dk−ei
x is applied to Equation 2.4.45 for i = 1, the result, Equation 2.4.49,

from using Equations 2.4.51 - 2.4.55 becomes

|x|2Dk
xφ(x) + 2k1x1D

k−e1
x φ(x) + 2k2x2D

k−e2
x φ(x) + 2k3x3D

k−e3
x φ(x)

+ k1(k1 − 1)Dk−2e1
x φ(x) + k2(k2 − 1)Dk−e2

x φ(x) + k3(k3 − 1)Dk−e3
x

− x1D
k−e1
x φ(x)− (k1 − 1)Dk−2e1

x φ(x)(2.4.56)

= Dk
xψ(x).

This can be written in a compact form as,

|x|2Dk
xφ(x) + 2

3∑
i=1

kixiD
k−ei
x φ(x) +

3∑
i=1

ki(ki − 1)Dk−2ei
x φ(x)(2.4.57)

− x1D
k−e1
x φ(x)− (k1 − 1)Dk−2e1

x φ(x) = Dk
xψ(x).

By multiplying through Equation 2.4.57 by 1
k!

, we get

(2.4.58)

1

k!
|x|2Dk

xφ(x) + 2
3∑
i=1

ki
k!
xiD

k−ei
x φ(x) +

3∑
i=1

ki(ki − 1)

k!
Dk−2ei

x φ(x)− x1
1

k!
Dk−e1

x φ(x)

−(k1 − 1)

k!
Dk−2e1

x φ(x) =
1

k!
Dk

xψ(x).

Recall that the coefficients of the kth order term in the Taylor expansion of φ(x)

were defined in Equation 2.4.9 as

(2.4.59) ak =
1

k!
Dk

xφ(x),

and as a result, the identities

Dk−ei
x φ(x) = ak−ei · (k− ei)! and(2.4.60)

Dk−2ei
x φ(x) = ak−2ei · (k− 2ei)!,(2.4.61)
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hold as well.Thus using Equation 2.4.31, Equation 2.4.58 becomes

(2.4.62) |x|2ak + 2
3∑
i=1

xiak−ei +
3∑
i=1

ak−2ei −
x1

k1

ak−2e1 −
1

k1

ak−2e1 = bk.

We then multiply through Equation 2.4.62 with k1which yields

(2.4.63) k1|x|2ak + 2k1

3∑
i=1

xiak−ei + k1

3∑
i=1

ak−2ei − x1ak−2e1 − ak−2e1 = k1bk.

The analogous development for i = 2 and i = 3 results in

(2.4.64) k2|x|2ak + 2k2

3∑
i=1

xiak−ei + k2

3∑
i=1

ak−2ei − x2ak−2e2 − ak−2e2 = k2bk

and

(2.4.65) k3|x|2ak + 2k3

3∑
i=1

xiak−ei + k3

3∑
i=1

ak−2ei − x3ak−2e3 − ak−2e3 = k3bk.

respectively.

By summing up Equation 2.4.63, Equation 2.4.63 and Equation 2.4.63 we arrive

at

(2.4.66) ||k|||x|2ak + (2||k|| − 1)
3∑
i=1

xiak−ei
+ (||k|| − 1)

3∑
i=1

ak−2ei
= ||k||bk.

Then the recurrence relation for computing the Taylor coefficients ak for V r
i,C is

(2.4.67) ak =
1

|x|2

{(
1

||k||
− 2

) 3∑
i=1

xiak−ei
−
(

1− 1

||k||

) 3∑
i=1

ak−2ei
+ bk

}
,

where bk are the Taylor coefficients of 1
2
e−|x|

2
with recurrence relation

(2.4.68) bk = − 2

||k||

3∑
i=1

{xibk−ei + bk−2ei} .

In these expressions, ak = 0 and bk = 0 when any one of k1, k2 or k3 is negative.
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2.5 Conclusion

In this chapter we have derived the Ewald Sum which arises from rewriting the

Coulomb potential in periodic boundary conditions as a sum of two absolutely con-

vergent series and a finite sum. The two absolutely convergent series, V r in real

space and V k in reciprocal space decay at different rates for a specified value of α.

We derived the particle-mesh Ewald (PME) method which speeds up the computa-

tion of the reciprocal space sum, V k from O(N2) to O(N logN). We also provided a

full derivation of the Cartesian Treecode Ewald (CTE) method which speeds up the

computation of the real space sum, V k from O(N2) to O(N logN). Table 2.1 sum-

marizes the cost of computing the Ewald sum via direct summation, Particle-Mesh

Ewald and the Cartesian Treecode Ewald algorithm.

Direct Sum Optimized Direct Sum PME CTE
Real Space Sum - V r O(N2) O(N3/2) O(N) O(N logN)

Reciprocal Space Sum - V k O(N2) O(N3/2) O(N logN) O(N)
Overall cost O(N2) O(N3/2) O(N logN) O(N logN)

Table 2.1
The cost of the different algorithms for computing the Ewald sum.

In the next chapter we will provide simulation results which compare the CTE

method to the PME method.



CHAPTER III

Validation of Cartesian Treecode Ewald Method

This section presents results that validate the Cartesian treecode Ewald (CTE)

method as a method for performing molecular dynamics simulations. We apply CTE

to compute the electrostatic interactions in a molecular dynamics (MD) simulation

of liquid methyl chloride (CH3Cl). We compute the radial distribution functions,

g(r), force-force, cFF (t), and velocity-velocity, cV V (t), auto-correlation functions and

compare these to those obtained by computing electrostatic interactions with the

Particle Mesh Ewald (PME) method.

We compare the CTE method to the PME method for computation time, relative

error in energy and root mean square error in force, for different system sizes with

the error in approximation of the Ewald sum set to 1 × 10−5. We also compare a

hybrid CTE-PME algorithm to the PME method to investigate whether the hybrid

will be faster than both the original CTE algorithm and the PME algorithm.

The results in this chapter are generated with a particle-cluster CTE algorithm.

In chapter IV, we present results generated with a leaf-cluster CTE algorithm.

3.1 Implementation of Periodic Boundary Conditions

We performed an MD simulation of 256 molecules of CH3Cl with periodic bound-

ary conditions to model a bulk system. The problem of implementing periodic bound-

38
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ary conditions for hierarchical tree based multipole algorithms is a challenging one.

Schmidt and Lee [49, 50] have developed a method for handling periodic boundary

conditions with the Fast Multipole Method of Greengard and Rohklin [26, 11] based

on the Ewald sum. Our implementation of periodic boundary conditions in the CTE

algorithm is based on a procedure presented by Bouchet and Hernquist [8] for cosmo-

logical simulations using the Barnes-Hut tree algorithm. This procedure implements

the minimum image convention [2, 25, 45] in addition to periodic boundary condi-

tions. We will now describe how periodic boundary conditions are implemented in

the CTE algorithm.
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Figure 3.1: The figure shows the fundamental cell divided into four sub-clusters
{1,2,3,4} and replicated in space. Each subcell has a tree structure.

The periodic system is a replication of the fundamental cell in space [2]. Fig-

ure 2.1 in chapter II showed a two-dimensional representation of a fundamental cell

replicated in space. Figure 3.1 also shows a two-dimensional representation of a fun-

damental cell replicated in space. However in Figure 3.1, the fundamental cell is

divided into four sub-clusters {1,2,3,4} as a result of the hierarchical clustering in

the CTE algorithm. The exact interactions in a periodic system requires the target

particle to interact with every other particle in the system as well as all of its images



40

and the images of the other particles. However, if the potential energy function is

short range then only a finite number of particles close to a target particle have sig-

nificant interactions with the target particle. All other contributions are too small

and can be ignored. If the interactions between particles are insignificant beyond half

the length of the fundamental cell, then as Figure 3.2 [2] shows, the relevant inter-

actions of a target particle can be restricted to the particles in a simulation volume

with the same dimensions as the fundamental cell centered at the target particle.

In the figure, the fundamental cell is the box that is not labeled with a letter. The

target particle is the particle labeled 1 with the simulation box centered at 1 shown

with broken lines. The target particle interacts with the particles or the images of

the particles which are in the box centered on 1. In this case, 1 interacts with 2

and the images 3H and 4B. This algorithm is called the minimum image. Thus a

3

A CB

EFG

H D
1

2
4

Figure 3.2: The figure shows the minimum image convention applied to the interac-
tions of particle 1. The image cells of the central fundamental cell are
labeled with letters from A to H. Particle 1 interacts with particles 2,
3H and 4B.

target particle interacts with either a particle in the fundamental cell or the closest

(minimum) image of that particle.

Because the real and reciprocal space parts of the Ewald sum decay quickly, we
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are able to implement the minimum image convention in the CTE algorithm. For

a simulation cell of length L, we pick an α value such that Equation 2.3.1 gives an

error less or equal to the specified error at a cutoff radius of rc = L
2
. We then restrict

the particles that interact with a target particle to those particles that are within the

simulation volume centered at the target particle. We will use the two-dimensional

representation shown in Figure 3.1 to futher explain the procedure.

In three-dimensions the fundamental cell will be divided into eight sub-clusters.

However, in Figure 3.1, the fundamental cell is divided into four sub-clusters {1,2,3,4},

after the tree building process, and each each sub-cluster in turn has tree structure.

We will focus on the process for computing the interactions for the particles in 1.

Clearly, to determine the interactions of the particles in 1 according to the mini-

mum image convention we will have to pinpoint each target particle and determine

the simulation volume centered at the particle. This simulation volume will intersect

with the clusters 1, 3F , 4G, 3G, 2, 3, 4, 3E and 2E which are in direct contact

with 1. However, for ease of coding we increase the simulation volume to encompass

all the sub-clusters that touch 1 in order to be able to use the tree built from the

fundamental cell.

Then a target particle, i, in 1 interacts with the other particles in 1 and all of the

particles in 3F , 4G, 3G, 2, 3, 4, 3E and 2E. This interaction proceeds by a call to a

subroutine

(3.1.1) Compute Interaction(target particle,cluster) .

The call Compute Interaction(i,C) is straightforward for C ∈ {1,2,3,4} since

these clusters already have a tree structure. The interactions between the target

particle and particles in the image cells 3F , 4G, 3G, 3E and 2E require a little bit

more work. For example, the interaction of the target particle, i, with the particles
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in the image cell 3E by a call to Compute Interaction(i,3E) is replaced by the

call Compute Interaction(iA,3) where iA is the position of the periodic image of

particle i in the image cell 1A. This is because the effect of 3E on i, is the same

as the effect of 3 on ıA. Hence, instead of creating 3E which will involve additional

work and storage, the vector between i and the center of cluster 3E is computed as

the vector between iA and the center of cluster 3, which requires no extra storage or

work. The moments of cluster 3 are the same as the moments of cluster 3E, since the

moments are a local property and depend only on the particles in the cluster and their

separation from the center of the cluster. Similarly, Compute Interaction(i,4G)

is replaced by Compute Interaction(iC,4). All the interactions with images are

handled in a similar fashion.

3.2 MD Simulation of Liquid CH3Cl

3.2.1 Simulation Details

The simulations were carried out on 256 molecules of CH3Cl in a 28.20
◦
A cubic

box at 220K and 0.0365 bars. Each CH3Cl molecule is modeled as a diatomic with

charge +0.25 au at the CH3 site and −0.25 au at the Cl site. The atomic mass of

CH3 and Cl were given as 15.0345 amu and 35.4530 amu respectively. The two sites

are connected by a rigid bond of length 1.781
◦
A. We used an effective intermolecular

potential based on the site-site model presented by Cabral et al. [10, 40] in their

simulation of CH3Cl. This effective potential, Vtotal, is the sum of a short-ranged

(van der Waals) potential modeled with the 12 − 6 or Lennard Jones potential and

the Coulomb potential. Vtotal is given as

(3.2.1) Vtotal =
N∑
i<j

A

r12
ij

− B

r6
ij

+
qiqj

4πεorij
.



43

Here, rij = |ri − rj| and the values of A and B given in Table 3.1 depend on the

two particles interacting. The Coulomb potential part of this effective potential is

what is transformed into the Ewald sum. The Lennard Jones terms were computed

directly. Lennard-Jones interactions beyond a cutoff of 14.104
◦
A were discarded and

taken to be zero.

Atom pair A (10J mol−1
◦
A

12

) B (10J mol−1
◦
A

6

)
CH3-CH3 33346480.00 11506.00
CH3-Cl 27064529.92 11917.06
Cl-Cl 21966000.00 12342.80

Table 3.1: Parameters for the 12− 6 potential of CH3Cl [10]

The classical Ewald method and the PME method both directly exclude in-

tramolecular interactions when computing the real space sum, V r. Intramolecular

interactions in our simulation refers to an interaction between the CH3 and Cl species

making up the diatomic molecule. However, when computing the reciprocal sum, V k,

each chemical species is initially taken to be a target particle and as such the compu-

tation includes the intramolecular interactions. The intramolecular interactions are

then subtracted out by a separate routine. The intramolecular part of the reciprocal

space potential energy, V k
ex, subtracted from the potential energy is given by the

formula [53]

(3.2.2) V k
ex =

1

4πεo

∑
molecules

M∗∑
i≤j

qiqj

{
δij

α√
π

+
erf(αrij)

r
1−δij
ij

}
,

where M∗ is the number of excluded atoms in a given molecule. We note that the

first term in the bracket is the atomic self correction [53] which is just the limit given

by

(3.2.3) lim
rij−→0

erf(αrij)

rij
= 2

α√
π
,
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where the factor of 2 comes from considering a pair of excluded atoms in an in-

tramolecular bond. When i = j, the second term in Equation 3.2.2 evaluates to

0.

The CTE method on the other hand includes intramolecular interactions in the

real space sum in addition to the reciprocal space sum in the initial computation of

V r. Hence, in addition to V k
ex from Equation 3.2.2, the intramolecular part of the

real space potential energy, V r
ex, has to be subtracted from the potential energy as

well. This potential energy is given by

(3.2.4)

V r
ex =

1

4πεo

∑
molecules

M∗∑
i<j

qiqj
erfc(αrij)

rij
=

1

4πεo

∑
molecules

M∗∑
i<j

qiqj
1− erf(αrij)

rij
.

By adding equations Equation 3.2.2 and Equation 3.2.4, we find that the total ex-

cluded potential energy, Vex = V k
ex + V r

ex is given by

(3.2.5) Vex =
1

4πεo

∑
molecules

{
M∗∑
i=1

q2
i

2α√
π

+
M∗∑
i<j

qiqj
rij

}
.

We performed MD simulations in a constant energy (NVE) ensemble [2, 46] of

the CH3Cl system for two cases, one in which the Ewald sum was handled by PME

and the other by CTE. For the simulations employing CTE, we performed runs for

different sets of θ and multipole order, p with the maximum number of particles

in a leaf, N0 = 6. The (θ, p) pair is for all combinations of θ ∈ {0.5, 0.6, 0.7} and

p ∈ {0, 2, 4, 6, 8}. For the simulations using PME, we used an 8th order interpolation.

For both methods, a real space cutoff of one-half the box length, i.e., 14.10
◦
A

was used. We generated an equilibrium configuration of the system at 220K from

an initial lattice arrangement using velocity scaling. This equilibrium configuration

was the starting configuration for both the PME and CTE simulations. The Verlet

leapfrog algorithm [2] was used for numerical integration with a time step of 4 fs.



45

The Shake algorithm [24] was used to maintain the rigid bonds specification.

The simulations were performed by incorporating the CTE algorithm into DL POLY

[52] version 2.17. DL POLY is a suite of Fortran subroutines for performing MD

simulations developed by the CCLRC Daresbury Laboratory in the United Kingdom

and distributed to academic researchers without charge. The lab which is part of the

U.K.’s Science and Technology Facilities Council maintains a website (Figure 3.3)

for the DL POLY package.

Figure 3.3: The webpage for DL POLY
http:www.cse.scitech.ac.uk/ccg/software/DL POLY

A component of this thesis was to incorporate the CTE algorithm into DL POLY

which has been successfully accomplished for both version 2.17 and the most recent

version, 2.20. Version 2.20 provides additional options including energy minimization

and hyperdynamics which are not present in version 2.17. They both, however, come

with an optimized PME method which serves as our basis of comparison.

We computed the velocity autocorrelation function, cV V (t), and the force auto-
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correlation function, cFF (t), by averaging over 24 consecutive 40 ps long trajectories.

With the time step of 4 fs, each trajectory consists of 10000 different configurations of

the system. We also generated the site-site radial distribution functions, g(r)Me−Me,

g(r)Me−Cl and g(r)Cl−Cl by averaging over 24000 different ensembles of the system.

Here, Me refers to CH3.
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Figure 3.4: 2048 molecules of nonequilibrated CH3Cl. The blue particles are CH3

groups and the red Cl. The CH3-Cl bond is omitted.

3.3 Simulation Results - Comparison with PME

Figure 3.4 is a uniform distribution of 2048 molecules of CH3Cl.

3.3.1 Radial Distribution Function

The radial distribution function, g(r), is a pair distribution function which gives

insight into the structure of the liquid. The radial distribution function of any atom

pair is the ratio of the probability of finding the two atoms a certain distance, r, apart
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to the probability of finding two atoms of an ideal gas that same distance apart. The

radial distribution function for a pair of atoms at a distance r in a system of size L

is computed as an ensemble average given by [2]

(3.3.1) g(r) =
L3

N2

〈∑
i

∑
j 6=i

δ(r− rij)

〉
ens

.

The radial distribution function of a liquid can be generated experimentally by x-ray

or neutron diffraction. A procedure for computing g(r) is outlined in [2, 25] with

sample codes. We give a brief explanation here.

The probability of finding an atom pair a distance r apart is directly proportional

to the number of one of the atoms of the pair separated by a distance r from the

other atom. An atom pair could theoretically be as little as zero distance apart in

the absence of a repulsive potential to as much as a distance L
2

apart which is the

largest possible separation for significant interaction. The goal is to find for a given

atom the number of the other atom of its pair which are r part for 0 ≤ r ≤ L
2
. This

is approximated by finding for the given atom, i, the number of the other atom of

its pair nip(r) separated by a discrete number, nd, of separation distances r in the

given range each with width

(3.3.2) δr =
L

2 · nd
.

For a given atom i, nip(r) is found by checking all the atoms in its pair and sorting

the separation into a histograms with a bin at each separation distance r which

extends from r to r + δr. For example, for the Cl-Cl pair, the algorithm focuses

on one Cl atom and checks the separation of this Cl atom with all other Cl atoms.

This procedure is repeated for all the other Cl atoms as Equation 3.3.1 shows with

the summation over i and the results are averaged over all N Cl atoms. Thus, for a
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given atom pair, the total number of pairs, nTp (r), for a given separation r is

(3.3.3) nTp (r) =
1

N

N∑
i=1

nip(r).

The number of ideal gas pairs nid(r) at a separation distance r is computed as

(3.3.4) nid(r) =
4πρ

3
{(r + δr)3 − r3}

which is the the number of ideal gas atoms with the same density ρ = N
L3 as the

liquid, in this case CH3Cl, in the shell region [r, r+δr]. Then, the radial distribution

function at r + 1
2
δr is

g

(
r +

1

2
δr

)
=

nTp (r)

nid)(r)
=

3

4πρ{(r + δr)3 − r3}
1

N

N∑
i=1

nip(r),

=
1

Nρ

N∑
i=1

3nip(r)

4π{(r + δr)3 − r3}
,

=
L3

N2

N∑
i=1

3nip(r)

4π{(r + δr)3 − r3}
.(3.3.5)

We compute g
(
r + 1

2
δr
)

for all atom pairs over 24000 different ensembles and average

over the ensemble to yield

(3.3.6) g

(
r +

1

2
δr

)
=
L3

N2

〈
N∑
i=1

3nip(r)

4π{(r + δr)3 − r3}

〉
ens

.

The radial distribution functions for PME and the different (θ, p) pairs in CTE

are given in Figure 3.5 to Figure 3.13. These results correctly reproduce the work of

Cabral et al. [40]. The PME results are plotted with error bars given by the stan-

dard deviation of the PME data. All three radial distribution functions g(r)Me−Me,

g(r)Me−Cl and g(r)Cl−Cl are zero for separations up to approximately 3
◦
A. This shows

the effective width of the atoms as a result of strong repulsive forces. The peaks show

that the liquid has high local densities at the distances where the peaks occur. These

are distances of high correlations between atom pairs. High local density areas are
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followed by low local density areas and vice versa, resulting in the oscillatory behav-

ior the functions. At long distances, the correlation between atom pairs decreases

because their effect on each other decreases with distance and screening from in-

termediate molecules. As a result, the interaction between the atom pairs as the

separation increases approaches that of an ideal gas where there is no interaction.

Thus, the g(r) plateaus to one with increasing separation.

The highest peak for g(r)Me−Cl occurs at a smaller distance and is higher than

either g(r)Me−Me or g(r)Cl−Cl because the Me and Cl groups have additional attrac-

tion from electrostatic interactions because of their opposite charges in addition to

the attractive part of the Lennard-Jones potential . As such a lot more of the Me-Cl

pair are able to overcome the repulsive forces and get closer to each other than the

Me-Me or Cl-Cl pairs. The Me-Me and Cl-Cl pairs have repulsive electrostatic in-

teractions because of the identical charges of the atoms in each pair. Although the

Me-Me and Cl-Cl pairs have similar repulsive electrostatic interactions, the Cl-Cl

pair has a lower first peak because the Cl group with mass 35.4530 amu is bigger

than the Me group with mass 15.0345 amu. As a result, clusters of the Cl group are

looser than clusters of the Me group which results in a lower but more spread out

peak for g(r)Cl−Cl as shown in Figure 3.7 than for g(r)Me−Me shown in Figure 3.5.

The radial distribution functions show that the CTE method is capable of re-

producing the structural properties of the liquid within error bars for specific (θ, p)

pairs. For Figures (3.5) to (3.7) with θ = 0.5, CTE is well within error bars of the

PME results. An increase in θ allows for more multipole approximations and thus

requires higher order multipoles in order to achieve the required accuracy. In Figures

(3.8) to (3.10) where θ = 0.6, the results for p = 6 and p = 8 are still completely

within one standard deviation of the PME results. The data points for p = 4 are
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Figure 3.5: CH3-CH3 radial distribution function for PME and CTE with (θ = 0.5).
The CTE result is within error bounds of the PME result for all orders.
In this regime, with the multipole acceptability criterion, θ = 0.5 most
of the computation is by direct summation. As a result, the order of the
treecode does not have a significant impact on the results.

with a few exceptions at the peaks at troughs of the graph also within one standard

deviation of the PME results. For θ = 0.7, Figures (3.11) to (3.13) show that CTE

with p = 6 and p = 8 produce results within the error bars of the PME results.

Setting θ = 0.5 forces the CTE algorithm to descend deeper into the tree which

results in a significant portion of the interactions being performed by direct sum-

mation, hence explaining the accuracy of the lower order simulations. This however

results in an increase in computation time for larger systems. Larger θ values, on the

other hand, skew the interactions towards more multipole approximations at higher

levels of the tree. This in turn will require higher order multipoles in order to achieve

the desired accuracy.
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Figure 3.6: CH3-Cl radial distribution function for PME and CTE with (θ = 0.5).
The CTE result is within error bounds of the PME result for all orders.
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Figure 3.7: Cl-Cl radial distribution function for PME and CTE with (θ = 0.5). The
CTE result is within error bounds of the PME result for all orders.
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Figure 3.8: CH3-CH3 radial distribution function for PME and CTE with (θ = 0.6).
The CTE result is within error bounds of the PME result for orders p = 6
and p = 8. As expected a higher order multipole yields better accuracy.
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Figure 3.9: CH3-Cl radial distribution function for PME and CTE with (θ = 0.6).
The CTE result is within error bounds of the PME result for orders p = 6
and p = 8.
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Figure 3.10: Cl-Cl radial distribution function for PME and CTE with (θ = 0.6).
The CTE result is within error bounds of the PME result for orders
p = 6 and p = 8.
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Figure 3.11: CH3-CH3 radial distribution function for PME and CTE with (θ = 0.7).
Again, the CTE result is within error bounds of the PME result for
orders p = 6 and p = 8.
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Figure 3.12: CH3-Cl radial distribution function for PME and CTE with (θ = 0.7).
The CTE result is within error bounds of the PME result for orders
p = 6 and p = 8.
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Figure 3.13: Cl-Cl radial distribution function for PME and CTE with (θ = 0.7).
The CTE result is within error bounds of the PME result for orders
p = 6 and p = 8.
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3.3.2 Velocity-Velocity and Force-Force Auto-Correlation Functions

The time correlation [2], cAB(t) between two quantities, A(τ) and B(τ + t) for the

time difference t is

(3.3.7) cAB(t) =
CAB(t)

CAB(0)
=
〈δA(τ)δB(τ + t)〉ens

σ(A)σ(B)
,

where the numerator of the last equality in Equation 3.3.7 is an ensemble average and

σ(A) refers to the standard deviation in the quantity A at time t = 0 from averaging

over a sufficient number of t = 0 realizations. The fluctuation δA is defined as

(3.3.8) δA = A− < A >ens

and

(3.3.9) σ2(A) =< δA2 >ens=< A2 >ens − < A >2
ens .

The ensemble average is employed in place of a time average because of the ergodicity

of the system. In a system with N identical molecules, the ergodic theory allows for

the complete trajectory of a single molecule to be replaced by a snapshot in time of

an ensemble of all the N molecules. The time average is then equivalent to an average

over a sufficient number of ensembles. A procedure for computing time correlation

functions is provided in [2]. We outline the procedure here for the velocity-velocity

cV V (t) and force-force auto-correlation cFF (t) functions.

The velocity vector, V(t) is the velocity of the center of mass of the CH3Cl

molecule while the force vector, F(t) is the force along the bond connecting the two

atoms in the molecule. To compute cV V (t) and cFF (t) we follow Equation 3.3.7 and

first compute CV V (t) and CFF (t) where

(3.3.10) CV V (t) = 〈δV(τ) · δV(τ + t)〉ens ,
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and

(3.3.11) CFF (t) = 〈δF(τ) · δF(τ + t)〉ens .

The basic operation in computing CV V (t) and CFF (t) is a dot product of the re-

spective vectors for the time difference t. We take 10000 different snapshots of the

ensemble with a time gap of 4fs between each snapshot. We compute the mean of

the coordinates of the velocity and forces for each molecule over all 10000 snapshots

and subtract this mean from the velocities and forces of each molecule respectively

as given by Equation 3.3.8. We also compute the mean of the square of the velocity

and force vectors and then the variance over all 10000 snapshots for each molecule

via Equation 3.3.9.

Then for all possible time differences (gap) t within the 10000 snapshots, we

compute the dot products of the vectors for each molecule. Note that the first

snapshot can be correlated to the other 9999 snapshots with time difference t ranging

from t = 4fs, which is the time gap between the first and second snapshots, to

t = (10000−1)∗4fs which is the time gap between the first snapshot and the snapshot

number 10000. The second snapshot can also provide correlations for time gaps

t = 4fs with snapshot number 3 up to a correlation for time gap t = (10000−2)∗4fs

with snapshot number 10000. Thus, later snapshots can be correlated for fewer time

gaps. Hence, snapshot number 9999 can only be correlated for time gap t = 4fs

with number 10000 and snapshot number 10000 can only be correlated to itself for

a time gap t = 0. Every snapshot can be correlated to itself for a time gap of t = 0.

This means that the time difference with the most data is t = 0 and the amount of

data for each t decreases with increasing t. The dot product of the velocity and force

vectors for each time difference are then averaged over the number of correlations

possible for each time difference. Then we compute cV V (t) and cFF (t) by averaging
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by the respective variances.

We perform the above procedure for 23 other different 10000 snapshots and aver-

age over all 24. Finally, we average over all the molecules since they are identical to

arrive at Figures (3.14) to (3.19).

Further evidence of the effect of θ and p in the CTE simulations are given in

the plots of the velocity-velocity autocorrelation function, cV V (t), in Figure 3.14

to Figure 3.16 and the force-force autocorrelation function, cFF (t), in Figure 3.17

to Figure 3.19. The correlation functions as expected show perfect correlation at

t = 0 where snapshot is correlated to itself. As the time difference increases the

two systems at the different times becomes less and less correlated and thus the

correlation decays to zero. We say that the system loses memory of its initial time.
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Figure 3.14: Center of mass velocity autocorrelation function for (θ = 0.5). The
CTE result is within error bounds of the PME result for all orders.

In addition to the dynamical insights provided by the time correlation functions,
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Figure 3.15: Center of mass velocity autocorrelation function for (θ = 0.6). The
CTE result is within error bounds of the PME result for orders p = 6
and p = 8.

the diffusion coefficient, D, of the liquid can be computed from the velocity-velocity

autocorrelation function by the relation [2]

(3.3.12) D =
1

3

∫ ∞
0

〈Vi(t) ·Vi(0)〉 dt,

where Vi is the center-of-mass velocity of the ith molecule. Also, by linear response

theory, the vibrational energy relaxation rate, 1
T1

, of a solute in a solvent can be

computed from the force-force autocorrelation function by the relation [35, 51]

(3.3.13)
1

T1

=
1− e−β~ω

β~ω
β

2µ

∫ ∞
−∞

eiω0t 〈F (t)F (0)〉 dt,

where, β = 1/(κBT ), µ is the reduced mass of the diatomic, and ω0 is the vibrational

frequency of the solute bond. The vibrational energy relaxation rate can be measured

experimentally by IR-spectroscopy. Computing D and 1
T1

was not in the scope of
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Figure 3.16: Center of mass velocity autocorrelation function for (θ = 0.7). The
CTE result is within error bounds of the PME result for orders p = 6
and p = 8.

the thesis. Future work will include computing D and 1
T1

.

Figure 3.14 to Figure 3.19 show that the CTE algorithm is capable of generating

the dynamical properties of systems of interest with the same behavior in relation

to θ and p as seen for the radial distribution functions.
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Figure 3.17: Autocorrelation function of force along molecular bond for (θ = 0.5).
Again, the CTE result is within error bounds of the PME result for all
orders.
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Figure 3.18: Autocorrelation function of force along molecular bond for (θ = 0.6).
The CTE result is within error bounds of the PME result for orders
p = 6 and p = 8.
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Figure 3.19: Autocorrelation function of force along molecular bond for (θ = 0.7).
The CTE result is within error bounds of the PME result for orders
p = 6 and p = 8.
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3.3.3 Comparisons for different system sizes

In addition to the structural and dynamical properties, we also compared the

CTE method to the PME method for accuracy in energy, forces, series convergence

and cpu time. We picked a regime of medium accuracy with the error at the cutoff

specified to be 10−5. These tests were run on an Intel Xeon cluster with the Intel

Fortran compiler. We used the compiler optimization flag ’-fast ’which performs an

overall speedup of the code.

We computed the relative error in energy, relative error in the virial and the root

means square error in the force. We label these quantities in the table as Erel, Vrel

and Frms respectively.

The relative error in energy is given as

(3.3.14) Erel =

∣∣Energymethod − Energyexact
∣∣

|Energyexact|

where the energy refers to the sum of the real space potential energy V r and the

reciprocal space potential energy V k.

The relative virial error gives a measure of the degree of convergence of the Ewald

sum. Vrel for a method is defined as

(3.3.15) Vrel =

∣∣Energymethod + Virialmethod
∣∣∣∣Energymethod

∣∣ .

Since the total potential energy is theoretically equal to the negative of the total

potential energy virial, Vrel = 0 for an exact computation of the Ewald sum. Ap-

proximations of the Ewald sum are expected to have Vrel on the order of the error

specified for the approximation.

The root mean square error in force for a system of N particles is defined as

(3.3.16) Frms =


∑N

i=1

∣∣∣fexact
i − fmethod

i

∣∣∣2∑N
i=1

∣∣∣fexact
i

∣∣∣2


1/2

.
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For system sizes N = 21952, N = 39304 and N = 74088, the exact energy

and forces for comparisons were computed using direct sum via the classical Ewald

method with a cutoff in real space rc = L
2

and a reciprocal space cutoff of kc = 5. We

were not able to compute exact energy and forces using the classical Ewald method

for system sizes greater than 74088 because of memory limitations. The reciprocal

space of the classical Ewald sum requires large memory allocation.

One goal of our project was to combine the CTE method with the PME method to

form a hybrid CTE-PME method that would be faster than either CTE or PME. The

CTE method employs the direct classical Ewald reciprocal sum while the CTE-PME

hybrid employs PME for the reciprocal space sum.

We compared a CTE-PME hybrid to the original CTE method and the PME

method in Figures 3.20,3.21 and 3.22 and found that the hybrid is faster than the

original CTE method for small systems but slower for large systems for the regimes

that were tested. In addition both the CTE method and the CTE-PME hybrid

method in their current implementation are slower than the PME method.

The CTE method implemented in this chapter is a particle-cluster variant. In

Chapter IV, we will present results generated with the cluster-cluster variant we

have developed.

Table 3.2 and Table 3.3 present results generated for N = 21952 using the original

CTE method and the CTE-PME hybrid method respectively. Table 3.4 and Table 3.5

present results generated for N = 39304 using the original CTE method and the

CTE-PME hybrid method respectively. The results are presented for different cutoffs

in real space, rc ∈ {L/2, L/4, L/8} which result in different cutoffs in reciprocal space

kc.

Table 3.2 presents comparison of CTE to PME. The CTE method is fastest for
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real space cutoff, rc = L
2

= 48.313. Decreasing rc and increasing the reciprocal

space cutoff, kc, to balance the work results in an increase in the overall cpu time

as shown for p = 0 and p = 8. This is because although the cpu time for the real

space decreases for smaller cutoffs rc, the cpu time for the reciprocal space increases

significantly with the associated increase in kc. This is as expected since the standard

reciprocal space employed for CTE is at best O(N3/2). This situation is reversed for

the CTE-PME hybrid as seen in Table 3.3 for p = 8. The PME method computes

the reciprocal space sum very quickly and as such the overall cpu time is reduced.

Method p θ rc kc Erel Vrel Frms Time(s)
Classical Ewald 48.313 5 3.0E-6 10.788

PME 8 11.0 64 1.2E-6 1.5E-5 1.6E-3 1.703

CTE

0

0.7

48.313 5 9.3E-5 1.3E-4 2.0E-2 3.692
24.156 11 9.4E-6 5.2E-5 3.0E-3 7.814
12.078 21 4.6E-6 1.1E-4 1.6E-3 34.661

2 48.313 5 9.7E-6 2.8E-4 1.2E-2 3.854
4 48.313 5 2.4E-6 1.4E-4 4.6E-3 4.311
6 48.313 5 4.3E-6 1.1E-4 2.4E-3 5.105

8
48.313 5 5.3E-6 2.2E-4 1.8E-3 6.431
24.156 11 4.3E-6 3.2 E-5 1.8E-3 8.900
12.078 21 4.6E-6 1.1E-4 1.6E-3 34.784

Table 3.2: Comparison of Classical Ewald, PME and CTE for N = 21952 atoms

Method p θ rc kc Erel Vrel Frms Time(s)
Classical Ewald 48.313 5 3.0E-6 10.788

PME 8 11.0 64 1.2E-6 1.5E-5 1.6E-3 1.703

CTE-PME Hybrid

0

0.7

12.078 64 4.7E-7 3.0E-6 1.6E-3 2.706
2 12.078 64 4.7E-7 3.0E-6 1.6E-3 2.655
4 12.078 64 4.7E-7 3.0E-6 1.6E-3 2.73

6
48.313 16 2.8E-4 8.4E-4 9.6E-3 5.416
12.078 64 4.7E-7 3.0E-6 1.6E-3 2.784

8
48.313 16 2.9E-4 7.3E-4 9.5E-3 6.649
24.156 32 1.7E-3 9.5E-3 3.5E-2 4.891
12.078 64 4.7E-7 3.0E-6 1.6E-3 2.863

Table 3.3: Comparison of Classical Ewald, PME and the CTE-PME hybrid for N =
21952 atoms

For the system with 21952 atoms, Table 3.3 shows that the errors for the rc =
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L
8

= 12.078 does not with increasing order, p of the multipole approximation. This is

because the small cutoff limits the number of multipole approximations and most of

the clusters that are within the cutoff fail the multipole acceptability criterion test.

For the bigger system with 39304 atoms, Table 3.4 show in general a decrease in

the relative error in energy and the root mean square force for increasing order p.

Table 3.5 shows an increase in accuracy for rc = L
8

= 14.666 with increasing order, p.

The larger cutoff in comparison to Table 3.3 for N = 21952 means that a significant

number of clusters within the cutoff satisfy the MAC test and as a result increasing

the order of the approximation improves the accuracy albeit only slightly.

Method p θ rc kc Erel Vrel Frms Time(s)
Classical Ewald 58.666 5 8.3E-5 34.055

PME 8 11.0 64 8.5E-6 3.8E-5 1.4E-3 3.099

CTE

0

0.7

58.666 5 3.7E-5 1.8E-4 6.5E-2 2.94
2 58.666 5 4.4E-5 3.0E-4 2.5E-2 3.427
4 58.666 5 3.4E-5 9.9E-5 8.7E-2 4.938
6 58.666 5 1.3E-5 3.8E-5 3.4E-3 7.688
8 58.666 5 1.7E-5 2.9E-5 1.8E-3 12.100

Table 3.4: Comparison of Classical Ewald, PME and CTE for N = 39304 atoms

Method p θ rc kc Erel Vrel Frms Time(s)
Classical Ewald 58.666 5 8.3E-5 34.055

PME 8 11.0 64 8.5E-6 3.8E-5 1.4E-3 3.099

CTE-PME Hybrid

0

0.7

58.666 16 1.2E-4 3.29E-4 6.5E-2 4.703
29.333 32 1.0E-3 5.3E-3 4.7E-2 4.526
14.666 64 2.2E-5 6.0E-5 5.1E-3 4.242

6
58.666 16 1.4E-4 4.7E-4 9.0E-3 9.986
29.333 32 1.1E-3 4.9E-3 3.0E-2 8.11
14.666 64 1.8E-5 2.7E-6 3.6E-3 5.329

8
58.666 16 1.4E-4 5.4E-3 8.6E-3 14.795
29.333 32 1.1E-3 5.0E-3 3.0E-2 11.51
14.666 64 1.4E-5 5.4E-5 2.2E-3 6.43

Table 3.5: Comparison of PME and CTE-PME Hybrid for N = 39304 atoms

Figures 3.20 and 3.21 show the timing comparisons, in computing total energy
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and forces, for different orders of the CTE and CTE-PME methods respectively, to

the PME method for a multipole acceptability criterion of θ = 0.7. Clearly, PME is

as fast or faster than CTE and the hybrid CTE-PME method for all orders.
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Figure 3.20: This figure compares the cpu time of CTE to PME and classical Ewald.
Both PME and CTE are faster than the Classical Ewald with cutoff of
L
2
. The CTE cpu times are within an order of magnitude of the PME

cpu time for all orders. Because of the large memory requirements of
Classical Ewald, we were only able to obtain results for system sizes
N ≤ 74088.
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Figure 3.21: In this figure we compare the cpu time of classical Ewald, PME and
CTE-PME hybrid. Again, all the algorithms are faster than Classical
Ewald.
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(b) p = 4 and p = 6
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Figure 3.22: Figures (a), (b) and (c) compare CTE to CTE-PME hybrid for mul-
tipole orders {0, 2}, {4, 6} and {8} respectively. They all show that
CTE-PME hybrid is faster than CTE for small systems while CTE is
faster for larger systems.
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Figure 3.22 shows that balancing the work between the real space and reciprocal

space parts and employing the CTE-PME hybrid results in a faster algorithm than

the original CTE algorithm for comparable accuracy for small systems. However

for large systems the CTE-PME hybrid is not faster than the original CTE for

comparable accuracy. In fact it is slower.

3.4 Conclusion

This chapter has presented comparisons of results from MD simulations of the

Cartesian Treecode Ewald method to the particle-mesh Ewald method. The results

show that the CTE method produces the same structural and dynamical properties

as the PME method for different sets of parameters (θ, p). We also presented com-

parisons of a CTE-PME hybrid to PME in cpu time for an accuracy of 10−5 in the

Ewald sum computation. We see that for the system sizes considered, PME is faster

than the current implementation of the CTE and CTE-PME hybrid methods.

The treecode algorithm used here was a particle-cluster formulation. The next

chapter will develop a new cluster-cluster treecode algorithm. It will show that for

the same medium accuracy level, the cluster-cluster treecode formulation is faster

than the particle-cluster formulation. This moves us closer to competing in cpu time

with PME.



CHAPTER IV

Cluster-Cluster Cartesian Multipole Treecode Algorithm

We develop here a cluster-cluster Cartesian treecode algorithm as an alternative

to the particle-cluster Cartesian treecode algorithms presented in [19, 16, 37, 38].

The goal is for the cluster-cluster algorithm to achieve the same accuracy as the

particle-cluster algorithm while being faster.

The tree building and computation of moments are the same for both the cluster-

cluster and particle-cluster algorithms. For both algorithms, the near-field interac-

tions are computed directly. The far-field interactions are between a particle and a

cluster for the particle-cluster algorithm, Figure 2.6. However, for the cluster-cluster

algorithm, the far-field interaction is between two well separated clusters, Figure 4.1.

Two clusters A and B with centers R apart and radii rA and rB respectively, are

well separated if the multipole acceptance criterion (MAC)

(4.0.1)
rA + rB
R

≤ θ

is satisfied for some θ < 1.

Cluster-cluster interactions form the basis of the Fast Multipole Method [26, 11]

and the Cell Multipole Method [14, 15]. Duan and Krasny [17] have also used a

cluster-cluster approach, based on Appel’s [3] formulation, to compute the total

69
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Figure 4.1: Cluster A interacts with cluster B by multipole approximation if the
MAC, rA+rB

R
≤ θ is satisfied.

potential energy in molecular systems. The cluster-cluster algorithm presented here

can be viewed as a hybrid between the Fast Multipole Method approach and the

Barnes-Hut [4] approach. Our approach is similar to the approach used in the Parallel

Multipole Tree Algorithm (PMTA) [6, 7] although our algorithm employs a Taylor

series expansion of the Coulomb potential for far-field expansions, unlike PMTA

which we assume uses a spherical harmonic expansion of the potential. The multipole

expansions for our algorithm are sped up by using recurrence relations to compute

the Taylor coefficients needed for the expansion. PMTA, on the other hand, employs

FFT-accelerated operations [6, 7] to speed up the multipole expansions. In addition,

PMTA employs the same order of approximation in the two interacting clusters while

our algorithm allows for the use of different orders of expansion in the two clusters.

4.1 Development

The cluster-cluster Cartesian Multipole Treecode Algorithm (CCMTA) we have

developed is derived from particle-cluster CCMTA.

We consider the interactions between two clusters A and B of particles and focus

on the effect of the particles in cluster B on the particles in cluster A. The direct
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summation method is a particle-particle interaction of the form,

(4.1.1) V (xi) = qi
∑
yj∈B

qjφ(xi − yj),

where xi and yj are particles in cluster A and cluster B respectively and qi and qj

are their respective charges. The clusters are depicted in Figure 4.1.

4.1.1 Particle-Cluster

The particle-cluster method approximates the effect of a cluster B of far-field

particles, yj, on a target particle i, in cluster A via a three dimensional Taylor

approximation of φ(xi − yj). The multipole expansion is up to order q and it is

centered at y = yc, the geometric center of cluster B . The multipole expansion of

the potential energy, V (xi) at position xi is given by

V (xi) = qi
∑
yj∈B

qjφ(xi − yj)

≈ qi

q∑
l=0

1

l!
Dl

yφ(xi − yc)
∑
yj∈B

qj(yj − yc)
l

= qi

q∑
||l||=0

al(xi − yc) ·M l
B,(4.1.2)

where

(4.1.3) al(xi − yc) =
1

l!
Dl

yφ(xi − yc),

is the lth order Taylor coefficients of the potential function φ(x) and

(4.1.4) M l
B =

∑
yj∈B

qj(yj − yc)
l

is the lth multipole moment of cluster B .

The force on particle i due to cluster B is derived as the negative gradient of
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V (xi) which yields,

Fi,B = −∇xV (xi)(4.1.5)

Fi,B ≈ −qi
q∑

||l||=0

(∇xal(xi − yc))M
l
B,(4.1.6)

= −qi


(l1 + 1)al+e1

(l2 + 1)al+e2

(l3 + 1)al+e3


M l

B.(4.1.7)

4.1.2 Cluster-cluster approximation

The cluster-cluster algorithm proceeds just as particle-cluster by approximating

the effect of cluster B on a particle, i , in cluster A as a multipole approximation of

order q centered at y = yc.

V (xi) = qi
∑
yj∈B

qjφ(xi − yj),(4.1.8)

≈ qi

q∑
||l||=0

1

l!
Dl

yφ(xi − yc)
∑
yj∈B

qj(yj − yc)
l,(4.1.9)

= qi

q∑
||l||=0

1

l!
Dl

yφ(xi − yc) ·M l
B.(4.1.10)

From the resultant, Equation 4.1.10, Dl
yφ(xi−yc), is in turn Taylor expanded about

x = xc, the center of cluster A to order p to give

(4.1.11) V (xi) ≈ qi

p∑
||k||=0

1

k!

q∑
||l||=0

1

l!
Dk

xD
l
yφ(xc − yc)M

l
B(xi − xc)

k.

Observe that

(4.1.12) Dk
xφ(xc − yc) = (−1)kDk

yφ(xc − yc),

which allows the dimensions of the operator differential operator D to be reduced
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from six dimensions to three dimensions resulting in

V (xi) ≈ qi

p∑
||k||=0

q∑
||l||=0

1

k!

1

l!
(−1)kDk+l

y φ(xc − yc)M
l
B(xi − xc)

k(4.1.13)

= qi

p∑
k=0

q∑
||l||=0

(k + l)!

k! · l!
(−1)k

(k + l)!
Dk+l

y φ(xc − yc)M
l
B(xi − xc)

k

= qi

p∑
||k||=0

q∑
||l||=0

(
k + l

l

)
(−1)k

(k + l)!
Dk+l

y φ(xc − yc)M
l
B(xi − xc)

k

= qi

p∑
||k||=0

 q∑
||l||=0

(
k + l

l

)
(−1)||k||ak+l(xc − yc)M

l
B

 (xi − xc)
k

= qi

p∑
||k||=0

bk((xc − yc), q, B)(xi − xc)
k,(4.1.14)

with

(4.1.15) bk((xc − yc), q, B) = (−1)k
q∑

||l||=0

(
k + l

l

)
ak+l(xc − yc)M

l
B.

Equation 4.1.14 is an approximation of the effect of cluster B on particle i in cluster

A as a power series of order p with coefficients bk centered at xc, the center of cluster

A.

The force on particle i due to cluster B is again the negative of the gradient of

the potential energy, V (xi), given in Equation 4.1.14 to yield,

Fi,B ≈ −qi
p∑

||k||=0

bk((xc − yc), q, B)∇x(xi − xc)
k(4.1.16)

= −qi
p∑

k=0

bk((xc − yc), q, B)



k1(xi − xc)
k−e1

k2(xi − xc)
k−e2

k3(xi − xc)
k−e3


.(4.1.17)
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By using the approximation to Fi,B in Equation 4.1.17, we approximate the far-field

virial, V r
s from Equation 2.4.17 due to the real space potential energy as,

(4.1.18) V r
s ≈ −

α2

√
π

∑
S
B

N∑
i=1

qiri,B ·
p∑

||k||=0

bk((xc − yc), q, B)



k1(xi − xc)
k−e1

k2(xi − xc)
k−e2

k3(xi − xc)
k−e3


.

In short, we have effectively reduced the interactions between particles in cluster

A and cluster B to an interaction between the centers of the clusters.

Since the cluster-cluster approach involves more approximation than the particle-

cluster we expect the cluster-cluster approach to be less accurate for given truncation

orders p in cluster A and q in cluster B . We will now show that for the Coulomb

potential

(4.1.19) φ(r) =
1

r
,

the cluster-cluster approach has error on the same order as the particle-cluster ap-

proach.

4.2 Error Analysis

We restrict the analysis to the error in approximating the Coulomb potential

energy

(4.2.1) V (xi) = qi
∑
j∈B

qj
1

|xi − xj|
= qi

∑
j∈B

qjφ(xi − xj),

of a particle at position xi, in cluster A due to particles at yj, in cluster B using a

cluster-cluster approximation.
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First we look at the error associated with the particle-cluster approximation due

to the multipole expansion centered at yc, the center of cluster B . The multipole

expansion to order q in cluster B is given by Equation 4.1.2. Here we use an expansion

to order q − 1. The recurrence relation for the Taylor coefficients, al, in the Taylor

expansion of the potential function φ(x) in Equation 4.2.1,

(4.2.2) ||l|||x|2al + (2||l|| − 1)
3∑
i=1

(xi − yci)al−ei
+ (||l|| − 1)

3∑
i=1

al−2ei
= 0,

with x = xi−yc, has been derived by several authors [38, 17] with the same procedure

used in deriving Equation 2.4.66. Here, the bold type xi refers to a vector while the

xi in the refers to a coordinate of xi. The analysis given here follows closely the

development in [37, 38]. With a (q− 1)st expansion, the sum of the neglected terms

from the expansion in Equation 4.1.2 is given as

(4.2.3) qi
∑
||l||≥q

al(xi − yc) ·M l
B = qi

∑
j∈B

qj
∑
n≥q

An(xi,yc,yj),

with

(4.2.4) An(xi,yc,yj) =
∑
||l||=n

al(xi − yc)(yj − yc)
l.

We will derive a bound for An(xi,yc,yj) which will in turn bound the error in the

approximation. First, we find a recurrence relation for An.

Multiplying Equation 4.2.2 by (yj − yc)
l results in

(4.2.5)

||l|||x|2al·(yj−yc)
l+(2||l||−1)

3∑
i=1

(xi−yci)al−ei
·(yj−yc)

l+(||l||−1)
3∑
i=1

al−2ei
·(yj−yc)

l = 0,
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which is then summed over ||l|| = n to produce the equation

(4.2.6)∑
||l||=n

{
||l|||x|2al · (yj − yc)

l
}

+
∑
||l||=n

{
(2||l|| − 1)

3∑
i=1

(xi − yci)al−ei
· (yj − yc)

l

}

+
∑
||l||=n

{
(||l|| − 1)

3∑
i=1

al−2ei
· (yj − yc)

l

}
= 0.

By simplifying we arrive at

(4.2.7) n|x|2
∑
||l||=n

al · (yj − yc)
l + (2n− 1)

∑
||l||=n

3∑
i=1

(xi − yci)al−ei
· (yj − yc)

l

+(n− 1)
∑
||l||=n

3∑
i=1

al−2ei
· (yj − yc)

l = 0,

which can be rewritten as

(4.2.8) n|x|2An + (2n− 1)
3∑
i=1

(xi − yci) · (yj − yc)
ei
∑
||l||=n

al−ei
· (yj − yc)

l−ei+

(n− 1)
3∑
i=1

(yj − yc)
2ei
∑
||l||=n

al−2ei
· (yj − yc)

l−2ei = 0,

where Equation 4.2.4 has been applied. In addition, from Equation 4.2.4 we generate

the identity,

An−k(xi,yc,yj) =
∑

||l||=n−k

al · (yj − yc)
l(4.2.9)

=
∑
||l||=n

al−kei · (yj − yc)
l−kei .(4.2.10)

Then, by using Equation 4.2.10, Equation 4.2.8 becomes

(4.2.11)

n|x|2An + (2n− 1)An−1

3∑
i=1

(xi − yci) · (yj − yc)
ei + (n− 1)An−2

3∑
i=1

(yj − yc)
2ei = 0.

Let

(4.2.12)
3∑
i=1

(xi − yci) · (yj − yc)
ei = (xi − yc) · (yj − yc) = α
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and

(4.2.13)
3∑
i=1

(yj − yc)
2ei =

3∑
i=1

(yji − yci) · (yji − yci) = (yj − yc) · (yj − yc) = β2,

implying that, β = |yj −yc|. With these definitions, Equation 4.2.11 then yields the

recurrence relation

(4.2.14) n|x|2An + (2n− 1)αAn−1 + (n− 1)β2An−2 = 0 for n ≥ 2.

In order to bound An, we will first write An in terms of the nth Legendre polynomial,

Pn(x).

The recurrence relation for the Legendre polynomial in a single dimension is given

as [1]

(4.2.15) nPn(x)− (2n− 1)xPn−1(x) + (n− 1)Pn−2(x) = 0 for n ≥ 2,

with P0(x) = 1, P1(x) = x and Pn(x) = (−1)nPn(−x). Using the last condition,

Equation 4.2.15 can be rewritten as

(4.2.16) n(−1)nPn(−x)−(2n−1)x(−1)n−1Pn−1(−x)+(n−1)(−1)n−2Pn−2(−x) = 0,

which results in

(4.2.17) nPn(−x) + (2n− 1)xPn−1(−x) + (n− 1)Pn−2(−x) = 0

after multiplying through by (−1)n.

Set x = α
β|x| and h = β

|x| . Then multiplying through Equation 4.2.17 by hn results

in

(4.2.18)

n·hnPn
(
− α

β|x|

)
+(2n−1)

α

β|x|
· β
|x|
·hn−1Pn−1

(
− α

β|x|

)
+(n−1)

(
β

|x|

)2

·hn−2Pn−2

(
− α

β|x|

)
= 0,
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which is in turn multiplied by |x|2 and divided by 1
|x| to arrive at

(4.2.19)

n|x|2 h
n

|x|
Pn

(
− α

β|x|

)
+(2n−1)α

hn−1

|x|
Pn−1

(
− α

β|x|

)
+(n−1)β2h

n−2

|x|
Pn−2

(
− α

β|x|

)
= 0,

for n ≥ 2.

Comparison of Equation 4.2.19 to Equation 4.2.14 leads to

(4.2.20) An =
hn

|x|
Pn

(
− α

β|x|

)
for n ≥ 2,

if the equality holds for the n = 0 and n = 1 terms.

For n = 0, from Equation 4.2.4

(4.2.21) An = A0 = a0 = φ(x) =
1

|x|

and

(4.2.22)
hn

|x|
Pn

(
− α

β|x|

)
=
h0

|x|
P0

(
− α

β|x|

)
=

1

|x|
.

For n = 1 using Equation 4.2.14,

(4.2.23) An = A1 = − α

|x|2
A0 = − α

|x|3
,

and

(4.2.24)
hn

|x|
Pn

(
− α

β|x|

)
=
h1

|x|
P1

(
− α

β|x|

)
=

β

|x|
· 1

|x|
·
(
− α

β|x|

)
= − α

|x|3
.

Thus,

(4.2.25) An =
hn

|x|
Pn

(
− α

β|x|

)
for n ≥ 2,

with A0 = 1
|x| and A1 = − α

|x|3 . From Equation 4.2.12 and Equation 4.2.13, we get

the relation

(4.2.26)

∣∣∣∣ α

β|x|

∣∣∣∣ =

∣∣∣∣(xi − yc) · (yj − yc)

|yj − yc||xi − yc|

∣∣∣∣ ≤ 1,
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and with Pn(1) = 1, the bound on An is given as

(4.2.27) |An(xi,yc,yj)| =
∣∣∣∣ 1

|x|

(
β

|x|

)n∣∣∣∣ ≤ 1

|x|

(
|yj − yc|
|x|

)n
.

The particle-cluster multipole approximation is only implemented when

|yj − yc| < |xi − yc|,

thus the bound on |An| decreases with increasing n.

We will use this result to bound the error for the cluster-cluster method where

the order of the expansion is p− 1 in cluster A and q − 1 in cluster B .

For the cluster-cluster approximation, the potential energy from Equation 4.1.13

is approximated as

(4.2.28) V (xi) ≈ qi

p−1∑
||k||=0

(−1)k
q−1∑
||l||=0

(
k + l

l

)
ak+l(xc − yc) ·M l

B

 (xi − xc)
k.

The exact potential can also be written as a power series of infinite order in both

cluster A and cluster B where

(4.2.29) V (xi) = qi

∞∑
||k||=0

(−1)k
∞∑
||l||=0

(
k + l

l

)
ak+l(xc − yc) ·M l

B · (xi − xc)
k

= qi

p−1∑
||k||=0

(−1)k
q−1∑
||l||=0

(
k + l

l

)
ak+l(xc − yc) ·M l

B · (xi − xc)
k

+ qi

p−1∑
||k||=0

(−1)k
∞∑
||l||=q

(
k + l

l

)
ak+l(xc − yc) ·M l

B · (xi − xc)
k

+ qi

∞∑
||k||=p

(−1)k
∞∑
||l||=0

(
k + l

l

)
ak+l(xc − yc) ·M l

B · (xi − xc)
k.

The error, E(xi) is the difference between Equation 4.2.29 and Equation 4.2.28

and is given as

(4.2.30) E(xi) = qi

p−1∑
||k||=0

(−1)k
∞∑
||l||=q

(
k + l

l

)
ak+l(xc − yc) ·M l

B · (xi − xc)
k
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+ qi

∞∑
||k||=p

(−1)k
∞∑
||l||=0

(
k + l

l

)
ak+l(xc − yc) ·M l

B · (xi − xc)
k

= qi

∞∑
||l||=q

M l
B

∞∑
||k||=0

(−1)k
(
k + l

l

)
ak+l(xc − yc) · (xi − xc)

k

+ qi

q−1∑
||l||=0

M l
B

∞∑
||k||=p

(−1)k
(
k + l

l

)
ak+l(xc − yc) · (xi − xc)

k.

The inner sum of the first term of the last equality in Equation 4.2.30, runs from

||k|| = 0 to ||k|| = ∞, which means that the expansion in cluster A is exact. The

error is only for the expansion in cluster B . This exactness in the cluster A expansion

allows us to write

(4.2.31)

qi

∞∑
||l||=q

M l
B

∞∑
||k||=0

(−1)k
(
k + l

l

)
ak+l(xc − yc)(xi − xc)

k ≡ qi

∞∑
||l||=q

al(xi − yc)M
l
B.

From Equation 4.2.3,

|qi
∞∑
||l||=q

al(xi − yc) ·M l
B | ≤ |qi|

∑
j∈B

|qj|
∑
n≥q

|An(xi,yc,yj)|,(4.2.32)

= |qi|Q
∑
n≥q

|An(xi,yc,yj)|,

and

(4.2.33) Q =
∑
j∈B

|qj|.

Then, the error from Equation 4.2.30 for the cluster-cluster approximation is bounded

by

(4.2.34)

|E(xi)| ≤ |qi|Q
∑
n≥q

|An(xi,yc,yj)|+|qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∞∑
||k||=p

(
(−1)k

(
k + l

l

)
ak+l(xc − yc)

)
(xi − xc)

k

∣∣∣∣∣∣ .
The first term is the error we get from a particle-cluster approximation which for the

cluster-cluster algorithm is performed in cluster B and whose magnitude depends on



81

q. The second term is the error that comes from expanding the resultant from the

particle-cluster approximation about the center of cluster A to obtain the (p − 1)st

order power series. As such, the magnitude of the second term depends on both p

and q. The presence of the second term shows that the error for the cluster-cluster

approximation is worse than the error for the particle-cluster approximation for a

given p and q.

We will now derive a bound for the error and show that |E(xi)| → 0 when

p, q →∞. We first derive a bound for the first term. We make use of the bound on

|An| in Equation 4.2.27. Then

(4.2.35)

|qi|Q
∑
n≥q

|An(xi,yc,yj)| ≤ |qi|Q
∑
n≥q

1

|xi − yc|

(
|yj − yc|
|xi − yc|

)n
,

=
|qi|Q
|xi − yc|

1(
1− |yj−yc|

|xi−yc|

) ( |yj − yc|
|xi − yc|

)q
,

=
|qi|Q

|xi − yc| − |yj − yc|

(
|yj − yc|
|xi − yc|

)q
.

To derive the bound on the second term in Equation 4.2.34, we note that for a

finite q

(4.2.36)

|qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∞∑
||k||=p

(
(−1)k

(
k + l

l

)
ak+l(xc − yc)

)
(xi − xc)

k

∣∣∣∣∣∣
≡ |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

||k||=p

(−1)kak(xc − yc)(xi − xc)
k

∣∣∣∣∣∣ .
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Recall from Equation 4.1.3 that

ak(xc − yc) =
1

k!
Dk

yφ(xc − yc)

= (−1)k
1

k!
Dk

yφ(yc − xc)

= (−1)kak(yc − xc).(4.2.37)

Then from Equations (4.2.36), (4.2.4) and (4.2.27),

(4.2.38)

|qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

||k||=p

(−1)kak(xc − yc)(xi − xc)
k

∣∣∣∣∣∣
= |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

||k||=p

(−1)2kak(yc − xc)(xi − xc)
k

∣∣∣∣∣∣ ,
= |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣
∣∣∣∣∣∣
∞∑

||k||=p

ak(yc − xc)(xi − xc)
k

∣∣∣∣∣∣ ,
= |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣
∣∣∣∣∣∑
n≥p

An(yc,xc,xi)

∣∣∣∣∣ ,
≤ |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣
∑
n≥p

1

|yc − xc|

(
|xi − xc|
|yc − xc|

)p
,

= |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣ 1

|yc − xc|
1(

1− |xi−xc|
|yc−xc|

) ( |xi − xc|
|yc − xc|

)p

= |qi|

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣ 1

|yc − xc| − |xi − xc|

(
|xi − xc|
|yc − xc|

)p
,

=
|qi|QMB

|yc − xc| − |xi − xc|

(
|xi − xc|
|yc − xc|

)p
,

with

(4.2.39) QMB =

∣∣∣∣∣∣
q−1∑
||l||=0

M l
B

∣∣∣∣∣∣ .
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Then from Equation 4.2.35 and Equation 4.2.38, the bound on |E(xi)| is given by

(4.2.40)

|E(xi)| ≤
|qi|Q

|xi − yc| − |yj − yc|

(
|yj − yc|
|xi − yc|

)q
+

|qi|QMB

|yc − xc| − |xi − xc|

(
|xi − xc|
|yc − xc|

)p
.

Taking the limit of |E(xi)| with p, q →∞ yields

(4.2.41)

lim
p,q→∞

|E(xi)| ≤
|qi|Q

|xi − yc| − |yj − yc|
lim
q→∞

(
|yj − yc|
|xi − yc|

)q
+

|qi|QMB

|yc − xc| − |xi − xc|
lim
p→∞

(
|xi − xc|
|yc − xc|

)p
,

= 0,

since

(4.2.42)
|yj − yc|
|xi − yc|

< 1.

and

(4.2.43)
|xi − xc|
|yc − xc|

< 1.

Thus, |E(xi)| → 0 as p, q →∞.

4.3 Algorithm Description

We will now provide a detailed description of the cluster-cluster algorithm (CCMTA).

We have developed two versions of CCMTA, leaf-cluster , and leaf-leaf . The leaf-

cluster algorithm proceeds as particle-cluster with the leaves (the last and smallest

clusters of a branch of the tree) acting as particles. A leaf interacts with other leaves

and other bigger clusters in the tree. The interaction in the leaf-leaf algorithm is

similar to that of direct summation. For leaf-leaf , interactions are limited to between

leaves so there is no interaction between a leaf and a bigger cluster. The leaf-cluster
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algorithm is faster than the leaf-leaf algorithm in our present implementation of the

two algorithms. As such the results presented in this chapter were generated with

the leaf-cluster algorithm. In chapter VI, we will give a brief outline of a possible

way to speed up the leaf-leaf algorithm.

Both algorithms begin by creating the same hierarchical oct-tree with a recursive

subroutine. The subroutine takes in a number of particles, N , and the coordinates

of the box that contains these particles. It then checks whether N > No, where No

is the maximum number of particles in allowed in a leaf. If N > No, the cluster of

particles is divided into at most eight children, however if N ≤ No, then the cluster

is labelled as a leaf. An alternative way for deciding when to divide a cluster is to

specify the maximum number of levels in a tree. Then a cluster is divided only if it

is on a level higher level than the level specified for leaves.

Each newly created cluster computes and stores its geometric center, moments and

the coordinates of its bounding box. In addition, if the cluster is also a leaf, then

it stores its unique leaf number used to identify that leaf. The unique leaf numbers

range from 1 to the total number of leaves. The initial call to the subroutine is with

the full system with all the particles.

Equation 4.1.14 and Equation 4.1.17 give the prescription for computing the po-

tential on a particle at xi and the force on the particle respectively. The criterion

for determining whether a particular leaf-cluster interaction shown in Figure 4.1 is

far-field is chosen to be,

(4.3.1)
rA + rB

R
≤ θ,

where rA and rB are the radii of leaf A and cluster B respectively, R is the distance

between the centers of A and B and θ < 1. This criterion, also used in [17], was found

empirically to yield better efficiency for CCMTA than the original particle-cluster
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criterion, rB
R

.

We have found CCMTA to be at about twice as fast as a particle-cluster multipole

treecode algorithm for the free space Coulomb potential with comparable accuracy.

This decrease in cpu time for CCMTA can be attributed to several efficiencies inher-

ent to the algorithm.

• For CCMTA, the ak(xc−yc) coefficients are computed only once per leaf unlike

particle-cluster where the coefficients are computed for each particle in a cluster.

• The bk coefficients in Equation 4.1.14 and defined in Equation 4.1.15 are the

same for each particle in a leaf. Hence, these bk’s are summed up over all

of a leaf’s multipole interactions before computing the power series in Equa-

tion 4.1.14 for each particle. Say a leaf interacts via multipole approximation

with Nm clusters. By summing up the bk coefficients for all Nm clusters, we

only compute one power series for each particle instead of N ·m. Each pth or-

der power series has O(p3) multiplications, hence we perform O(p3) operations

instead of O(N ·m · p3) operations.

• The power series in Equation 4.1.14 costO(p3) to evaluate because it is efficiently

computed with a 3-dimensional Horner’s rule. A naive computation will cost

O(p4).

• We are also able to employ Newton’s 3rd law, that action and reaction are equal

and opposite, for the direct summation in the near-field which is not possible

for particle-cluster.

4.3.1 Leaf-Cluster Algorithm

The subroutine Compute Interaction computes the potential energy and the

force on particles.



86

Subroutine Compute Interaction

Do i = 1, Number of leaves

bk = 0
Call Compute bk(leaf.i,root,bk) to compute bk coefficients

Compute Interactions between particles in leaf.i directly

Call Compute Power Series(leaf.i,bk) to compute potential energy

and forces using power series.

End Do

Total Potential = 1
2
Total Potential

End Subroutine Compute Interaction

Figure 4.2: The subroutine for computing interactions in the leaf-cluster algorithm.

The subroutine Compute bk(leaf.A,cluster.B,bk) is a recursive routine that

takes in the target leaf A, the cluster B and the coefficients bk. It sums up the bk

over all the multipole interactions of a leaf. It also computes the potential energy

and forces in the near-field.

Recursive Subroutine Compute bk(leaf.A,cluster.B,bk)

If multipole acceptability criterion is satisfied

Compute bk due to cluster.B and add to the present bk.

else

if cluster.B has no children

If leaf number (leaf.A) < leaf number (cluster.B)

Compute interaction between leaf.A and cluster.B by direct

summation

else

Do i = 1, number of children of cluster.B

Call Compute bk(leaf.A,cluster.B.child(i),bk)

End Do

end if

End if
End Subroutine Compute bk

Figure 4.3: The subroutine for computing the bk coefficients for the power series in
the leaf-cluster algorithm.

When Compute bk decides that a cluster.B is a leaf, we perform a further check

leaf number of leaf.A < leaf number of cluster.B to ensure that we do not

compute the direct interactions twice. This is because if leaf number (leaf.A)
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> leaf number (leaf.B), then we would have accounted for the interactions al-

ready using Newton’s third law, since the loop in Compute Interaction goes from

the lowest leaf number to the highest. We can use Newton’s third law because

our system is uniformly distributed. If a target leaf A interacts with a leaf B dur-

ing the subroutine call Compute bk(leaf.A,root,bk) in Figure 4.2, then the call

Compute bk(leaf.B,root,bk) where leaf B is the target leaf will result also result

in an interaction between leaf A and leaf B. To avoid duplicating the interactions we

check the leaf numbers of the leaves. The interaction is performed at the first instance

when it occurs and avoided at the second instance. The case when leaf number

of leaf.A = leaf number of cluster.B is handled inside Compute Interaction

where the interactions between particles in a leaf are computed directly, also making

use of Newton’s third law.

The part of potential energy and forces contributed by the far-field multipole inter-

actions are computed using power series of order p, by the subroutine Compute Power Series

which employs a three-dimensional Horner’s rule. The power series for the force fol-

lows the same pattern as the potential energy with the order of the power series for

the force in Equation 4.1.17 one less than the order of power series for the potential

energy in Equation 4.1.14. In order to be able to use the same loop for both the po-

tential energy and the force, when k1 = 0, or k2 = 0, or k3 = 0, xi1−xc1 , or xi2−xc2 ,

or xi3 −xc3 is set to 1 respectively. This also avoids potential division by small num-

bers which can cause severe numerical instabilities. Compute Power Series takes

in a leaf and the summed up bk coefficients of the leaf where the particles in the leaf

range from i = ileaf1 to ileaf2.
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Subroutine Compute Power Series(leaf.i,bk)

Do i =ileaf1, ileaf2

dx = xi1 − xc1; dy = xi2 − xc2; dz = xi3 − xc3
dx0 = dx; dy0 = dy; dz0 = dz

tbk = b0,0,p; peng = tbk
f(1) = 0; f(2) = 0; f(3) = p · tbk
Do k3 = p− 1,0,-1
tbk = b0,p−k3,k3; ty = tbk
xf2 = 0; yf2 = (p− k3) · tbk; zf2 = k3 · tbk
Do k2 = p− 1− k3,0,-1

tbk = bp−k3−k2,k2,k3; tx = tbk
xf1 = (p− k3 − k2) · tbk; yf1 = k2 · tbk; zf1 = k3 · tbk
Do k1 = p− k3 − k2,0,-1

If (k1 = 0) set dx0 = 1
tx = dx · tx+ bk

xf1 = dx0 · xf1 + k1 · bk

yf1 = dx · yf1 + k2 · bk

zf1 = dx · zf1 + k3 · bk

dx0 = dx
End Do

If (k2 = 0) set dy0 = 1
ty = dy · ty + tx
xf2 = dy · xf2 + xf1
yf2 = dy0 · yf2 + yf1
zf2 = dy · zf2 + zf1
dy0 = dy
End Do

If (k3 = 0) set dz0 = 1
peng = dz · peng + ty

f(1) = dz · f(1) + xf12
f(2) = dz · f(2) + yf2
f(3) = dz0 · f(3) + zf2

End Do

V (xi) = V (xi) + qi · peng
Fi,Bx = Fi,Bx − q1 · f(1)
Fi,By = Fi,By − q1 · f(2)
Fi,Bz = Fi,Bz − q1 · f(3)
End Do

End Subroutine Compute Power Series

Figure 4.4: The subroutine for evaluating the power series using 3-D Horner’s rule
leaf-cluster algorithm.
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4.3.2 Leaf-Leaf Algorithm

For the leaf-leaf algorithm, Compute Interaction and Compute bk are slightly

different from that of the leaf-cluster algorithm.

Subroutine Compute Interaction

Do i = 1, Number of leaves

bk = 0
Do j = i+ 1, Number of leaves

Call Compute bk(leaf.i,leaf.j,b
i
k,b

j
k) to compute bi

k and bj
k

coefficients

End Do

Compute Interactions between particles in leaf.i directly

Call Compute Power Series(leaf.i,bk) to compute potential energy

and forces.

End Do

Total Potential = 1
2
Total Potential

End Subroutine Compute Interaction

Figure 4.5: The subroutine for computing the interactions for the leaf-leaf algorithm.

The recursive subroutine Compute bk takes in the two interacting leaves and

their respective bk arrays.

Recursive Subroutine Compute bk(leaf.A,leaf.B,b
A
k ,b

B
k )

If multipole acceptability criterion is satisfied

Compute bA
k due to leaf.B and add to the present bA

k .

Compute bB
k due to leaf.A and add to the present bB

k .

else

Compute interaction between leaf.A and leaf.B by direct

summation

End if
End Subroutine Compute bk

Figure 4.6: The subroutine for computing bk coefficients for the leaf-leaf algorithm.

4.4 Implementation and Comparison with Particle-Cluster

To validate the new cluster-cluster algorithms, we applied the algorithms to com-

pute the Coulomb potential energy and the forces on different sized systems for
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different orders of approximation and compared the result to that of particle-cluster.

We did computations for both the free-space Coulomb potential, and the Coulomb

potential in periodic boundary conditions using a system of CH3Cl molecules.

4.4.1 Coulomb Potential - Free Space

We tested on system sizes

N ∈ {4096, 21952, 39304, 54872, 74088, 125000, 250000, 500000}

each for orders p = q ∈ {6, 8}. The multipole acceptance criterion for the particle-

cluster was set to

(4.4.1) θ =
r

R
= 0.7

which provides an efficient regime for the algorithm. The cluster-cluster algorithms

were tested for

(4.4.2) θ =
rA + rB
R

= 0.8, 0.9.

The tree used for the computation in free space was generated by specifying the

number of levels and recursively dividing the system until the specified level was

attained. This implementation was for both the particle-cluster and the cluster-

cluster algorithms.

We show in Figure 4.7 to Figure 4.11 comparisons between the particle-cluster

and the cluster-cluster algorithms for relative error (Rel. Err.) in energy, root mean

square error (RMSE) in force and cpu time. The exact results for computing these

errors are from direct summation computation.

Figure 4.7 and Figure 4.8 compare the particle-cluster and cluster-cluster algo-

rithms for (θ, p, q) = (0.8, 6, 6) and (θ, p, q) = (0.8, 8, 8) respectively. The cluster-
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cluster algorithms have errors on the order of the errors of the particle-cluster algo-

rithm for all the systems sizes considered. The comparisons of cpu time are shown

in the bottom graph of both figures and more clearly in Figure 4.11. They show that

the leaf-cluster algorithm is about twice as fast as the particle-cluster algorithm.
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Figure 4.7: Comparison of the particle-cluster algorithm to the leaf-cluster and leaf-
leaf algorithms. The cluster-cluster algorithms are comparable in accu-
racy to the particle-cluster algorithm and the leaf-cluster algorithm is
faster than either of the other two.

Figure 4.9 and Figure 4.10 compare the particle-cluster and cluster-cluster al-

gorithms for (θ, p, q) = (0.9, 6, 6) and (θ, p, q) = (0.9, 8, 8) respectively. Again, the

cluster-cluster algorithms have errors on the order of the errors of the particle-cluster
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Figure 4.8: Comparison of the particle-cluster algorithm to the leaf-cluster and leaf-
leaf algorithms. The cluster-cluster algorithms are comparable in accu-
racy to the particle-cluster algorithm and the leaf-cluster algorithm is
faster than either of the other two.

algorithm for all the systems sizes considered. The comparisons of cpu time are

shown in the bottom graph of both figures and more clearly in Figure 4.11. They

show that, in this regime, both the leaf-cluster and leaf-leaf algorithms are faster

than the particle-cluster algorithm.

The major result of this chapter is that for the free-space Coulomb potential, the

cluster-cluster algorithms, in particular the leaf-cluster algorithm, provide compa-

rable accuracy as the particle-cluster algorithm but in about half the time of the
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Figure 4.9: Comparison of the particle-cluster algorithm to the leaf-cluster and leaf-
leaf algorithms. The cluster-cluster algorithms are comparable in accu-
racy to the particle-cluster algorithm and the leaf-cluster algorithm is
faster than either of the other two.

particle-cluster algorithm.
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Figure 4.10: Comparison of the particle-cluster algorithm to the leaf-cluster and leaf-
leaf algorithms. The cluster-cluster algorithms are comparable in ac-
curacy to the particle-cluster algorithm and the leaf-cluster algorithm
is faster than either of the other two.
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Figure 4.11: These are the same cpu time plots in figures 4.7 to 4.10. They show
clearly that the leaf-cluster algorithm is faster than the particle-cluster
and leaf-leaf algorithms for the current implementations.
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4.4.2 Coulomb Potential - Periodic Boundary Conditions-Ewald Sum

Here, we present results for the leaf-cluster algorithm implemented for the Ewald

sum and compare the results to the particle-cluster Cartesian Treecode Ewald method

and the Particle Mesh Ewald method. For both methods, we employ a multipole

acceptability criterion of

(4.4.3) θ =
rA + rB
R

= 0.7,

for the same orders (p, q) of the multipole approximation with q = p.
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Figure 4.12: The top row compares the relative error in energy of the two algorithms

and the bottom row compares the cpu times of the two algorithms with
the cpu times for PME. The left column results are for multipole or-
der 0 and the right column for multipole order 2. For both orders the
leaf-cluster algorithm is comparable to the particle-cluster algorithm in
accuracy but faster. The leaf-cluster algorithm compares more favor-
ably with PME in cpu time than the particle-cluster algorithm.
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Figure 4.12 to Figure 4.13 show that the for the Ewald sum, the cluster-cluster

algorithm is slightly faster than the particle-cluster algorithm for comparable accu-

racy. For low order multipoles p = 0 and p = 2, the cluster-cluster methods are

competitive with the particle mesh Ewald method. Further improvements in the

cluster-cluster methods might lead to better cpu comparisons with the PME method

for higher orders. Chapter VI, will provide some ideas about improving the cluster-

cluster method.
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Figure 4.13: The top row compares the relative error in energy of the two algorithms

and the bottom row compares the cpu times of the two algorithms with
the cpu times for PME. The left column results are for multipole order
4 and the right column for multipole order 6. For both orders the
leaf-cluster algorithm is comparable to the particle-cluster algorithm in
accuracy but faster.
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Figure 4.14: Comparison of particle-cluster CTE-PME hybrid and leaf-cluster CTE-

PME hybrid. The top row compares the relative error in energy of
the two algorithms and the bottom row compares the cpu times of the
two algorithms with the cpu times for PME. The left column results
are for multipole order 0 and the right column for multipole order 2.
For both orders the leaf-cluster algorithm is comparable to the particle-
cluster algorithm in accuracy but faster. The leaf-cluster algorithm
compares more favorably with PME in cpu time than the particle-cluster
algorithm.

Figure 4.14 and Figure 4.15 show results for the cluster-cluster CTE-PME hybrid

algorithm compared to PME and the particle-cluster CTE-PME hybrid method.

Both CTE variants are slower than the PME algorithm.
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Figure 4.15: Comparison of particle-cluster CTE-PME hybrid and leaf-cluster CTE-

PME hybrid. The top row compares the relative error in energy of the
two algorithms and the bottom row compares the cpu times of the two
algorithms with the cpu times for PME. The left column results are for
multipole order 4 and the right column for multipole order 6. For both
orders the leaf-cluster algorithm is comparable to the particle-cluster
algorithm in accuracy but faster.
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4.5 Conclusion

We have developed the leaf-cluster and leaf-leaf algorithms in this chapter. Both

algorithms are variants of a cluster-cluster formulation. We have given a proof that

the cluster-cluster method has comparable error with particle-cluster for the kernel

φ(x) = 1
|x| and that the error goes to zero as the orders, (p, q) of the approximation

increase. We have also provided computation results which show that the cluster-

cluster algorithm can achieve the same medium accuracy as the particle-cluster al-

gorithm in half the computation time of the particle-cluster algorithm.

In the next chapter we will turn our attention to parallel methods for treecode

algorithms. In particular, we will focus on parallelizing the particle-cluster Carte-

sian Treecode Ewald (CTE) Method presented in chapter II and chapter III for

DL POLY 2 and DL POLY 3. These parallelizations are also suitable for the cluster-

cluster algorithms.



CHAPTER V

Parallel Cartesian Multipole Treecode Algorithms

This chapter presents our work on parallelizing the Cartesian treecode method.

The parallelization is suitable for both periodic and non-periodic systems, however,

we present results for only the periodic system, i.e. Ewald sums.

The literature on parallel algorithms for particle methods based on hierarchi-

cal clustering is extensive. The Fast Multipole Method has been parallelized on

distributed systems with load balancing achieved via the replicated data strategy

[31] and Hilbert space filling curves [34]. Several parallelizations of the Barnes-Hut

treecode have used orthogonal recursive bisection [48, 20, 58] to load balance the

computation and communication costs.

The load balancing in our parallel treecode algorithms is restricted to the ap-

proaches taken in DL POLY 2 and DL POLY 3 since the goal was to incorporate

the algorithm into these two packages.

All the results presented here are from runs on a Quad-core Intel Xeon cluster

with Gigabit Ethernet connection using the Intel Fortran compiler.

5.1 Replicated Data Strategy - DL POLY 2

The first parallel treecode algorithm we implemented was for DL POLY 2 which

uses the replicated data strategy (RDS) to load balance. The replicated data strategy

101
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refers to the fact that each processor stores a copy of all the atoms in the system.

A variant of our replicated data strategy based algorithm is presented in [39]. The

main difference in our implementation for DL POLY 2 from the implementation in

[39] is in load balancing. In [39], load balancing is achieved by grouping the atoms

using Morton order to form a 1-D list. The groups are split over the processors in

order to achieve similar computational load for each processor based on the computa-

tional cost from the previous timestep. Our approach is much simpler since our focus

was on liquids which have uniform distribution. For the particle-cluster algorithm,

we split the atoms equally over all the processors with the understanding that the

computational load will be the same for each atom precisely because of the uniform

distribution.

For the leaf-cluster algorithm, we split the leaves equally over the processors. This

also results in roughly equal work for each processor since the leaves have roughly

the same number of atoms.

Each of the N atoms in DL POLY is labeled with a unique number iatm where

iatm ∈ {1, 2, ..., N}. For a distributed parallel system of P processors where each

processor has a rank np ∈ {0, 1, 2, .., P − 1}, the algorithm proceeds as follows.

• Build a full tree on each processor. This is possible because each processor

stores a copy of all the atoms.

• Assign each processor a subset of the atoms. A processor p is assigned the atoms

labeled from iatm = np∗N
P

to iatm = (np+1)∗N
P

. For the leaf-cluster algorithm,

if the total number of leaves formed from the tree is LT , then processor p is

assigned the leaves labeled from ileaf = np∗LT
P

to ileaf = (np+1)∗LT
P

.

• For each processor, traverse the tree for each atom or leaf in the subset assigned
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to the processor in order to compute the potential energy and the forces on the

atoms. The computational work is load balanced because each processor has

the same number of atoms.

• After the interactions, the algorithm performs a global sum over all processors

to compute the total potential.

The replicated data strategy is simple to code, easily adaptable from serial code and

easy to reduce to a serial code [59]. The parallelization is independent of distribution

of atoms and thus the efficiency does not depend on whether the system is isotropic

or not.

Despite these advantages, the replicated data strategy has quite significant draw-

backs [59, 54]. The major limitations are

• An inability to handle large systems because of large memory requirements for

storing a copy of all atoms.

• The global summation also reduces efficiency for large number of processors on

the order of P > 102.

The inability of the replicated data strategy to handle large systems necessitated

the development of the domain decomposition [44] approach to load balancing which

will be explained shortly.

We now present the scaling results for the parallel Cartesian treecode method load

balanced via the replicated data strategy.

5.1.1 Results

We parallelized the Cartesian treecode Ewald method introduced earlier in Chap-

ter II and run tests of a few systems with θ = 0.7 and the cutoff rc = L
2
. Figure 5.1
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and Figure 5.2 show the scaling for the particle-cluster and leaf-cluster variants re-

spectively for N = 21952 atoms on up to 64 processors. The figures show that both

parallel algorithms have almost perfect scaling up to 64 processors.
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Figure 5.1: Scaling of parallel particle-cluster CTE using the RDS method for N =
21952 atoms, θ = 0.7 and rc = L

2
. The figure shows almost perfect scaling

for up to 64 processors.

We expect that the scaling will deteriorate for increasing number of processors for

a constant system size because of an increase in communication.

5.2 Domain Decomposition - DL POLY 3

Domain decomposition (DD) [44, 59, 54, 27] is the basis for load balancing in

DL POLY 3. It is a strategy for parallelizing the linked cell method of Hockney

and Eastwood [29]. Domain decompostion is appropriate for systems with potentials

which are short range. For DD the simulation box is divided into P equal subrvolumes

for each of the P processors. Each processor works on its assigned subregion and
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Figure 5.2: Scaling of parallel leaf-cluster CTE using the RDS method for N = 21952
atoms, θ = 0.7 and rc = L

2
. The figure shows almost perfect scaling for

up to 64 processors.

there is minimal communcation between processors. The major advantages of domain

decomposition are

• Low memory requirements since each processor stores only a subset of the atoms.

• Ability to handle much larger systems on the order of 107 because of the low

memory requirement.

• Less communication overhead because of the limited all-to-all communication

leading to better efficiency.

Domain decomposition however is not very efficient for systems with long-range

potentials and it is quite complex to code. In addition, DD is not very portable

since different parallel architectures requre different algorithms for subdividing and

assigning subregions to processors. Finally, non-isotropic systems might lead to poor

load balancing for DD. This is because division of the simulation box might result
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in significant disparities in the number of atoms in each subregion as a result of the

non-isotropy.

5.2.1 Domain Decomposition with a Linked Cell Method

The linked cell method enables the rapid and efficient computation of potentials

with a short interaction range compared to the simulation box length.

The simulation box is divided into subcells of length equal to or slightly greater

than the cutoff radius. Then interactions of the atoms in a subcell are restricted

to the subcell and the immediate neighbors of the subcell since these are the only

atoms which will be within the cutoff radius of the atoms. A linked list points to

each subcell and its immediate neighbors while providing access to the particles in

each subcell. If periodic boundaries are employed, the neighbors of subcells at the

edge of the simulation box include the periodic extensions.

DL POLY 3 employs the domain decomposition method due to Rapaport [44]

in order to subdivide the simulation box into the number of processors. The P

processors are assumed to correspond to a space that is subdivided into P = Px ×

Py × Pz subregions. Processor np (0 ≤ np ≤ P − 1) corresponds to the region

{npx, npy, npz} with

npx = bnp/(PyPz)c,(5.2.1)

npy = bnp/Pzc mod Py,(5.2.2)

npz = np mod Pz.(5.2.3)

As an example for P = 16 and (Px, Py, Pz) = (4, 2, 2) the Table below shows the

subregion for each processor np.
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np = 0 {0, 0, 0} np = 4 {1, 0, 0} np = 8 {2, 0, 0} np = 12 {3, 0, 0}
np = 1 {0, 0, 1} np = 5 {1, 0, 1} np = 9 {2, 0, 1} np = 13 {3, 0, 1}
np = 2 {0, 1, 0} np = 6 {1, 1, 0} np = 10 {2, 1, 0} np = 14 {3, 1, 0}
np = 3 {0, 1, 1} np = 7 {1, 1, 1} np = 11 {2, 1, 1} np = 15 {3, 1, 1}

Table 5.1: Triplets indicating the subregion for processor np.

5.2.2 Parallel Cartesian Treecode Algorithm with Domain Decomposition

As we pointed out earlier, domain decomposition is suitable for systems with

short range potential. The Coulomb potential on the other hand is long range and

as such to compute it accurately requires interactions between all atoms. An explicit

atom-atom interaction with DD will then require that all processors send all the

atoms native to the processor to all other processors. This of course will severely

degrade the efficiency of the algorithm because of the communication cost involved.

Our algorithm attempts to decrease the communication cost by aggregating the

information from each processor and sending this information in bulk.

Our algorithm is a first attempt at parallelizing the Cartesian treecode method

with the domain decomposition method. It is by no means the final product. In fact,

we will point out in chapter VI a few ideas to improve the present algorithm. It is

worth noting that the particle-mesh Ewald method has already been parallelized for

DL POLY 3 with the domain decomposition method [9, 55, 56].

The parallelization of the Cartesian treecode method in DL POLY 3 is inspired

by approaches taken in [48, 20, 58]. The major hurdle for the algorithm is providing

each processor with information about all the atoms in the system in order for the

processor to accurately compute the interactions on its native atoms. Naively sending

every atom to every processor eliminates the limited communication advantage of

the DD method and results in large memory requirements as well.

This first implementation of our algorithm uses all-to-all communication between
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processors. We aggregate the coordinates and charge of native atoms in the moments

and center of leaves of subtrees and send this information instead to reduce the

communicaton overhead.

The parallel algorithm proceeds as depicted by Figure 5.3 where P = 16.

15

0

(a) DL POLY 3 updates the atoms on
each processor so that each proces-
sor has about equal number of native
atoms.

0

15
(b) Build subtrees. Store geometric
center (gc) and buffered moments of
leaves (blue boxes).

(c) Each processor sends gc and
buffered moments to every other pro-
cessor. Processor, p = 15 after its re-
ceived all moments and gc.

c

wc

zc

vc

xc

y

]
(d) Each processor builds a full tree.
Leaves from other processors act as
atoms. Traverse full tree to compute
potential and forces on native atoms.

Figure 5.3: Figures (a), (b), (c) and (d) describe the parallel algorithm with DD.

The algorithm as shown in Figure 5.3 proceeds by
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• First building a subtree on each processor with the atoms assigned to the pro-

cessor as shown in Figure 5.3 (b)

• The geometric center (gc) and the buffered moments M̃k of the leaves of each

subtree are then computed. The buffered moments are different from the mo-

ments introduced earlier in Chapter II and will be defined shortly.

• An all-to-all communication is performed to send the leaves of the subtree of

each processor to every other processor. Figure 5.3 (c) shows processor np = 15

with the native atoms and the leaves from the other processors after the all-to-all

communication.

• Build a full tree on each processor consisting of the native atoms and the leaves

from the other processors. The leaves from the other processors serve as pseudo-

particles with their positions given by the geometric center. Figure 5.3 (d) shows

the full tree in processor np = 15 at only the first level.

• Loop over atoms native to the processor and traverse the tree to compute the

potential and forces.

As shown in Figure 5.3 (d), building the full tree requires computing the moments

of clusters which contain leaves from the other processors. The procedure to handle

this is straightforward and we explain it presently. As an example, consider cluster

X shown in Figure 5.4 which contains several clusters including cluster V.

Then the kth moment of cluster X, Mk
X is a sum of the contribution of cluster V

and the contributions of the other particles in cluster X which is given as

Mk
X =

∑
i∈X−V

qi(xi − xc)k +
∑
i∈V

qi(xi − xc)k(5.2.4)

= Mk
X−V +Mk

V(5.2.5)
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c

cx

v

Figure 5.4: Cluster V inside X.

Then

Mk
V =

∑
i∈V

qi[(xi − vc) + (vc − xc)]k(5.2.6)

=
∑
i∈V

qi

||k||∑
||j||=0

(
k

j

)
(xi − vc)k−j(vc − xc)j(5.2.7)

=

||k||∑
||j||=0

(vc − xc)j
(
k

j

)∑
i∈V

qi(xi − vc)k−j(5.2.8)

=

||k||∑
||j||=0

(vc − xc)jM̃k
V(5.2.9)

where the buffered moment of cluster V, M̃k
V, is defined as

(5.2.10) M̃k
V =

(
k

j

)∑
i∈V

qi(xi − vc)k−j.

The buffered moments for the leaves in the subtrees of each processor have to be

computed in their native processors because the particles in cluster V are only present

in the processor to which they are assigned. The algorithm gets access to xc only

after building the full tree.

The moment Mk
V is multidimensional and given as

Mk
V =

||k||∑
||j||=0

(vc1 − xc1)j1(vc2 − xc2)j2(vc3 − xc3)j3
(
k1

j1

)(
k2

j2

)(
k3

j3

)
(5.2.11)

×
∑
i∈V

qi(xi1 − vc1)k1−j1(xi2 − vc2)k2−j2(xi3 − vc3)k3−j3 .
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We store Mk
V in a one dimensional array. For a pth order approximation, the length

of Mk
V is given as

(5.2.12) length(Mk
V) =

1

6!

6∏
i=1

(i+ p).

This means that our algorithm is guaranteed to reduce the communication overhead

of sending all atoms to all processors only if for a cluster size of N0,

(5.2.13) length(Mk
V) < 4N0.

The term 4N0 is the representative cost of sending the 3 coordinates and charge of

each atom of a cluster. For large systems with large N0, the condition in (5.2.13) is

easily attainable.

5.2.3 Results

We present here preliminary results for the domain decomposition based particle

cluster Cartesian treecode Ewald method for system sizesN ∈ {35000, 125000, 500000}.

Relative Error in Energy Cpu time (seconds)
np np

N 1 2 4 8 16 1 2 4 8 16
35000 3e-3 4e-2 5e-2 6e-2 11.0 6.10 4.97 5.25
125000 6e-4 2e-3 6e-3 1e-2 105 47.1 26.3 19.8
500000 9e-5 8e-3 1e-2 1611 206 98.1

Table 5.2: Scaling and accuracy results for parallel CTE with (p, θ) = (6, 0.7). The
number of tree levels was fixed at 4 for all system sizes. We see that the
algorithm scales well but the accuracy decays with increasing number of
processors.

Table 5.2 shows the good scaling of the algorithm up to 16 processors but a dete-

rioration in the accuracy of the method with an increase in the number of processors.

This decay in accuracy is because the current method employs more approximations

with more processors. A particular processor only receives leaves with moments from
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all other processors. As a result, atoms which will ordinarily be in the near field of

a target atom will be treated by multipole approximation if these atoms happen to

be in another processor. This phenomenon increases when the number of processors

increase since a lot more of the neighboring atoms of a target atom will be in other

processors. Of course an increase in the number of atoms results in less deteriora-

tion in the accuracy with increasing number of processors because a target atom

will have more of its neighboring atoms in the same processor as the target atom.

This suggests that for very large systems, the deterioration in accuracy might not be

significant and the algorithm might prove useful in its current form.

The next iteration of this algorithm will focus on refining the communication step

such that atoms in neighboring processors which fall within the near-field of each

other will be treated exactly. A similar idea has been implemented in [20, 48].

We next looked at the communication time involved in the algorithm to study

whether we can achieve comparable communication time for different system sizes.

Figure 5.5 shows results for up to 8 processors. For this limited sample, the com-

munication times for N = 35000 and N = 125000 are roughly comparable. This is

because we picked the same number of levels for both systems and this produces the

same number of leaves in each subtree and hence the same communication overhead.

5.3 Conclusion

We have presented in this section two parallel methods for the Cartesian treecode

multipole algorithm. The first method used a replicated data strategy to load balance

the algorithm since that is the strategy of choice in DL POLY 2. We implemented the

algorithm for the particle cluster and leaf-cluster variants of the Cartesian treecode

Ewald method and incorporated both into DL POLY 2. We have shown that both
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Figure 5.5: Comparable communication overhead for N = 35000 and N = 125000
for maximum tree level 4 and (p, θ) = (6, 0.7). The communication cost
seems to be O(np).

variants of the parallel CTE algorithm scale well up to 64 processors. The algorithm

is limited though because of the large memory requirements.

The second method employed the domain decomposition method used in DL POLY 3.

This algorithm is in the preliminary stages. The initial results suggest promising

speedup and a good control of the communication cost. However, there is more work

to be done to solve the problem of deterioration in accuracy with increasing number

of processors.

The next section presents a summary of the thesis and possible directions for

further research.



CHAPTER VI

Conclusion

6.1 Summary

The first project of this thesis validated the Cartesian Treecode Ewald method

(CTE) as a viable method for performing molecular dynamics simulations. We per-

formed MD simulations of liquid methyl chloride and reproduced the radial distri-

bution, velocity auto-correlation and force auto-correlation functions. These were

compared to results from the Particle Mesh Ewald method (PME) and found to

agree for varying sets of parameters. We also devised a method for handling periodic

boundary conditions for the Cartesian Treecode Ewald method.

We have also done a systematic comparison of the CTE method, PME method

and a CTE-PME hybrid method for computational time and for accuracy in energy,

forces and the virial. These comparisons were performed for system sizes ranging

from 20000 to 500000. We have ascertained that the cpu time for the current imple-

mentation of the CTE method is within an order of magnitude of the PME method

in cpu time for comparable accuracy. We have also observed that the CTE-PME

hybrid method is faster than the CTE method for small systems but slower for large

systems. The present implementations of both methods are however slower than the

PME method.
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The second project developed two versions of a cluster-cluster algorithm. These

are a leaf-cluster algorithm and a leaf-leaf algorithm. We have shown that these

algorithms can achieve the accuracy of the particle-cluster algorithm. The leaf-

cluster algorithm is found to be about twice as fast as the particle-cluster algorithm

with comparable accuracy when both are used to compute the Coulomb potential in

free space. For the Ewald sum, the leaf-cluster algorithm is about 1.5 times faster

than the particle-cluster algorithm.

The third project parallelized the CTE method for DL POLY 2 and DL POLY 3.

Because DL POLY 2 uses a replicated data strategy (RDS) method for load-balancing,

we designed our algorithm to make use of the RDS method. The parallelization is

similar to the parallelization in [39] with the main difference in the approach to split-

ting the particles over the processors. We parallelized both the particle-cluster and

cluster-cluster CTE methods and found both to scale well up to 64 processors from

our test on a system of 21952 atoms.

The parallel CTE algorithm for DL POLY 3 was designed to make use of the do-

main decomposition method which is the method used for load-balancing in DL POLY 3.

We tested the scaling of this algorithm and the accuracy. Although the algorithm

scales well for up to the 16 processors that we tested, the accuracy decays with

increasing number of processors. This is because the proportion of multipole ap-

proximations versus direct summation increases with increasing number of proces-

sors. This algorithm is in the preliminary design stage and we provide ideas about

improving the algorithm in the next section.



116

6.2 Future Directions

Several open problems remain from the work done in this thesis. One such problem

is a comparison of the Cartesian Treecode Ewald method (CTE) to the Particle Mesh

Ewald method (PME) for non-uniform particle distributions. MD simulations are

heavily used in biophysics to study large biomolecules. These biomolecules usually

have non-uniform distribution and yet their electrostatic interactions are handled by

the PME method which is known to be less efficient for non-uniform distributions [27].

The CTE method might prove to be better suited for MD simulation of biomolecules

than the PME method.

There is also the possibility of using the Cartesian treecode method to compute

interactions of Gaussian charge distributions in electron structure calculations as in

the Continuous Fast Multipole Method [60]. This possibility arises because Equa-

tion 2.2.46 gives the potential, erf(αr)
r

, due to a Gaussian charge distribution for

which a suitable recurrence relation can be derived similar to the recurrence relation

for the Gaussian-screened Coulomb potential, erfc(αr)
r

, used in the Ewald method in

Equation 2.4.67.

Another possible direction is a combination of the particle-cluster and cluster-

cluster algorithms. The effect of far-field particles on a target particle decreases with

distance for pair potentials like the Coulomb potential. As a result, the effect of

far-field clusters on a target particle can be computed differently depending on the

distance of the cluster from the target particle. For example, a variable multipole

acceptance criterion (MAC) can be implemented. Then the clusters that are farthest

from the target particle and satisfy a MAC say with

(6.2.1)
rA + rB
R

≤ 0.5,
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are handled by cluster-cluster approximation and clusters that are closer and satisfy

a MAC with

(6.2.2) 0.5 <
rB
R

< 0.8,

are handled by the particle-cluster algorithm. This combined algorithm has the

potential to be faster while achieving high accuracy.

Another open question from this thesis is a possible refinement of the leaf-leaf

algorithm in order to speed up the algorithm. Let us suppose Figure 6.1 shows all

the leaves from the hierarchical clustering of a two dimensional system. Suppose leaf
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Figure 6.1: The figure shows the leaves from a hierachical clustering of a two dimen-
sional system.

1F interacts with leaf 1G via multipole approximation then leaf pairs like (2F ,2G),

(1G,1H), (4E,4) and several others also interact via multipole approximation. The

present algorithm computes the Taylor coefficients ak, where

(6.2.3) ak =
1

k!
Dk

yφ(xA − yB)

which depends on the vector between the centers of each pair, (xA − yB), for each

pair. However, all the pairs given above and several more will have the same vector
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between them and as such the Taylor coefficients need only be computed once and

used for all of these pairs. Similar procedures for several other pairs for example

(1E,4D) can also be implemented. This will undoubtedly lead to a sharp decrease

in the computation time of the leaf-leaf algorithm.

In [39] the spatial locality of data is preserved by Morton ordering. One open

problem is to speed up the treecode algorithm by utilizing the spatial locality of the

data. A loop over particles in the order of particle numbers might be inefficient.

This is because consecutive particles in the loop might actually be spatially far apart

in memory. Accessing data that are far apart in memory leads to large memory

access times and thus slower computation time. Data access from memory is done

in blocks. Thus when the data of a particle is accessed, the data for particles that

are spatially close are also retrieved and placed in cache. A loop over particles that

are spatially close will then lead to fast memory access since the data will be readily

available in cache. Morton order is one such procedure for localizing data spatially.

Another procedure is the Hilbert order which preserves spatial locality better than

the Morton order [28].

For the parallel CTE method which uses domain decomposition, there is still a

lot of improvement possible for the algorithm.

• One such improvement is reducing the communication cost by avoiding the all-

to-all communication. This can be achieved if each processor has knowledge of

coordinates of the sub-volume in every other processor. Then the communica-

tion between processors that are more than the cutoff distance apart will be

eliminated since interactions between their native particles are not significant.

• For processors with sub-volumes which lie within the cutoff, the MAC criterion

can be applied between processors since each processor has knowledge of the
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sub-volume of other processors. If the MAC is satisfied between two processors,

then these processors will exchange the leaves of their respective subtrees. If

the MAC is not satisfied, then the two processors exchange their particles. This

will improve the accuracy of the algorithm by reducing the number of multipole

approximations.

Variants of the ideas for improving the parallel algorithm are detailed in [48, 20, 58,

27]. The algorithm is aimed at large systems of size N > 106 and for large number

of processors 27 ≤ P ≤ 210. Testing the algorithms on systems of these sizes will be

a worthy project as well.
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