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Abstract

Motivated by the need to conserve energy in wireless networks, we study three

stochastic dynamic scheduling problems.

In the first problem, we consider a wireless sensor node that can turn its radio

off for fixed durations of time in order to conserve energy. We formulate finite

horizon expected cost and infinite horizon average expected cost problems to model

the fundamental tradeoff between packet delay and energy consumption. Through

analysis of the dynamic programming equations, we derive structural results on the

optimal policies for both formulations. For the infinite horizon problem, we identify

a threshold decision rule to determine the optimal control action when the queue is

empty.

In the second problem, we consider a sensor node with an inaccurate timer in

the ultra-low power sleep mode. The loss in timing accuracy in the sleep mode can

result in unnecessary energy consumption from two unsynchronized devices trying to

communicate. We develop a novel method for the node to calibrate its timer: occa-

sionally waking up to measure the ambient temperature, upon which the timer speed

depends. The objective is to dynamically schedule a limited number of temperature

measurements in a manner most useful to improving the accuracy of the timer. We

formulate optimization problems with both continuous and discrete underlying time

scales, and implement a numerical solution to an equivalent reduction of the second

x



formulation.

In the third problem, we consider a single source transmitting data to one or more

receivers over a shared wireless channel. Each receiver has a buffer to store received

packets before they are drained. The transmitter’s goal is to minimize total power

consumption by exploiting the temporal and spatial variation of the channel, while

preventing the receivers’ buffers from emptying. In the case of a single receiver, we

show that modified base-stock and finite generalized base-stock policies are optimal

when the power-rate curves are linear and piecewise-linear convex, respectively. We

also present the sequences of critical numbers that complete the characterizations

of the optimal policies when additional technical conditions are satisfied. We then

analyze the structure of the optimal policy for the case of two receivers.
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Chapter 1

Introduction

Energy conservation is well-recognized as a key design issue in wireless networks

in general, and specifically in wireless sensor networks [37]. This is primarily because

such networks are often intended to operate for long periods of time without human

intervention, despite relying only on battery power or energy harvesting. Thus,

energy-efficient design can help to prolong the lifetime of the network, and reduce

cost by avoiding the need for more expensive batteries. A second reason to conserve

energy by transmitting with lower power is to limit potential interference to other

users in the network.

Motivated by this issue, there have been numerous studies on methods to effec-

tively manage energy consumption, while minimizing adverse effects on other quality

of service (QoS) requirements, such as connectivity, coverage, throughput, and packet

delay. Our focus here is on energy-efficiency in the design of network protocols, as

opposed to hardware design. Broadly speaking, energy-efficient network design stud-

ies consider two different aims with regards to energy consumption. The first is to

minimize total energy consumption, and the second is to balance energy consump-

tion across the network. We are primarily concerned with minimizing total energy

consumption.

1



1.1 Overview of Common Energy Conservation Techniques

Some of the most common energy conservation techniques, which may of course

be combined in various ways, include:

1. Limiting the idle time of a radio. When operating in ad hoc mode, a

wireless network node consumes nearly as much energy when idle as it does

when transmitting or receiving [49]. Thus, one way to conserve energy is to

turn a node’s radio off when it is not needed for communication.

2. Limiting repeated retransmissions. Classic ARQ protocols retransmit un-

successfully transmitted packets, even when the current channel condition is

poor. In [174], Zorzi and Rao analyze a more energy-efficient error control

strategy, where the main idea is to be less persistent in retransmitting data.

3. Adjusting transmission powers. In general, an energy-constrained wireless

network node would like to transmit and receive at as low power as possible;

however, competing QoS constraints may force it to do otherwise. In the pres-

ence of such QoS constraints, a designer can conserve energy by cleverly adjust-

ing the transmission powers over time, taking into account factors such as the

statistics and current states of the channels and data. Reference [14] provides

an introduction to some issues that arise in power control in wireless networks,

and we discuss the topic further below.

4. Aggregating data . One technique used to reduce the overall amount of com-

munication in the network is for a node to combine its data and that of other

local sensors into a compressed set of meaningful information. This technique is

referred to as data aggregation or data fusion, and examples of protocols using

2



it include [66] and [78]. Aggregating data may consume extra energy in compu-

tation or data processing, but the idea is that there will still be a net savings

from reducing the total traffic.

5. Adjusting routing . Studies such as [27], [66], [136], and [147] examine how to

adjust the routing paths in a multi-hop network, so as to minimize the energy

consumed per packet sent, maximize the lifetime of the network, or some combi-

nation thereof. A common technique used to balance energy consumption and

maximize the network’s lifetime is to form local clusters of nodes that commu-

nicate to a rotating cluster-head, whose job is to transmit data to the common

destination [66]. Energy can also be conserved by increasing cache efficiency,

in order to reduce the routing overhead. For instance, [136] suggests limiting,

based on the stability of a route, the amount of time the route is stored in the

cache.

6. Sporadic sensing . The above methods all conserve energy in the process of

communicating data. However, one can also try to limit the energy consumed

in sensing. Namely, sporadically sensing might consume less energy than con-

stant monitoring, depending on the application and the sensing equipment [3].

One example of such an application that controls when sensor measurements

are taken is a smart sensor web technology for measurements of soil moisture,

presented in [108], [109], [110], and [141].

1.2 Scope and Organization of the Thesis

The problems we consider in this thesis all fall into the broader class of resource

allocation problems, where a centralized decision maker or scheduler must allocate a

scarce and/or costly resource in a judicious manner. The primary resource of concern

3



in our problems is energy. We formulate mathematical models of wireless commu-

nication systems that feature: (i) inherent uncertainty; and (ii) variables that can

be controlled over time by the decision maker in order to optimize pre-determined

performance criteria. This analytical approach results in stochastic dynamic opti-

mization problems, which we analyze using tools from Markov decision theory (see,

e.g., [89]).

Of the six energy conservation techniques mentioned in the previous section, we

focus in this thesis first on limiting the amount of time a radio is powered on but not

actively transmitting or receiving, and second on adjusting transmission powers.

1.2.1 Limiting the Idle Time of a Radio

One obvious cause of radio idling is a lack of data to be communicated. Accord-

ingly, many studies have examined the possibility of conserving energy by turning

nodes on and off periodically, a technique commonly referred to as duty-cycling. Of

particular note, GAF [167] makes use of geographic location information provided

for example by GPS to decide which nodes to turn off; ASCENT [26] programs the

nodes to self-configure based on the local traffic and routing backbone; Span [31] is

a distributed duty-cycling algorithm featuring local coordinators; and PEAS [168] is

another protocol to dynamically adjust sleep periods that is specifically intended for

nodes with constrained computing resources that operate in harsh or hostile environ-

ments. While the salient features of these studies are quite different, the analytical

approach is similar. For the most part, they discuss the qualitative features of the

algorithm, and then perform numerical experiments to arrive at an energy savings

percentage over some baseline system.

In Chapter 2, we also consider a wireless sensor network whose nodes sleep pe-

riodically; however, rather than evaluating the system with a given sleep control

4



policy, we impose a cost structure and search for an optimal policy amongst a class

of policies. In order to approach the problem in this manner, we need to consider a

far simpler system than those used in the aforementioned studies. Thus, we consider

only a single sensor node and focus on the tradeoff between energy consumption and

packet delay. This sleep scheduling work also appears in [138] and [139].

A second cause of radio idling is lack of synchronization. Consider the following

simple example. Two nodes in a wireless sensor network are trying to communicate.

The clocks on each sensor node are inaccurate, and their drifts depend on environ-

mental influences, such as temperature and supply voltage variations. The first node

turns its radio on to send data, but it has woken up before the scheduled meeting

time. The sender’s radio idles while waiting for the second node to turn on its ra-

dio. The result of their poor synchronization is higher energy consumption, as the

sender’s radio is powered on for longer than necessary. A similar but more detailed

example, with specific estimates of typical drifts is given in [44].

Examples of studies that present synchronization methods specifically targeted at

wireless sensor networks include [43], [123], and [146]. In these and other such algo-

rithms, nodes synchronize by using the content and timing of exchanged messages to

determine the difference in their local times. For an overview of such synchroniza-

tion algorithms, as well as a comparison between those synchronization techniques

designed for traditional networks and those designed for wireless sensor networks,

see [44], [148], and [153].

In Chapter 3, we examine a novel method to improve synchronization. Namely,

we configure a wireless sensor node to use ambient temperature measurements to

calibrate its own clock. This method is complementary to the existing work in

synchronization, and could potentially be used in combination with existing syn-

5



chronization algorithms built around message exchanging. This work also appears

in [143].

1.2.2 Adjusting Transmission Powers

Due to random fading, wireless channel conditions vary with time and from user

to user. The amount of power required to transmit a fixed amount of data is a

function of the condition of the channel. Specifically, a better channel condition

allows the sender to reliably transmit the same amount of data with less power.

The key realization from a transmission scheduling perspective is that these channel

variations are not a drawback, but rather a feature to be beneficially exploited.

Namely, transmitting more data when the channel between the sender and receiver

is in a “good” state, and less data when the channel is in a “bad” state increases

system throughput and reduces total energy consumption. Doing so is commonly

referred to as opportunistic scheduling.1

In Chapter 4, we provide an introduction to opportunistic scheduling, discuss

key modeling issues, and review the existing literature. In Chapter 5, we consider

the problem of energy-efficient transmission scheduling subject to strict underflow

constraints. We then compare one instance of this problem to related energy-efficient

transmission scheduling problems with strict deadlines in Chapter 6. The wireless

communication model of Chapter 5 corresponds closely with models from inventory

theory. In Chapter 7, we take a closer look at the role of stochastic prices in inventory

theory. Work on this energy-efficient transmission scheduling problem also appears

in [140], [144], [142], and [145].

1Opportunistic scheduling problems are also referred to as multi-user variable channel scheduling problems [7].
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1.3 Contribution of the Thesis

In this section, we discuss the main contributions of this thesis. We formulate the

problems discussed in the previous section as Markov decision processes (MDPs),

and the main tool we use to analyze them is dynamic programming. Most of the

problems we consider feature a countably or uncountably infinite state and/or ac-

tion space. Therefore, unlike finite MDPs, they cannot in general be numerically

solved exactly via dynamic programming, and suffer from the well-known curse of

dimensionality [35, 124]. In any case, our primary aim in tackling these problems

is to analyze the dynamic programming equations in order to (i) determine if there

are circumstances under which we can analytically derive optimal solutions; and

(ii) leverage our mathematical analysis and results on the structures of the optimal

scheduling policies to improve our intuitive understanding of the problems.

The mathematical abstractions we construct are all developed with specific wire-

less communications applications in mind; however, the formulations are general

enough that our results and techniques may find applications in other domains as

well.

As discussed in Section 1.2, the problems we consider all fall into the class of

stochastic dynamic resource allocation problems featuring energy as the primary

resource of concern. However, the competing QoS interests are different in each

of the problems. In the sleep scheduling problem, the competing QoS interest is

average packet delay, which is likely to increase with the amount of time the node

spends conserving energy in the sleep mode. Packet delay is also the competing QoS

interest in the transmission scheduling problem; however, rather than average delay,

we consider strict deadline constraints by which the packets must be transmitted. In

7



Chapter 3, the competing QoS interest is clock calibration accuracy.

The nature of the contribution also differs across the problems we consider.

Whereas the bulk of the contribution in the sleep scheduling and transmission schedul-

ing problems lies in the technical analysis of the models and resulting insights, the

main contributions in the clock calibration problem are the novel engineering ap-

proach and problem formulation.

We now elaborate on the specific contributions of each chapter. In Chapter 2, we

consider a single wireless sensor network node that can be put to sleep to conserve

energy. We formulate finite horizon expected cost and infinite horizon average ex-

pected cost problems to model the fundamental tradeoff between packet delay and

energy consumption. For the infinite horizon problem, we completely characterize

the optimal stationary policy, and show that the optimal control at the boundary

state (when the queue is empty) is determined by a threshold decision rule that is a

function of the problem parameters. For the finite horizon problem, we characterize

the optimal control action when the queue is non-empty and when the queue is empty

towards the end of the time horizon. We also show that due to “end-of-horizon” ef-

fects, the optimal control action at the boundary state may not be monotonic in

time; however, we conjecture that it has one of three simple structures, depending

on the problem parameters.

In Chapter 3, we consider an ultra-low power sensor node with an inaccurate

timer in the sleep mode. We develop a novel method for the node to calibrate its own

clock by occasionally waking up to take ambient temperature measurements. The

objective is to dynamically schedule a limited number of temperature measurements

in a manner most useful to improving the accuracy of the timer. We formulate

the temperature measurement scheduling as both a partially observed semi-Markov

8



decision process (POSMDP) with a continuous underlying time scale and a partially

observed Markov decision process (POMDP) with a discrete underlying time scale

(when extra technical assumptions can be made), and show that both problems can

be reduced to finite state, finite action, finite horizon MDPs. We then implement a

numerical solution to the MDP resulting from the second formulation. The numerical

solution computes the optimal scheduling policy and resulting expected energy costs

for low dimensional instances of the problem.

In Chapter 5, we formulate the task of energy-efficient transmission scheduling

subject to strict underflow constraints as three different Markov decision problems,

with the finite horizon discounted expected cost, infinite horizon discounted expected

cost, and infinite horizon average expected cost criteria, respectively.

We begin by showing that in the case of a single receiver under linear power-rate

curves, the optimal policy is an easily-implementable modified base-stock policy. In

each time slot, it is optimal for the sender to transmit so as to bring the number of

packets in the receiver’s buffer level after transmission as close as possible to a target

level or critical number. The target level depends on the current channel condition,

with a better channel condition corresponding to a higher target level. We also

show in Chapter 6 that the strict underflow constraints may cause the scheduler to

be less opportunistic than it otherwise would be, and transmit more packets under

“medium” channel conditions in anticipation of deadline constraints in future time

slots.

We generalize this result in two different directions. First, we relax the assumption

that the power-rate curves under each channel condition are linear, and model them

as piecewise-linear convex to better approximate more realistic convex power-rate

curves. Under piecewise-linear power-rate curves, we show the optimal policy is
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a finite generalized base-stock policy, and provide an intuitive explanation of this

structure in terms of multiple target levels in each time slot. In addition to the

structural results on the optimal policy for the case of a single receiver under either

linear or piecewise-linear convex power-rate curves, we provide an efficient method

to calculate the critical numbers that complete the characterization of the optimal

policy when certain technical conditions are satisfied.

The second generalization of the single receiver model under linear power-rate

curves is to a single user transmitting to two receivers over a shared wireless channel.

In this case, we state and prove the structure of the optimal policy, and show how

the peak power constraint in each slot couples the optimal scheduling of the two

receivers’ packet streams.

In all three setups, we prove that the structure of the optimal policy in the finite

horizon discounted expected cost problem extends to the infinite horizon discounted

and average expected cost problems.

Throughout the analysis, we make a novel connection with inventory models that

may prove useful in other wireless transmission scheduling problems. Because the

inventory models corresponding to our wireless communication models have not been

previously examined, our results also represent a contribution to the inventory theory

literature. Specifically, this is the first work we are aware of to consider multi-item

inventory models with joint resources constraints and random ordering costs. In

Chapter 7, we discuss why this class of models merits its own analysis, as compared

to the more commonly considered multi-item inventory models with joint resource

constraints and deterministic ordering costs.
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1.4 Notational Conventions

Before proceeding, we introduce some notation. We define IR+ := [0,∞), IR++ :=

(0,∞), Z+ := {0, 1, 2, . . .}, and IN := {1, 2, . . .}. The indicator function is defined

as:

11{statement} :=











1, if the statement is true

0, otherwise

.

We also define the function:

[x]+ :=











x, x ≥ 0

0, otherwise

.

A single dot, as in a · b, represents scalar multiplication. In general, we denote

random variables and vectors by capital letters and their realizations by lowercase

letters. We use bold font to denote column vectors, such as w = (w1, w2, . . . , wM).

We include a transpose superscript whenever a vector is meant to be a row vector,

such as wT. The notations w � w̃ and w � w̃ denote component-wise inequalities;

i.e., wm ≤ (respectively, ≥) w̃m, ∀m. Finally, we use the standard definitions of the

meet and join of two vectors. Namely,

w ∧ w̃ =
(

w1, w2, . . . , wM
)

∧
(

w̃1, w̃2, . . . , w̃M
)

:=
(

min
{

w1, w̃1
}

,min
{

w2, w̃2
}

, . . . ,min
{

wM , w̃M
}

)

,

and w ∨ w̃ =
(

w1, w2, . . . , wM
)

∨
(

w̃1, w̃2, . . . , w̃M
)

:=
(

max
{

w1, w̃1
}

,max
{

w2, w̃2
}

, . . . ,max
{

wM , w̃M
}

)

.

In terms of notational consistency, the thesis is separated into three sections:

Chapter 2, Chapter 3, and Chapters 4-7. Within these three groups, a symbol has

the same meaning; however, the same symbol may have different meanings across

the groups (for example, d has a different meaning in Chapter 2 and Chapter 5).
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Chapter 2

Optimal Sleep Scheduling for a Wireless Sensor

Network Node

2.1 Introduction

In this chapter, we restrict our attention to a single node in a wireless sensor

network. The node has the option of turning its transmitter and receiver off for

fixed durations of time in order to conserve energy by limiting the idle time of the

radio. Doing so results in additional packet delay. Thus, the focus of this study is

on the fundamental tradeoff between delay and energy consumption. As such, we do

not consider other quality of service measures such as connectivity or coverage. We

attempt to identify the manner in which the optimal (to be defined in the following

section) sleep schedule varies with the length of the sleep period, the statistics of

arriving packets, and the charges assessed for packet delay and energy consumption.

The only other works we are aware of that take a similar approach are by Sarkar

and Cruz, [128] and [129]. These studies consider a similar set of assumptions to

our model, with the notable exceptions that a fixed cost is incurred for switching

between the sleep and awake modes, and the duration of the sleep periods is flexible.

The authors formulate an optimization problem and proceed to numerically solve

the optimal duration and timing of sleep periods through a dynamic program.
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Our model of the duty-cycling node falls into the general class of vacation models.

Applicable to a wide range of problems from machine maintenance to polling systems,

vacation models date back to the late 1950s. Many important results on vacation

models in discrete time can be found in [4] and [154]. Reference [60] was the first

study to analyze the steady-state distribution of the queue length and unfinished

work of the Geo/D/1 queue, which is the uncontrolled analog to the controlled queue

in our system. Reference [131] extends these results to the Geo/D/1 queue with

priorities.

Within the class of vacation models, we are particularly interested in systems re-

sulting from threshold policies; i.e., control policies that force the queue to empty out

and then resume work after a vacation when either the queue length or the combined

service time of jobs in queue (learned upon arrival of jobs to the system) reaches a

critical threshold. The introduction of [47] provides a comprehensive overview of

the results on different types of threshold policies. Of these models, [47] is the

most relevant to our model, and we discuss it further in Section 2.4.5. The relevant

discrete-time infinite horizon optimization results are covered in [12] and [133], and

are discussed further in Section 2.4.1.

The rest of this chapter is organized as follows. In the next two sections, we

describe the general system model and formulate the finite horizon expected cost

and infinite horizon average expected cost optimization problems. In Section 2.4,

we provide a brief review of some key results in average cost optimization theory for

countable state spaces, and then characterize completely the optimal sleep policy for

the infinite horizon problem. In Section 2.5, we partially characterize the optimal

sleep policy for the finite horizon problem, and present two conjectures concerning

the optimal control at the one state for which we have not yet specified the optimal

13



action. Section 2.6 concludes the chapter.

2.2 Problem Description

The single node is modeled as a single-server queue that accepts packet arrivals,

stores them in a buffer, and transmits them over a reliable channel. In order to

conserve energy, the node goes to sleep (turns off its transceiver) from time to time.

While asleep, the node is unable to transmit packets; however, packets continue to

arrive at the node. This results in a queueing system with controlled vacations. We

consider time evolution in discrete steps. Slot t refers to the slot defined by the

interval [t, t+ 1).

In general, switching on and off is also an energy consuming process [137]. There-

fore, we want to avoid changing modes too frequently. There are different ways to

incorporate this goal into the model. One is to charge a switching cost whenever

we turn on the node. In this study, instead of charging the node for switching, we

require that when the node is put to sleep, it must remain asleep for N time slots.

We model the packet arrival process, {At}t=0,1,..., as a Bernoulli process with

success probability p. Packets arriving in one slot may not be transmitted until the

following slot. Only one packet may be transmitted in each slot, and we assume

transmission is successful with probability one (w.p.1).

Even while asleep (i.e., the radio is off), the node accurately learns its current

queue size at each time t. When awake, the node decides whether to remain awake

(and transmit a packet if the queue is non-empty) or go to sleep for N slots. This

decision is based on the current backlog information, as well as the current time slot.

See Fig. 2.1 for a diagram of the system.

There are two objectives in determining a good sleep policy. One is to minimize
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Asleep

Awake

Time

Node Status

N

Figure 2.1. System model for the sleep scheduling problem.

the packet queueing delay and the other is to conserve energy in order to extend the

node’s lifetime. Accordingly, our model assesses a constant, positive cost c to each

backlogged packet in each slot, and a constant positive cost d in each slot in which

the node remains awake.

2.3 Problem Formulation

We consider two distinct problems. The first, Problem (P2.1), is the infinite

horizon average expected cost problem. The second, Problem (P2.2), is the finite

horizon expected cost problem. The two problems feature the same information

state, action space, system dynamics, and cost structure, but different optimization

criteria.

For both problems, the system dynamics are given by:

Xt+1 =



































[

Bt+At

St−1

]

, if St > 0

[

Bt+At

N−1

]

, if St = 0 & Ut = 0

[

[Bt−1]++At

0

]

, if St = 0 & Ut = 1

(2.1)

Here, the information state, Xt, is a two-dimensional vector that tracks both the

current queue length, Bt, and the current sleep status, St, which denotes the number
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of slots remaining until the node wakes up (St = 0 means the node is awake). It

belongs to the state space X := Z+×{0, 1, . . . , N − 1}. Given the current state, Xt,

the probability of transition to the next state, Xt+1, depends only on the random

arrival, At, and the sleep decision, Ut. Thus, model (2.1) is a completely observed

controlled Markov chain with a time-invariant matrix of transition probabilities,

P(u).

Note that when the node is asleep (St > 0), the only available action is to continue

to sleep (Ut = 0); however, when the node is awake (St = 0), both control actions are

available, with Ut = 0 representing going to sleep for the next N slots, and Ut = 1

representing staying awake. The feasible action space at state x is denoted by U(x).

At the beginning of the time horizon of T slots, the node is awake and the initial

queue length is given by the random variable B0. We assume B0 ≤ b̄, some arbitrary

but fixed upper bound, with probability 1. We also assume the node’s buffer size is

infinite.

Finally, we present the optimization criterion for each problem. For Problem

(P2.1), we wish to find a sleep control policy π that minimizes Jπ, defined as:

Jπ := lim sup
T→∞

1

T
· IEπ

{

T−1
∑

t=0

{c ·Bt + d · Ut} | F0

}

. (2.2)

In Problem (P2.2), the cost function for minimization is Jπ
0 , where the expected

cost-to-go at time t, Jπ
t , is defined as:

Jπ
t := IEπ

{

T
∑

k=t

{c ·Bk + d · Uk} | Ft

}

. (2.3)

In both cases, we allow the sleep policy π to be chosen from the set of all randomized

and deterministic control laws, Π, such that Ut = πt

(

Xt, U t−1
)

, ∀t, where Xt :=

(X0,X1, . . . ,Xt) and U
t−1 := (U0, U1, . . . , Ut−1). Ft denotes all information available

at time t.
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In the next two sections, we study the infinite horizon (P2.1) and finite horizon

(P2.2) problems, respectively.

2.4 Analysis of the Infinite Horizon Average Expected Cost
Problem

In this section, we characterize the optimal sleep control policy π∗ that mini-

mizes (2.2). We begin by showing the existence of an optimal stationary Markov

policy. We then show that the optimal policy is a threshold policy of the form: stay

awake if and only if S = 0 and B ≥ κ∗, where κ∗ = 0 (never sleep) or κ∗ = 1 (sleep

only when the system empties out), depending on the parameters N , p, c, and d. As

a matter of notation, we refer to the threshold policy with κ∗ = 0, often called the

“0-policy,” as π0, and the threshold policy with κ
∗ = 1, often called the “1-policy,”

as π1 [47].

2.4.1 Conditions Guaranteeing the Existence of an Optimal Stationary
Markov Policy

Due to the assumption of an infinite buffer size, the controlled Markov chain in

Problem (P2.1) has a countably infinite state space. Recall that for such systems, an

average cost optimal stationary policy is not guaranteed to exist. See [133, pp. 128–

132] for such counterexamples. However, [133] also presents sufficient conditions for

the existence of an average cost optimal stationary policy. We recall these conditions

below and then show that the (BOR) set of assumptions is satisfied by Problem

(P2.1) in the next subsection.

Theorem 2.1 (Sennott). Assume that the following set (BOR) of assumptions holds

(notations are explained following the theorem):

(BOR1) There exists a z-standard policy g with positive recurrent class Rg.
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(BOR2) There exists ε > 0 such that G = {i|C̄(i, u)≤Jg + ε for some u} is a finite

set.

(BOR3) Given i ∈ {G−Rg}, there exists a policy θi ∈ <
∗(z, i).

Then there exists a finite constant J and a finite function h, bounded below in i such

that:

J + h(i) = min
u∈U(i)

{

C̄(i, u) +
∑

j

Pij(u) · h(j)

}

, ∀i ∈ X .

Moreover, a stationary policy e satisfying:

C̄(i, e(i)) +
∑

j

Pij(e(i)) · h(j) = min
u∈U(i)

{

C̄(i, u) +
∑

j

Pij(u) · h(j)

}

= J + h(i), ∀i ∈ X

is average cost optimal.

Remarks on Theorem 2.1: A Markov chain is said to be z-standard if there exists

a distinguished state z such that the expected first passage time and expected first

passage cost from state i to state z are finite for all i ∈ X . A (randomized or

stationary) policy g is said to be a z-standard policy if it induces a z-standard Markov

chain. C̄(i, u) is the one slot cost incurred at state i under control action u. Pi,j(u) =

Pr (Xt+1 = j | Xt = i, Ut = u). Jg is the average cost per unit time under policy g.

<∗(z, i), where z refers to the distinguished state mentioned above, is the class of

policies θ such that:

(i) Prθ(Xt = i, for some t ≥ 1|X0 = z) = 1.

(ii) The expected time of first passage from z to i is finite.

(iii) The expected cost of first passage from z to i is finite.

The constant J represents the minimum average cost per unit time. Note that

under the (BOR) assumptions, the minimum average cost is constant and therefore
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independent of the initial state. This is not true in general, even when an optimal

policy exists. References [12] and [121] interpret the function h as a rough measure

of how much we would pay to stop the process, but continue to incur a cost of J per

slot thereafter. In this manner, h can be viewed as a cost potential function.

2.4.2 Existence of an Optimal Stationary Markov Policy in
Problem (P2.1)

We now show that the hypotheses of Theorem 2.1 are met by our model.

Lemma 2.2. Problem (P2.1) satisfies the (BOR) assumptions of Theorem 2.1, and

therefore, there exists an optimal stationary policy π∗ that minimizes (2.2).

Proof. Let the distinguished state z be
[

0
0

]

(the node is awake and the queue is

empty). Consider the policy π0 of never sleeping. Given a fixed but arbitrary initial

state
[

b0
0

]

, the policy π0 induces a finite state Markov chain with a single positive

recurrent class. In particular, the finite set of transient states is

Tπ0 =

{[

b0
0

]

,

[

b0 − 1

0

]

, . . . ,

[

2

0

]}

,

the set of recurrent states is

Rπ0 =

{[

0

0

]

,

[

1

0

]}

,

and the transition diagram is shown in Figure 2.2.

0

10b

0

2

0

1

0

0

0

0b …

1-p

p p p p

1-p1-p1-p1-p1-p

p

0T 0R

Figure 2.2. Transition diagram induced by policy π0.
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For finite state Markov chains with a single positve recurrent class, the following

three basic facts are true (see for example [24], [73]):

(i) The process enters the positive recurrent class (exits the transient states) in finite

time with probability 1, and subsequently reaches each state in the recurrent class

in finite time with probability 1.

(ii) There exists a unique stationary distribution, ρg, with

ρgT = ρgTPg and
∑

x∈X

ρg(x) = 1.

(iii) The long run average cost Jg is equal to

∑

x∈X

ρg(x) · C̄
(

x, g(x)
)

,

where C̄
(

x, g(x)
)

is the instantaneous cost incurred at state x and control action

g(x).

Thus, the first passage time from any state in the Markov chain induced by policy

π0 to state
[

0
0

]

∈ Rπ0 is finite w.p.1 by (i) above. A finite sum of bounded one

slot costs is finite, and it therefore follows that the expected first passage cost from

any state to
[

0
0

]

is also finite under π0. We conclude π0 is a z-standard policy with

positive recurrent class Rπ0 , and (BOR1) is satisfied.

Next, we calculate the average cost per unit time under π0 and examine the set

Gπ0 defined in (BOR2). The unique stationary distribution under this policy is given

by:

ρπ0(x) =



































1− p, x =
[

0
0

]

p, x =
[

1
0

]

0 , otherwise

. (2.4)
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Under the 0-policy, we have:

C̄
(

x, π0(x)
)

= d+ c · b . (2.5)

Combining (2.4), (2.5), and property (iii) above, we compute the average cost per

unit time as:

Jπ0 =
∑

x=(b,s)∈X

ρπ0(x) · C̄
(

x, π0(x)
)

= (1− p) · d+ p · (d+ c)

= d+ pc . (2.6)

Taking ε = 1
2
, we have:

Gπ0 =
{

x | C̄(x, u)≤Jπ0 + ε for some u
}

=

{

x ∈ X | c · b ≤ d+ pc+
1

2

}

=

{

x ∈ X | b ≤
d

c
+ p+

1

2c

}

.

Therefore, Gπ0 is a finite set, and (BOR2) is satisfied.

Finally, let state j = (bj, sj) ∈ G
π0 be arbitrary. Consider the policy θj of sleeping

at state x = (bx, sx) ∈ X if bx < bj or if sx > 0, and serving if sx = 0 and bx ≥ bj.

Then, θj ∈ <
∗
([

0
0

]

, j
)

, as the induced chain visits state j w.p.1, and the expected

first passage time and cost from
[

0
0

]

to j under policy θj are both finite. So (BOR3)

is also satisfied by Problem (P2.1), and we conclude that there exists an optimal

stationary policy π∗ that minimizes (2.2).

2.4.3 Optimal Policy When Queue Is Non-Empty

We now begin to identify the optimal stationary policy at each state in the state

space. Throughout the following sections, we rely heavily on interchange arguments,

which are explained in more detail in [100] and [112].
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Lemma 2.3. The optimal control at state x =
[

b

0

]

is U∗ = 1, for all b ≥ 1.

Proof. Let b ≥ 1 be arbitrary. Assume the state at time t is Xt =
[

b

0

]

. Consider the

following three policies:

π̂ : stay awake for the [t, t+ 1) slot, and behave optimally thereafter.

π̄ : go to sleep for N slots, and behave optimally thereafter.

π̃ : stay awake for the [t, t+ 1) slot, and then sleep; if Ūl0 = 1 (i.e. the node

stays awake under π̄) at any time l0 ≥ t+N, then let Ũl = Ūl, ∀l > l0;

otherwise, continue to sleep.

It is clear that π̂ is superior to π̃ by construction, so we need to show that π̃ is

superior to π̄. If the node continues to sleep forever under π̄, the queue length grows

ad infinitum since p > 0. This results in J π̄ = ∞, due to the linear holding cost

structure. Yet, we have already shown there exists at least one policy, π0, with a

finite average cost. Therefore, the policy of sleeping for all slots after time t +N is

suboptimal, and cannot occur under π̄. So eventually the node will awake under π̄.

Let τ denote the number of slots from time t until the first time the node awakes

under policy π̄. We now compare the evolution of the Markov chain under π̄ and

π̃. For all realizations, a single packet is transmitted τ slots later under π̄, and all

other packets are transmitted at the same time under both policies. Thus, the total

cost from time t under π̄ is almost surely τ · c greater than the total cost from time

t under π̃, and we conclude π̃ is superior to π̄. By transitivity, π̂ is superior to π̄.

Therefore, it is optimal to stay awake and transmit at
[

b

0

]

, for all b ≥ 1.

2.4.4 Complete Characterization of the Optimal Policy

We now present the main result of this section.
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Theorem 2.4. In Problem (P2.2), the optimal control at state X =
[

b

0

]

such that

b > 0, is U∗ = 1. At the boundary state
[

0
0

]

, the optimal control, U∗, is given by:

(

p

1− p

)(

N − 1

2

)

U∗ = 0

≶

U∗ = 1

d

c
. (2.7)

Proof. The first statement follows directly from Lemma 2.3. We showed in the proof

of Lemma 2.2 that the average cost per unit time under the 0-policy (never sleep) is

d+pc. To determine the optimal policy at the boundary state
[

0
0

]

, we must compare

the average cost per unit time of the 0-policy with that of the 1-policy (stay awake

if the queue is non-empty, and sleep otherwise). The transition diagram under π1 is

shown in Figure 2.3, with Tπ1 denoting the set of transient states, and Rπ1 denoting

the single positive recurrent class.
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Figure 2.3. Transition diagram induced by policy π1.

Once again, this Markov chain has a unique stationary distribution, and it is

straightforward to verify that the balance equations hold for the following stationary
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distribution:

ρπ1(x) =



































































1−p

N
, x =

[

0
0

]

1
N
·
∑N−j

m=0

{(

N

m

)

· (1− p)m · pN−m
}

, x =
[

j

0

]

, j = 1, 2, . . . , N

1−p

N
·
(

k

l

)

· pl · (1− p)k−l, x =
[

l

N−k

]

,
1 ≤ k ≤ N − 1

0 ≤ l ≤ k

0 , otherwise

From this stationary distribution, we compute the average cost per unit time:

Jπ1 =
∑

x=(b,s)∈X

ρπ1(x) ·
(

c · b+ d · π1(x)
)

= 0 ·
1− p

N
+

N
∑

j=1

{

(d+ jc) ·
1

N
·

N−j
∑

m=0

{(

N

m

)

· (1− p)m · pN−m

}

}

+
N−1
∑

k=1

k
∑

l=0

{

(lc) ·
1− p

N
·

(

k

l

)

· pl · (1− p)k−l

}

=
d

N
·

N
∑

j=1

N−j
∑

m=0

{(

N

m

)

· (1− p)m · pN−m

}

+
c

N
·

N
∑

j=1

j ·

N−j
∑

m=0

{(

N

m

)

· (1− p)m · pN−m

}

+
c(1− p)

N
·

N−1
∑

k=1

k
∑

l=0

{

l ·

(

k

l

)

· pl · (1− p)k−l

}

=
d

N
· pN +

c

N
·

(

p2N(N − 1)

2
+ pN

)

+
c(1− p)

N
·

N−1
∑

k=1

pk

= pd+
p2c(N − 1)

2
+ pc+

c(1− p)

N
·
pN(N − 1)

2

= pd+ pc+
pc(N − 1)

2
· (p+ (1− p))

= pd+
pc(N + 1)

2
. (2.8)

Finally, combining (2.6) and (2.8), we compare the average costs for the two policies
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to determine the optimal policy at the boundary state
[

0
0

]

:

Jπ1 = pd+
pc(N + 1)

2

U∗ = 0

≶

U∗ = 1

d+ pc = Jπ0 . (2.9)

Rearranging (2.9) gives (2.7).

2.4.5 Related Work and Possible Extensions

The arguments presented above are quite similar to those applied to the embedded

Markov chain model of [47]. In that paper, Federgruen and So consider an analo-

gous problem in continuous time with compound Poisson arrivals. By formulating

the problem as a semi-Markov decision process embedded at certain decision epochs,

they show that either a no vacation policy or a threshold policy is optimal under

a much weaker set of assumptions. Specifically, they allow general nondecreasing

holding costs, multiple arrivals, fixed costs for switching between service and vaca-

tion modes, and general i.i.d. service and vacation times. It is quite possible that

we could similarly relax our assumptions, and still retain the structural result that

either a threshold policy or a no vacation policy is optimal. By imposing the extra

assumptions, however, we have arrived at the more specific conclusion that if the

optimal policy is an N-threshold policy, it is indeed a 1-policy; additionally, we have

identified condition (2.7), distinguishing the parameter sets on which the 0-policy is

optimal from those on which the 1-policy is optimal.

2.5 Analysis of the Finite Horizon Expected Cost Problem

In this section, we analyze the finite horizon problem, (P2.2), and attempt to

characterize the optimal sleep control policy π∗ that minimizes Jπ
0 . Due to the finite

time horizon and the assumption of a finite initial queue size, this problem features a
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finite state space (at most
[

b̄+ T
]

·N states). Additionally, we have a finite number

of available control actions at each time slot. For such systems, we know the following

from classical stochastic control theory (see, for example, [89, pp. 78–79]):

(i) There exists an optimal control policy; i.e., a policy π∗ such that

Jπ∗

0 = inf
π
Jπ
0 ,

where the infimum is taken over all randomized and deterministic history-

dependent policies.

(ii) Furthermore, there exists an optimal deterministic Markov policy (a policy that

depends only on the current state Xt, not the past states Xt−1,Xt−2, . . .).

(iii) Define recursively the functions

VT (x) := c · b

Vt(x) := min
u∈U(x)

{c · b+ u · d+ IE [Vt+1(Xt+1) | Xt = x, Ut = u]} ,

t = 0, 1, . . . , T − 1. (2.10)

A deterministic Markov policy π is optimal if and only if the minimum in (2.10)

is achieved by πt (x), for each state x at each time t.

We also define the “expected cost-to-go” associated with policy π over the time

interval [t, T ], starting from state x as:

V π
t (x) := IEπ

[

T
∑

k=t

{c ·Bk + d · Uk} | Xt = x

]

.

While, in principle, we can compute the optimal policy through the dynamic

program (2.10), we are more interested in deriving structural results on the optimal

policy, e.g., by showing that the optimal policy satisfies certain properties or is of a
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certain simple form. In order to accomplish this, we use the above results throughout

the section to identify the optimal control at each slot by comparing the expected

cost-to-go under different deterministic Markov policies. Before proceeding, we note

that for the remainder of this section, when we refer to the time t, we implicity

assume t ∈ {0, 1, . . . , T}.

2.5.1 Optimal Policy at the End of the Time Horizon

As with the infinite horizon problem, we identify the optimal policy in a piecewise

manner, this time beginning with the slots at the end of the time horizon.

Lemma 2.5. If T − d
c
≤ t ≤ T , the optimal policy to minimize Jπ

t is U∗k = 0

∀k ∈ {t, t+ 1, . . . , T}; i.e. sleep for the duration of the time horizon.

Proof. We proceed by backward induction on t.

Base Case: t = T

This is trivial, as choosing UT = 1 incurs an additional charge of d without benefit.

Induction Step: We now assume it is optimal to sleep for the duration of the horizon

at times t = l + 1, l + 2, . . . , T , and show U∗l = 0, where l ≥ T − d
c
. If the state at

time l is
[

0
0

]

, staying awake incurs an energy cost of d, but provides no benefit, as it

is optimal to sleep for the remainder of the horizon at time l + 1, by the induction

hypothesis. Thus, at Xl =
[

0
0

]

, action Ul = 0 is optimal. If Xl =
[

b

0

]

for some b > 0,

the net reward from staying awake in slot l is (T − l) · c − d, as the single packet

transmitted in slot l does not incur holding costs for the remainder of the horizon.

However, by l ≥ T − d
c
, we have:

(T − l) · c− d ≤

[

T −

(

T −
d

c

)]

· c− d = 0 .

Thus, Ul = 0 is also optimal at Xl =
[

b

0

]

, completing the induction step and the

proof of the lemma.
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The simple intuition behind the above lemma is that the incremental cost of

staying awake for an extra slot remains constant at d throughout the time horizon;

however, the benefit of doing so, as compared to sleeping for the duration of the

horizon, diminishes as t approaches T .

2.5.2 Optimal Policy When Queue Is Non-Empty Before the End of the
Time Horizon

The following lemma characterizes the optimal sleep policy when the node is

awake, the queue is non-empty, and the process is sufficiently far from the end of the

time horizon.

Lemma 2.6. If 0 ≤ t < T − d
c

and Xt =
[

b

0

]

for some b > 0, the optimal control at

slot t to minimize Jπ
t is U∗t = 1; i.e., transmit a packet in slot [t, t+ 1).

Proof. We consider two separate cases.

Case 1: t ≥ T −N .

Consider the following three policies:

π̂ : stay awake for the [t, t+ 1) slot, and behave optimally thereafter.

π̄ : go to sleep (and remain asleep for duration of time horizon).

π̃ : stay awake for the [t, t+ 1) slot, and sleep for duration of time horizon.

Define the expected rewards for following π̂ over π̄, π̃ over π̄, and π̂ over π̃:

Rt := V π̄
t

([

b

0

])

− V π̂
t

([

b

0

])

,

R1
t := V π̄

t

([

b

0

])

− V π̃
t

([

b

0

])

, and

R2
t := V π̃

t

([

b

0

])

− V π̂
t

([

b

0

])

, respectively.

To show that π̂ is optimal in this case, it suffices to show:

Rt = R1
t +R2

t ≥ 0 . (2.11)
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This is fairly straightforward as we have:

R1
t = c · (T − t)− d ≥ c ·

[

T −

(

T −
d

c

)]

− d = 0 , (2.12)

and R2
t ≥ 0 by construction.

Case 2: t < T −N .

Redefine the policies π̂, π̄, and π̃ as follows:

π̂ : stay awake for the [t, t+ 1) slot, and behave optimally thereafter.

π̄ : go to sleep for N slots, and behave optimally thereafter.

π̃ : stay awake for the [t, t+ 1) slot, and then sleep for N slots; define:

l0 :=











min{l : Ūl = 1}, if Ūl = 1 for some l ∈ {t+N, t+N + 1, T − 1}

T, otherwise

and set Ũl :=











0, l = t+ 1, t+ 2, . . . , l0

Ūl, l = l0 + 1, l0 + 2, . . . T

.

Let Rt, R
1
t , and R

2
t be as in Case 1, and let

at,T−1 = [at, at+1, . . . , aT−2, aT−1] ∈ {0, 1}
T−t

be a sample path of the Bernoulli arrival process {At} in slots t through T − 1. We

split all possible such sample paths into the following two sets:

A0 :=
{

at,T−1 ∈ {0, 1}
T−t : Ūl = 0,∀l ≥ t

}

, and

A1 :=
{

at,T−1 ∈ {0, 1}
T−t : Ūl0 = 1, for some l0 ∈ {t+N, t+N + 1, . . . , T − 1}

}

.

That is, A0 comprises all sample paths of the arrival process that result in the node

sleeping for the duration of the horizon under policy π̄, and A1 comprises all sample

paths of the arrival process that result in the node staying awake for at least one slot
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before the end of the horizon under policy π̄. Then we have:

R1
t = Pr (At,T−1 ∈ A0)











IEπ̄
[

∑T

k=t {c ·Bk + d · Uk} | Xt =
[

b

0

]

,At,T−1 ∈ A0

]

−IEπ̃
[

∑T

k=t {c ·Bk + d · Uk} | Xt =
[

b

0

]

,At,T−1 ∈ A0

]











+ Pr (At,T−1 ∈ A1)











IEπ̄
[

∑T

k=t {c ·Bk + d · Uk} | Xt =
[

b

0

]

,At,T−1 ∈ A1

]

−IEπ̃
[

∑T

k=t {c ·Bk + d · Uk} | Xt =
[

b

0

]

,At,T−1 ∈ A1

]











(2.13)

By the same argument as (2.12), we have:

IEπ̄

[

T
∑

k=t

{c ·Bk + d · Uk} | Xt =

[

b

0

]

,At,T−1 ∈ A0

]

− IEπ̃

[

T
∑

k=t

{c ·Bk + d · Uk} | Xt =

[

b

0

]

,At,T−1 ∈ A0

]

= c · (T − t)− d ≥ 0 . (2.14)

Furthermore, we have:

IEπ̄

[

T
∑

k=t

{c ·Bk + d · Uk} | Xt =

[

b

0

]

,At,T−1 ∈ A1

]

− IEπ̃

[

T
∑

k=t

{c ·Bk + d · Uk} | Xt =

[

b

0

]

,At,T−1 ∈ A1

]

≥ c ·N . (2.15)

The logic behind (2.15) is as follows. For all realizations of At,T−1 in A1, the node is

awake for the same number slots under policies π̄ and π̃. Moreover, all packets are

transmitted in the same slot, except the packet transmitted in slot t under policy

π̃, which is transmitted in slot l0 under policy π̄. Thus, the additional holding cost

incurred under policy π̄ is c · (l0 − t) ≥ c · N . Substituting (2.14) and (2.15) into

(2.13) yields R1
t ≥ 0. Since R2

t ≥ 0 by construction, we conclude (2.11) is true, and

policy π̂ is optimal.
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2.5.3 Optimal Policy When Node Is Awake and Queue Is Empty (Bound-
ary State)

We know from Lemma 2.5 that the optimal control at Xt =
[

0
0

]

is to sleep when

t ≥ T − d
c
. We now examine the optimal control at this state when t < T − d

c
.

Slots z∗ −N + 1 through z∗

Lemma 2.7. If t = z∗ :=
⌊

T − d
c

⌋

and Xt =
[

0
0

]

, the optimal control policy to

minimize Jπ
t is to sleep for the duration of the time horizon.

Proof. This is trivial as, due to Lemma 2.5, the optimal policy entails sleeping for the

duration of the time horizon, beginning at the following time slot, z∗+1. Therefore,

staying awake in the z∗ time slot costs d and does not provide any benefit, because

the node will not transmit any packets for the remainder of the time horizon.

Lemma 2.8. If z∗ − N < t < z∗ and Xt =
[

0
0

]

, the optimal control in slot t to

minimize Jπ
t is described by the threshold decision rule:

c ·
z∗−t
∑

j=1

{

pj (T − t− j)
}

− d ·
z∗−t
∑

j=0

pj

U∗t = 0

≶

U∗t = 1

0 . (2.16)

Proof. Redefine the policies π̂, π̄, and π̃ once more as follows:

π̂ : stay awake for the [t, t+ 1) slot, and behave optimally thereafter.

π̄ : go to sleep for N slots, and behave optimally thereafter.

π̃ : stay awake for the [t, t+ 1) slot. At each time t+ 1, t+ 2, . . . , z∗ if there is

a packet in the queue, transmit it; otherwise, go to sleep for the duration of

the horizon.

We proceed by backward induction on t.
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Base Case: t = z∗ − 1

From Lemmas 2.6 and 2.7, we know that if there is a packet in the queue at z∗, the

optimal action is to stay awake, but if there is not, the optimal action is to sleep.

Furthermore, we know from Lemma 2.5 that the optimal policy is to sleep for the

duration of the time horizon beginning at time z∗ + 1, regardless of the queue size.

This knowledge allows us to directly calculate the expected reward from following π̂

over π̄:

Rz∗−1 := V π̄
z∗−1

([

0

0

])

− V π̂
z∗−1

([

0

0

])

,

= −d+ p · [c · (T − z∗)− d] . (2.17)

Note that for t = z∗ − 1, the the RHS of (2.17) is equal to the LHS of (2.16).

Therefore, if the LHS of (2.16) is greater than 0, we have Rz∗−1 > 0, and the optimal

action is U∗z∗−1 = 1. Alternatively, if the LHS of (2.16) is less than 0, we have

Rz∗−1 < 0, and the optimal action is U∗z∗−1 = 0. This completes the base case.

Induction Step: We now assume the optimal control action at state
[

0
0

]

in slot t is

given by (2.16) for t = l + 1, l + 2, . . . , z∗ − 1, and show that the optimal control

action at state
[

0
0

]

in slot l is also given by (2.16).

Define the index

w(t) := c ·
z∗−t
∑

j=1

{

pj (T − t− j)
}

− d ·
z∗−t
∑

j=0

pj . (2.18)

Then we have:

Rl := V π̄
l

([

0

0

])

− V π̂
l

([

0

0

])

,

≥ V π̄
l

([

0

0

])

− V π̃
l

([

0

0

])

,

= w(l) . (2.19)
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So, if w(l) > 0, then Rl > 0, and the optimal action is U∗l = 1. Next, we consider the

case of w(l) < 0. The following calculation demonstrates that w(·) is a nonincreasing

function of t:

w(t− 1)− w(t) =

[

c ·
z∗−t+1
∑

j=1

{

pj (T − t+ 1− j)
}

− d ·
z∗−t+1
∑

j=0

pj

]

−

[

c ·
z∗−t
∑

j=1

{

pj (T − t− j)
}

− d ·
z∗−t
∑

j=0

pj

]

= pz∗−t+1 · [−d+ c · (T − z∗)] + c ·
z∗−t
∑

j=1

pj

= pz∗−t+1 ·

(

c ·

⌈

d

c

⌉

− d

)

+ c ·
z∗−t
∑

j=1

pj

≥ 0, ∀t ∈ {z∗ −N + 1, z∗ −N + 2, . . . , z∗ − 1} . (2.20)

From (2.20), it follows that

w(t0) < 0 for some t0 ∈ {z
∗ −N + 1, z∗ −N + 2, . . . , z∗ − 1}

⇒ w(t) < 0 ∀t ∈ {t0, t0 + 1, . . . , z∗ − 1} . (2.21)

By (2.21) and w(l) < 0, we know that w(t) < 0, for all

t ∈ {l + 1, l + 2, . . . , z∗ − 1}. Thus, by the induction hypothesis, if Xt =
[

0
0

]

for any

t ∈ {l + 1, l + 2, . . . , z∗ − 1}, the node will sleep for the duration of the time horizon

under the optimal policy, and the policies π̂ and π̃ are equivalent. We conclude:

Rl := V π̄
l

([

0

0

])

− V π̂
l

([

0

0

])

,

= V π̄
l

([

0

0

])

− V π̃
l

([

0

0

])

,

= w(l) < 0 ,

and the optimal action when w(l) < 0 is U∗l = 0.
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Is the Optimal Control Action at the Boundary State Nonincreasing Over
Time?

Lemma 2.8 and its proof tell us that from slot z∗−N+1 until slot z∗−1, the optimal

control action when the node is awake and the queue is empty is nonincreasing

over time. We also know from Lemmas 2.5 and 2.7 that the optimal control is

U∗t = 0, for all t ≥ z∗. Combining these, we know the optimal control action at

Xt =
[

0
0

]

is nonincreasing over time, from slot z∗ −N + 1 until the end of the time

horizon. The natural follow-up question to ask is whether or not the optimal control

action at Xt =
[

0
0

]

is necessarily monotonic over the entire duration of the time

horizon. Intuitively, this might make sense if we extend the logic behind Lemma 2.5

to conclude that the marginal reward for serving a packet continues to increase as

we move away from the end of the time horizon. However, as we explain further

in Section 2.5.4, this intuition is not quite correct, as the following counterexample

demonstrates.

Counterexample 2.9. Consider Problem (P2.2) with the parameters T = 15,

N = 3, c = 10, d = 21, and p = 2
3
. The optimal sleep control policy at the boundary

stateXt =
[

0
0

]

, computed through the dynamic program (2.10), is displayed in Figure

2.4. Clearly, the control action at the boundary state is not monotonic in time.

1 140 4

Stay Awake

Sleep

2 3 10 12 1311 15

Optimal

Control

Time

5 6 7 8 9

Figure 2.4. Optimal control actions at Xt =
[

0

0

]

when T = 15, N = 3, c = 10, d = 21, and p = 2

3
.
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Sufficient Condition Ensuring the Optimal Control Action at the Bound-
ary State is Nonincreasing over Time

With such counterexamples in mind, we seek sufficient conditions for the optimal

policy at the boundary state to be nonincreasing over the entire time horizon. Based

on extensive numerical experiments, we believe the following conjecture is true, but

have not yet been able to prove it.

Conjecture 2.10. If the parameters of problem (P2.2) satisfy the following condi-

tion:

(

p

1− p

)

·

(

N − 1

2

)

>
d

c
, (2.22)

the optimal control action when the node is awake and the queue is empty is non-

increasing in time; i.e., if the expected cost-to-go Vr

([

0
0

])

is minimized by sleeping,

then for all t > r, the expected cost-to-go Vt

([

0
0

])

is minimized by sleeping.

Possible Optimal Policy Structures when the Optimal Control Action at
the Boundary State is not Monotonic over Time

Assuming Conjecture 2.10 is true, we would also like to characterize the optimal

policy at the boundary state when the parameters of Problem (P2.2) do not satisfy

condition (2.22). One might think that the periodic nature of sleeping would lead to

a periodic optimal policy at the boundary; however, based on numerical results, we

believe the optimal control actions at the boundary state are still relatively “smooth,”

and can be characterized by the following conjecture.

Conjecture 2.11. If the parameters of problem (P2.2) satisfy the following condi-

tion:

(

p

1− p

)

·

(

N − 1

2

)

<
d

c
, (2.23)
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and if for some k, the optimal control at state Xk =
[

0
0

]

is U∗k = 0 and the optimal

control at state Xk+1 =
[

0
0

]

is U∗k+1 = 1, then for all 0 ≤ t < k, the optimal control

at state Xt =
[

0
0

]

is U∗t = 0.

Conjecture 2.11 says that there can be at most one jump up in the optimal control

from U∗t = 0 at Xt =
[

0
0

]

to U∗t+1 = 1 at Xt+1 =
[

0
0

]

.

2.5.4 Discussion

In this section, we discuss the intuition behind Conjectures 2.10 and 2.11, their

implications if they turn out to be true, and the challenges we face in proving them.

If Conjectures 2.10 and 2.11 turn out to be true, then they imply, in combination

with Lemmas 2.5-2.8, that the sequence of optimal control actions at Xt =
[

0
0

]

is of

the form:

U∗t =



















1 (stay awake), if λ∗1 ≤ t < λ∗2

0 (sleep), otherwise ,

for some λ∗1, λ
∗
2 ∈ {0, 1, . . . , z

∗}, with λ∗1 ≤ λ∗2. Specifically, only three structural

forms of the optimal control action at the boundary state
[

0
0

]

are possible. These

are shown in Figure 2.5.

( a ) ( b ) ( c )

, ,Sleep

Stay Awake

Time Time Time

*

*

*

*

*

*

Optimal

Control

Figure 2.5. Possible structural forms for the optimal control actions over time at the boundary state
Xt =

[

0

0

]

.

Moreover, Conjecture 2.10 states that form (b) is not possible if condition (2.22)

holds. Our numerical results not only support these conclusions, but also show the

following:
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Observation 2.12. If the time horizon is sufficiently long, then in fact the optimal

control is of the form (a) if condition (2.22) holds, but of the form (b) or (c) if

condition (2.23) holds.

We now attempt to provide some intuition as to why the optimal policy at the

boundary state could be of form (b). The underlying tradeoff at the state
[

0
0

]

is

between staying awake to reduce backlog costs and sleeping to avoid radio idling.

In the infinite horizon problem, consider the two policies π0 (always awake) and π1

(sleep only at boundary state) described in Section 2.4, and assume the node is at

state
[

0
0

]

at some time t. In our model, the order in which packets are transmitted is

of no importance (e.g. FIFO, LIFO). Therefore, let us assume that for every sample

path, the packets arriving from time t + N − 1 onward are transmitted at exactly

the same time under the two policies (by appropriate reordering of packets). Then

the extra backlog charges incurred under π1 are entirely due to the packets arriving

during (t, t + N − 1). If there are M arrivals during this period, the queue length

at time t + N under π1 is M more than the queue length under π0. With each

non-arrival after time t + N − 1, π1 “catches up” to π0 by one packet in the next

slot. Eventually, after M non-arrivals, the two policies will have transmitted the

same number of packets, and both will end up back at the state
[

0
0

]

. Figure 2.6

shows this comparison for a particular sample path in a problem with N = 5 and

M = 2. If we compare the expected energy charges incurred by π1 during the N

unutilized slots of one such cycle to the expected extra backlog costs incurred by π0,

we get (2.7), which describes the optimal stationary control action at the boundary

state in the infinite horizon case.

Returning to the finite horizon problem, we see that (2.22) and (2.23) together

are equivalent to (2.7). Let us now reconsider the two policies from the previous
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P4
0

π
t+1 t+2t t+3 t+4 t+5 t+6 t+7 t+8 t+9√ √ √XX X √ X

P1 P2 P3

1
π

Vacation

t+1 t+2t t+3 t+4 t+5 t+6 t+7 t+8 t+9

P3 P1 P4 P2

√ √ √XX X √ X

Node Asleep

Node Awake, But Not Transmitting

Node Transmitting Packet

No Arrival

Arrival√

X

Figure 2.6. Comparison of policies π0 and π1 under a particular sample path. The sleep period
length N is equal to 5. Packets are reordered so that packets arriving after time t + 4
are transmitted in the same slots under both policies. There are two arrivals between
times t and t + 4, so the queue length under policy π1 catches up to the queue length
under policy π0 in slot t + 8, which is the slot following the second non-arrival after
time t + 4.

paragraph in the finite horizon context. The probability that the queue length under

policy π1 catches up to the queue length under policy π0 before z
∗ + 1, the time

at which the node goes to sleep for good, increases as t → 0. So Observation 2.12

makes intuitive sense as it just states that the optimal control at the boundary state

in the finite horizon problem converges to the optimal control at the boundary state

in the infinite horizon problem as we move farther and farther back from the end of

the horizon.1

As we move closer to the end of the horizon (i.e., as t increases), there is a higher

probability of reaching time z∗+1 before the two policies reach the same state again.

Any “extra” packets (amongst theM arrivals in (t, t+N−1)) at z∗+1 will be charged

for the rest of the time horizon, which has length
⌊

d
c

⌋

. This extra risk of going to

sleep is likely the reason why form (b) is a possible form of the optimal policy. The

middle bump in the policy plays the role of a “buffer zone” that incorporates the risk

of untransmitted packets incurring charges throughout the entire shutdown zone at

the end of the horizon.
1This is precisely the main idea of turnpike theorems [135]. It is common to search for a planning horizon, say

T0, such that for all times t ≤ T −T0, the optimal control policy is the same as the optimal stationary policy for the
infinite horizon average expected cost problem. Hinderer and Hübner [70, 71, 75, 76] study such planning horizons for
undiscounted stochastic dynamic programs, and provide technical conditions guaranteeing the existence of planning
horizons and the validity of bounds on the planning horizons. Problem (P2.2) does not appear to satisfy these
conditions; however, numerical experiments suggest a planning horizon does exist.
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Observation 2.13. The structural forms in Figure 2.5 lie on a spectrum in the sense

that changing one parameter at a time leads to a shift in the form of the optimal

policy from either form (a) to form (b) to form (c), or from form (c) to form (b)

to form (a). In particular, holding all other parameters constant, the form of the

optimal policy shifts from (c) to (b) to (a) as we individually (or collectively) increase

p, N , or c, but shifts from (a) to (b) to (c) as d increases. Analogous statements can

also be made concerning the dependence of the two thresholds, λ∗1 and λ
∗
2, on the

problem parameters.

If they turn out to be true, the conjectures also lead to an efficient method to

compute the optimal policy. Namely, if Conjecture 2.10 turns out to be true, then

we can calculate the threshold λ∗2 by computing the following index:

w̃(t) := V
¯̃π

t

([

0

0

])

− V
ˆ̃π

t

([

0

0

])

,

where the policies are defined as:

¯̃π : go to sleep for N slots; in all subsequent slots, stay awake if and only if

the queue is non-empty and the time is less than or equal to z∗.

ˆ̃π : stay awake for the [t, t+ 1) slot; in all subsequent slots, stay awake if and

only if the queue is non-empty and the time is less than or equal to z∗.

Then, if w̃(t) ≤ 0 for all t, let λ∗2 := 0; otherwise, let λ∗2 := max{t : w̃(t) > 0}. Note

that for z∗ −N + 1 ≤ t < z∗, the index w̃(t) is the same as the index w(t), defined

in (2.18), because ¯̃π is the same as π̄ and ˆ̃π is the same as π̃ in this region of time

slots. For z∗ − 2N < t = z∗ − N − l ≤ z∗ − N , w̃(t) can be computed as follows

by conditioning on m, the number of arrivals before the first non-arrival, and i, the

number of time slots after z∗ − l that the node goes to sleep for good under policy
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¯̃π:

w̃(t) :=− d+ pl+1 [c(l + 1)(N − 1)] +
N
∑

j=2

pj+l [−d+ c (T − z∗ +N − j)]

+
l

∑

m=0

{

pm(1− p)
l+1
∑

i=m

[Ψl,i,m · Γl,i,m]

}

,

where

Ψl,i,m :=







































(1− p)N−1pi−m
[

(

N−1
i−m

)

+
∑i−m−1

j=1

{

(

N−1
j

)
∑i−m−j

i=1

(

j

i

)

}]

,

if i ∈ {m,m+ 1, . . . , l}

1−
∑l

i=mΨl,i,m, if i = l + 1

0, otherwise

and

Γl,i,m :=







































mc(N − 1)− c(i−m) +
∑l−i

j=1 {p
j [−d+ c (T − z∗ + l − i− j)]},

if i ∈ {m,m+ 1, . . . , l}

mc(N − 1)− c(l −m) + d− c (T − z∗) , if i = l + 1

0, otherwise

.

We have not yet computed the index w̃(t) in closed form for t ≤ z∗ − 2N .

If the sufficient condition (2.22) holds, calculating λ∗2 in the above fashion com-

pletes the characterization of the optimal policy. When (2.22) does not hold, λ∗1 can

be calculated similarly by creating a second index that is a function of t and λ∗2. This

methodology of leveraging the structural results to determine the optimal policy is

much simpler computationally than computing the entire optimal policy through the

dynamic program (2.10).

We now discuss briefly the challenges we face in proving Conjectures 2.10 and

2.11. In stochastic control problems, it is often the case that we can infer structural

properties of the optimal control from certain properties of the value function, such
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as monotonicity, convexity, and supermodularity (see for example [72] and [149] for

description of such techniques). In particular, supermodularity and submodularity

are used throughout the queuing theory literature to prove the optimal control policy

has a threshold form (for one such example, see [5]). However, the thresholds in these

cases are usually thresholds in queue length (i.e., one control action is optimal if the

queue length is above a critical number and another is optimal if it is below the

critical number), as opposed to thresholds in time. In our model, such a result is

true, but fairly trivial. We can see from Lemmas 2.5 and 2.6 that not only is the

optimal control monotonic in queue length at each time t, but the threshold is always

0 (always stay awake), 1 (stay awake only if queue is non-empty), or ∞ (never stay

awake). We are looking to strengthen this result by finding a sufficient condition for

the optimal control to be monotonic in time; i.e., have those critical queue length

numbers at each slot be nondecreasing over the entire time horizon. We are not

aware of any previous works in which modularity properties are used to show the

optimal control policy is monotonic in time.

Unfortunately, in our case, neither the value function nor its components display

the nice properties we desire, even when we restrict the parameter sets to those

satisfying (2.22). For instance, we can reduce part of the dynamic program (2.10) to

the following form:

Vt

[

0

0

]

= min {αt, βt} , (2.24)

where αt is the expected cost-to-go under Ut = 1, and βt is the expected cost-to-go

under Ut = 0. One way to show that the optimal control at the boundary state is of

the form (a) or (c) (i.e., monotonic in time) when condition (2.22) is satisfied would
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be to show:

(2.22)⇒ βt − βt+1 < αt − αt+1, ∀t ≤ z∗ −N . (2.25)

Note that (2.25) would imply:

βt < αt ⇒ βt+1 < αt+1 , (2.26)

which guarantees the optimal policy at state
[

0
0

]

is nonincreasing in time. However,

as we see in Figure 2.7, (2.25) is not necessarily true. We have tried numerous other

approaches to prove Conjecture 2.10, to no avail.
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Figure 2.7. Expected cost-to-go differences under the two available control actions.

2.6 Summary

In this chapter we studied the problem of optimal sleep scheduling for a wireless

sensor network node, and considered two separate discrete-time optimization prob-

lems. For the infinite horizon average expected cost problem, we demonstrated the
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existence of an optimal stationary Markov policy, and completely characterized the

optimal control at each state in the state space. For the finite horizon expected cost

problem, we completely characterized the optimal policy for all states except the

boundary state where the node is awake and the queue is empty. One significant

difference from the infinite horizon was the existence of a “shutdown” period at the

end of the time horizon in which the queue stops serving packets, regardless of the

queue size. We hypothesized a sufficient condition to guarantee the optimal control

is nonincreasing over time when the queue is empty and the node is awake. Based on

extensive numerical experiments, we also conjectured that even when this sufficient

condition does not hold, there is at most one jump in the optimal control, providing

a single “buffer zone.”
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Chapter 3

Dynamic Clock Calibration via Temperature

Measurement

In this chapter, we study a clock calibration problem that arises from an ultra-low

power sensor node platform. This sensor platform, built around the Phoenix Proces-

sor [64, 96], was initially designed as an intraocular pressure monitoring system, but

could potentially be used in a host of applications from environmental monitoring to

surveillance.

In this platform, energy consumption is managed through three modes, referred

to as the sleep, processor, and radio modes. In the sleep mode, designed to conserve

energy, it consumes on the order of 1-10 pW. In the processor and radio modes, it

consumes on the order of 1 µW and 1 mW, respectively. Thus, when the sensor

does not need to perform communication or sensing tasks, it is put into sleep mode,

with only an ultra-low power clock/timer running. Typical operation is to stay in the

sleep mode for extended periods of time (10-60 minutes), wake up briefly (less than

a second), and go back to sleep. The ultra-low power clock essentially functions as

an alarm clock to time out the desired sleep period and wake the node up at the

appropriate time.

The power savings of the sleep mode, however, come at the expense of relatively

low timing accuracy. Specifically, the accuracy of the ultra-low power clock is de-
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pendent on the ambient temperature and supply-voltage. The processor clock that

is activated whenever the processor is turned on (i.e., when the node is in the pro-

cessor mode) is more accurate, and the radio (quartz) clock that is activated when

the radio transceiver is turned on (i.e., when the node is in the radio mode) is much

more accurate.

Such inaccuracies in the ultra-low power clock can affect its scheduled wake up

time (e.g., to take a measurement or to communicate with another node). In ad-

dition to taking measurements at the wrong time, this may lead to wasted energy

consumption as a result of two unsynchronized devices trying to communicate. For

instance, consider a node that turns on its radio to send data to a second node,

but the sending node has woken up before its scheduled time. Its radio idles while

waiting for the second node to turn on its radio, resulting in unnecessary energy

consumption. Since the radio mode consumes a lot more power than the processor

and sleep modes, even small improvements in clock accuracy in the sleep mode can

result in significant energy savings in the radio mode.

It is therefore crucial to be able to accurately calibrate the ultra-low power clock

while in the sleep mode. In this chapter, we examine a novel approach that exploits

the temperature dependence of the ultra-low power clock by occasionally turning the

processor on to take a temperature reading. Each temperature reading translates into

a speed at which the ultra-low power clock ticks, a relationship that can be obtained

fairly reliably in a lab setting. Such knowledge about the clock speed is then used

in combination with the local clock time to obtain a better estimate of the real time

that has elapsed. In essence, this approach trades a little extra energy consumption

in taking temperature measurements for greater energy savings in communication.

To the best of our knowledge, this is the first study on using sensing not as a means
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of data gathering for some higher level application, but as a way of self-improving

the node’s own performance (in this case its timing performance).

Because turning the processor on to take temperature measurements does consume

energy, we would like to limit the number of such measurements. The problem arises

as to how to dynamically schedule a limited number of temperature measurements

in a manner most useful to improving the accuracy of the ultra-low power clock.

We formulate this measurement scheduling problem as a stochastic control problem.

Physically, this scheduling would be implemented in the processor, which would wake

up, take a measurement, decide the number of clock ticks until the next wake-up time,

and program the timer accordingly.

The remainder of the chapter is organized as follows. In Section 3.1, we present

an abstraction of the problem and an illustrative example to motivate the decision

between modeling the underlying time scale as continuous or discrete. In Section

3.2, we formulate an optimization problem based on a continuous underlying time

scale. In Section 3.3, we formulate a second problem with a discrete underlying time

scale. In Section 3.4, we compute the optimal control policy for a simple toy example.

Section 3.5 concludes the chapter.

3.1 Problem Description

In this section, we present an abstraction of the synchronization problem outlined

in the previous section. Our goal is to have the ultra low-power timer measure a

fixed amount of time, T , as accurately as possible. In doing so, it is allowed to take

up to N̄ ambient temperature measurements. The control algorithm residing in the

processor (also referred to below as the controller or scheduler) decides when these

measurements are taken. We assume it knows the initial ambient temperature, as
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well as a statistical description of the stochastic temperature process.

Associated with each temperature is the frequency of the ultra-low power clock

in terms of clock cycles (also referred to below as clock ticks) per unit of time. We

assume the mapping f : W → Ŵ describing the frequency associated with each

temperature is known. Here, W is the space of possible temperatures, and Ŵ is the

space of possible frequencies. Figure 3.1 shows a plot of the function 1
f
.1
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Figure 3.1. Functions mapping temperature to clock period at different supply voltages. The func-
tion f mapping temperature to clock frequency is 1 divided by one such function.

At the beginning of the time horizon, the ultra-low power clock is synchronized

with the actual time zero. In addition to the statistics of the temperature process,

the initial temperature, and the function f mapping temperature to frequency, the

following information is available to the scheduler throughout the sleep period: (i)

all prior scheduling decisions; (ii) all temperature measurements taken to date; and

(iii) the number of clock cycles that have elapsed since time zero. The scheduler’s

tasks are to use this information to schedule each successive measurement, and to

decide when to wake up and declare that T units of actual time have elapsed. The

performance criterion is a distortion function ρ(T, T̂ ), where T̂ is the (actual) time

1Data courtesy of Y. Lin, D. Blaauw, and D. Sylvester [96]. The timer consumes on the order of 1-10 pW (10−12

to 10−11 W) at 300 mV supply voltage. Also note this is a very slow clock with one cycle per 10+ seconds.
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at which the scheduler declares T units of time have elapsed. The objective is to

design measurement scheduling and declaration policies that minimize the expected

value of this performance criterion.

The above description results in a decision problem. Decision problems commonly

take time as a given, on which discrete-time and continuous-time models are built.

The unusual feature of the problem at hand is that time is the very thing we are

trying to estimate, which makes the formulation quite tricky. In particular, the

environmental random process describing temperature evolution affects the frequency

of the clock, which in turn affects the local time. The timing of the decisions is based

on the local time, rather than the real time. This interplay between the temperature

process (defined in real time) and the control process (defined in local time) results

in significant conceptual and technical challenges.

Before proceeding to the mathematical formulation, we present an overly simple

example to show that the most natural choice of underlying time scale is the contin-

uous time scale. Consider an environment with only two possible temperatures, w1

and w2. When the temperature is w1, the ultra-low power clock ticks once every 2

seconds. When the temperature is w2, the clock ticks once every 4 seconds. Consider

the following temperature realization: w1 for 2 seconds, then w2 for 5 seconds, and

then w1 for 5 seconds, as shown in the upper left graph in Figure 3.2. From the sam-

ple path of the temperature and the frequency mapping f , we determine the sample

path of the clock frequency, shown in the lower left graph in Figure 3.2. Integrating

the clock frequency (ticks per second) from 0 to t yields the total number of clock

ticks elapsed up to actual time t, shown in the graph on the right side of Figure

3.2. For this sample path of the temperature process, the first clock tick occurs at 2

seconds, and the second clock tick occurs at 6 seconds. When, after 7 total seconds,
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the temperature switches back to w1, one fourth of the third clock tick has elapsed.

Thus, the next clock tick occurs at 8.5 seconds, after another three fourths of a clock

tick. The problem with using discrete time units of one second is that there is no

such time as 8.5 seconds. We therefore start by considering time to be continuous,

although we revisit the validity of a discrete-time model with some extra assumptions

in Section 3.3.
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Figure 3.2. Illustrative example of how the clock ticks may not coincide with discrete time steps.
The actual times of the clock ticks are determined from a sample path of the temperature
process and the frequency mapping f , by converting temperature into frequency and
integrating frequency over time.

3.2 Problem Formulation - Continuous Time

In this section, we take the underlying time scale to be continuous. We model

the ambient temperature process, {W (t)}t≥0, as a continuous-time homogeneous

Markov process with finite state spaceW , known initial temperature w0, and known

transition semigroup {P(t)}t≥0, where P(t) := {pij(t)}i,j∈W and

pij(t) := Pr (W (t0 + t) = j | W (t0) = i) .
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We formulate the problem as a partially observed semi-Markov decision process

(POSMDP). We then provide a high-level overview of how to reduce this POS-

MDP first to an equivalent partially observed Markov decision process (POMDP),

and then to two equivalent discrete-time Markov decision processes (MDP’s). Fi-

nally, we present the dynamic programming equations that solve the latter of these

two MDP’s, and highlight the most computationally intense steps in the dynamic

program.

3.2.1 Formulation as a POSMDP

Recall that a semi-Markov decision process (SMDP) is a generalization of a

discrete-time MDP that models the system evolution in continuous time, and al-

lows the decision epochs to occur at random times. In our problem, the decision

epochs of the SMDP occur at the times of the local clock ticks. We define a random

process {Ct}t≥0 by Ct :=
∫ t

0
f(Ws) ds, which represents the (fractional) number of

clock cycles that occur between the beginning of the time horizon and the actual

time t. The decision epochs of the SMDP occur when Ct ∈ Z+ := {0, 1, 2, . . .}. We

represent the times of these clock ticks by the random variables 0 = σ0 ≤ σ1 ≤ σ2 . . .,

and let σ̄k := σk − σk−1, k = 1, 2, . . . be random variables representing the inter-tick

times. The conditional cumulative distribution function (cdf) of the real time of the

lth clock tick, given the initial temperature, is:

Fσl|W0 (t | w) := Pr (σl ≤ t | W0 = w)

= Pr (Ct ≥ l | W0 = w)

= 1− Pr

(∫ t

0

f(Ws) ds < l | W0 = w

)

.

For each l ∈ {1, 2, . . .}, we denote the probability density function (pdf) induced by

Fσl|W0 (t | w) as fσl|W0 (t | w).
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At σk, the random time of the kth clock tick, we define the state of the SMDP to be

the triplet Sk := (Xk,Wk, Nk), whereXk is the actual time elapsed;Wk is the ambient

temperature; and Nk is the number of temperature measurements taken between the

beginning of the horizon and the kth clock tick (inclusive of a measurement scheduled

for the kth clock tick). The sample space of the triplet Sk is S := IR+×W×N , where

W is the finite space of possible temperatures, and N :=
{

0, 1, . . . , N̄
}

. At each tick

k, the state corresponds to the state of the underlying continuous-time process, which

Puterman [118] calls the “natural process;” i.e., (Xk,Wk, Nk) = (Xσk
,Wσk

, Nσk
) ,∀k.

Of course, this state is not perfectly observed by the controller, as the controller

never observes the actual time Xk, and only observes the ambient temperature Wk

when it decides to take a measurement. The number of measurements taken and

scheduled to date, Nk, is known perfectly by the controller, as we assume the con-

troller remembers all past decisions. We represent the controller’s observation at the

kth clock tick by the random vector Yk, with sample space Y = Z+ × {W ∪−1}.

Here, the first element of the observation is the index of the clock tick, and the second

element is the temperature measurement. We assume temperature measurements are

correct with probability 1; i.e., Yk = (k,Wk) if a measurement is taken at tick k. If

no measurement is taken, then Yk = (k,−1). Including the index of the clock tick

in the observation space is a bit redundant; however, we do this to emphasize that

i) the controller knows the number of clock ticks to date (indexed by k), but ii) the

controller does not know the actual time at which each clock tick occurs (indexed by

t).

The timing at each decision epoch, shown in Figure 3.3, is as follows. Immediately

after the kth clock tick, the controller receives observation Yk. It then makes two

decisions. First, it decides whether or not to declare that T time units have elapsed
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(after k clock ticks). If it decides to declare, the controlled sleep process is stopped,

and the node wakes up. Otherwise, the controller also decides whether or not to take

a temperature measurement at tick k + 1. Thus, the decision space is

U := {1; (0, 0) ; (0, 1)} .

Here, 1 means “declare that T time units have elapsed;” (0, 0) means “do not declare

that T time units have elapsed and do not take a measurement at clock tick k+1;” and

(0, 1) means “do not declare that T time units have elapsed and take a measurement

at clock tick k + 1.” If Nk is equal to N̄ , the maximum number of measurements

allowed, the available decisions for Uk are Ū := {1; (0, 0)}; otherwise, all decisions

are available. We denote by U(s) the decisions that are available at state s, and U2
k

refers to the second component of the control decision (the measurement decision at

the following tick).
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Figure 3.3. The timing of observations and decisions at each epoch. The decision Uk is made after
observing Yk. Uk determines whether to declare that T time units have elapsed at clock
tick k, and (if the process is not stopped) whether to take a temperature measurement
at the (k + 1)st tick.

Next, we describe the probabilistic state transition law. If Uk = 1, the process is

stopped. Otherwise, the time, σ̄k+1, until the next clock tick, and the state, Sk+1, at

the next clock tick have the following joint distribution, conditioned on the current
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state and scheduling decision:

Q (B1, B2, B3, B4 | xk, wk, nk,uk)

= Pr







Xk+1 ∈ B1,Wk+1 ∈ B2,

Nk+1 ∈ B3, σ̄k+1 ∈ B4

∣

∣

∣

∣

∣

∣

∣

Xk = xk,Wk = wk,

Nk = nk,Uk = uk






(3.1)

=
∑

wk+1∈B2

∑

nk+1∈B3

∫

σ̄k+1∈B4







11{nk+1=nk+u2
k}
· 11{xk+σ̄k+1∈B1}

· pwk,wk+1
(σ̄k+1) · fσ1|W0 (σ̄k+1 | wk) dσ̄k+1






(3.2)

for Borel sets B1 ∈ B(IR+), B2 ∈ B(W), B3 ∈ B(N ), B4 ∈ B(IR+), and for all

(sk,uk) such that uk ∈ U(sk). Equation (3.2) follows from the facts that i) Nk+1 is

a function of Nk and Uk; ii) Xk+1 and Wk+1 are independent of Nk and Uk; and

(iii) fσ1|W0 = fσ̄k+1|Wk
, by the homogeneity of the temperature process. Recall that

pwk,wk+1
(σ̄k+1) is the probability the temperature process jumps from wk to wk+1 in

σ̄k+1 real time units, and fσ1|W0 (· | wk) is the distribution of the time between two

consecutive ticks, given the initial temperature wk.

At the beginning of the time horizon, the controller knows that the actual time

is zero (X0 = 0); no measurements have been taken (N0 = 0); and the initial

temperature is w0. This assumption is reasonable, as the processer and radio were

likely on at the end of the previously timed period.

We define an observable history up to the kth tick as:

hk :=
(

y0,u0,y1,u1,y2, . . . ,yk−1,uk−1,yk

)

∈ Hk ,

where Hk = (Y × U)k × Y is the space of possible histories up to the kth tick. We

let H0 = Y .

A policy is defined as a sequence γ := {γk}
∞
k=0, where for each k, γk : Hk → P (U)

maps the observable history up to the kth clock tick into the space of probability

distributions on the decision space U . A policy γ is admissible if for all k, γk maps
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all histories hk with
∑k−1

i=0 u
2
k = N̄ into probability distributions on Ū ; i.e., if no

measurements remain, the policy chooses control decisions 1 or (0, 0) with probability

1. We denote the space of all such admissible policies by Γ.

The quality of a temperature measurement scheduling and declaration policy is

measured by a distortion function ρ : IR2
+ → IR+ that determines the cost of declaring

that z time units have elapsed after ẑ time units. For example, we could use the L1

distortion function ρ (z, ẑ) = |z − ẑ|, or the square error distortion ρ (z, ẑ) = (z − ẑ)2.

From this distortion, we define the cost of an admissable policy γ as:

Jγ (w0) := IEγ [ρ (T,Xτ ) | X0 = 0, N0 = 0,W0 = w0] ,

where τ is the random stopping time at which the controller declares that T time

units have elapsed. By assumption, the sample space W is finite. Accordingly,

there exists a maximum frequency (clock cycles per unit time), which we denote

by ωmax := maxw∈W {f(w)}. The maximum number of clock cycles the controller

needs to consider waiting before declaring T time units have elapsed is therefore

K̄ := dT · ωmaxe. So we define the stopping time τ as:

τ := min
{

K̄,min {k : Uk = 1}
}

.

This definition ensures there is a finite optimal stopping time.

We wish to find an optimal control policy γ∗ such that:

Jγ∗(w0) = J∗(w0) := inf
γ∈Γ

Jγ(w0) , ∀w0 ∈ W . (3.3)

We refer to the above problem as Problem (POSMDP).

3.2.2 Transformation to Equivalent Problems

We now provide a high-level overview of how to reduce Problem (POSMDP) to a

series of equivalent problems. We start by defining a POMDP that describes the evo-
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lution of the system at the clock ticks. The only component of this POMDP, referred

to as Problem (POMDP-1), that is different from Problem (POSMDP) is the prob-

abilistic state transition law, which is given by Q (B1, B2, B3, IR+ | xk, wk, nk,uk),

where Q is defined in (3.1). The equivalence of Problems (POMDP-1) and (POS-

MDP) follows from the fact that all control decisions and cost assessments in Problem

(POSMDP) occur at the clock ticks.

Next, we transform Problem (POMDP-1) into a completely observable MDP,

which we call Problem (MDP-1), with state equal to the conditional probability

distribution of the POMDP state Sk, given all decisions and observations to date.

We omit the detailed description of Problem (MDP-1), as the transformation is a

standard procedure (see, e.g., [42, pp. 214-217], [67, pp. 86-90]).

The next transformation is to a second equivalent discrete-time MDP, which we

refer to as Problem (MDP-2). The main idea underlying the transformation from

the previous MDP to this one is as follows. If at clock tick k in Problem (MDP-1),

the controller decides not to declare that T time units have elapsed and not to take

a measurement at clock tick k+1, then it gains no useful information before having

to choose its next control decision at clock tick k+1. Thus, it can choose the control

decision for clock tick k + 1 equally well at the current clock tick k. By extending

the same logic, without loss of optimality, it can actually decide at the current clock

tick k how many clock ticks to wait before taking the next measurement or declaring

T time units have elapsed.

Accordingly, we define a new time scale, indexed by m, to be the number of

measurements taken so far (note the difference from the above problems, where time

k is the number of clock ticks). Here, m = 0 denotes the start of the horizon, m = 1

denotes the process just after the first temperature measurement, and so forth. For
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m = 0, 1, . . . , N̄ , the state consists of the conditional distribution, πX̃m
, of the actual

time elapsed given the history, and the most recent temperature measurement, w̃m.

The state space is S̃ := P (IR+) ×W . The decision space is Ũ :=
{

0, 1, 2, . . . , K̄
}

.

At all m, decision Ũ = 0 means “declare that T units of time have elapsed.” For

m = 0, 1, . . . , N̄ − 1, decision Ũ = l for some l ∈
{

1, 2, . . . , K̄
}

means “wait l

clock ticks before taking the next temperature measurement.” When m = N̄ , no

temperature measurements remain, and decision Ũ = l̄ for some l̄ ∈
{

1, 2, . . . , K̄
}

means “wait l clock ticks before declaring that T time units have elapsed.” Figure

3.4 compares the time scales for Problems (MDP-1) and (MDP-2).
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Figure 3.4. Example sample path to compare the time scales for Problems (MDP-1) and (MDP-2).
The top timeline is based on k, the number of clock cycles elapsed, and the bottom
timeline is based on m, the number of measurements taken. For both timelines, the
first measurement is taken at clock tick 2, and the second measurement is taken at clock
tick 4.

Note that while the states of Problem (MDP-2) belong to the continuous space

P (IR+)×W, only a finite number of states in this space are reachable. This is due to

the fact that the equivalent Problem (POMDP-1) has a finite horizon, finite decision

space, and finite observation space. Thus, we can focus on this finite set of reachable

states. By a standard result (see, e.g., [42, 67]), an optimal policy exists, and it can
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be found through the following dynamic program:

Vm

(

πX̃m
, w̃m

)

= min







































IE
[

ρ
(

T, X̃m
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,

m = 0, 1, . . . , N̄ − 1,

VN̄

(

πX̃N̄
, w̃N̄

)

= min



























IE
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ρ
(

T, X̃N̄

)

| πX̃N̄

]

,

min
l̄∈{1,2...,K̄}
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ρ (T, Zl̄) | ΠX̃N̄
= πX̃N̄

,

W̃N̄ = w̃N̄ , ŨN̄ = l̄











































.

Ṽm represents the expected cost-to-go just after the mth measurement is taken; πX̃m

represents the conditional pdf of the actual time just after the mth measurement

is taken; and w̃m represents the mth temperature reading. The first term in each

outer minimization, IE
[

ρ
(

T, X̃m

)

| πX̃m

]

, represents the conditional expected cost

of stopping after the mth measurement. For m = 0, 1, . . . , N̄ − 1, the second term

in the outer minimization represents the expected cost if the scheduler waits l clock

ticks before taking the next measurement. For m = N̄ , the second term in the

outer minimization represents the expected cost if the scheduler waits an additional

l̄ clock ticks before declaring that T time units have elapsed. Zl̄ is a random variable

describing the actual time l̄ clock ticks after the N̄ th temperature measurement is

taken; i.e., Zl̄ = X̃N̄ +
∑kN̄+l̄

i=kN̄+1
σ̄i, where kN̄ is the clock tick at which the N̄ th

measurement is taken. Due to the homogeneity of the Markov process {W (t)}t≥0,

Zl̄ has the following conditional pdf, given the realization w̃N̄ of the final tempera-

ture measurement and the conditional pdf, πX̃N̄
, of the time elapsed up to the N̄ th
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measurement:

fZl̄|ΠX̃
N̄

,W̃N̄

(

z | πX̃N̄
, w̃N̄

)

= πX̃N̄
(x) ∗ fσl̄|W0 (t | w̃N̄) .

While the above dynamic program is conceptually straightforward, it is difficult

to solve from a computational standpoint. The heart of the matter is in updating

the conditional distribution of elapsed time after the mth temperature measurement,

πX̃m
, to the corresponding distribution after the (m+1)st temperature measurement,

based on (i) w̃m, the m
th temperature reading; (ii) w̃m+1, the (m+ 1)st temperature

reading; and (iii) ũm, the number of clock ticks in between measurements, as chosen

by the controller. Since the time elapsed up to the mth temperature measurement

and the time elapsed between the mth and (m+ 1)st temperature measurements are

conditionally independent given the temperature at the time of themth measurement,

we have πX̃m+1
= πX̃m

∗ fθũm |W0,Wf
(t | wm, wm+1). Here, fθũm |W0,Wf

(t | wm, wm+1) is

the conditional distribution of the actual time elapsed over ũm clock ticks, given the

beginning and ending temperatures, w̃m and w̃m+1, respectively. The difficulty lies in

computing the distribution fθũm |W0,Wf
(t | wm, wm+1). At time N̄ , a similar difficulty

arises in computing fσl̄|W0 (t | w̃N̄), which is needed to compute a distribution on Zl̄.

3.3 Problem Formulation - Discrete Time

In Section 3.1, we argued that this problem is not immediately amenable to a

discrete underlying time scale, because the clock ticks may not coincide with dis-

crete time steps. However, by imposing constraints on the temperature process and

possible durations of each clock cycle, it is possible to model the underlying time

scale as discrete.
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3.3.1 Toy Example

We start with another simple toy example where the temperature process is always

in one of two states, ŵ1 or ŵ2. We assume the temperature can only change at integer

multiples of two seconds; i.e., 2, 4, 6, . . . seconds, and take the temperature process

at these times to be a discrete-time homogeneous Markov process with transition

matrix:

P =







0.9 0.1

0.3 0.7






.

When the temperature is ŵ1, the clock ticks once every second, and when the tem-

perature is ŵ2, the clock ticks once every two seconds. One possible sample path of

the temperature process is shown in Figure 3.5. By repeating the calculations from

Figure 3.2, we can determine the actual times of the clock ticks for this sample path.

We make two observations about the timing of the clock ticks resulting from this

temperature sample path that are actually true for all temperature sample paths:

(i) there is a clock tick at every integer multiple of two seconds; and (ii) all clock

ticks fall on discrete time steps of one second.

Actual Time (sec)

0 4 8 12

2ŵ

1ŵ

2 6 10

Temperature

0

X X X

1 74

X

Clock Ticks

8
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X

2
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Figure 3.5. Example of a temperature process and frequency mapping satisfying a set of assump-
tions guaranteeing the clock ticks coincide with discrete time steps. The temperature
only changes at integer multiples of two seconds. There are two possible temperatures,
ŵ1 and ŵ2, and their associated frequencies, f(ŵ1) and f(ŵ2) are, respectively, 1 cycle
per second and 1 cycle per 2 seconds. Note that the clocks ticks always occur at discrete
time steps of one second.
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3.3.2 Discrete Time Problem Formulation

By imposing additional assumptions on the temperature process and possible fre-

quencies, we can generalize this example to ensure that the clock ticks occur at desired

discrete time units. Assume that the underlying discrete time unit is ∆, and that the

transitions of the temperature process occur on a slower scale, say at q∆, 2q∆, 3q∆,

and so forth, for some positive integer q. We model the ambient temperature process

at these times, {Ŵt}t=0,q∆,2q∆,..., as a discrete-time homogeneous Markov process with

the same finite state space W as described for the continuous-time Markov process

in Section 3.2, known initial temperature ŵ0, and known matrix of transition prob-

abilities P̂, where P̂ := {p̂ij}i,j∈W and p̂ij := Pr (Wt+q·∆ = j | Wt = i), for all t. The

mapping f : W → Ŵ describing the frequency associated with each temperature

is the same as the continuous time problem. Assume also that for every ŵ ∈ W,

q · f(ŵ) ∈ Z+ and 1
f(ŵ)

∈ Z+. Then, there is a clock tick every time the temperature

changes, and every clock tick falls exactly on some integer multiple of ∆.

With these assumptions in place, we formulate a new partially observed Markov

decision process, which we refer to as Problem (POMDP-2). All components of

Problem (POMDP-2) are the same as Problem (POMDP-1), except the state space

is now Ŝ := X ×W ×N , where X := {0, 1, . . . , x̂max}. Here, x̂max is the maximum

amount of actual time that could elapse in K̄ clock ticks (i.e., if the temperature for

the entire horizon was that temperature with the lowest associated frequency).

The state transition law is given by:

Pr
(

X̂k+1 = x̂k+1, Ŵk+1 = ŵk+1, N̂k+1 = n̂k+1

∣

∣

∣X̂k = x̂k, Ŵk = ŵk, N̂k = n̂k, Ûk = ûk

)

= Pr
(

X̂k+1 = x̂k+1, Ŵk+1 = ŵk+1

∣

∣

∣
X̂k = x̂k, Ŵk = ŵk

)

· 11{n̂k+1=n̂k+û2
k}
.

Problem (POMDP-2) can be reduced in the same manner as Problem (POMDP-
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1), resulting in a completely observed MDP whose time index is the number of

measurements that have been taken. In fact, the resulting dynamic program has es-

sentially the same form as the dynamic program for Problem (MDP-2). We remark

on a few subtle differences. First, the resulting state,
(

πX̃m
, w̃m

)

, now comprises the

most recent temperature and a probability mass function (pmf) on the finite space

X , rather than a pdf on IR+. Additionally, recall that much of the computational

difficulty of the continuous-time dynamic program arose from updating the condi-

tional distribution of elapsed time after the mth temperature measurement, πX̃m
, to

the corresponding distribution after the (m + 1)st temperature measurement. With

an underlying discrete time scale, this calculation is considerably simpler, as there

are a finite number of sample paths of the temperature process starting from a

known temperature and ending in another known temperature that could result in a

given number of clock ticks. One additional consideration for this discrete time case,

however, is that the probabilities of these sample paths of the temperature process

between the mth and (m + 1)st measurements are not conditionally independent of

the elapsed time up until the mth measurement, X̃m, given the beginning temper-

ature w̃m, as was the case in Problem (MDP-2). This is due to the fixed times at

which the temperature can change in Problem (POMDP-2). Nonetheless, one can

still update the conditional distribution to πX̃m+1
by conditioning on X̃m, and the

net result is a considerably simpler computation.

In summary, we end up with another finite state, finite action, finite time MDP

that can be solved through standard dynamic programming. However, computing

the solution to this dynamic program is computationally simpler than computing

the solution to the dynamic program resulting from the continuous time problem.

The tradeoff is that the designer may need to make approximations at the modeling
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level in order to satisfy the additional assumptions on the temperature process and

frequency range.

3.4 Computation of Optimal Control Policies for a Toy Ex-
ample

In this section, we continue the toy example from Section 3.3.1 to show the ben-

efit from scheduling temperature measurements. Let the temperature process and

frequency mapping be as described in Section 3.3.1. The scheduler’s objective is to

time 12 seconds before waking up. The scheduler knows the initial temperature is

ŵ2. We use the L1 distortion function, so the cost is the absolute value of the differ-

ence between 12 seconds and X̂τ , the actual time at which the controller declares 12

seconds have elapsed.

If the temperature were ŵ1 for the entire time horizon, then 12 local clock ticks

would correspond to 12 seconds of real time; if the temperature were ŵ2 for the

entire time horizon, then 6 local clock ticks would correspond to 12 seconds of real

time; and, if the temperature were to move between ŵ1 and ŵ2, then 12 seconds of

real time would occur somewhere between the 6th and 12th clock tick. Moreover, the

initial temperature is ŵ2, so the first clock tick does not happen until 2 seconds of

real time. Thus, a priori, the scheduler knows to declare 12 seconds have elapsed

somewhere between the 6th and 11th clock tick.

For three different instances of the problem, with a limit of 0, 1, and 2 tempera-

ture measurements, respectively, we computed the optimal policy numerically. The

three optimal policies and resulting expected distortions are shown in Figure 3.6.

We observe from this toy example how the temperature measurements are used in

combination with the local clock ticks to more accurately estimate elapsed real time.
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Each additional measurement improves the controller’s calibration of the local clock,

thereby reducing the expected distortion.

• Optimal to take the 1st measurement at the 2nd clock tick

• If 1st  measurement is w1, wait 4 more ticks before 2nd measurement

– If 2nd  measurement is w1, wait 4 more ticks before declaring (at 10th tick)

– If 2nd  measurement is w2, wait 2 more ticks before declaring (at 8th tick)

• If 1st  measurement is w2, wait 2 more ticks before 2nd measurement

– If 2nd  measurement is w1, wait 4 more ticks before declaring (at 8th tick)

– If 2nd  measurement is w2, wait 2 more ticks before declaring (at 6th tick)

• Resulting expected distortion is 0.57

Two measurements allowed

Open-loop (no measurements)

• Optimal to declare 12 seconds have elapsed after 9 clock ticks

• Resulting expected distortion is 1.85

One measurement allowed

• Optimal to take the measurement at the 4th clock tick

• If measurement is w1, wait 6 more ticks before declaring (at 10th tick)

• If measurement is w2, wait 2 more ticks before declaring (at 6th tick)

• Resulting expected distortion is 1.00

Figure 3.6. Optimal policies and resulting expected distortions of three different instances of the
toy example.

3.5 Summary

We considered the problem of dynamically scheduling a limited number of tem-

perature measurements in a manner most useful to improving the accuracy of an

ultra-low power clock. We formulated two different optimization problems, with

continuous and discrete underlying time scales, respectively. We reduced both prob-

lems to finite state, finite horizon, finite action Markov decision processes that can

be solved numerically through standard dynamic programming. Modeling the un-

derlying time as discrete is advantageous in terms of computational complexity, but

requires extra conditions on the temperature process and frequency range.
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Chapter 4

Introduction to Opportunistic Scheduling

In this chapter, we introduce opportunistic scheduling problems, where the com-

mon theme is exploiting the temporal and spatial variation of the wireless channel.

In Section 4.1, we highlight the basic ideas of opportunistic scheduling through some

motivating examples. We then provide a literature survey and more detailed intro-

duction to the most common modeling issues in opportunistic scheduling problems

in Section 4.2. Throughout, we consider a single source transmitting data to one or

more users over a wireless channel.

4.1 Motivating Examples

Example 4.1. Consider a channel that can be in one of M channel conditions, with

probabilities p1, p2, . . . , pM , respectively. Associated with each channel condition is a

known convex, increasing, differentiable power-rate function, f1(z), f2(z), . . . , fM(z),

respectively, describing the power required to transmit z packets in a discrete time

slot. The objective is to minimize the average power consumed over an infinite

horizon, subject to a minimum average rate constraint, R̄. This problem reduces to
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the following convex optimization problem:

min
(z1,z2,...,zM )∈IRM

+

∑M

i=1 p
i · fi (z

i)

s.t.
∑M

i=1 p
i · zi ≥ R̄ ,

(4.1)

where zi represents the number of packets transmitted when the channel is in con-

dition i. The solution to (4.1) is found by reducing (in the same manner as [23,

Example 5.2, p. 245]) the Karush-Kuhn-Tucker (KKT) conditions to:

zi∗ ≥ 0, zi∗ · pi ·
(

ν∗ + f ′i(z
i∗)

)

= 0, and ν∗ + f ′i(z
i∗) ≥ 0, ∀i ∈ {1, 2, . . . ,M} ,

and pTz∗ = R̄ ,

where ν∗ is the Lagrange multiplier associated with the rate constraint. Graphically,

the so-called “inverse water-filling” solution is found by fixing the slope of a tangent

line, and setting the number of packets to be transmitted under condition i to be a

zi such that f ′i(z
i) is equal to the slope, or zero if f ′i(z

i) is greater than the slope for

all zi ≥ 0. This process is continuously repeated as the slope of the tangent line is

gradually increased until
∑M

i=1 p
i · zi = R̄. The resulting optimal solution z∗ has the

property that for every channel i, the optimum number of packets zi∗ is either equal

to zero or satisfies f ′i(z
i) = −ν∗, where −ν∗ is the slope of the final tangent line. See

Figure 4.1 for a diagram of this solution.
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Figure 4.1. Pictorial representation of the solution to Example 4.1. The vector z∗ of the optimal
number of packets to transmit under each channel condition has the property that
f ′i(z

i∗) is the same for all channel conditions i such that zi∗ > 0.

Example 4.2. Next, we consider the same infinite horizon average cost problem

as (4.1), with the additional stipulations that (i) the power-rate function in each
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channel condition is linear, with slope φi; and (ii) there is a power constraint P in

each slot. In other words,

fi

(

zi
)

=











φi · zi, if zi ≤ P
φi

∞, if zi > P
φi

.

We assume without loss of generality that φ1 ≤ φ2 ≤ . . . ≤ φM (i.e., φ1 is the slope

of the power-rate function under the best channel condition and φM is slope under

the worst condition). With these assumptions, the problem becomes:

min
(z1,z2,...,zM )∈IRM

+

∑M

i=1 p
i · φi · zi

s.t.
∑M

i=1 p
i · zi ≥ R̄

and zi ≤ P
φi , ∀i ∈ {1, 2, . . . ,M}

, (4.2)

where zi represents the number of packets transmitted when the channel is in con-

dition i. The solution to (4.2) is found by defining:

j∗ := min

{

j ∈ {1, 2, . . . ,M} :

j
∑

m=1

pm ·
P

φm
≥ R̄

}

.

Then the optimal amount of data to send under each channel condition is given by:

zm∗ :=



























P
φm , if m < j∗

R̄−
∑j∗−1

m=1 pm· P
φm

pj∗ , if m = j∗

0, if m > j∗

. (4.3)

See Figure 4.2 for a diagram of this solution.

Examples 4.1 and 4.2 illustrate the main idea of exploiting the temporal vari-

ation of the channel via opportunistic scheduling. Namely, we can reduce energy

consumption by sending more data when the channel is in a “good” state, and less

data when the channel is in a “bad” state. Much of the challenge for the scheduler

lies in determining how good or bad a channel condition is, and how much data to

send accordingly.
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Figure 4.2. Pictorial representation of the solution to Example 4.2. Each plot represents the power-
rate curve under a different channel condition. The full power available is used for
transmission when the channel is in its best condition(s), and no packets are transmitted
when the channel is in its worst condition(s).

In Examples 4.1 and 4.2, the sender is transmitting packets to a single receiver,

but it is often the case in wireless communication networks that a single source sends

data to multiple users over a shared channel. Such a downlink system model is shown

in Figure 4.3. In this situation, the scheduler can exploit both the temporal variation
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Receivers

Buffer 1

Buffer 2

Buffer 3

Buffer M

Sender

Figure 4.3. Multiuser downlink system model. A single source transmits data to multiple users over
a shared wireless channel.

and the spatial variation of the channel by sending data to the receivers with the

best conditions in each time slot. The benefit of increasing system throughput and

reducing total energy consumption through such a joint resource allocation policy is

commonly referred to as the multiuser diversity gain (see, e.g., [160, Ch. 6]). It was

introduced in the context of the analogous uplink problem where multiple sources

transmit to a single destination (e.g., the base station)[88].
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4.2 Modeling Issues and Literature Review

There is a wide range of literature on opportunistic scheduling problems in wireless

communications. This section is by no means intended to be an exhaustive survey of

problems that have been examined, but rather an introduction to some of the most

common modeling issues. For more complete surveys of opportunistic scheduling

studies in wireless networks, see [98] and [99].

4.2.1 Wireless Channel

Modeling the wireless channel deserves an entire book in its own right. For a

good introduction to the topic, see [160]. Here, we restrict attention to modeling the

wireless channel at the simplest level required for opportunistic scheduling problems,

without considering any specific modulation or coding schemes. In this context,

the condition of the time-varying wireless channel is usually modeled either as (i)

independently and identically distributed (IID) over time; or (ii) a discrete-time

Markov process. In the case of multiple receivers, as shown in Figure 4.3, the channels

between the sender and each receiver may or may not be correlated in each time

slot. For a detailed introduction to modeling fading channels as Markov processes,

see [126].

In general, the transmitter can reliably send data across the channel at a higher

rate by increasing transmission power. For each possible channel condition, there

is a corresponding power-rate curve that describes how much power is required to

transmit at a given rate. In the low signal-to-noise ratio (SNR) regime, this power-

rate curve is commonly taken to be linear and strictly increasing. In the high SNR

regime, the power-rate curve is commonly taken to be convex and strictly increasing

[160, Section 5.2]. For a justification of the convex assumption, see [162]. Specific
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convex power-rate curves that have been considered in the literature include: (i)

c(z, s) = 2z−1
α1(s)

(see, e.g., [93]), motivated by the capacity of a discrete-time additive

white Gaussian noise (AWGN) channel; and (ii) c(z, s) = zµ

α2(s)
(see, e.g., [92]), where

in both cases, c(z, s) is the power required to transmit at rate z under channel

condition s, µ is a fixed parameter, and the αi’s are parameters that may depend on

the channel condition.

4.2.2 Channel State Information

In this chapter, we assume that, through a feedback channel, the transmission

scheduler learns perfectly (and for free) the state of the channel between the sender

and each receiver at the beginning of every time slot. Thus, its scheduling decisions

are based on all past and current states of the channel(s), but none of the future

channel realizations. This set of assumptions is commonly referred to as causal or

full channel state information. Some papers such as [34] and [161] also refer to

problems resulting from this assumption on the scheduler’s information as online

scheduling problems, to differentiate from offline scheduling problems, where the

scheduler learns all future channel realizations at the beginning of the time horizon.

For a recent survey of research on systems with limited feedback, which may

cause the channel state information to be outdated or suffering from errors, see

[101]. References [53], [57], [127], [152], and [172] also discuss ways to deal with

restrictions on the timing and amount of feedback in an opportunistic scheduling

context.

A second relaxation of the perfect channel state information assumption is to force

the scheduler to decide whether or not to attain channel state information at some

cost, which represents the time and energy consumed in learning the channel state.

The process of learning the channel is often referred to as probing, and [28], [29],
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[30], [61], [62], [80], [113], and [125] are all examples of studies that examine the best

joint strategies for probing and transmission in different contexts.

4.2.3 Data

The simplest and often most tractable way to model the data is that the sender

has an infinite backlog of data to send to each receiver. Analysis under this assump-

tion gives a bound on the maximum achievable performance of a system in terms of

throughput. Alternatively, one can assume data arrives to the sender’s buffer over

time, and explicitly model the arrival process. The arrival process may be determin-

istic (often the case in offline scheduling problems, where the scheduler is assumed to

learn the times of all future arrivals at the beginning of the horizon), an IID sequence

of random variables (as in [36]), a Poisson process (as in [13]), a discrete-time Markov

process (as in [6]) or just about any other stochastic process appropriate for a given

application. With an arriving packet model, the scheduler’s control policies often

depend on both the current queue length of packets backlogged at the sender and

the statistics of future arrivals. It may also be the case, as in [13], that the sender’s

buffer to store arriving packets is of finite length. If so, the scheduler must take care

to avoid having to drop packets due to buffer overflow. Finally, the opportunistic

scheduling literature is divided on the treatment of a “packet.” Some studies take the

data to be some integer number of packets that cannot be split, while others consider

a fluid packet model that allows packets to be split, with the receiver reassembling

fractional packets.

4.2.4 Performance Objectives

Broadly speaking, opportunistic scheduling problems in wireless networks focus on

the tradeoffs between energy-efficiency, throughput, and delay. With some exceptions
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(e.g., [18]), delay is usually modeled as a QoS constraint (a maximum acceptable level

of delay), rather than a quantity to be directly minimized. In many opportunistic

scheduling problems, delay is not even considered, with the justification that some

applications are not delay-sensitive. We discuss delay further in the next section.

Thus, two most basic setups are (i) to maximize throughput, subject to a con-

straint on the maximum average or total energy expended; and (ii) to minimize en-

ergy consumption, subject to a constraint on the minimum average or total through-

put (as in Examples 4.1 and 4.2). These two problems are dual to each other, and

many similar techniques can therefore be used to solve both problems. Examples of

studies that solve both problems for a similar setup and relate their solutions are

[52] and [92].

4.2.5 Resource and Quality of Service Constraints

Sending more data when the channel is in a good state can increase system

throughput and/or reduce total energy consumption; however, in opportunistic

scheduling problems, it is often the case that the transmission scheduler has com-

peting resource and quality of service (QoS) interests. In this section, we provide a

brief introduction to some common resource and QoS constraints.

Transmission Power

Due to hardware and/or regulatory constraints, a limit is often placed on the

sender’s transmission power in each slot. Some models allow the sender to transmit to

multiple users in a slot, with the total transmission power not exceeding a limit, while

others only allow the sender to transmit data to a single user in each slot. This power

constraint is often left out of problems where the power-rate curve is strictly convex,

as the increasing marginal power required to increase the transmission rate prevents
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the scheduler from wanting to increase transmission power too much. However, the

absence of a power constraint in a problem with a linear power-rate curve would

often result in the scheduler wanting to increase transmission power well beyond a

reasonable limit in order to send a large amount of data when the channel condition

is very good (see, e.g., [52]).

Delay

Delay is an important QoS constraint in many applications. Different notions of

delay have been incorporated into opportunistic scheduling problems. One proxy

for delay is the stability of all of the sender’s queues for arriving packets awaiting

transmission. The motivation for this criterion is that if none of these queues blows

up, then the delay is not “too bad.” With stability as an objective, it is common to

restrict attention to throughput optimal policies, which are scheduling policies that

ensure the sender’s queues are stable, as long as this is possible for the given ar-

rival process and channel model. References [6], [114], [134], and [156] present such

throughput optimal scheduling algorithms, and examine conditions guaranteeing sta-

bilizability in different settings.

When an arriving packet model is used for the data, then one can also define

end-to-end delay as the time between a packet’s arrival at the sender’s buffer and

its decoding by the receiver. A number of opportunistic scheduling studies have

considered the average end-to-end delay of all packets over a long horizon. For in-

stance, [2], [18], [19], [21], [36], [41], [58], [59], [87], [86], [120], and [165] all consider

average delay, either as a constraint or by incorporating it directly into the objective

function to be minimized. However, the average delay criterion allows for the pos-

sibility of long delays (albeit with small probability); thus, for many delay-sensitive

applications, strict end-to-end delay is often a more appropriate consideration for
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studies with arriving packet models. In [33] and [34], Chen, Mitra, and Neely place

strict constraints on the end-to-end delay of each packet in a point-to-point system,

examine the optimal scheduling policy assuming all future channel conditions are

known, and suggest heuristics based on this optimal offline scheduling policy for the

more realistic online case where the scheduler only learns the channel conditions in

a causal fashion. Rajan, Sabharwal, and Aazhang also consider strict constraints on

the end-to-end delay in an arriving packet model in [120, Section IV].

A strict constraint on the end-to-end delay of each packet is one particular form

of a deadline constraint, as each arriving packet has a deadline by which it must

be transmitted (which happens to be a fixed number of slots after its arrival). This

notion can be generalized to impose individual deadlines on each packet, whether the

packets are arriving over time or are all in the sender’s buffer from the beginning,

as with the case of infinite backlog. Studies that impose such individual packet

deadlines include [34] and [144].

In [51], [52], [90], [91], [92], [93], [155], and [161] the individual deadlines coincide,

so that all the packets must be received by some common deadline (usually the end of

the time horizon under consideration). We examine further the role of these deadline

constraints in the next two chapters.

Fairness

If, in the multiuser setting shown in Figure 4.3, the scheduler only considers total

throughput and energy consumption across all users, it may often be the case that it

ends up transmitting to only a single user or to the same small group of users in every

slot. This can happen, for instance, if a base station requires less power to send data

to a nearby receiver, even when the nearby receiver’s channel is in its worst possible

condition and a farther away receiver’s channel is in its best possible condition. Thus,

73



fairness constraints are often imposed to ensure that the transmitter sends packets

to all receivers.

A number of different fairness conditions have been examined in the literature.

For example, [17] and [97] consider temporal fairness, where the scheduler must

transmit to each receiver for some minimum fraction of the time over the long run.

Under the proportional fairness considered by [74] and [164], the scheduler considers

the current channel conditions relative to the average channel condition of each

receiver. Reference [97] considers a more general utilitarian fairness, where the focus

is on system performance from the receiver’s perspective, rather than on resources

consumed by each user. The authors of [22] incorporate fairness directly into the

objective function by setting relative throughput target values for each receiver and

maximizing the minimum relative long-run average throughput.
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Chapter 5

Energy-Efficient Transmission Scheduling with

Strict Underflow Constraints

In this chapter, we examine the problem of energy-efficient transmission schedul-

ing over a wireless channel, subject to underflow constraints. We consider a single

source transmitting to one or more receivers/users over a shared wireless channel.

Each user has a buffer to store received packets before they are drained at a certain

rate. The available data rate of the channel varies with time and from user to user,

due to random fading. The transmitter’s goal is to minimize total power consump-

tion by exploiting the temporal and spatial variation of the channel, while preventing

any user’s buffer from emptying.

This problem falls into the general class of opportunistic scheduling problems

discussed in Chapter 4. In our model, the strict underflow constraints serve as a

notion of both fairness and delay. The notion of fairness is that none of the receivers’

buffers are allowed to empty, guaranteeing the required level of service to all users.

The underflow constraints also serve as a notion of delay, and can be seen as multiple

deadline constraints - certain packets must arrive by the end of the first slot, another

group by the end of the second slot, and so forth.

Sections 5.3 and 5.4 of this chapter generalize the works of [51, 52] and [90, 91, 92,

93], respectively, by considering multiple deadlines in the point-to-point communi-
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cation problem, rather than a single deadline at the end of the horizon. In addition

to better representing some delay-sensitive applications, this extension of the model

also allows us to consider infinite horizon problems. We discuss these related works

in more detail in Chapter 6.

5.1 Wireless Media Streaming and Related Work

The primary application we have in mind to motivate this problem is wireless

media streaming. For this application, the data are audio/video sequences, and the

packets are drained from the receivers’ buffers in order to be decoded and played.

Enforcing the underflow constraints reduces playout interruptions to the end users. In

order to make the presentation concrete, we use the above wireless media streaming

terminology throughout the chapter.

Transporting multimedia over wireless networks is a promising application that

has seen recent advances [54]. At the same time, a number of resource allocation

issues need to be addressed in order to provide high quality and efficient media over

wireless. First, streaming is in general bandwidth-demanding. Second, streaming

applications tend to have stringent QoS requirements (e.g., they can be delay and

jitter intolerant). Third, it is desirable to operate the wireless system in an energy-

efficient manner. This is obvious when the source of the media streaming (the sender)

is a mobile. When the media comes from a base station that is not power-constrained,

it is still desirable to conserve power in order to (i) limit potential interference to

other base stations and their associated mobiles, and (ii) maximize the number of

receivers the sender can support.

Of the related work in wireless media streaming, [94] has the closest setup to our

model. The main differences are that [94] features a loose constraint on underflow
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(i.e., it is allowed, but at a cost), as opposed to our tight constraint, and the two

studies adopt different wireless channel models. In the extension [95], the receiver

may slow down its playout rate (at some cost) to avoid underflow. In this setting,

the authors investigate the tradeoffs between power consumption and playout quality,

and examine joint power/playout rate control policies. In our model, the receiver does

not have the option to adjust the playout speeds. Our model also bears resemblance

to [102]. The first difference here is that [102] aims to minimize transmission energy

subject to a constant end-to-end delay constraint on each video frame. A second

difference is that the controller in [102] must assign various source coding parameters

such as quantization step size and coding mode, whereas our model assumes a fixed

encoding/decoding scheme.

The remainder of this chapter is organized as follows. In the next section, we

describe the system model, formulate finite and infinite horizon MDPs, and relate

our model to models in inventory theory. In Section 5.3, we consider the case of a

single receiver under linear power-rate curves. While this case can be considered a

special case of the models of Sections 5.4 and 5.5, we present it first in order to (i)

state additional structural properties of the optimal transmission policy to a single

user under linear power-rate curves that are not true in general for the cases discussed

in Sections 5.4 and 5.5; (ii) highlight some intuitive takeaways that carry over to the

generalized models, but are more transparent in the simpler model; and (iii) compare

it to related problems in the wireless communications literature. We analyze the

structure of the optimal scheduling policy for the finite horizon problem and provide

a method to compute the critical numbers that complete the characterization of

the optimal policy when some additional technical conditions are met. Section 5.4

generalizes the analysis of Section 5.3 to the case of a single receiver under piecewise-
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linear convex power-rate curves, and also addresses the infinite horizon problems for

the case of a single receiver. In Section 5.5, we analyze the structure of the optimal

policy when there are two receivers with linear power-rate curves. We discuss the

relaxation of the strict underflow constraints in Section 5.6 and summarize the main

results of the chapter in Section 5.7.

5.2 Problem Description

In this section, we present an abstraction of the transmission scheduling problem

outlined in the previous section and formulate three optimization problems. While

most of this chapter focuses on the cases of one and two users, the formulation in

this section is for the more general multi-user (multi-receiver) case, so that we can

discuss this more general case in Section 8.1.3.

5.2.1 System Model and Assumptions

We consider a single source transmitting media sequences to M users/receivers

over a shared wireless channel. The sender maintains a separate buffer for each re-

ceiver, and is assumed to always have data to transmit to each receiver.1 We consider

a fluid packet model that allows packet to be split, with the receiver reassembling

fractional packets. Each receiver has a playout buffer at the receiving end, assumed

to be infinite. While in reality this cannot be the case, it is nevertheless a reasonable

assumption considering the decreasing cost and size of memory, and the fact that our

system model allows holding costs to be assessed on packets in the receiver buffers.

See Figure 5.1 for a diagram of the system.

We consider time evolution in discrete steps, indexed backwards by n = N,N −

1, . . . , 1, with n representing the number of slots remaining in the time horizon. N

1This assumption is commonly referred to as the infinite backlog assumption.
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Figure 5.1. System model for Problems (P5.1), (P5.2), and (P5.3).

is the length of the time horizon, and slot n refers to the time interval [n, n− 1).

At the beginning of each time slot, the scheduler allocates some amount of power

(possibly zero) for transmission to each user. The total power allocated in any one

slot must not exceed the fixed power constraint, P . Following transmission and

reception in each slot, a certain number of packets are removed/purged from each

receiver buffer for playing. The transmitter (or scheduler) knows precisely the packet

requirements of each receiver (i.e., the number of packets removed from the buffer)

in each time slot. This is justified by the assumption that the transmitter knows the

encoding and decoding schemes used. We assume that packets transmitted in slot

n arrive in time to be used for playing in slot n, and that the users’ consumption

of packets in each slot is constant, denoted by d =
(

d1, d2, . . . , dM
)

. This latter

assumption is less realistic, but may be justified if the receiving buffers are drained

at a constant rate at the MAC layer, before packets are decoded by the media players

at the application layer. It is also worth noting that the same techniques we use in

this chapter to analyze the constant drainage rate case can be used to examine the

case of time-varying drainage rates. We discuss the extension to the case of time-

varying drainage rates further in Section 5.3.1. We also assume the receiver buffers

are empty at the beginning of the time horizon, and that even when the channels
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are in their worst possible condition, the maximum power constraint P is sufficient

to transmit enough packets to satisfy one time slot’s packet requirements for every

user. We discuss the relaxation of this assumption in Section 5.6.

In general, wireless channel conditions are time-varying. Adopting a block fading

model, we assume that the slot duration is within the channel coherence time such

that the channel conditions within a single slot are constant. Userm’s channel condi-

tion in slot n is modeled as a random variable, Sm
n . We assume that the evolution of

a given user’s channel condition is independent of all other users’ channel conditions

and the transmitter’s scheduling decisions. We also assume that the transmitter

learns all the channel states through a feedback channel at the beginning of each

time slot, prior to making the scheduling decisions.

We begin by modeling the evolution of each user’s channel condition as a finite-

state ergodic homogeneous Markov process, {Sm
n }n=N,N−1,...,1 with state space S

m.2

Namely, conditioned on the channel state, Sm
n , at time n, user m’s channel states at

future times (n − 1, n − 2, . . .) are independent of the channel states at past times

(n + 1, n + 2, . . .). Note the somewhat unconventional notation that future times

are indexed by lower epoch numbers, as n represents the number of slots remaining

in the time horizon. Modeling time backwards facilitates the analysis of the infinite

horizon problems, as will be seen for example in Section 5.4.3. It may also be the case

that each user’s channel condition is independent and identically distributed (IID)

from slot to slot. When this is the case, we can often say more about the optimal

transmission policy, as will be seen for example in Sections 5.3.2 and 5.4.2.

Associated with each channel condition for a given user is a power-rate function.

If user m’s channel is in condition sm, then the transmission of r units of data to

2Theorems 5.1, 5.3, 5.5, 5.8, 5.9, and 5.10 and their proofs remain valid as stated when each user’s channel
condition is given by a more general homogeneous Markov process that is not necessarily finite-state and ergodic.
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user m incurs a power consumption of cm(r, sm). This power-rate function cm(·, sm)

is commonly assumed to be linear (in the low SNR regime) or convex (in the high

SNR regime). In this chapter, we consider power-rate functions that are linear or

piecewise-linear convex, the latter of which can be used to approximate more gen-

eral convex power-rate functions. We assume that sending data consumes a strictly

positive amount of power, and therefore take the power-rate functions to be strictly

increasing under all channel conditions.

The goal of this study is to characterize the control laws that minimize the trans-

mission power and packet holding costs over a finite or infinite time horizon, subject

to tight underflow constraints and a maximum power constraint in each time slot.

5.2.2 Problem Formulation

We consider three problems. Problem (P5.1) is the finite horizon discounted

expected cost problem; Problem (P5.2) is the infinite horizon discounted expected

cost problem; and Problem (P5.3) is the infinite horizon average expected cost prob-

lem. The three problems feature the same information state, action space, system

dynamics, and cost structure, but different optimization criteria.

The information state at time n is the pair (Xn,Sn), where the random vector

Xn = (X1
n, X

2
n, · · · , X

M
n ) denotes the current receiver buffer queue lengths, and

Sn = (S1n, S
2
n, · · · , S

M
n ) denotes the channel conditions in slot n (recall that n is

the number of steps remaining until the end of the horizon). The dynamics for the

receivers’ queues are governed by the simple equation Xn−1 = Xn + Zn − d at all

times n = N,N − 1, . . . , 1, where Zn is a controlled random vector chosen by the

scheduler at each time n that represents the number of packets transmitted to each

user in the nth slot. At each time n, Zn must be chosen to meet the peak power
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constraint:

M
∑

m=1

cm(Zm
n , S

m
n ) ≤ P ,

and the underflow constraints:

Xm
n + Zm

n ≥ dm , ∀m ∈ {1, 2, . . . ,M} .

Clearly, the scheduler cannot transmit a negative number of packets to any user, so

it must also be true that Zm
n ≥ 0 for all m.

We now present the optimization criterion for each problem. In addition to the

cost associated with power consumption from transmission, we introduce holding

costs on packets stored in each user’s playout buffer at the end of a time slot. The

holding costs associated with user m in each slot are described by a convex, non-

negative, nondecreasing function, hm(·), of the packets remaining in user m’s buffer

following playout, with limx→∞ h
m(x) = ∞. We assume without loss of generality

that hm(0) = 0. Possible holding cost models include a linear model, hm(x) = ĥm · x

for some positive constant ĥm, or a barrier-type function such as:

hm(x) :=











0, if x ≤ µ

κ · (x− µ), if x > µ (κ very large)

,

which could represent a finite receiver buffer of length µ.3

In Problem (P5.1), we wish to find a transmission policy π that minimizes Jπ
N,α,

the finite horizon discounted expected cost under policy π, defined as:

Jπ
N,α := IEπ

{

N
∑

n=1

M
∑

m=1

αN−n ·
{

cm
(

Zm
n , S

m
n

)

+ hm
(

Xm
n + Zm

n − dm
)

}

| FN

}

,

where 0 ≤ α ≤ 1 is the discount factor and FN denotes all information available at

the beginning of the time horizon. For Problem (P5.2), the discount factor must

3Taking µ to be greater than the time horizon N in the finite horizon expected cost problem is equivalent to not
assessing any holding costs in Problem (P5.1).

82



satisfy 0 ≤ α < 1, and the infinite horizon discounted expected cost function for

minimization is defined as:

Jπ
∞,α := lim

N→∞
Jπ

N,α ,

For Problem (P5.3), the average expected cost function for minimization is defined

as:

Jπ
∞,1 := lim sup

N→∞

1

N
Jπ

N,1 .

In all three cases, we allow the transmission policy π to be chosen from the set of

all history-dependent randomized and deterministic control laws, Π (see, e.g., [68,

Definition 2.2.3, pg. 15]).

Combining the constraints and criteria, we present the optimization formulations

for Problem (P5.1) (or (P5.2) or (P5.3)):

inf
π∈Π

Jπ
N,α

(

or inf
π∈Π

Jπ
∞,α or inf

π∈Π
Jπ
∞,1

)

s.t.
M
∑

m=1

cm (Zm
n , S

m
n ) ≤ P, w.p.1, ∀n

Zm
n ≥ max {0, dm −Xm

n } , w.p.1, ∀n, ∀m ∈ {1, 2, . . . ,M}.

Problem (P5.1) may be solved using standard dynamic programming (see, e.g.,

[68, 20]). The recursive dynamic programming equations are given by:4

Vn(x, s) = min
z∈Ad(x,s)















M
∑

m=1

{cm (zm, sm) + hm (xm + zm − dm)}

+α · IE
[

Vn−1(x+ z− d,Sn−1)
∣

∣ Sn = s
]















n = N,N − 1, . . . , 1 (5.1)

V0(x, s) = 0, ∀x ∈ IRM
+ ,∀s ∈ S := S

1 × S2 × . . .× SM ,

4As will be shown in the proofs of Theorems 5.6 and 5.11, our model satisfies the measurable selection condition
3.3.3 of [68, pg. 28], justifying the use of min rather than inf in the dynamic programming equations.
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where V (·, ·) is the value function or expected cost-to-go, and the action space is

defined as:

Ad(x, s) :=

{

z ∈ IRM
+ :

z � max {0,d− x} and
M
∑

m=1

cm (zm, sm) ≤ P

}

, ∀x ∈ IRM
+ ,∀s ∈ S, (5.2)

where the maximum in (5.2) is taken element-by-element

(i.e., zm ≥ max {0, dm − zm} ∀m). Note that our assumption that the maximum

power constraint P is always sufficient to transmit enough packets to satisfy one

time slot’s packet requirements for every user (i.e.,
∑M

m=1 c
m (dm, sm) ≤ P, ∀s ∈ S)

ensures that the action space Ad(x, s) is always non-empty.

5.2.3 Relation to Inventory Theory

The model outlined in Section 5.2.1 corresponds closely to models used in inven-

tory theory. Borrowing that field’s terminology, our abstraction is a multi-period,

single-echelon, multi-item, discrete-time inventory model with random (linear or

piecewise-linear convex) ordering costs, a budget constraint, and deterministic de-

mands. The items correspond to the streams of data packets, the random ordering

costs to the random channel conditions, the budget constraint to the power avail-

able in each time slot, and the deterministic demands to the packet requirements for

playout.

To the best of our knowledge, this particular problem has not been studied in

the context of inventory theory, but similar problems have been examined, and some

of the techniques from the inventory theory literature are useful in analyzing our

model. References [46], [55], [56], [81], [84], [85], [104], and [103] all consider single-

item discrete-time inventory models with linear ordering costs and random prices.

The key result for the case of deterministic demand of a single item with no resource
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constraint is that the optimal policy is a base-stock policy with different target

stock levels for each price. Specifically, for each possible ordering price (translates

into channel condition in our context), there exists a critical number such that the

optimal policy is to fill the inventory (receiver buffer) up to that critical number if the

current level is lower than the critical number, and not to order (transmit) anything if

the current level is above the critical number.5 Of the prior work, Kingsman [84, 85]

is the only author to consider a resource constraint, and he imposes a maximum

on the number of items that may be ordered in each slot. The resource constraint

we consider is of a different nature in that we limit the amount of power available

in each slot. This is equivalent to a limit on the per slot budget (regardless of the

stochastic price realization), rather than a limit on the number of items that can be

ordered.

Of the related work on single-item discrete-time inventory models with deter-

ministic linear ordering costs and stochastic demand, [48] and [157] are the most

relevant; in those studies, however, the resource constraint also amounts to a limit

on the number of items that can be ordered in each slot, and is constant over time.

References [16], [150], and [171] consider single-item inventory models with determin-

istic piecewise-linear convex ordering costs and stochastic demand. The key result

in this setup is that the optimal inventory level after ordering is a piecewise-linear

nondecreasing function of the current inventory level (i.e., there are a finite number

of target stock levels), and the optimal ordering quantity is a piecewise-linear nonin-

creasing function of the current inventory level. Porteus [116] refers to policies of this

form as finite generalized base-stock policies, to distinguish them from the superclass

of generalized base-stock policies, which are optimal when the deterministic ordering

5We use the terms target level and critical number interchangeably throughout the thesis.
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costs are convex (but not necessarily piecewise-linear), as first studied in [82]. Under

a generalized base-stock policy, the optimal inventory level after ordering is a non-

decreasing function of the current inventory level, and the optimal ordering quantity

is a nonincreasing function of the current inventory level.

References [32], [40], [45], and [79] consider multi-item discrete-time inventory

systems under deterministic ordering costs, stochastic demand, and resource con-

straints. We discuss related results from these studies in more detail in Chapter

7.

In the continuous-time inventory literature, [39], [63], [115], [163], [166], and [173]

consider scheduling of the so-called multiclass make-to-stock queue, where a single

facility produces multiple items subject to stochastic demands. While the produc-

tion times are also random in these models, some of the structural properties and

qualitative features bear a close resemblance to the discrete-time inventory models

with deterministic ordering costs and stochastic demand discussed in Chapter 7. For

more detailed reviews of the continuous-time models, see the introductions of [32]

and [79].

We are not aware of any prior work on (i) single-item inventory models with

random piecewise-linear convex ordering costs; (ii) exact computation of the critical

numbers in any sort of finite generalized base-stock policy; or (iii) multi-item inven-

tory models with random ordering costs and joint resource constraints. Therefore,

not only is this connection between wireless transmission scheduling problems and

inventory models novel, but the results we present in this chapter also represent a

contribution to the inventory theory literature.
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5.3 Single Receiver with Linear Power-Rate Curves

In this section, we analyze the finite horizon discounted expected cost problem

when there is only a single receiver (M = 1), and the power-rate functions under

different channel conditions are linear. One such family of power-rate functions

is shown in Figure 5.2, where there are three possible channel conditions, and a

different linear power-rate function associated with each channel condition. Note

that due to the power constraint P in each slot, the effective power-rate function

is a two-segment piecewise-linear convex function under all channel conditions. We

subsequently simplify our notation and use cs to denote the power consumption per

unit of data transmitted when the channel condition is in state s. Because there

is just a single receiver, we also drop the dependence of the functions and random

variables on m. We defer the infinite horizon expected cost problems for this case

until Section 5.4.3.
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Figure 5.2. A family of linear power-rate functions. Due to the power constraint, the effective
power-rate function, shown above for each of the three channel conditions, is a two-
segment piecewise-linear convex function. When the channel condition is s, the slope
of the first segment is cs.

We denote the “best” and “worst” channel conditions by sbest and sworst, re-

spectively, and denote the slopes of the power-rate functions under these respective
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conditions by cmin and cmax. That is,

0 < csbest
= cmin := min

s∈S
{cs} ≤ max

s∈S
{cs} =: cmax = csworst ≤

P

d
.

With these notations in place, the dynamic program (5.1) for Problem (P5.1)

becomes:

Vn(x, s) = min
max(0,d−x)≤z≤ P

cs











cs · z + h(x+ z − d)

+α · IE
[

Vn−1(x+ z − d, Sn−1)
∣

∣ Sn = s
]











(5.3)

= min
max(x,d)≤y≤x+ P

cs











cs · (y − x) + h(y − d)

+α · IE
[

Vn−1(y − d, Sn−1)
∣

∣ Sn = s
]











(5.4)

= −cs · x+ min
max(x,d)≤y≤x+ P

cs

{

gn(y, s)
}

, n = N,N − 1, . . . , 1 ,

V0(x, s) = 0, ∀x ∈ IR+,∀s ∈ S,

where gn(y, s) := cs · y + h(y − d) + α · IE
[

Vn−1(y − d, Sn−1) | Sn = s
]

. Here, the

transition from (5.3) to (5.4) is done by a change of variable in the action space from

Zn to Yn, where Yn = Xn + Zn. The controlled random variable Yn represents the

queue length of the receiver buffer after transmission takes place in the nth slot, but

before playout takes place (i.e., before d packets are removed from the buffer). The

restrictions on the action space, max(x, d) ≤ y ≤ x + P
cs
, ensure: (i) a nonnegative

number of packets is transmitted; (ii) there are at least d packets in the receiver

buffer following transmission, in order to satisfy the underflow constraint; and (iii)

the power constraint is satisfied.

5.3.1 Structure of Optimal Policy

With the above change of variable in the the action space, the expected cost-

to-go at time n, Vn(x, s), depends on the current buffer level, x, only through the

fixed term −cs · x and the action space; i.e., the function gn does not depend on
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x. This separation allows us to leverage the inventory theory techniques of showing

“single critical number” or “base-stock” policies, which date as far back as [15]. The

following theorem gives the structure of the optimal transmission policy for the finite

horizon discounted expected cost problem.

Theorem 5.1. For every n ∈ {1, 2, . . . , N} and s ∈ S, define the critical number

bn(s) := min

{

ŷ ∈ [d,∞) : gn(ŷ, s) = min
y∈[d,∞)

gn(y, s)

}

.

Then, for Problem (P5.1) in the case of a single receiver with linear power-rate

curves, the optimal buffer level after transmission with n slots remaining is given by:

y∗n(x, s) :=



























x, if x ≥ bn(s)

bn(s), if bn(s)−
P
cs
≤ x < bn(s)

x+ P
cs
, if x < bn(s)−

P
cs

, (5.5)

or, equivalently, the optimal number of packets to transmit in slot n is given by:

z∗n(x, s) :=



























0, if x ≥ bn(s)

bn(s)− x, if bn(s)−
P
cs
≤ x < bn(s)

P
cs
, if x < bn(s)−

P
cs

. (5.6)

Furthermore, for a fixed s, bn(s) is nondecreasing in n:

N · d ≥ bN(s) ≥ bN−1(s) ≥ . . . ≥ b1(s) = d . (5.7)

If, in addition, the channel condition is independent and identically distributed from

slot to slot, then for a fixed n, bn(s) is nonincreasing in cs; i.e., for arbitrary s1, s2 ∈ S

with cs1 ≤ cs2, we have:

n · d ≥ bn(sbest) ≥ bn(s
1) ≥ bn(s

2) ≥ bn(sworst) = d . (5.8)
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The optimal transmission policy in Theorem 5.1 is a modified base-stock policy.

At time n, for each possible channel condition realization s, the critical number bn(s)

describes the target number of packets to have in the user’s buffer after transmission

in the nth slot. If that number of packets is already in the buffer, then it is optimal to

not transmit any packets; if there are fewer than the target and the available power

is enough to transmit the difference, then it is optimal to do so; and if there are fewer

than the target and the available power is not enough to transmit the difference, then

the sender should use the maximum power to transmit. See Figure 5.3 for diagrams

of the optimal policy.
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Figure 5.3. Structure of optimal policy for Problem (P5.1) in the case of a single receiver with
linear power-rate curves. When the state is (x, s) in slot n, (a) depicts the optimal
transmission quantity, and (b) depicts the resulting number of packets available for
playout in slot n.

Details of the proof of Theorem 5.1 are included in Appendix A.1. The key

realization is that for all n and all s, gn(·, s) : [d,∞) → IR+ is a convex function in

y, with limy→∞ gn(y, s) =∞. Thus, for all n and all s, gn(·, s) has a global minimum

bn(s), the target number of packets to have in the buffer following transmission

in the nth slot. The key idea to show (5.7) is to fix s ∈ S, view gn(y, s) as a

function of y and n, say f(y, n), and show that the function f(·, ·) is submodular.

From the proof, one can also see that if we relax the stationary (time-invariant)

deterministic demand assumption to a nonstationary (time-varying) deterministic
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demand sequence, {dN , dN−1, . . . , d1} (with dn ≤
P

cmax
for all n), then the structure of

the optimal policy is still as stated in (5.5). If the channel is IID, then the following

statement, analogous to (5.8), is true for arbitrary s1, s2 ∈ S with cs1 ≤ cs2 :

n
∑

i=1

di ≥ bn(sbest) ≥ bn(cs1) ≥ bn(cs2) ≥ bn(sworst) = dn , ∀n ∈ {1, 2, . . . , N} . (5.9)

However, (5.7), the monotonicity of critical numbers over time for a fixed channel

condition, is not true in general under nonstationary deterministic demand. As

one counterexample, (5.9) says that under an IID channel, the critical numbers

for the worst possible channel condition are equal to the single period demands.

Therefore, if the demand sequence is not monotonic, the sequence of critical numbers,

{bn (sworst)}n=1,2,...,N , is not monotonic.

5.3.2 Computation of the Critical Numbers

In this section, we consider the special case where the channel condition is in-

dependent and identically distributed from slot to slot, the holding cost function is

linear (i.e., h(x) = h · x for some h ≥ 0), and the following technical condition is

satisfied: for each possible channel condition s,

P

cs
= l · d for some l ∈ IN ; (5.10)

i.e., the maximum number of packets that can be transmitted in any slot covers

exactly the playout requirements of some integer number of slots. Under these three

assumptions, we can completely characterize the optimal transmission policy.

Theorem 5.2. Define the threshold γn,j for n ∈ {1, 2, . . . , N} and j ∈ IN recursively,

as follows:

(i) If j = 1, γn,j =∞;
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(ii) If j > n, γn,j = 0;

(iii) If 2 ≤ j ≤ n,

γn,j = −h+ α ·











∑

s: cs≥γn−1,j−1

p(s) · γn−1,j−1 +
∑

s: cs<γn−1,j−1

p(s) · cs

+
∑

s: cs<γn−1,j−1+L(s)

p(s) ·
[

γn−1,j−1+L(s) − cs
]











, (5.11)

where p(s) is the probability of the channel being in state s in a time slot, and

L(s) := P
d·cs

. For each n ∈ {1, 2, . . . , N} and s ∈ S, if γn,j+1 ≤ cs < γn,j, define

bn(s) := j · d. The optimal control strategy for Problem (P5.1) is then given by

π∗ =
{

y∗N , y
∗
N−1, . . . , y

∗
1

}

, where

y∗n(x, s) :=



























x, if x ≥ bn(s)

bn(s), if bn(s)−
P
cs
≤ x < bn(s)

x+ P
cs
, if x < bn(s)−

P
cs

. (5.12)

Note that with n slots remaining, 0 = γn,n+1 ≤ γn,n ≤ γn,n−1 ≤ . . . ≤ γn,2 ≤ γn,1 =

∞, so bn(s) is well-defined.

Compared to using standard numerical techniques to approximately solve the

dynamic program and find a near-optimal policy, the above result not only sheds more

insight on the structural properties of the problem and its exactly-optimal solution,

but also offers a computationally simpler method. In particular, the optimal policy is

completely characterized by the thresholds {γn,j}n∈{1,2,...,N}, j∈IN
. Calculating these

thresholds recursively, as described in Theorem 5.2, requires O(N2 |S|) operations,

which is considerably simpler from a computational standpoint than approximately

solving the dynamic program [35, 124].

To prove Theorem 5.2, we show by backwards induction that it is worse to transmit

either fewer or more packets than the number suggested by the policy π∗. The
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detailed proof is omitted, as Theorem 5.2 is a special case of Theorem 5.4; however,

we discuss some intuition behind the proof and the thresholds here.

The reason for the technical condition regarding the maximum number of packets

that can be transmitted in any slot is as follows. The optimal action at all times

(in general, without the technical condition) is either to transmit enough packets

to fill the buffer up to a level satisfying the playout requirements of some number

of future slots, or to transmit at maximum power. When the technical condition

is satisfied, transmitting at maximum power also results in filling the buffer up to

a level satisfying the playout requirements of some number of future slots. Thus,

under the optimal policy, all realizations result in the buffer level at the end of every

time slot being some integer multiple of the demand, d. This fact makes it easier to

compute the thresholds {γn,j}n∈{1,2,...,N}, j∈IN
.

An intuitive explanation of the recursion (5.11) is as follows. The threshold γn,j

may be interpreted as the per packet power cost at which, with n slots remaining

in the horizon, the expected cost-to-go of transmitting packets to cover the user’s

playout requirements for the next j − 1 slots is the same as the expected cost-to-go

of transmitting packets to cover the user’s requirements for the next j slots. That

is, γn,j should satisfy:

α · IE
[

Vn−1

(

(j − 1) · d, Sn−1

)]

+ γn,j · d+ h · d = α · IE
[

Vn−1

(

(j − 2) · d, Sn−1

)]

,

which is equivalent to:

γn,j

= −h+
α

d
· IE

[

Vn−1

(

(j − 2) · d, Sn−1

)

− Vn−1

(

(j − 1) · d, Sn−1

)

]

(5.13)

= −h+
α

d
·
∑

s∈S

p(s) ·

[

Vn−1

(

(j − 2) · d, s
)

− Vn−1

(

(j − 1) · d, s
)

]
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= −h+
α

d
·









































∑

s: bn−1(s)≤(j−2)·d

p(s) ·











−h · d+ αIE







Vn−2

(

(j − 3) · d, Sn−2

)

−Vn−2

(

(j − 2) · d, Sn−2

)

















+
∑

s: (j−2)·d<bn−1(s)≤
(

j−2+L(s)
)

·d

p(s) · cs · d

+
∑

s: bn−1(s)

>

(

j−2+L(s)
)

·d

p(s) ·



























−h · d

+αIE







Vn−2

(

(

j − 3 + L(s)
)

· d, Sn−2

)

−Vn−2

(

(

j − 2 + L(s)
)

· d, Sn−2

)









































































(5.14)

= −h+ α ·











































∑

s: bn−1(s)≤(j−2)·d

p(s) · γn−1,j−1

+
∑

s: (j−2)·d<bn−1(s)≤
(

j−2+L(s)
)

·d

p(s) · cs

+
∑

s: bn−1(s)>
(

j−2+L(s)
)

·d

p(s) · γn−1,j−1+L(s)











































(5.15)

= −h+ α ·



































∑

s: cs≥γn−1,j−1

p(s) · γn−1,j−1

+
∑

s: γn−1,j−1+L(s)≤cs<γn−1,j−1

p(s) · cs

+
∑

s: cs<γn−1,j−1+L(s)

p(s) · γn−1,j−1+L(s)



































. (5.16)

Here, (5.14) follows from the structure of the optimal control action (5.5). If the

channel condition s in the (n − 1)st slot is such that bn−1(s) ≤ (j − 2) · d, then no

packets are transmitted when the starting buffer level is either (j−2) ·d or (j−1) ·d,

and the respective buffer levels at the beginning of slot n − 2 are (j − 3) · d and

(j−2) ·d. The instantaneous costs resulting from the two starting buffer levels differ

by −h · d. When (j − 2) · d < bn−1(s) ≤
(

j − 2 + L(s)
)

· d, the power constraint is

not tight starting from (j − 1) · d, so the buffer level after transmission is the same

starting from (j − 2) · d or (j − 1) · d. The instantaneous costs resulting from the

two starting buffer levels differ by cs · d, as an extra d packets are transmitted if
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the starting buffer is (j − 2) · d. Finally, when bn−1(s) >
(

j − 2 + L(s)
)

· d, the

power constraint is tight starting from both (j − 2) · d and (j − 1) · d. Therefore,

the instantaneous cost difference is −h · d, and the respective buffer levels at the

beginning of slot n− 2 are (j − 3 + L(s)) · d and (j − 2 + L(s)) · d. Equation (5.15)

follows from (5.13), with n− 1, j− 1 substituted for n, j, and (5.16) follows from the

definition that bn(s) = j · d if γn,j+1 ≤ cs < γn,j.

Comparing the threshold γn,j defined in (5.11) to the corresponding threshold in

the unrestricted (no power constraint) single user problem [56, 84], the only difference

is the third term of the right-hand side of (5.11):

α ·
∑

{s: cs<γn−1,j−1+L(s)}

p(s) ·
[

γn−1,j−1+L(s) − cs
]

,

which is absent in the unrestricted case. For all n ∈ {1, 2, . . . , N} and j ∈ IN , this

term is nonnegative. Thus, for a fixed n and j, the threshold in the restricted case

is at least as high as the corresponding threshold in the unrestricted case. It follows

that the optimal stock-up level bn(s) is also at least as high in the restricted case

for all n ∈ {1, 2, . . . , N} and s ∈ S. The intuition behind this difference is that the

sender should transmit more packets under the same (medium) conditions, because

it is not able to take advantage of the best channel conditions to the same extent

due to the power constraint.

5.4 Single Receiver with Piecewise-Linear Convex Power-
Rate Curves

In this section, we analyze Problems (P5.1), (P5.2), and (P5.3) when there is

only a single receiver (M = 1), and the power-rate functions under different channel

conditions are piecewise-linear convex. Note that this is a generalization of the case

considered in Section 5.3.
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We assume without loss of generality that under each channel condition s, the

power-rate function hasK+1 segments, and thus the power consumed in transmitting

z packets under channel condition s can be represented as follows:

c(z, s) = z · c̃0(s) +
K−1
∑

k=0

{

(

c̃k+1(s)− c̃k(s)
)

·max
{

z − z̃k(s), 0
}

}

, where

0 < c̃0(s) ≤ c̃1(s) ≤ · · · ≤ c̃K(s) , and

0 = z̃−1(s) < z̃0(s) < z̃1(s) < · · · < z̃K−1(s) < z̃K(s) =∞ .

The terms {c̃k(s)}k∈{0,1,...,K} represent the slopes of the segments of c(·, s), and the

terms {z̃k(s)}k∈{0,1,...,K−1} represent the points at which the slopes of c(·, s) change.

An example of a family of such power-rate functions is shown in Figure 5.4. For

each channel condition s ∈ S, we define the maximum number of packets that can

be transmitted without exceeding the per slot power constraint P as:

z̃max(s) := {z : c(z, s) = P} .

Note that z̃max(s) is well-defined due to the strictly increasing nature of c(·, s). Recall

that we assume z̃max(s) ≥ d, ∀s ∈ S. We also assume without loss of generality that

z̃max(s) > z̃K−1(s), ∀s ∈ S.

In this case, the dynamic program (5.1) for Problem (P5.1) becomes:

Vn(x, s) = min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+α · IE
[

Vn−1(x+ z − d, Sn−1)
∣

∣ Sn = s
]











= min
{

max(0,d−x)≤z≤z̃max(s)
}

{

c(z, s) + g̃n(x+ z, s)
}

,

n = N,N − 1, . . . , 1 (5.17)

V0(x, s) = 0, ∀x ∈ IR+,∀s ∈ S ,

where g̃n(y, s) := h(y − d) + α · IE [Vn−1(y − d, Sn−1)|Sn = s].

96



������

���	
���

����	����� ����	������� ����	����������

)(~
2 POORsc=

�����

)(~
3 POORsc=

�����
�

)(~
1 POORsz

)(~
2 POORsz

)(~
0 POORsz

)(~
0 POORsc=

�����

)(~
1 POORsc=

�����

� !�"	��� �	�#""��

)(~
max POORsz

Figure 5.4. A family of piecewise-linear convex power-rate functions. Like Figure 5.2, we incorpo-
rate the power constraint into each curve to show the effective power-rate curve. As
an example, the power-rate function c(·, sPOOR) is completely characterized by the se-
quence of slopes {c̃k(sPOOR)}k∈{0,1,2,3} and the sequence of points where the slopes

change {z̃k(sPOOR)}k∈{0,1,2}. The maximum number of packets that can be transmit-

ted in a slot when the channel condition is sPOOR is z̃max(sPOOR).

5.4.1 Structure of Optimal Policy for the Finite Horizon Discounted Ex-
pected Cost Problem

We showed in Theorem 5.1 that the the optimal transmission policy to a single

receiver in the case of linear power-rate curves is a modified base-stock policy char-

acterized by a single critical level for each channel condition. In this section, we

generalize this result to the case of piecewise-linear power-rate curves, and show that

the optimal receiver buffer level after transmission (respectively, optimal number of

packets to transmit) is no longer a three-segment piecewise-linear nondecreasing (re-

spectively, nonincreasing) function of the starting buffer level as in Figure 5.3, but a

more general piecewise-linear nondecreasing (respectively, nonincreasing) function.

Theorem 5.3. In Problem (P5.1) with a single receiver under piecewise-linear con-

vex power-rate curves, for every n ∈ {1, 2, . . . , N} and s ∈ S, there exists a nonin-

creasing sequence of critical numbers
{

bn,k(s)
}

k∈{0,1,...,K}
such that the optimal num-
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ber of packets to transmit with n slots remaining is given by:

z∗n(x, s) :=







































































z̃k−1(s), if bn,k(s)− z̃k−1(s) < x ≤ bn,k−1(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K}

bn,k(s)− x, if bn,k(s)− z̃k(s) < x ≤ bn,k(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K − 1}

bn,K(s)− x, if bn,K(s)− z̃max(s) < x ≤ bn,K(s)− z̃K−1(s)

z̃max(s), if 0 ≤ x ≤ bn,K(s)− z̃max(s)

(5.18)

where bn,−1(s) :=∞, ∀s ∈ S. The optimal receiver buffer level after transmission is

given by y∗n(x, s) = x+ z∗n(x, s).

The optimal transmission policy in Theorem 5.3 is a finite generalized base-stock

policy. It can be interpreted as follows. Under each channel condition s, there

is a target level or critical number associated with each segment of the associated

piecewise-linear convex power-rate curve shown in Figure 5.4. If the starting buffer

level is below the critical number associated with the first segment, bn,0(s), the sched-

uler should try to bring the buffer level as close as possible to the target, bn,0(s). If

the maximum number of packets sent at this per packet power cost, z̃0(s), does not

suffice to reach the critical number bn,0(s), then those z̃0(s) packets are scheduled,

and the next segment of the power-rate curve is considered. This second segment

has a slope of c̃1(s) and an associated critical number bn,1(s), which is no higher

than bn,0(s), the first critical number. If the starting buffer level plus the z̃0(s)

already-scheduled packets brings the buffer level above bn,1(s), then no more packets

are scheduled for transmission. Otherwise, it is optimal to transmit so as to bring

the buffer level as close as possible to bn,1(s), by transmitting up to z̃1(s) − z̃0(s)

additional packets at a cost of c̃1(s) power units per packet. This process continues

with the sequential consideration of each segment of the power-rate curve. At each
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successive iteration, the target level is lower and the starting buffer level, updated to

include already-scheduled packets, is higher. The process continues until the buffer

level reaches or exceeds a critical number, or the full power P is consumed. Note that

this sequential consideration is not actually done online, but only meant to provide

an intuitive explanation of the optimal policy. See Figure 5.5 for diagrams of the

structure of the optimal finite generalized base-stock policy, and Appendix A.2 for a

detailed proof of Theorem 5.3.
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Figure 5.5. Structure of optimal policy for Problem (P5.1) in the case of a single receiver with
piecewise-linear convex power-rate curves. When the state is (x, s) in slot n, (a) depicts
the optimal transmission quantity, and (b) depicts the resulting number of packets
available for playout in slot n.

5.4.2 Computation of Critical Numbers

While finite generalized base-stock policies have been considered in the inventory

literature for almost three decades, we are not aware of any previous studies that

explicitly compute the critical numbers for any model where such a policy is optimal.

In this section, we compute the critical numbers under each channel condition when

technical conditions similar to those of Section 5.3.2 are satisfied. We consider the

special case when the channel condition is independent and identically distributed
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from slot to slot; the holding cost function is linear (i.e., h(x) = h · x); and the

following technical condition on the power-rate functions is satisfied for each possible

channel condition s ∈ S: z̃max(s) = l̃max · d for some l̃max ∈ IN , and for every

k ∈ {0, 1, . . . , K − 1}, z̃k(s) = l̃k · d for some l̃k ∈ IN ; i.e., the slopes of the effective

power-rate functions only change at integer multiples of the drainage rate d. Under

these conditions, we can completely characterize the optimal transmission policy.

As in Theorem 5.2, we recursively define a set of thresholds, and use them to

determine the critical numbers, {bn,k(s)}k∈{−1,0,...,K}, for each channel condition, at

each time.

Theorem 5.4. Define the thresholds γ̃n,j for n ∈ {1, 2, . . . , N} and j ∈ IN recur-

sively, as follows:

(i) If j = 1, γ̃n,j =∞;

(ii) If j > n, γ̃n,j = 0;

(iii) If 2 ≤ j ≤ n,

γ̃n,j = −h+ α ·



















































∑

s: c̃0(s)≥γ̃n−1,j−1

p(s) · γ̃n−1,j−1

+
K−1
∑

k=0











































∑

s: γ̃
n−1,j−1+L̃k(s)

≤c̃k(s)
<γ̃

n−1,j−1+L̃k−1(s)

p(s) · c̃k(s)

+
∑

s: c̃k(s)
<γ̃

n−1,j−1+L̃k(s)

≤c̃k+1(s)

p(s) · γ̃n−1,j−1+L̃k(s)











































+
∑

s: γ̃
n−1,j−1+L̃max(s)≤c̃K(s)<γ̃

n−1,j−1+L̃K−1(s)

p(s) · c̃K(s)

+
∑

s: c̃K(s)<γ̃
n−1,j−1+L̃max(s)

p(s) · γ̃n−1,j−1+L̃max(s)



















































, (5.19)

where p(s) is the probability of the channel being in state s in a time slot, L̃k(s) :=

z̃k(s)
d

for all s ∈ S and k ∈ {0, 1, . . . , K − 1}, and L̃max(s) :=
z̃max(s)

d
for all s ∈

100



S. For each n ∈ {1, 2, . . . , N} and s ∈ S, define bn,−1(s) := ∞ and for all k ∈

{0, 1, . . . , K}, if γ̃n,j+1 ≤ c̃k(s) < γ̃n,j, define bn,k(s) := j · d. The optimal control

strategy for Problem (P5.1) is then given by π∗ =
{

z∗N , z
∗
N−1, . . . , z

∗
1

}

, where for all

n ∈ {N,N − 1, . . . , 1}, z∗n(x, s) is given by (5.18).

It is straightforward to check that Theorem 5.4 is in fact a generalization of

Theorem 5.2. To see this, set K = 0 so that the summation from k = 0 to k = K−1

on the right-hand side of (5.19) drops out. Then γ̃n,j in (5.19) is the same as γn,j

in (5.11), c̃0(s) corresponds to cs in (5.11), bn,0(s) corresponds to bn(s), z̃max(s)

corresponds to P
cs
, L̃max(s) corresponds to L(s), and L̃K−1(s) = 0. The resulting

optimal transmission policies are also the same.

In Theorem 5.4, the threshold γ̃n,j may again be interpreted as the per packet

power cost at which, with n slots remaining in the horizon, the expected cost-to-go

of transmitting packets to cover the user’s playout requirements for the next j − 1

slots is the same as the expected cost-to-go of transmitting packets to cover the

user’s requirements for the next j slots. The intuition behind the recursion (5.19) is

similar to the detailed explanation given in Section 5.3.2. Namely, we can start with

equation (5.13) and expand out the right-hand side based on the known structure of

the optimal policy, until, after a fair bit of algebra, the result is (5.19). A detailed

proof of Theorem 5.4 is included in Appendix A.3.

5.4.3 Structure of the Optimal Policy for the Infinite Horizon Discounted
Expected Cost Problems

In this section, we show that the optimal policy for the infinite horizon discounted

expected cost problem is the natural extension of the optimal policy for the finite

horizon discounted expected cost problem; namely, it is a finite generalized base-

stock policy characterized by time-invariant sequences of critical numbers for each
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channel condition. These time-invariant sequences of critical numbers for the infinite

horizon discounted expected cost problem are equal to the limit of the finite horizon

sequences of critical numbers as the time horizon N goes to infinity.

Theorem 5.5.

(a) For a fixed x ∈ IR+ and s ∈ S, Vn(x, s) is nondecreasing in n. Moreoever,

lim
n→∞

Vn(x, s) exists and is finite, ∀x ∈ IR+,∀s ∈ S.

(b) Define V∞(x, s) := lim
n→∞

Vn(x, s). Then V∞(x, s) is convex in x for any fixed

s ∈ S.

(c) Define g̃∞(y, s) := h(y − d) + α · IE [V∞ (y − d, S ′) | S = s], where S ′ is the

channel condition in the subsequent slot. Then g̃n(y, s) converges monotonically to

g̃∞(y, s),∀y ∈ [d,∞),∀s ∈ S; g̃∞(y, s) is convex in y for any fixed s ∈ S; and

lim
y→∞

g̃∞(y, s) =∞,∀s ∈ S.

(d) Define b∞,−1(s) :=∞ and

b∞,k(s) := max
{

d, inf
{

b
∣

∣ g̃′+∞(b, s) ≥ −c̃k(s)
}

}

, ∀k ∈ {0, 1, . . . , K} ,

where g̃′+∞(b, s) represents the right derivative:

g̃′+∞(b, s) := lim
y↓b

g̃∞(y, s)− g̃∞(b, s)

y − b
.

Then b∞,k(s) = lim
n→∞

bn,k(s) for all k ∈ {−1, 0, 1, . . . , K}.

(e) V∞(x, s) satisfies the α-discounted cost optimality equation (α-DCOE):

V∞(x, s) = min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+α · IE
[

V∞(x+ z − d, S ′)
∣

∣ S = s
]











= min
{

max(0,d−x)≤z≤z̃max(s)
}

{

c(z, s) + g̃∞(x+ z, s)
}

,∀x, ∀s, (5.20)
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and the minimum on the right hand side of (5.20) is achieved by:

z∗∞(x, s) :=







































































z̃k−1(s), if b∞,k(s)− z̃k−1(s) < x ≤ b∞,k−1(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K}

b∞,k(s)− x, if b∞,k(s)− z̃k(s) < x ≤ b∞,k(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K − 1}

b∞,K(s)− x, if b∞,K(s)− z̃max(s) < x ≤ b∞,K(s)− z̃K−1(s)

z̃max(s), if 0 ≤ x ≤ b∞,K(s)− z̃max(s)

(f) The optimal stationary policy for Problem (P5.2) in the case of a single receiver

with piecewise-linear convex power-rate curves is given by π∗

∞
= (z∗∞, z

∗
∞, . . .).

A detailed proof, which follows the logic conveyed in the statement of the theorem,

is included in Appendix B.1. As a special case of Theorem 5.5, the optimal policy in

Problem (P5.2) for the case discussed in Section 5.3 of a single receiver with linear

power-rate curves is given by π∗

∞
= (z∗∞, z

∗
∞, . . .), where:

z∗∞(x, s) :=



























0, if x ≥ b∞(s)

b∞(s)− x, if b∞(s)−
P
cs
≤ x < b∞(s)

P
cs
, if x < b∞(s)−

P
cs

,

and b∞(s) := lim
n→∞

bn(s).

5.4.4 Structure of the Optimal Policy for the Infinite Horizon Average
Expected Cost Problems

In this section we use the vanishing discount approach to show that the finite gen-

eralized base-stock structure is also optimal for the infinite horizon average expected

cost problem, (P5.3). We show that an optimal policy for the infinite horizon aver-

age expected cost problem exists and can be represented as the limit as the discount
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factor increases to one of optimal policies identified in Section 5.4.3 for the infinite

horizon discounted expected cost problem.

In Section 5.4.3, we suppressed the dependence of the value functions and optimal

policies on the discount factor, α. Here, we make this dependence explicit by includ-

ing the discount factor in the subscript labeling of the value functions and optimal

policies for the infinite horizon discounted expected cost problem. For example, the

value function defined in (b) of Theorem 5.5 is now denoted by V∞,α(x, s).

Theorem 5.6. For all α ∈ [0, 1), define:

m∞,α := inf
x∈IR+
s∈S

V∞,α(x, s),

ρ∗ := lim
α↗1

(1− α) ·m∞,α, and

w∞,α(x, s) := V∞,α(x, s)−m∞,α, ∀x ∈ IR+, ∀s ∈ S.

Then:

(a) There exists a continuous function w∞,1(·, ·) and a selector z∗∞,1(·, ·) that satisfy

the ACOE:

ρ∗ + w∞,1(x, s) = min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+IE
[

w∞,1(x+ z − d, S ′)
∣

∣ S = s
]











= c
(

z∗∞,1(x, s), s
)

+ h
(

x+ z∗∞,1(x, s)− d
)

+ IE
[

w∞,1

(

x+ z∗∞,1(x, s)− d, S ′
)∣

∣

∣S = s
]

, ∀x ∈ IR+, ∀s ∈ S.

(b) The stationary policy π∗

∞,1
= (z∗∞,1, z

∗
∞,1, . . .) is optimal for Problem (P5.3) in

the case of a single receiver with piecewise-linear convex power-rate curves.

(c) The resulting optimal average cost beginning from any initial state (x, s) ∈ IR+×

S is ρ∗.
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(d) For every increasing sequence of discount factors {α(l)}l=1,2,... approaching 1,

there exists a subsequence {α(li)}i=1,2,... approaching 1 such that:

w∞,1(x, s) = lim
i→∞

w∞,α(li)(x, s), ∀x ∈ IR+, ∀s ∈ S.

Therefore, for every s ∈ S, w∞,1(x, s) is convex in x.

(e) For every (x, s) ∈ IR+×S and increasing sequence of discount factors {α(l)}l=1,2,...

approaching 1, there exists a subsequence {α(li)}i=1,2,... approaching 1 and a sequence

{x(i)}i=1,2,... approaching x such that:

z∗∞,1(x, s) = lim
i→∞

z∗∞,α(li)
(x(i), s) .

(f) A stationary finite generalized base-stock policy is average cost optimal in the

case of piecewise-linear convex power-rate curves, and a stationary modified base-

stock policy is average cost optimal in the case of linear power-rate curves.

Thus, the structure of the optimal policy is the same for all three problems,

(P5.1), (P5.2), and (P5.3). The proof of Theorem 5.6 is discussed in Appendix C.

5.4.5 General Convex Power-Rate Curves

As mentioned in Section 5.2.1, in general, the power-rate curve under each possible

channel condition is convex. It can be shown that under convex power-rate curves

at each time, the optimal number of packets to send is a nonincreasing function

of the starting buffer level. However, without any further structure on the power-

rate curves, it is not computationally tractable to compute such optimal policies,

known as generalized base-stock policies (a superclass of the finite generalized base-

stock policies discussed above). This is why we have chosen to analyze piecewise-

linear convex power-rate curves, which can be used to approximate general convex
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power-rate curves. More specifically, our analysis suggests approximating the general

convex power-rate curves by piecewise-linear convex power-rate curves where the

slopes change at integer multiples of the demand d, in order to be able to apply

Theorem 5.4 to compute the critical numbers in an extremely efficient manner. Doing

so represents an approximation at the modeling stage followed by an exact solution,

as compared to modeling the power-rate curves as more general convex functions and

having to approximate the solution. Finally, we note that increasing the number

of segments used to model the piecewise-linear convex functions leads to a better

approximation, but comes at the cost of some extra complexity in implementing the

optimal policy, as the scheduler needs to store at least one critical number for each

segment of each power-rate curve.

5.5 Two Receivers with Linear Power-Rate Curves

In this section, we analyze the finite and infinite horizon discounted expected

cost problems when there are two receivers (M = 2), and the power-rate func-

tions under different channel conditions are linear for each user. Each user m’s

channel condition evolves as a homogeneous Markov process, {Sm
n }n=N,N−1,...,1. As

discussed earlier, the time-varying channel conditions of the two users are indepen-

dent of each other, and the transmission scheduler can exploit this spatial diversity.

Like Section 5.3, we denote the power consumption per unit of data transmitted

to receiver m under channel condition sm by cms . The row vector of these per

unit power consumptions is given by cT
s, so that the total power consumption in

slot n is given by
∑2

m=1 c
m(Zm

n , S
m
n ) = cT

sZn. We denote the total holding costs

∑2
m=1 h

m(Xm
n + Zm

n − dm) by h(Xn + Zn − d).
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With these notations, the dynamic program (5.1) for Problem (P5.1) becomes:

Vn(x, s) = min
z∈Ad(x,s)











cT
sz+ h(x+ z− d)

+α · IE
[

Vn−1(x+ z− d,Sn−1)
∣

∣ Sn = s
]











(5.21)

= min
y∈Ãd(x,s)











cT
s[y− x] + h(y− d)

+α · IE
[

Vn−1(y− d,Sn−1)
∣

∣ Sn = s
]











(5.22)

= −cT

sx+ min
y∈Ãd(x,s)

{

Gn(y, s)
}

, n = N,N − 1, . . . , 1 ,

V0(x, s) = 0, ∀x ∈ IR2
+,∀s ∈ S := S

1 × S2,

where

Gn(y, s) := cT

sy+ h(y− d) + α · IE
[

Vn−1(y− d,Sn−1)
∣

∣ Sn = s
]

,

∀y ∈ [d1,∞)× [d2,∞),∀s ∈ S, and

Ãd(x, s) :=

{

y ∈ IR2
+ : y � d ∨ x and cT

s[y− x] ≤ P

}

, ∀x ∈ IR2
+,∀s ∈ S. (5.23)

The transition from (5.21) to (5.22) follows again from a change of variable in the

action space from Zn to Yn, where Yn = Xn+Zn. The controlled random vector Yn

represents the queue lengths of the receiver buffers after transmission takes place in

the nth slot, but before playout takes place (i.e., before dm packets are removed from

user m’s buffer). The restrictions on the action space, y � d∨ x and cT
s[y− x] ≤ P ,

ensure: (i) a nonnegative number of packets is transmitted to each user; (ii) there

are at least dm packets in user m’s receiver buffer following transmission, in order to

satisfy the underflow constraint; and (iii) the power constraint is satisfied.

Without the per slot peak power constraint, this M -dimensional problem would

be separable, and could be solved by solving M instances of the one-dimensional

problem of Section 5.3; however, the joint power constraint couples the queues.6 As

6This problem therefore falls into the class of weakly coupled stochastic dynamic programs [1, 65].
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a result, the optimal transmission quantity to one receiver depends on the other

receivers’ queue length, as the following example shows.

Example 5.7. Assume receiver 1’s channel is currently in a “poor” condition, re-

ceiver 2’s channel is currently in a “medium” condition, and receiver 2’s buffer con-

tains enough packets to satisfy the demand for the next few slots. We consider two

different scenarios for receiver 1’s buffer level to show how the optimal transmission

quantity to receiver 2 depends on receiver 1’s buffer level. In Scenario 1, receiver 1’s

buffer already contains many packets. In this scenario, it may be beneficial for the

scheduler to wait for receiver 2 to have a better channel condition, because it will be

able to take full advantage of an “excellent” condition when it comes. In Scenario

2, receiver 1’s queue only contains enough packets for playout in the current slot. It

may be optimal to transmit some packets to receiver 2 in the current slot in this sce-

nario. To see this, note that even if receiver 2 experiences the best possible channel

condition in the next slot, the scheduler will need to allocate some power to receiver

1 in order to prevent receiver 1’s buffer from emptying. Therefore, the scheduler

anticipates not being able to take full advantage of receiver 2’s “excellent” condition

in the next slot, and may compensate by sending some packets in the current slot

under the “medium” condition.

5.5.1 Structure of Optimal Policy for the Finite Horizon Discounted Ex-
pected Cost Problem

Before proceeding to the structure of the optimal transmission policy, we state

some key properties of the value functions in the following theorem.

Theorem 5.8. With two receivers and linear power-rate curves, the following state-

ments are true for n = 1, 2, . . . , N , and for all s ∈ S:

(i) Vn−1(x, s) is convex in x.
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(ii) Vn−1(x, s) is supermodular in x; i.e., for all x̄, x̃ ∈ IR2
+,

Vn−1(x̄, s) + Vn−1(x̃, s) ≤ Vn−1(x̄ ∧ x̃, s) + Vn−1(x̄ ∨ x̃, s) .

(iii) Gn(y, s) is convex in y.

(iv) Gn(y, s) is supermodular in y; i.e., for all ȳ, ỹ ∈ [d1,∞)× [d2,∞),

Gn(ȳ, s) +Gn(ỹ, s) ≤ Gn(ȳ ∧ ỹ, s) +Gn(ȳ ∨ ỹ, s) .

(v) y1n < ŷ1n implies:

inf

{

argmin
y2

n∈[d
2,∞)

{

Gn

(

y1n, y
2
n, s

1, s2
)

}

}

≥ inf

{

argmin
y2

n∈[d
2,∞)

{

Gn

(

ŷ1n, y
2
n, s

1, s2
)

}

}

and y2n < ŷ2n implies:

inf

{

argmin
y1

n∈[d
1,∞)

{

Gn

(

y1n, y
2
n, s

1, s2
)

}

}

≥ inf

{

argmin
y1

n∈[d
1,∞)

{

Gn

(

y1n, ŷ
2
n, s

1, s2
)

}

}

.

A detailed proof is included in Appendix A.4. Because −cT
sx is supermodular in

x, the key part of the induction step in the proof of (ii) is to show that

miny∈Ãd(x,s) {Gn−1(y, s)} is also supermodular in x. Denoting

argminy∈Ãd(x,s) {Gn−1(y, s)} by y∗(x, s), we do this constructively by showing that

for all x̄, x̃ ∈ IR2
+:

min
y∈Ãd(x̄,s)

{Gn−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gn−1(y, s)}

≤ Gn−1(ȳ, s) +Gn−1(ỹ, s)

≤ Gn−1

(

y∗(x̄ ∧ x̃, s), s
)

+Gn−1

(

y∗(x̄ ∨ x̃, s), s
)

(5.24)

= min
y∈Ãd(x̄∧x̃,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} ,

for a specific choice of ȳ ∈ Ãd(x̄, s) and ỹ ∈ Ãd(x̃, s). The difficulty is cleverly

constructing ȳ and ỹ, depending on the relative locations of x̄, x̃, y∗(x̄ ∧ x̃), and

y∗(x̄ ∨ x̃), so as to ensure (5.24) is true.
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It follows from Theorem 5.8 that the structure of the optimal transmission policy

for the finite horizon discounted expected cost problem is given by the following

theorem.

Theorem 5.9. For every n ∈ {1, 2, . . . , N} and s ∈ S1 × S2, define the non-empty

set of global minimizers of Gn(·, s):

Bn(s) :=

{

ŷ ∈ [d1,∞)× [d2,∞) : Gn(ŷ, s) = min
y∈[d1,∞)×[d2,∞)

Gn(y, s)

}

.

Define also

b1n (s) := min
{

y1 ∈ [d1,∞) : (y1, y2) ∈ Bn(s) for some y2 ∈ [d2,∞)
}

,

and

b2n (s) := min
{

y2 ∈ [d2,∞) :
(

b1n (s) , y
2
)

∈ Bn(s)
}

.

Then the vector bn(s) =
(

b1n (s) , b
2
n (s)

)

∈ Bn(s) is a global minimizer of Gn(·, s).

Define also the functions:

f 1n(x
2, s) := inf

{

argmin
y1∈[d1,∞)

{

Gn

(

y1, x2, s1, s2
)

}

}

, for x2 ∈ [d2,∞), and

f 2n(x
1, s) := inf

{

argmin
y2∈[d2,∞)

{

Gn

(

x1, y2, s1, s2
)

}

}

, for x1 ∈ [d1,∞).

Note that by construction, f 1n
(

b2n(s), s
)

= b1n(s) and f 2n
(

b1n(s), s
)

= b2n(s). Partition

IR2
+ into the following seven regions:

RI(n, s) :=
{

x ∈ IR2
+ : x �

(

f 1n(x
2, s), f2n(x

1, s)
)

and x 6= bn(s)
}

RII(n, s) :=
{

x ∈ IR2
+ : x � bn(s) and cT

s [bn(s)− x] ≤ P
}

RIII−A(n, s) :=
{

x ∈ IR2
+ : x

2 > b2n(s) and f 1n(x
2, s)−

P

cs1

≤ x1 < f1n(x
2, s)

}

RIII−B(n, s) :=
{

x ∈ IR2
+ : x

1 > b1n(s) and f 2n(x
1, s)−

P

cs2

≤ x2 < f2n(x
1, s)

}
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RIV−A(n, s) :=
{

x ∈ IR2
+ : x

2 > b2n(s) and x1 < f1n(x
2, s)−

P

cs1

}

RIV−B(n, s) :=
{

x ∈ IR2
+ : x � bn(s) and cT

s [bn(s)− x] > P
}

RIV−C(n, s) :=
{

x ∈ IR2
+ : x

1 > b1n(s) and x2 < f2n(x
1, s)−

P

cs2

}

,

and define RIV (n, s) := RIV−A(n, s) ∪RIV−B(n, s) ∪RIV−C(n, s).

Then for Problem (P5.1) in the case of two receivers with linear power-rate

curves, for all x /∈ RIV (n, s), an optimal control action with n slots remaining is

given by:

y∗n(x, s) :=







































x, if x ∈ RI(n, s)

bn(s), if x ∈ RII(n, s)
(

f 1n(x
2, s), x2

)

, if x ∈ RIII−A(n, s)
(

x1, f2n(x
1, s)

)

, if x ∈ RIII−B(n, s)

. (5.25)

For all x ∈ RIV (n, s), there exists an optimal control action with n slots remain-

ing, y∗n(x, s), which satisfies:

cT

s [y
∗
n(x, s)− x] = P . (5.26)

A detailed proof is included in Appendix A.5. Equation (5.26) says that it is

optimal for the transmitter to allocate the full power budget for transmission when

the vector of receiver buffer levels at the beginning of slot n falls in region RIV (n, s).

We cannot say anything in general about the optimal allocation (split) of the full

power budget between the two receivers when the starting buffer levels lie in region

RIV (n, s). Figure 5.6 shows the partition of IR
2
+ into the seven regions, and a diagram

of the structure of the optimal transmission policy. Note that the figure shows the

seven regions of the optimal policy for a fixed realization of the pair of channel

conditions. Under different pairs of channel realizations, the seven regions have the
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same general form, but the targets bn(s) are shifted and the boundary functions

f 1n(x
2, s) and f 2n(x

1, s) are different.
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Figure 5.6. Structure of optimal policy for Problem (P5.1) in the case of two receivers with linear
power-rate curves. The state in slot n is (x, s). The seven regions described in Theorem
5.9 are labeled. The tails of the arrows represent the vectors of the receiver buffer levels
at the beginning of slot n, and the heads of the arrows represent the vectors of the
receiver buffer levels after transmission but before playout in slot n under the optimal
transmission policy. In region RI(n, s), a single dot represents that it is optimal to not
transmit any packets to either user. The F and � represent possible starting buffer
levels for Scenarios 1 and 2, respectively, in Example 5.7.

In some sense, the structure of the optimal policy outlined in Theorem 5.9 can be

interpreted as an extension of the modified base-stock policy for the case of a single

receiver outlined in Theorem 5.1. Namely, under each channel condition at each

time, there is a critical number for each receiver
(

bmn (s)
)

such that it is optimal to

bring both receivers’ buffer levels up to those critical numbers if it is possible to do

so
(

region RII(n, s)
)

, and it is optimal to not transmit any packets if both receivers’

buffer levels start beyond their critical numbers
(

region RI(n, s)
)

. However, this

extended notion of the modified base-stock policy only captures the optimal behavior

in two of the seven regions, and does not account for the coupling behavior between

users that arises through the joint power constraint. For instance, possible starting

buffer levels for Scenario 1 and Scenario 2 in Example 5.7 are illustrated in Figure
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5.6 by the F and �, respectively. Even though the buffer level of receiver 2 before

transmission is the same under both scenarios, the optimal transmission quantity

to receiver 2 is different under the two scenarios due to the different starting buffer

levels of receiver 1.

5.5.2 Structure of the Optimal Policy for the Infinite Horizon Discounted
Expected Cost Problems

In this section, we show that the structure of the optimal stationary (or time-

invariant) policy for the infinite horizon discounted expected cost problem is the same

as the structure of the optimal policy for the finite horizon discounted expected cost

problem. Moreover, the boundaries of the seven regions of the finite horizon optimal

policy shown in Figure 5.6 converge to the boundaries of the seven regions of the

infinite horizon discounted expected cost optimal policy as the time horizon N goes

to infinity.

Theorem 5.10. Define:

(i) V∞(x, s) := lim
n→∞

Vn(x, s), for all x ∈ IR2
+ and s ∈ S (this limit exists).

(ii) G∞(y, s) := cT
sy+h(y−d)+α · IE

[

V∞(y−d,S′)
∣

∣ S = s
]

, for all y ∈ [d1,∞)×

[d2,∞) and s ∈ S.

(iii) B∞(s) :=

{

ŷ ∈ [d1,∞)× [d2,∞) : G∞(ŷ, s) = min
y∈[d1,∞)×[d2,∞)

G∞(y, s)

}

.

(iv) b1∞ (s) := min
{

y1 ∈ [d1,∞) : (y1, y2) ∈ B∞(s) for some y2 ∈ [d2,∞)
}

.

(v) b2∞ (s) := min
{

y2 ∈ [d2,∞) :
(

b1∞ (s) , y2
)

∈ B∞(s)
}

.

(vi) b∞(s) :=
(

b1∞ (s) , b2∞ (s)
)

.
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(vii) The functions

f 1∞(x
2, s) := inf

{

argmin
y1∈[d1,∞)

{

G∞
(

y1, x2, s1, s2
)

}

}

, for x2 ∈ [d2,∞), and

f 2∞(x
1, s) := inf

{

argmin
y2∈[d2,∞)

{

G∞
(

x1, y2, s1, s2
)

}

}

, for x1 ∈ [d1,∞).

(viii) The seven regions RI(∞, s) − RIV−C(∞, s), defined in the same way as in

Theorem 5.9, with n replaced by ∞.

Then

(a) V∞(x, s) satisfies the α-discounted optimality equation (α-DCOE):

V∞(x, s) = min
y∈Ãd(x,s)











cT
s[y− x] + h (y− d)

+α · IE
[

V∞(y− d,S′)
∣

∣ S = s
]











,

∀x ∈ IR2
+,∀s ∈ S . (5.27)

(b) An optimal stationary policy for Problem (P5.2) in the case of two receivers

with linear power-rate curves is given by π∗

∞
= (y∗∞,y

∗
∞, . . .), where

y∗∞(x, s) :=







































x, if x ∈ RI(∞, s)

b∞(s), if x ∈ RII(∞, s)
(

f 1∞(x
2, s), x2

)

, if x ∈ RIII−A(∞, s)
(

x1, f2∞(x
1, s)

)

, if x ∈ RIII−B(∞, s)

,

and for all x ∈ RIV (∞, s), there exists an optimal control action, y∗∞(x, s), which

satisfies:

cT

s [y
∗
∞(x, s)− x] = P .

(c) lim
n→∞

bn(s) = b∞(s) for all s ∈ S.
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(d) lim
n→∞

f 1n(x
2, s) = f 1∞(x

2, s) for all x2 ∈ [d2,∞) and s ∈ S.

(e) lim
n→∞

f 2n(x
1, s) = f 2∞(x

1, s) for all x1 ∈ [d1,∞) and s ∈ S.

A detailed proof of Theorem 5.10 is included in Appendix B.2.

5.5.3 Structure of the Optimal Policy for the Infinite Horizon Average
Expected Cost Problems

In this section, we again use the vanishing discount approach to show that the

structure of the optimal policy for the finite horizon expected cost and infinite horizon

discounted expected cost problems extends to the infinite horizon average expected

cost problem. As in Section 5.4.4, we make explicit the dependence of the value

functions and optimal policies from the corresponding infinite horizon discounted

expected cost problem on the discount factor, α.

Theorem 5.11. For all α ∈ [0, 1), define:

m∞,α := inf
x∈IR2

+
s∈S

V∞,α(x, s), (5.28)

ρ∗ := lim
α↗1

(1− α) ·m∞,α, and (5.29)

w∞,α(x, s) := V∞,α(x, s)−m∞,α, ∀x ∈ IR
2
+, ∀s ∈ S. (5.30)

Then:

(a) There exists a continuous function w∞,1(·, ·) and a selector y∗∞,1(·, ·) that satisfy

the ACOE:

ρ∗ + w∞,1(x, s) = min
y∈Ãd(x,s)











cT
s[y− x] + h (y− d)

+IE
[

w∞,1(y− d,S′)
∣

∣ S = s
]











(5.31)

= cT

s

[

y∗∞,1(x, s)− x
]

+ h
(

y∗∞,1(x, s)− d
)

+ IE
[

w∞,1

(

y∗∞,1(x, s)− d,S′
)∣

∣

∣S = s
]

, ∀x ∈ IR2
+, ∀s ∈ S.

115



(b) The stationary policy π∗

∞,1
= (y∗∞,1,y

∗
∞,1, . . .) is optimal for Problem (P5.3) in

the case of two receivers with linear power-rate curves.

(c) The resulting optimal average cost beginning from any initial state (x, s) ∈ IR2
+×

S is ρ∗.

(d) For every increasing sequence of discount factors {α(l)}l=1,2,... approaching 1,

there exists a subsequence {α(li)}i=1,2,... approaching 1 such that:

w∞,1(x, s) = lim
i→∞

w∞,α(li)(x, s), ∀x ∈ IR
2
+, ∀s ∈ S.

Therefore, for every s ∈ S, w∞,1(x, s) is convex and supermodular in x.

(e) For every (x, s) ∈ IR2
+ × S and increasing sequence of discount factors

{α(l)}l=1,2,... approaching 1, there exists a subsequence {α(li)}i=1,2,... approaching 1

and a sequence {x(i)}i=1,2,... approaching x such that:

y∗∞,1(x, s) = lim
i→∞

y∗∞,α(li)
(x(i), s) .

(f) There exists an optimal stationary policy with the same structure as statement

(b) in Theorem 5.10.

A detailed proof of Theorem 5.11 is included in Appendix C.

5.6 Relaxation of the Strict Underflow Constraints

In some applications, it may not be the case that the peak power per slot is

always sufficient to transmit one slot’s worth of packets to each receiver, even under

the worst channel conditions. In this case, a more appropriate model is to relax

the strict underflow constraints, and allow underflow at a cost. One way to model

this situation is to allow the receivers’ queues to be negative, with a negative buffer
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level representing the number of packets that the playout process is behind. Then,

in addition to the holding costs assessed on positive buffer levels, shortage costs are

assessed on negative buffer levels. With some minor alterations to the proofs, it

is straightforward to show that as long as the shortage cost function is a convex

function of the negative buffer level, the structural results of Theorems 5.1, 5.3 and

5.9 are essentially unchanged by the relaxation of the strict underflow constraints to

loose underflow constraints with penalties on underflow. This is not too surprising

as the strict underflow constraint case we consider can be thought of as the limiting

case as the penalties on underflow go to infinity.7

5.7 Summary

In this chapter, we considered the problem of transmitting data to one or more

receivers over a shared wireless channel in a manner that minimizes power consump-

tion and prevents the receivers’ buffers from emptying. We showed that under the

finite horizon discounted expected cost, infinite horizon discounted expected cost,

and infinite horizon average expected cost criteria, the optimal transmission policy

to a single receiver under linear power-rate curves has a modified base-stock struc-

ture. When the power-rate curves are generalized to piecewise-linear power-rate

curves, the optimal transmission policy to a single receiver has a finite generalized

base-stock structure. For the special case when holding costs are linear, the stochas-

tic process representing the channel condition evolution over time is IID, and the

maximum number of packets that can be transmitted at any given marginal power

cost in a slot is an integer multiple of the drainage rate of the receiver’s buffer, we

7Tracking the number of packets that the playout process is behind in this manner corresponds to the complete

backlogging assumption in inventory theory. An alternate model is to say that a packet is of no use once it misses
its deadline, penalize missed packets, and keep the receiver queue length at zero. This model corresponds to the lost

sales assumption in inventory theory.
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presented an efficient method to compute the critical numbers that fully characterize

the modified base-stock and finite generalized base-stock policies.

We also analyzed the structure of the optimal transmission policy for the case of

two receivers. In some sense, the structure of the optimal policy was shown to be

an extension of the modified base-stock policy; however, the peak power constraint

couples the optimal scheduling of the two data streams. In the next two chapters,

we compare the problems considered in this chapter to related problems from the

wireless communications and inventory theory literatures, respectively.
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Chapter 6

The Role of Deadline Constraints in

Opportunistic Scheduling

In this chapter, we compare the finite horizon problem from the previous chapter,

Problem (P5.1), to two related problems from the wireless communications litera-

ture. The overarching goal in all three problems is to do energy-efficient transmission

scheduling, subject to deadline constraints. The primary purpose of our comparison

is to elucidate the role of the deadline constraints.

6.1 Problem Formulations

In all three problems, a single source transmits data to a single user/receiver over

a time-varying wireless channel. As in the previous chapter, we consider a discrete

time horizon of length N , the scheduler learns the channel condition perfectly at

the beginning of each slot, and the transmission of z data packets under channel

condition s incurs an energy cost of c(z, s). In this chapter, we take the channel

condition to be independent and identically distributed (IID) from slot to slot and

the discount factor to be equal to 1.

The primary objective in deriving a good transmission policy is once again to

minimize energy consumption while meeting the deadline constraint(s) and possibly

a power constraint in each slot. Thus, all three problems we discuss in this chapter
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can be formulated as Markov Decision Processes (MDPs) with the following common

form:

min
π∈Π

IEπ

{

N
∑

n=1

c(Zn, Sn) | FN

}

s.t. Per Slot Power Constraints and (6.1)

Deadline Constraint(s) ,

where, as in Chapter 5, FN denotes all information available at the beginning of

the time horizon, Zn = πn (ZN , ZN−1, . . . , Zn+1, SN , SN−1, . . . , Sn) is the number of

packets the scheduler decides to transmit in slot n, and Π denotes the set of all

randomized and deterministic control laws. Next, we specify the precise variant of

(6.1) for each the three problems.

6.1.1 Strict Underflow Constraints, Linear Power-Rate Curves, and
a Power Constraint in Each Slot

The first problem we consider is Problem (P5.1) in the case of a single receiver

with linear power-rate curves, no holding costs, and a discount rate of α = 1. As

mentioned in the previous chapter, the strict underflow constraints can also be inter-

preted as multiple deadline constraints: the source must transmit at least d packets

by the end of the first slot, 2d packets by the end of the second slot, and so forth.

So at each time n, the underflow constraint:

Xn + Zn ≥ max{0, d−Xn}

is equivalent to:

N
∑

t=n

Zt ≥ (N − n+ 1) · d .

Therefore, for this problem, the general formulation (6.1) becomes:
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min
π∈Π

IEπ

{

N
∑

n=1

cSn
· Zn | FN

}

s.t. cSn
· Zn ≤ P, w.p.1, ∀n ∈

{

N,N − 1, . . . , 1
}

and
N
∑

t=n

Zt ≥ (N − n+ 1) · d, w.p.1, ∀n ∈
{

N,N − 1, . . . , 1
}

.

We refer to this problem as Problem (P6.1).

6.1.2 Single Deadline Constraint, Linear Power-Rate Curves, and a
Power Constraint in Each Slot

The second problem we consider features linear power-rate curves, a power con-

straint in each slot, and a single deadline constraint. The single constraint is to send

dtotal packets across the channel by the end of the N slot horizon. As with Problem

(P6.1), the maximum transmission power in any given slot is denoted by P , and for

each possible channel condition s, there exists a constant cs such that c(z, s) = cs · z.

In order to ensure that it is always possible to satisfy the deadline constraint, we

assume that N ·
(

P
csworst

)

≥ dtotal, or, equivalently, csworst ≤
N ·P
dtotal

, where csworst is

the energy cost per packet transmitted under the worst possible channel condition.1

Thus, even if the channel is in the worst possible condition for the entire duration

of the time horizon, it is still possible to send dtotal packets by transmitting at full

power in every slot. The general formulation (6.1) becomes:

min
π∈Π

IEπ

{

N
∑

n=1

cSn
· Zn | FN

}

s.t. cSn
· Zn ≤ P, w.p.1, ∀n ∈

{

N,N − 1, . . . , 1
}

and
N
∑

n=1

Zn ≥ dtotal, w.p.1 .

We refer to this problem as Problem (P6.2). It was introduced and analyzed by Fu,

Modiano, and Tsitsiklis in [51, Section III-D] and [52, Section III-D].
1This is an unstated assumption in [51, Section III-D] and [52, Section III-D].
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6.1.3 Single Deadline Constraint and Convex Monomial Power-Rate
Curves

The third problem we consider features the same single deadline constraint as

Problem (P6.2); however, there is no per slot power constraint imposed, and the

energy cost from transmission is a convex monomial function of the number of packets

sent. Namely, for every channel condition s, there exists a constant ks such that

c(z, s) = zµ

ks
, where µ > 1 is the fixed monomial order of the cost function. As

mentioned in Section 4.2.1, such a power-rate curve may be more appropriate in the

high SNR regime. The general formulation (6.1) becomes:

min
π∈Π

IEπ

{

N
∑

n=1

(Zn)
µ

kSn

| FN

}

s.t.
N
∑

n=1

Zn ≥ dtotal, w.p.1 .

We refer to this problem as Problem (P6.3). It was introduced and analyzed by Lee

and Jindal in [92].

6.2 Structures of the Optimal Policies

In this section, we present the structures of the optimal policies for each of the

three problems as straightforwardly as possible, without changing drastically the

original presentations. All three problems can be solved using standard dynamic

programming (see, e.g., [20]), and the structures of the optimal policies follow from

properties of the value functions or expected costs-to-go.

Specializing the dynamic program (5.4) to the case of no holding costs, a discount

rate of 1, and an IID channel, the dynamic program for Problem (P6.1) is:
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Vn(x, s) = min
max(0,d−x)≤z≤ P

cs

{

cs · z + IE
[

Vn−1(x+ z − d, Sn−1)
]}

(6.2)

= −cs · x+ min
max(x,d)≤y≤x+ P

cs

{

cs · y + IE
[

Vn−1(y − d, Sn−1)
]}

(6.3)

n = N,N − 1, . . . , 1

V0(x, s) = 0, ∀x, ∀s.

For Problem (P6.2), Fu, Modiano, and Tsitsiklis [52] take the information state at

time n to be the pair (Qn, Sn), where Qn represents the number of packets remaining

to be transmitted at time n, and Sn denotes the channel condition in slot n. The

dynamics of packets remaining to be transmitted are Qn−1 = Qn−Zn, as Zn packets

are transmitted during slot n. The dynamic programming equations for this problem

are given by:

Vn(q, s) = min
0≤z≤min(q, P

cs
)

{

cs · z + IE
[

Vn−1(q − z, Sn−1)
]}

(6.4)

= cs · q + min
max(0,q− P

cs
)≤u≤q

{

−cs · u+ IE
[

Vn−1(u, Sn−1)
]}

, (6.5)

n = N,N − 1, . . . , 1

V0(q, s) =











0, if q = 0

∞, if q > 0

, ∀s .

Here, the transition from (6.4) to (6.5) is done by a change of variable in the action

space from Zn to Un, where Un = Qn − Zn. The controlled random variable Un rep-

resents the number of packets remaining to be transmitted after transmission takes

place in the nth slot. The restrictions on the action space, max(0, q − P
cs
) ≤ u ≤ q,

ensure: (i) a nonnegative number of packets is transmitted; (ii) no more than dtotal

packets are transmitted over the course of the horizon; and (iii) the power constraint

is satisfied.
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Note that the dynamic programming equations (6.3) and (6.5) have the following

common form:

Vn(x, s) = f(x, s) + min
w1(x,s)≤a≤w2(x,s)

{

h1(a) + IE
[

Vn−1(h2(a), s)
]}

, (6.6)

n = N,N − 1, . . . , 1 ,

where (x, s) is the current state and a represents the action. The key realizations for

both problems are (i) h1(a) is convex in a and h2(a) is an affine function of a; and

(ii) for any fixed s, f(x, s), w1(x, s), and Vn−1(x, s) are all convex in x, and w2(x, s)

is concave in x. These functional properties can be shown inductively. By Lemma

A.1 in Appendix A.1, we have:

Vn(x, s) = f(x, s) + F (w1(x, s)) +G(w2(x, s)),

which is convex in x for a fixed s, because F (w1(x, s)) is the composition of a convex

nondecreasing function with a convex function and G(w2(x, s)) is the composition

of a convex nonincreasing function with a concave function (see, e.g., [23, Section

3.2] for the relevant results on convexity-preserving operations). Furthermore, by

Lemma A.1, if, for a fixed s, βn(s) is a global minimizer of h1(a)+ IE
[

Vn−1(h2(a), s)
]

over all a, then the optimal action has the form:

a∗n(x, s) :=



























w1(x, s), if βn(s) < w1(x, s)

βn(s), if w1(x, s) ≤ βn(s) ≤ w2(x, s)

w2(x, s), if w2(x, s) < βn(s)

. (6.7)

Recall from Section 5.3.1 that the optimal transmission policy in (6.7) is a modified

base-stock policy. For Problem (P6.1), the structure of this policy is shown in Figure

5.3.

Applying this line of analysis to the dynamic program (6.5) for Problem (P6.2),

we see that when the channel condition is in state s at time n, and there are q packets
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remaining to be transmitted by the deadline, the optimal action is given by:

u∗n(q, s) :=



























max
(

0, q − P
cs

)

, if βn(s) < max
(

0, q − P
cs

)

βn(s), if max
(

0, q − P
cs

)

≤ βn(s) ≤ q

q, if q < βn(s)

, (6.8)

for some sequence of critical numbers {βn(s)}s∈S . Changing variables back to the

original action variable Zn and noting that βn(s) ≥ 0 for all n and s, (6.8) is equiv-

alent to:

z∗n(q, s) :=



























P
cs
, if βn(s) +

P
cs
< q

q − βn(s), if βn(s) ≤ q ≤ βn(s) +
P
cs

0, if q < βn(s)

, (6.9)

See Fig. 6.1 for diagrams of this optimal policy. The critical numbers {βn(s)}s∈S

can be calculated recursively when for every s ∈ S,

cs =
csworst

l̂
for some l̂ ∈ IN. (6.10)

For further details on the calculation of these critical numbers, see [52].
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Figure 6.1. Structure of optimal policy for Problem (P6.2). The state in slot n is (q, s), the
number of packets remaining to be transmitted before transmission and the current
channel condition. (a) depicts z∗, the optimal transmission quantity, and (b) depicts
u∗, the optimal number of packets remaining to be transmitted after transmission in
slot n.

Like Problem (P6.2), Lee and Jindal [92] take the information state for Problem

(P6.3) to be the pair (Qn, Sn), where Qn represents the number of packets remaining
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to be transmitted at time n, and Sn denotes the channel condition in slot n. The

dynamics of packets remaining to be transmitted are once again Qn−1 = Qn − Zn.

The dynamic programming equations for Problem (P6.3) are given by:

Vn(q, s) = min
z≥0

{

zµ

ks

+ IE
[

Vn−1(q − z, Sn−1)
]

}

, n = N,N − 1, . . . , 1 (6.11)

V0(q, s) =











0, if q = 0

∞, if q > 0

.

The key idea of Lee and Jindal is to show inductively that IE
[

Vn−1(q − z, Sn−1)
]

=

ξn−1,µ · (q − z)µ for some constant ξn−1,µ that depends on the time n − 1 and the

known monomial order µ. Therefore,

z∗n(q, s) = argmin
z≥0

{

zµ

ks

+ ξn−1,µ · (q − z)µ
}

. (6.12)

Differentiating the inner term of the right-hand side of (6.12) with respect to z

and setting it equal to zero yields z∗n(q, s) = λn,µ (s) · q, for some λn,µ (s) ∈ [0, 1].

Namely, with n slots remaining in the time horizon, the optimal control action is

to send a fraction, λn,µ (s), of the remaining packets to be sent. Here, the fraction

to send depends on the time remaining in the horizon, n; the current condition

of the channel, s; and the parameter representing the monomial order of the cost

function, µ. The fractions λn,µ (s) can be computed recursively. Note that plugging

the optimal z∗n(q, s) back into (6.11) yields:

IE [Vn(q, S)] = IE

[

(λn,µ (S) · q)
µ

kS

+ ξn−1,µ · (q − λn,µ (S) · q)
µ

]

= ξn,µ · q
µ

for some constant ξn,µ, completing the induction step on the form of IE [Vn(q, S)].

Finally, Lee and Jindal also show that for each fixed channel state s, the fraction

λn,µ (s) is decreasing in n. In other words, the scheduler is more selective or oppor-

tunistic when the deadline is far away, as it sends a lower fraction of the remaining
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packets than it would under the same state closer to the deadline. This makes intu-

itive sense as it has more opportunities to wait for a very good channel realization

when the deadline is farther away.

6.3 Comparison of the Problems

In this section, we provide further intuition behind the role of deadlines by com-

paring the above problems. First, we show that Problems (P6.1) and (P6.2) are

equivalent when a certain technical condition holds. Next, we examine how the extra

deadline constraints in Problem (P6.1) affect the optimal scheduling policy, as com-

pared with Problem (P6.2). We finish with some conclusions on the role of deadline

constraints.

6.3.1 A Sufficient Condition for the Equivalence of Problems (P6.1) and
(P6.2)

In this section, we transform the dynamic programs (6.5) and (6.3) to find a

condition under which Problems (P6.1) and (P6.2) are equivalent.

In Problem (P6.1), we change the state space from packets in the receiver’s

buffer to total packets transmitted since the beginning of the horizon (Tn = Xn +

(N − n) · d), and we change the action space from packets in the receiver’s buffer

following transmission to total packets sent (since the beginning of the horizon) after

transmission in the nth slot (An = Yn + (N − n) · d). A straightforward interchange

argument shows it is not optimal to send more than N · d packet during the horizon,

so with the above changes of variables, the dynamic program (6.3) becomes:
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Vn(t, s) = −cs · t

+ min
max(t,(N−n+1)·d)≤a≤min(t+ P

cs
,N ·d)

{

cs · a+ IE
[

Vn−1(t, Sn−1)
]}

,

n = N,N − 1, . . . , 1,

V0(t, s) = 0, ∀t,∀s . (6.13)

In Problem (P6.2), there is just a single deadline constraint; however, because

the terminal cost is set to ∞ if all the data is not transmitted by the deadline, the

scheduler must transmit enough data in each slot so that it can still complete the

job if the channel is in the worst possible condition in all subsequent slots. Thus,

the scheduler can leave no more than P
csworst

packets for the final slot, no more than

2 · P
csworst

packets for the last two slots, and so forth. So there are in fact implicit

constraints on how much data can remain to be transmitted at the end of each

slot. If we make these implicit constraints explicit, then the dynamic program (6.5)

becomes:

Vn(q, s) = cs · q

+ min
max(0,q− P

cs
)≤u≤min

(

q,(n−1)· P
csworst

)

{

−cs · u+ IE
[

Vn−1(u, Sn−1)
]}

,

n = N,N − 1, . . . , 1,

V0(q, s) = 0, ∀q,∀s .

Next, we change the state space from total packets remaining to be transmitted to

total packets transmitted since the beginning of the horizon (Tn = dtotal −Qn), and

we change the action space from total packets remaining to be transmitted after

transmission in the nth slot to total packets sent (since the beginning of the horizon)

after transmission in the nth slot (An = dtotal−Un). The resulting dynamic program
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is:

Vn(t, s) = −cs · t

+ min
max

(

t,dtotal−(n−1)·
P

csworst

)

≤a≤min(t+ P
cs

,dtotal)

{

cs · a+ IE
[

Vn−1(t, Sn−1)
]}

,

n = N,N − 1, . . . , 1,

V0(t, s) = 0, ∀t,∀s . (6.14)

The dynamic programs (6.13) and (6.14) associated with Problems (P6.1) and

(P6.2), respectively, become identical when the following two conditions are satisfied:

(C1) dtotal = N · d (i.e., the total number of packets to send over the horizon of N

slots is the same for both problems).

(C2) P
csworst

= d (i.e., the maximum number of packets that can be transmitted

under the worst channel condition is equal to the number of packets removed

from the receiver’s buffer at the end of each slot in Problem (P6.1)).

Furthermore, if condition (C2) is not satisfied, then P
csworst

> d, because we require

that P
csworst

≥ d for Problem (P6.1) to be well-defined. Thus, when condition (C1)

is satisfied, but condition (C2) is not satisfied, the action space at time n and state

(t, s) in (6.14) contains the action space at the same time and state in (6.13). This

is because the explicit deadline constraints resulting from the strict underflow con-

straints in Problem (P6.1) are more restrictive than the implicit deadline constraints

in Problem (P6.2).

6.3.2 Inverse Water-Filling Interpretations

In this section, we interpret Problems (P6.1) and (P6.2) within the context of

the inverse water-filling procedure introduced in Section 4.1. The aim is to show
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how the extra deadline constraints in Problem (P6.1) affect the optimal scheduling

policy.

We start with Problem (P6.2), which features a single deadline constraint. If,

at the beginning of the horizon, the scheduler happens to know the realizations of

all future channel conditions, sN , sN−1, . . . , s1, then Problem (P6.2) reduces to the

following convex optimization problem:

min
(zN ,zN−1,...,z1)∈IRN

+

∑N

n=1 csn
· zn

s.t.
∑N

n=1 zn ≥ dtotal

and zn ≤
P

csn
, ∀n ∈ {1, 2, . . . , N} .

(6.15)

It should be clear that (6.15) is essentially the same problem as (4.2), and the solution

can be found by scheduling data transmission during the slot with the best condition

until all the data is sent or the power limit is reached, and then scheduling data

transmission during the slot with the second best condition until all the data is sent

or the power limit is reached, and so forth. See Figure 6.2 for a diagram of this

solution.
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Figure 6.2. Pictorial representation of the solution to Problem (P6.2) in the somewhat unrealistic
case that all future channel conditions are known at the beginning of the horizon.
Packets are scheduled in slots in ascending order of csn

, until all the data is transmitted
or the power constraint for the slot is reached. In the example shown, the time horizon
to send the data is N = 6, the total number of data packets to be sent is 6d, and the
power constraint in each slot is P = 4d. One optimal policy is to transmit 4d packets
in slot 2, which has the best channel condition, and the remaining 2d packets in slot 5,
which has the second best channel condition. This policy results in a total cost of 2P .

If we are focused on finding the optimal amount to transmit in the current slot,
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we can also aggregate the power-rate functions of all future slots, by reordering them

according to the strength of the channel, as shown in Figure 6.3. The aggregate

power-rate curve shown is defined by:

ĉN−1(ẑ, sN−1, sN−2, . . . , s1) := min
(zN−1,...,z1)∈IRN

+

∑N−1
n=1 csn

· zn

s.t.
∑N−1

n=1 zn = ẑ

and zn ≤
P

csn
, ∀n ∈ {1, 2, . . . , N − 1} ,

where ẑ is the aggregate number of packets to be transmitted in slots N − 1, N −

2, . . . , 1. The optimal number of packets to transmit in the current slot is then deter-
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Figure 6.3. The aggregate power-rate function for future slots. Aggregating the power-rate func-
tions of the final 5 slots from Figure 6.2 allows us to determine the optimal number of
packets to transmit in the current slot by comparing the current slope to the slopes of
the aggregate curve. In this case, the slope of the current curve is greater than the slope
of the aggregate curve at all points up to dtotal = 6d, so it is optimal to not transmit
any packets in the current slot.

mined as follows. Define γN := min
{

ẑ0 : ψ̂N−1(ẑ) ≥ csN
, ∀ẑ > ẑ0

}

, where ψ̂N−1(·)

is the slope from above of the aggregate power-rate curve, ĉN−1(·, sN−1, sN−2, . . . , s1),

shown in Figure 6.3. Then the optimal number of packets to transmit in slot N is
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given by:

z∗N = min

{

P

csN

,max (dtotal − γN , 0)

}

. (6.16)

This policy says that if the current per packet energy cost from transmission is greater

than the slope of the aggregate curve at all points up to dtotal, then it is optimal to

not transmit any packets in the current slot. Otherwise, the optimal number of

packets to transmit in the current slot N is the minimum of the maximum number

of packets that can be transmitted under the current channel condition, and the

number of packets that would otherwise be transmitted in worse channel conditions

in future slots.

Now, as Fu, Modiano, and Tsitsiklis explain in [51, Section III-D] and [52, Section

III-D], in the more realistic case that the channel condition in slot n is not learned

until the beginning of the nth slot, a very similar aggregate method can be used as

long as the number of possible channel conditions is finite, and the condition (6.10)

is satisfied. In this situation, however, the slopes of the piecewise-linear aggregate

power-rate function for future slots are not defined in terms of the actual channel

conditions of future slots (which are not available), but rather by a series of thresholds

that only depend on the statistics of future channel conditions. Condition (6.10)

ensures that the slopes of this aggregate expected power-rate curve only change at

integer multiples of P
csworst

. The form of the optimal policy at time N is the same

as (6.16), with dtotal being the number of packets remaining to transmit at time N .

Because the slopes of the aggregate expected power-rate curve only change at integer

multiples of P
csworst

, we have γN ∈
{

0, P
csworst

, 2 · P
csworst

, . . . , (N − 1) · P
csworst

}

.

We now return to the wireless streaming model considered in (P6.1), with d

packets removed from the receiver’s buffer at the end of every slot. Let us once

again begin by considering the unrealistic case that the scheduler knows all future

132



channel conditions at the beginning of the horizon. The optimal solution can be

found by using the same basic inverse water-filling type principle of transmitting as

much as possible in the slot with the best channel condition, and then the second

best, and so forth; however, due to the additional underflow constraints, one needs

to solve N sequential problems of this form. The first problem is the trivial problem

of sending d packets in the first slot, [N,N − 1). The second problem is to send 2d

packets in the first two slots. If the power limit in the first slot has not been reached

after allocating the initial d packets there, then the scheduler may choose to send

the second batch of d packets in either the first or second slot, according to their

respective channel conditions. For each sequential problem, whatever packets have

been allocated in the previous problem must be “carried over” to the subsequent

problem, where there is one additional time slot available and the next d packets are

allocated. The solution to the N th problem represents the optimal allocation. See

Figure 6.4 for a diagram of this solution. Comparing Figure 6.4 to Figure 6.2, we

see that when N · d = dtotal and the known sequence of channel conditions is the

same for both problems, the additional underflow constraints cause more data to be

scheduled in earlier time slots with worse channel conditions.

When all future channel conditions are known ahead of time, as in Figure 6.4,

we can also use the same aggregation technique from above to represent Problems 2

through N as comparisons between the current channel condition and the aggregate

of the future channel conditions. Furthermore, when the future channel conditions

are not known ahead of time and the condition (5.10) is satisfied, we can once again

define the aggregate expected power-rate function for future slots in terms of a series

of thresholds that only depend on the statistics of future channel conditions. Due to

the underflow constraints, however, these thresholds are computed differently than
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Figure 6.4. Pictorial representation of the solution to Problem (P6.1) in the somewhat unrealistic
case that all future channel conditions are known at the beginning of the horizon. In the
example shown, the time horizon is N = 6, d packets are removed from the receiver’s
buffer at the end of every slot, and the power constraint in each slot is P = 4d. To satisfy
the underflow constraints, 6 sequential problems are considered, with an additional d

packets allocated in each problem. Packets allocated in one problem are “carried over”
to all subsequent problems, and shown in solid black filling. The optimal policy, given
by the solution to Problem 6, is to transmit d packets in slots 6 and 3, and 2d packets
in slots 5 and 2. This policy results in a total cost of 3P .
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those in Problem (P6.2). The net result for this more realistic case is the same

as the case when all future channel conditions are known - the additional underflow

constraints make it optimal to send more data in earlier time slots with worse channel

conditions.

6.4 Summary Takeaways on the Role of Deadline
Constraints

As mentioned earlier, the main idea of opportunistic scheduling is to reduce energy

consumption by sending more data when the channel is in a “good” state, and less

data when the channel is in a “bad” state. However, deadline constraints may force

the sender to transmit data when the channel is in a relatively poor state. One

strategy when faced with such deadline constraints would be to deal with them as

they come, by always sending just enough packets when the channel is “bad” to

ensure the deadline can be met, and holding out for the best channel conditions to

send a lot of data. Yet, a key conclusion from the analysis of the three problems we

presented in this chapter is that it is better to anticipate the need to comply with

these constraints in future slots by sending more packets (than one would without

the deadlines) under “medium” channel conditions in earlier slots. In some sense,

doing so is a way to manage the risk of being stuck sending a large amount of data

over a poor channel to meet an imminent deadline constraint. We also saw that the

extent to which the scheduler should plan for the deadline by sending data under such

“medium” channel conditions depends on the time remaining until the deadline(s),

and on how many deadlines it must meet. Namely, the closer the deadlines and the

more deadlines it faces, the less opportunistic the scheduler can afford to be. So

perhaps the essence of opportunistic scheduling with deadline constraints is that the
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scheduler should be opportunistic, but not too opportunistic.

6.5 Other Energy-Minimizing Transmission Scheduling
Studies Featuring Strict Deadline Constraints

In addition to the three problems discussed above and the more general variant

of Problem (P6.1) discussed in Chapter 5, there have been a few other studies of

energy-minimizing transmission scheduling that feature a time-varying wireless chan-

nel and strict deadline constraints. In [90], [91], and [93], Lee and Jindal consider the

same setup as Problem (P6.3), except that the convex power-rate curves are of the

form c(z, s) = 2z−1
αs

or ez−1
αs

, which are based on the Gaussian noise channel capacity.

The earlier models of Zafer and Modiano in [169] and [170] also include essentially

the same setup as Problem (P6.3), with the exception that the underlying time scale

is continuous rather than discrete. Using continuous-time stochastic control theory,

they also reach the key conclusion that the optimal number of packets to transmit

under convex monomial power-rate curves is the product of the number of packets

remaining to be sent and an “urgency” fraction that depends on the current channel

condition and the time remaining until the end of the horizon. Chen, Mitra, and

Neely [33, 34] and Uysal-Biyikoglu and El Gamal [161] consider packets arriving at

different times, analyze offline scheduling problems, and use the properties of the

optimal offline scheduler to develop heuristics for online (or causal) scheduling prob-

lems. In [155], Tarello et al. extend Problem (P6.2) (without the power constraint)

to the case of multiple identical receivers, and assume that the source can only trans-

mit to one user in each slot. An overview of the models considered in each of these

studies is provided in Table 6.1. Additionally, Luna et al. [102] consider an energy

minimization problem subject to end-to-end delay constraints, where the scheduler
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Study
Num. of
Receivers

Data
Deadline
Constraints

Scheduler’s
Information

Power-Rate
Curves

Fu, Modiano, and
Tsitsiklis [51, 52]

1
Infinite
backlog

Single deadline
Non-causal;
causal

Convex; linear
with power
constraint

Shuman, Liu, and
Wu [140, 144, 145]

Multiple
(focus on
1, 2)

Infinite
backlog

Multiple
deadlines
(underflow
constraints)

Causal

Linear and
piecewise-

linear convex
with power
constraint

Lee and Jindal [92] 1
Infinite
backlog

Single deadline Causal
Convex
monomial

Lee and Jindal [90,
91, 93]

1
Infinite
backlog

Single deadline Causal

Convex
(Gaussian

noise channel
capacity)

Zafer and Modiano
[169, 170]

1

Infinite
backlog;

random packet
arrivals

Single
deadline;
multiple
variable
deadlines

Causal
Convex;
convex

monomial

Chen, Mitra, and
Neely [33, 34]

1 Packet arrivals
Individual
packet
deadlines

Non-causal;
causal

Convex

Uysal-Biyikoglu
and El Gamal [161]

Multiple
(focus on

2)
Packet arrivals Single deadline

Non-causal;
causal

Convex

Tarello et al. [155] Multiple
Infinite
backlog

Single deadline
Non-causal;
causal

Linear; convex

Table 6.1. Energy-minimizing transmission scheduling models that feature a time-varying wireless
channel and strict deadline constraints. We use the term “infinite backlog” to include
problems where there are a finite number of packets to be sent, all of which are queued at
the beginning of the time horizon. “Non-causal” refers to the offline scheduling situation
where the transmission scheduler has knowledge of future channel states and packet arrival
times.

must select various source coding parameters in addition to the transmission powers.

Finally, there is a sizeable literature on energy-efficient transmission scheduling stud-

ies such as [162] that feature a time-invariant or static channel and strict deadline

constraints.
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Chapter 7

Stochastic Versus Deterministic Prices in

Inventory Theory

The large majority of models in the classical inventory literature consider de-

terministic, time-invariant prices and stochastic demands, the reverse of the model

we introduced in Chapter 5. In this chapter, we consider a variant of the two-item

resource-constrained inventory problem with deterministic, time-invariant prices and

stochastic demands originally studied by Evans in [45], and revisited in [32], [40], and

[79]. Our purpose in discussing this model is to compare the qualitative properties

of the optimal policy to those of Problem (P5.1). Specifically, the question at hand

is whether models with stochastic prices deserve their own analysis or if the qual-

itative behavior follows in a straightforward manner from analysis of models with

deterministic prices. The main thesis of the chapter is that inventory models with

stochastic prices do indeed merit their own line of analysis as structural phenomena

that cannot appear in the corresponding models with deterministic prices are liable

to appear in the stochastic price inventory models.

7.1 Problem Formulation

There are two main differences between the problem considered in this chapter

and Evans’ problem in [45]:
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(1) In the case of stochastic demand, it is less realistic to impose strict constraints

on the fulfillment of demand. The models most often considered in inventory

theory are (i) the complete backlogging model, where unsatisfied demand is

backlogged in order to be satisfied in future periods, with some penalty for the

delay; and (ii) the lost sales model, where unsatisfied demand incurs a one-time

penalty and is not backlogged. We consider complete backlogging of unfilled

demand rather than the lost sales model considered in [45]. Evans points out

that the qualitative results are the same under both models.

(2) We allow the random vector of demands, D, to have any distribution. Evans

requires that it have continuous support, in order to ensure differentiability and

strict convexity of the value functions. In the words of Milgrom and Shannon

[105], “the only role these assumptions play is as servants to a method.” By

relaxing the continuous support assumption, we lose these properties, but we

will show that the fundamental structure of the optimal policy is unaffected.

We consider a two-item inventory model where the total ordering cost in each

period cannot exceed a joint budget, P . The ordering costs for each item are linear,

with the deterministic, time-invariant vector of ordering prices given by c. The vector

of inventories in period n is given by Xn, and the vector of controlled order quantities

is denoted by Zn. The demands for each item are stochastic, and represented by the

random vector Dn in period n. We assume the vector of demands is IID across time.

Unmet demands are completely backlogged until future slots (i.e., X can take on

negative values), so the system dynamics are given by:

Xn−1 = Xn + Zn −Dn .
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The total shortage and holding costs at the end of each period are given by:

l(x) := l1(x1) + l2(x2) ,

where lj(0) = 0 and lj(·) is convex, nondecreasing above 0, and nonincreasing below

0, for item j = 1, 2.We consider the finite horizon discounted expected cost problem

with horizon N . Thus, the stochastic dynamic optimization problem, which we refer

to as Problem (P7.1), is given by:

inf
π∈Π

IEπ

{

N
∑

n=1

αN−n ·
{

cTZn + l(Xn + Zn −Dn)
}

| FN

}

s.t. cTZn ≤ P, w.p.1, ∀n

and Zn � 0, w.p.1, ∀n ,

where 0 ≤ α ≤ 1 is the discount factor and FN denotes all information available at

the beginning of the time horizon.

Using the normal change of variable Yn = Xn + Zn, the dynamic program for

Problem (P7.1) is given by:

Vn(x) = min
y∈Â(x)

{

cT(y− x) + IE
[

l(y−D)
]

+ α · IE
[

Vn−1(y−D)
]

}

= −cTx+ min
y∈Â(x)

{

cTy+ IE
[

l(y−D)
]

+ α · IE
[

Vn−1(y−D)
]

}

= −cTx+ min
y∈Â(x)

{

Ĝn(y)
}

, n = N,N − 1, . . . , 1,

V0(x) = 0, ∀x,

where Ĝn(y) := cTy + IE
[

l(y −D)
]

+ α · IE
[

Vn−1(y −D)
]

, and the action space is

defined as:

Â(x) :=

{

y ∈ IR2 : x � y and cT(y− x) ≤ P

}

.
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7.2 The Direct Value Order

Before proceeding to the optimal policy structure for Problem (P7.1), we discuss

a partial order introduced by Antoniadou in [8, 11] called the direct value order.

Definition 7.1 (Antoniadou, 1996). Let c ∈ IR++ and let x̄, x̃ ∈ IR2. Then the

direct (c, i) value order, ≤dv(c,i) for i = 1, 2, is defined by:

x̄ ≤dv(c,i) x̃ if and only if cTx̄ ≤ cTx̃ and x̄i ≤ x̃i .

Recall that a function f : IR2 → IR is supermodular (submodular) with respect

to a given partial order if for all x̄, x̃ ∈ IR2:

f(x̄) + f(x̃) ≤ (≥) f(x̄ ∧ x̃) + f(x̄ ∨ x̃) ,

where ∧ and ∨ denote the meet and join with respect to the given partial order, as

defined in Section 1.4. The meet and join of two points with respect to the usual

Euclidean, dv(c, 1), and dv(c, 2) partial orders are shown in Figure 7.1.

xx ˆ~
∨x̂

xx cvd
ˆ~

)2,.(.∨x̂

x̂

xx ˆ~
∧ x

~
xx cvd
ˆ~

)2,.(.∧

x
~

xx cvd
ˆ~

)1,.(.∧

xx cvd
ˆ~

)1,.(.∨

x
~

������ ���

Figure 7.1. The direct value order. (a) shows the standard Euclidean order; (b) shows the dv(c, 1)
order; and (c) shows the dv(c, 2) order.

If f : IR2 → IR is twice continuously differentiable on IR2, then f is supermodular

(submodular) with respect to the usual Euclidean order if and only if [158, p. 310]:

∂2f

∂x1∂x2
≥ (≤) 0 .

The following proposition is analogous for the direct (c, i) value order.
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Proposition 7.2. If f : IR2 → IR is twice continuously differentiable on IR2, then f

is supermodular (submodular) with respect to the direct (c, 1) value order if and only

if:

∂2f

∂x2∂x2
≤ (≥)

c2

c1
·

∂2f

∂x1∂x2
, (7.1)

and is supermodular (submodular) with respect to the direct (c, 2) value order if and

only if:

∂2f

∂x1∂x1
≤ (≥)

c1

c2
·

∂2f

∂x1∂x2
. (7.2)

A detailed proof of Proposition 7.2 is included in Appendix D.

In [45], Evans shows inductively that the functions {Ĝn(·)}n∈{N,N−1,...,1} defined

in the previous section satisfy (7.1) and (7.2) with a strict > inequality. He refers

to these conditions as “dominance of the second partials over the mixed partials.”

Without the assumption that the random demand has continuous support, the func-

tions {Ĝn(·)}n∈{N,N−1,...,1} are not necessarily twice differentiable. The approach in

the next section is to instead show that the functions {Ĝn(·)}n∈{N,N−1,...,1} are sub-

modular with respect to the dv(c, 1) and dv(c, 2) partial orders, and that the same

structural features of the optimal policy follow.

In [32], Chen defines a function f : IR2 → IR to be µ-difference monotone if for

any t > 0, the function

h(x1, x2) := f(x1 + µ1 · t, x2)− f(x1, x2 + µ2 · t) ↑ x1, ↓ x2 ,

where ↑ x1 means nondecreasing in x1 and ↓ x2 means nonincreasing in x2. Note

that a function is µ-difference monotone if and only if it is submodular with respect

to both the dv(c, 1) and dv(c, 2) partial orders, where ci = 1
µi for i = 1, 2.

To the best of our knowledge, the analysis of Problem (P7.1) in [32] and this chap-

ter represents the first time the direct value order has been used to inductively show
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functional properties in a dynamic optimization problem, as most of its applications

to date have been in comparative statics [8, 9, 10, 11, 106, 107, 119].

Finally, we remark that that the triangular action spaces of Problems (P5.1) and

(P7.1) are lattices with respect to both the both the dv(c, 1) and dv(c, 2) partial

orders.

7.3 Structure of Optimal Policy

As in Section 5.5.1, we prove properties of the value functions, and then deduce

the structure of the optimal policy from these properties. Note that Problem (P7.1)

is essentially the same problem as the one considered by Chen in [32]. However,

we present our versions of theorems describing the properties of the value functions

and structure of the optimal policy (which were derived independently before learn-

ing of [32] and have different proofs) in order to maintain comparability with the

corresponding statements about Problem (P5.1).

Theorem 7.3. The following statements are true for n = 1, 2, . . . , N :

(i) Vn−1(x) is convex in x.

(ii) Vn−1(x) is supermodular in x; i.e., for all x̄, x̃ ∈ IR2,

Vn−1(x̄) + Vn−1(x̃) ≤ Vn−1(x̄ ∧ x̃) + Vn−1(x̄ ∨ x̃) .

(iii) Vn−1(x) is dv(c, 1)-submodular in x, and dv(c, 2)-submodular in x; i.e., for all

x̄, x̃ ∈ IR2,

Vn−1(x̄) + Vn−1(x̃) ≥ Vn−1(x̄ ∧dv(c,i) x̃) + Vn−1(x̄ ∨dv(c,i) x̃) , i = 1, 2 .

(iv) Ĝn(y) is convex in y.
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(v) Ĝn(y) is supermodular in y; i.e., for all ȳ, ỹ ∈ IR2,

Ĝn(ȳ) + Ĝn(ỹ) ≤ Ĝn(ȳ ∧ ỹ) + Ĝn(ȳ ∨ ỹ) .

(vi) y1n < ŷ1n implies:

inf

{

argmin
y2

n∈IR

{

Ĝn

(

y1n, y
2
n

)

}

}

≥ inf

{

argmin
y2

n∈IR

{

Ĝn

(

ŷ1n, y
2
n

)

}

}

and y2n < ŷ2n implies:

inf

{

argmin
y1

n∈IR

{

Ĝn

(

y1n, y
2
n

)

}

}

≥ inf

{

argmin
y1

n∈IR

{

Ĝn

(

y1n, ŷ
2
n

)

}

}

.

(vii) Ĝn(y) is dv(c, 1)-submodular in y, and dv(c, 2)-submodular in y; i.e., for all

ȳ, ỹ ∈ IR2,

Ĝn(ȳ) + Ĝn(ỹ) ≥ Ĝn(ȳ ∧dv(c,i) ỹ) + Ĝn(ȳ ∨dv(c,i) ỹ) , i = 1, 2 .

A detailed proof is included in Appendix E.1. Similar to (ii), because −cTx is

dv(c, i)-submodular in x, the key part of the induction step in the proof of (iii)

is to show that miny∈Â(x)

{

Ĝn−1(y)
}

is also dv(c, i)-submodular in x. Denoting

argminy∈Â(x)

{

Ĝn−1(y)
}

by y∗(x), we do this constructively by showing that for all

x̄, x̃ ∈ IR2:

min
y∈Â(x̄)

{

Ĝn−1(y)
}

+ min
y∈Â(x̃)

{

Ĝn−1(y)
}

= Ĝn−1

(

y∗(x̄)
)

+ Ĝn−1

(

y∗(x̃)
)

≥ Ĝn−1(ŷ) + Ĝn−1(y̌) (7.3)

≥ min
y∈Â(x̄∧dv(c,i)x̃)

{

Ĝn−1(y)
}

+ min
y∈Â(x̄∨dv(c,i)x̃)

{

Ĝn−1(y)
}

,

for a specific choice of ŷ ∈ Â
(

x̄ ∧dv(c,i) x̃
)

and y̌ ∈ Â
(

x̄ ∨dv(c,i) x̃
)

. The difficulty

is cleverly constructing ŷ and y̌, depending on the relative locations of x̄, x̃, y∗(x̄),

and y∗(x̃), so as to ensure (7.3) is true.
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It follows from Theorem 7.3 that the structure of the optimal transmission policy

for Problem (P7.1) is given by the following theorem.

Theorem 7.4. For every n ∈ {1, 2, . . . , N}, define the non-empty set of global min-

imizers of Ĝn(·, s):

B̂n :=

{

ŷ ∈ IR2 : Ĝn(ŷ) = min
y∈IR2

Ĝn(y)

}

.

Define also

b̂1n := min
{

y1 ∈ IR : (y1, y2) ∈ B̂n for some y2 ∈ IR
}

,

and

b̂2n := min
{

y2 ∈ IR :
(

b̂1n, y
2
)

∈ B̂n

}

.

Then the vector b̂n =
(

b̂1n, b̂
2
n

)

∈ B̂n is a global minimizer of Ĝn(·). Define also the

functions:

f̂ 1n(x
2) := inf

{

argmin
y1∈IR

{

Ĝn

(

y1, x2
)

}

}

, for x2 ∈ IR, and

f̂ 2n(x
1) := inf

{

argmin
y2∈IR

{

Ĝn

(

x1, y2
)

}

}

, for x1 ∈ IR.

Note that by construction, f̂ 1n(b̂
2
n) = b̂1n and f̂ 2n(b̂

1
n) = b̂2n. Partition IR2 into the

following seven regions:

R̂I(n) :=
{

x ∈ IR2 : x �
(

f̂ 1n(x
2), f̂ 2n(x

1
)

and x 6= b̂n

}

R̂II(n) :=
{

x ∈ IR2 : x � b̂n and cT

[

b̂n − x
]

≤ P
}

R̂III−A(n) :=
{

x ∈ IR2 : x2 > b̂2n and f̂ 1n(x
2)−

P

c1
≤ x1 < f̂ 1n(x

2)
}

R̂III−B(n) :=
{

x ∈ IR2 : x1 > b̂1n and f̂ 2n(x
1)−

P

c2
≤ x2 < f̂ 2n(x

1)
}

R̂IV−A(n) :=
{

x ∈ IR2 : x2 > b̂2n and x1 < f̂ 1n(x
2)−

P

c1

}
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R̂IV−B(n) :=
{

x ∈ IR2 : x � b̂n and cT

[

b̂n − x
]

> P
}

R̂IV−C(n) :=
{

x ∈ IR2 : x1 > b̂1n and x2 < f̂ 2n(x
1)−

P

c2

}

.

Then for Problem (P7.1), for all x /∈ R̂IV−B(n), an optimal control action with

n slots remaining is given by:

y∗n(x) :=







































































x, if x ∈ R̂I(n)

b̂n, if x ∈ R̂II(n)
(

f̂ 1n(x
2), x2

)

, if x ∈ R̂III−A(n)
(

x1, f̂ 2n(x
1)
)

, if x ∈ R̂III−B(n)
(

x1 + P
c1
, x2

)

, if x ∈ R̂IV−A(n)
(

x1, x2 + P
c2

)

, if x ∈ R̂IV−B(n)

. (7.4)

For all x ∈ R̂IV−B(n), there exists an optimal control action with n slots remain-

ing, y∗n(x), which satisfies:

cT [y∗n(x)− x] = P and y∗n(x) � b̂n . (7.5)

A detailed proof of Theorem 7.4 is included in Appendix E.2.

7.4 Comparison of Problems (P5.1) and (P7.1)

As first glance, the structures of the optimal policies for Problems (P5.1) and

(P7.1), described in Theorems 5.9 and 7.4, respectively, may seem extremely similar.

However, there are two fundamental differences that distinguish these two problems.

First, the function Ĝn(·) in Problem (P7.1) has the additional property of sub-

modularity with respect to the direct value orders (statement (vii) in Theorem 7.3).

This functional property leads to two additional structural results on the optimal

control action: (i) when the initial vector of inventories (corresponds to the vector
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of receivers’ buffer levels in Problem (P5.1)) is in region R̂IV−B(n), there exists an

optimal control action such that y∗n(x) � bn;
1 and (ii) when the initial vector of

inventories is in region R̂IV−A(n) (respectively, R̂IV−C(n)), there exists an optimal

control action that includes not ordering any of item 2 (respectively, item 1), corre-

sponding to not transmitting any packets to user 2 (respectively, user 1) in Problem

(P5.1). Due to the time-varying ordering prices (channel conditions), this property

does not hold for the function Gn(·, s) in Problem (P5.1), and these two additional

statements on the structure of the optimal policy are not true in general for Problem

(P5.1), as shown by the following example.

Example 7.5. Consider the following instance of Problem (P5.1). A single sender

transmits to two statistically identical receivers, whose channel conditions are IID

over time and independent of each other. The power-rate curves are linear, and the

possible per packet power costs are 1.750 (best possible channel condition), 2.000,

2.001, and 2.100 (worst possible channel condition). The associated probabilities of

each user experiencing these channel conditions are 0.4, 0.4, 0.1, and 0.1, respectively.

The total power constraint in each slot is P = 4.2, and 1 packet is removed from

each receiver’s buffer at the end of each time slot (i.e., d = (1, 1)). We consider a

finite horizon problem with the discount rate α = 1, and no holding costs. We are

interested in the optimal control action with T = 3 time slots remaining, and the

current channel conditions are such that it costs 2.000 units of power to transmit a

packet to user 1, and 2.001 units of power to transmit a packet to user 2.

Exactly solving the dynamic program shows that the unique global minimizer of

the function G3(·, ·, s3) is the vector (
101
75
, 101
75
). However, if the vector of starting

1In [32], Chen elaborates on the optimal allocation of the budget between the two items in Region R̂IV−B(n) by
defining a curve splitting the region into the area where item 1 should be ordered and the area where item 2 should
be ordered. He refers to this policy as a hedging point policy.
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receiver buffer levels at time T = 3 is x3 = (0.2, 0.2), the unique optimal scheduling

decision in the slot is to transmit 0.8 packets to user 2, and use the remaining power

for transmission to user 1, which results in 1.2996 packets being sent to user 1. A

diagram of this optimal control action is shown in Figure 7.2. The interesting thing

to note here is that despite being power-constrained (the vector of starting buffer

levels is in RegionRIV−B), the unique optimal scheduling decision calls for filling user

1’s buffer beyond its critical number b13(s3) =
101
75
. That is, the optimal scheduling

decision brings the buffer levels from Region RIV−B to Region RIII−B rather than

Region RII .

2
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Figure 7.2. Optimal scheduling decision with 3 slots remaining in Example 7.5. The action space
is represented by the triangle Ãd(x3, s3). The critical vector b3(s3) is not reachable
from the starting buffer levels x3 = (0.2, 0.2). The unique optimal control action is to
choose y3(x3, s3) (the buffer levels after transmission but before playout) to be (1.5,
1.0). The interesting feature of the example is that even though x3 � b3(s3), we have
y∗

3
(x3, s3) � b3(s3).

The second fundamental difference is also a consequence of the time-varying or-

dering prices in Problem (P5.1). In the infinite horizon version of Problem (P7.1),

the critical vector b̂ is time-invariant. Combined with the above property that it
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is optimal to not order inventory so as to move out of regions RII and RIV−B, the

time-invariant critical vector means that the region RII ∪RIV−B (i.e., the lower-left

square below the critical vector) is a “stability” region.2 Eventually, the vector of

inventories enters this region under the optimal ordering policy, and once it does, it

never leaves. This behavior both simplifies the analysis and opens the door for new

mathematical techniques, such as analyzing shortfall to compute the critical num-

bers and determine the optimal allocation between items in the budget-constrained

region [79, 157]. In Problems (P5.2) and (P5.3), even though the boundaries of the

seven regions for each possible channel condition are time-invariant, no such stability

region exists, because the critical numbers vary over time due to the time-varying

channel conditions. Therefore, the same vector of inventories may be in regionRII(s)

in one time slot and say RIII−A(s
′) in the next time slot. This makes it significantly

more difficult to determine optimal and near-optimal policies.

2A key assumption needed to ensure the stability region is that cTIE[D] < P ; that is, the budget in a period
suffices to purchase inventory to fulfill the aggregate average demand. Without this assumption, the infinite horizon
average cost is infinite as the shortage costs accumulate [79].
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Chapter 8

Conclusion

In this thesis, we studied three stochastic scheduling problems motivated by wire-

less communications applications. The common theme was conserving energy, first

by limiting the radio’s idle time and then by adjusting transmission powers. We

now summarize the main results, discuss future directions, and present some final

thoughts.

The first problem we considered was sleep scheduling for a wireless sensor node.

We formulated infinite horizon average expected cost and finite horizon expected cost

problems to model the fundamental tradeoff between delay and energy consumption.

In the infinite horizon problem, we showed that it is optimal to stay awake to transmit

a packet if the queue is non-empty. At the boundary state when the queue is empty,

the optimal control action is given by a threshold decision rule, which is a function of

the following problem parameters: the energy consumption cost of staying awake in

a slot, the packet holding cost, the probability of a packet arrival in each time slot,

and the length of a sleep period. For the finite horizon problem, we showed there is

a shutdown period at the end of the horizon where it is optimal to sleep regardless

of the number of packets in the queue. Before this shutdown period, it is optimal to

stay awake if packets are present in the queue. At times far away from the end of the

150



horizon, the optimal control action when the queue is empty converges to the optimal

control action from the infinite horizon problem at the same state (as determined

by the threshold decision rule). The interesting question was whether the optimal

control action at this boundary state is monotonic over time. We showed through

a counterexample that it is not monotonic, but conjectured that it has one of three

simple structural forms.

The second problem we introduced was dynamic clock calibration via tempera-

ture measurement. The main idea of the novel approach to clock calibration was

that a little extra energy consumption in taking temperature measurements during

the sleep phases may lead to significant energy savings in the communication mode.

The objective was to dynamically schedule a limited number of temperature mea-

surements in a manner most useful to improving the accuracy of the ultra-low power

timer. We formulated two different optimization problems, with continuous and dis-

crete underlying time scale, respectively, and showed how both could be reduced to

finite state, finite action Markov decision processes. The discrete-time formulation

required extra conditions on the statistics of the ambient temperature process and

possible frequencies of the clock, but resulted in a computationally simpler dynamic

program.

The third problem we introduced was energy-efficient transmission scheduling

with strict underflow constraints. The main idea was that the scheduler should ex-

ploit the temporal and spatial variations of the wireless channel by sending more

data to a user with a good channel condition and less data to a user with a bad

channel condition. In the case of a single user with linear power-rate curves, we

showed that an easily-implementable modified base-stock policy is optimal under

the finite horizon, infinite horizon discounted, and infinite horizon average expected
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cost criteria. For a single user with piecewise-linear convex power-rate curves, we

showed that a finite generalized base-stock policy is optimal under all three expected

cost criteria. We also presented the sequences of critical numbers that complete the

characterization of the optimal control laws in each of these cases when some addi-

tional technical conditions are satisfied. In the case of two receivers, we showed how

the joint power constraint couples the optimal scheduling of the two data streams.

We further compared the optimal structure in the two receiver case to an analogous

two-item inventory model with deterministic prices in Chapter 7, and saw that the

time-varying channel conditions lead to structural phenomena that do not appear in

the classical inventory models.

8.1 Future Directions

In this section, we discuss possible extensions to the the three main problems,

which were introduced in Chapters 2, 3, and 5, respectively.

8.1.1 Optimal Sleep Scheduling for a Wireless Sensor Network Node

As discussed in Section 2.4.5, it may be possible to relax a number of the as-

sumptions (e.g., general nondecreasing holding costs in place of linear holding costs,

general batch arrivals in place of Bernoulli arrivals) and add fixed switching costs to

the model, while still retaining the optimality of a threshold policy.

An interesting alternative formulation of the problem is to frame it as a con-

strained optimization problem. Specifically, rather than associate costs with packet

delay and energy consumption, we could directly minimize packet delay subject to

a constraint that the node must be asleep for a certain portion of the time horizon.

This formulation may be more “user-friendly,” as we replace the energy costs (which

need to be measured and may be different in different hardware platforms) with
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an energy conservation constraint that has a clear physical interpretation which is

consistent across hardware platforms. We have not yet considered this model, but

believe analysis on this front may be tractable.

Finally, one might consider optimal sleep scheduling for multiple nodes in a wire-

less sensor network. This extension is not at all straightforward, as incorporating

additional quality of service objectives such as connectivity or coverage drastically

changes the nature of the problem.

8.1.2 Dynamic Clock Calibration via Temperature Measurement

Future work includes improving the numerical implementation of the solution so

that it scales to higher dimensional instances of the problem. In order to do so, it

may be necessary to consider suboptimal heuristics. We would also like to study the

tradeoff between the number of temperature measurements allowed and expected

energy savings. Specifically, by varying the limit on the number of temperature mea-

surements allowed and solving one instance of the current problem for each limit, we

could compare the marginal benefit of each additional measurement to the marginal

energy cost of waking the processor up to take that measurement.

8.1.3 Energy-Efficient Transmission Scheduling with Strict Underflow
Constraints

Our ongoing work includes examining the extension to the most general case of

M receivers. It is unlikely that the structure of the optimal policy in this case has a

simple, intuitive, and implementable form. Therefore, our approach is to find lower

bounds on the value function and a feasible policy whose expected cost is as close as

possible to these bounds. One simple lower bound to the value function can be found

by relaxing the per slot peak power constraint of P units of total power allocated

to all users, and allowing up to P units of power to be allocated to each receiver
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in a single slot (for a total of up to M · P ). The advantage of this technique is

that it is easy to compute the lower bound, as theM -dimensional problem separates

into M instances of the 1-dimensional problem we know how to solve from Section

5.3. However, the resulting bound is likely to be loose. A second lower bounding

method we are investigating is the information relaxation method of Brown, Smith,

and Sun [25]. The main idea there is to assume the scheduler has access to future

channel states (corresponding to the non-causal or offline model often considered in

the literature), but penalize the scheduler for using this information. A clever choice

of the penalty function often leads to tight lower bounds on the value function. A

third method is the Lagrangian relaxation method discussed in [1] and [65]. For our

problem, this method is equivalent to relaxing the per slot peak power constraint to

an average power constraint (i.e., the scheduler may allocate more than P units of

power in some slots, but the average power consumed per slot over the duration of the

horizon cannot exceed P ). Like the first method we mentioned, the resulting relaxed

problem under this method can be separated into M instances of a 1-dimensional

problem, this time with an average power constraint of P
M
instead of a strict power

constraint of P for each receiver. A fourth lower bounding method is the linear

programming approach to approximate dynamic programming discussed in [1], [38],

and [132]. The idea there is to formulate the dynamic program as a linear program,

and approximate the value functions as linear combinations of a set of basis functions.

For a more in-depth comparison of the Lagrangian relaxation and approximate linear

programming approaches, see [1]. Once lower bounds to the value function are

determined from any of these methods, feasible policies can be generated based on

our structural results or via one-step greedy optimization with the lower bounds

substituted into the right-hand side of the dynamic programming equation.
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These same numerical techniques are most likely also the best way to approximate

the boundaries of the seven regions of the two receiver optimal policy, and determine

a near-optimal split of the power P between the two receivers when the vector of

starting receiver buffer levels is in the power-constrained region RIV (n, s).

8.2 Final Thoughts

We conclude with a brief commentary on a couple topics arising out of this thesis.

8.2.1 Relation Between Inventory Theory and Wireless Communications

In Chapter 5, we presented a novel connection between inventory theory and wire-

less communications. Namely, the uncertain fluctuating wireless channel conditions

can be thought of as uncertain fluctuating prices, and the idea of opportunistically

scheduling transmissions when the channel condition is good is analogous to pur-

chasing inventory at a low price. The techniques of inventory theory certainly aided

our analysis in Chapter 5, and we believe these techniques could prove to be useful

in other wireless communications problems. However, the literature on inventory

theory models with stochastic prices is relatively thin compared to the more classical

inventory models with deterministic prices and stochastic demands. We saw in Chap-

ter 7 that while some results for the stochastic price models follow in an expected

manner from the more classical setup (for example, the modified base-stock policy

discussed in Section 5.3), some stochastic price models may result in fundamentally

different structural phenomena, and therefore merit their own line of analysis. So in

this regard, we hope that introducing a new motivating application can continue to

lead to new theoretical developments, as is often the case.
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8.2.2 The Combination of Structural Results and Numerical Approxi-
mation Techniques

The two most common reasons to search for structural results on the optimal

policy in a Markov decision process are (in no particular order): (i) to improve one’s

intuitive understanding of the problem; and (ii) to enable efficient computation of

the optimal policy. Structural results may lead to efficient computation in a number

of different ways. First, the structure may allow the optimal policy to be completely

specified in closed form (as in Theorem 2.4). Second, the structure may lead to a

numerical solution that is far less complex from a computational standpoint than

solving the full dynamic program (as in Theorems 5.2 and 5.4). Third, one can

accelerate standard methods such as value iteration and policy iteration by restricting

the class of policies considered to those satisfying the known structure.

In multi-item/multi-queue stochastic control problems, there is often a significant

jump in structural complexity from 1 to 2 items, and another significant jump from

2 toM items. In the absence of structural results on the optimal policy in the higher

dimensional problems, numerical approximation techniques such as those described

in Section 8.1.3 are often used to find bounds on the value functions. Such bounds

provide a benchmark against which to test suboptimal heuristics.

As seen in Section 8.1.3, one idea underlying some bounding techniques is to re-

lax the higher dimensional problem so it decouples into multiple instances of a lower

dimensional subproblem. Therefore, a third reason to search for structural results

on lower dimensional problems is to indirectly improve the quality of approximate

numerical solutions to related higher dimensional problems. Deriving new approx-

imation/bounding techniques remains an extremely active area of research, so this

may become an increasingly important reason to search for structural results.
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Appendix A

Finite Horizon Proofs for Problem (P5.1)

A.1 Proof of Theorem 5.1

Before proceeding to the proof of Theorem 5.1, we present a lemma due to Karush

[83], which is presented in [117, pp. 237–238].

Lemma A.1 (Karush, 1959). Suppose that f : IR→ IR and that f is convex on IR.

For v ≤ w, define f̃(v, w) := min
z∈[v,w]

f(z). Then it follows that:

(a) f̃ can be expressed as f̃(v, w) = F1(v)+F2(w), where F1 is convex nondecreasing

and F2 is convex nonincreasing on IR.

(b) Suppose that S is a minimizer of f over IR. Then f̃ can be expressed as:

f̃(v, w) =



























f(v), if S ≤ v

f(S), if v ≤ S ≤ w

f(w), if w ≤ S

.

Proof of Theorem 5.1: We present the proof in three parts.

Part I - Modified Base-Stock Structure: Recall the dynamic programming
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equation (5.4):

Vn(x, s) = −cs · x+ min
max(x,d)≤y≤x+ P

cs

{gn(y, s)} , n = N,N − 1, . . . , 1 ,

where gn(y, s) := cs · y+ h(y− d) + α · IE
[

Vn−1(y− d, Sn−1) | Sn = s
]

. We now show

by induction on n that the following statements are true for every n ∈ {1, 2, . . . , N}

and all s ∈ S:

(i) gn(y, s) is convex in y on [d,∞).

(ii) limy→∞ gn(y, s) =∞.

(iii) Vn(x, s) is convex in x on IR+.

Base Case: n = 1

Let s1 ∈ S be arbitrary. We have g1(y, s1) = cs1 · y+ h(y− d), which clearly satisfies

(i) and (ii). y∗1(x, s1) = max(x, d) and thus V1(x, s1) = cs1 · (d− x)+ + h
(

(x− d)+
)

,

which is convex in x. We conclude (i)-(iii) are true at time n = 1, for all s ∈ S.

Induction Step: We now assume (i)-(iii) are true for n = m − 1 and all s ∈ S, and

show they hold for n = m and an arbitrary sm ∈ S. Let sm−1 ∈ S also be arbitrary.

Vm−1(y − d, sm−1) is convex in y, so gm(y, sm) is convex in y as it is the sum of

an affine function, csm
· y, a convex function, h(y − d), and a nonnegative weighted

sum/integral of convex functions, α · IE
[

Vm−1(y− d, Sm−1) | Sm = sm

]

(see, e.g., [23,

Section 3.2] for the relevant results on convexity-preserving operations). To show (ii)

for n = m, we have lim
y→∞

gm(y, sm) ≥ lim
y→∞

csm
· y = ∞, where the inequality follows

from Vm−1(x, sm−1) ≥ 0,∀x ∈ IR+,∀sm−1 ∈ S and h(y − d) ≥ 0. Moving on to (iii),

we have:

Vm(x, sm) = −csm
· x+ min

max(x,d)≤y≤x+ P
csm

{gm(y, sm)}
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= −csm
· x+ F1(max(x, d)) + F2(x+

P

csm

),

where, by Lemma A.1, F1 is convex nondecreasing and F2 is convex nonincreasing.

F1(max(x, d)) is also convex in x, as it is the composition of a convex increasing func-

tion with a convex function, and Vm(x, sm) is therefore convex in x. This concludes

the induction step, and we conclude (i)-(iii) are true for all n ∈ {1, 2, . . . , N}.

Next, we define the critical numbers bn(s) for all n ∈ {1, 2, . . . , N} and s ∈ S:

bn(s) := min

{

ŷ ∈ [d,∞) : gn(ŷ, s) = min
y∈[d,∞)

gn(y, s)

}

.

Note that by properties (i) and (ii) from the above induction, the minimum of gn(·, s)

over [d,∞) is achieved, and the set of minimizers over [d,∞) is a non-empty closed,

convex set. Thus, bn(s) is well-defined. The form of y∗n(x, s), (5.5), then follows from

part (b) of Karush’s result, Lemma A.1, with gn(y, s) playing the role of f , max(x, d)

the role of v, x+ P
cs
the role of w, and bn(s) the role of S.

Part II - Monotonicity of Thresholds in Time: In this section, we prove

(5.7). We showed above that the optimal action with one time slot remaining is

y∗1(x, s) = max(x, d), for all s ∈ S. This is precisely the policy suggested by (5.5)

with b1(s) = d, as P
cs
is at least as great as d. Thus, we conclude the far right equality

in (5.7) holds: b1(s) = d, ∀s ∈ S.

In order to show the far left inequality in (5.7), we claim more generally that

bn(s) ≤ n · d, for all n and s. This follows from a simple interchange argument, as

all packets transmitted beyond n · d incur transmission costs and holding costs for

the duration of the horizon; however, they do not satisfy the playout requirements

in any remaining slot. Thus, a policy that transmits enough packets to fill the buffer

up to n · d at time n is strictly superior to a policy that transmits more packets.
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Next, we prove:

bn+1(s) ≥ bn(s), ∀s ∈ S, ∀n ∈ {1, 2, . . . , N − 1} . (A.1)

By Topkis’ Theorem 2.8.1 [159, pg. 76], in order to show (A.1), it suffices to show

that for all s ∈ S, n ∈ {1, 2, . . . , N − 1}, and y1, y2 ∈ [d, (n+ 1) · d], y1 > y2 implies:

gn+1

(

y1, s
)

− gn

(

y1, s
)

≤ gn+1

(

y2, s
)

− gn

(

y2, s
)

. (A.2)

We let s ∈ S be arbitrary, and proceed by induction on the time slot n.

Base Case: n = 1

For all y ∈ [d, 2d],

g2 (y, s)− g1 (y, s) = α · IE [V1 (y − d, S1) | S2 = s]

= α · IE [cS1|S2 = s] · (2d− y) ,

which is decreasing in y as IE [cS1|S2 = s] > 0.

Induction Step: We assume that (A.2) is true for all n = 1, 2, . . . ,m− 1 and s ∈ S.

We wish to show it is true for n = m. Let y1, y2 ∈ [d, (m+ 1) · d] be arbitrary, with

y1 > y2. Also, let ŝ ∈ S be arbitrary. Define:

β1 := min







argmin
max(y1−d,d)≤ŷ≤y1−d+ P

cŝ

{gm−1(ŷ, ŝ)}







and β2 := min







argmin
max(y2−d,d)≤ŷ≤y2−d+ P

cŝ

{gm(ŷ, cŝ)}







.

Note that:

max
(

y1 − d, d
)

≤ β1 ≤ β1 ∨ β2 ≤ y1 − d+
P

cŝ
, and (A.3)

max
(

y2 − d, d
)

≤ β1 ∧ β2 ≤ β2 ≤ y2 − d+
P

cŝ
. (A.4)
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Then we have:

min
max(y1−d,d)≤ŷ≤y1−d+ P

cŝ

{gm (ŷ, ŝ)} − min
max(y1−d,d)≤ŷ≤y1−d+ P

cŝ

{gm−1 (ŷ, ŝ)}

≤ gm (β1 ∨ β2, ŝ)− gm−1 (β1, ŝ) (A.5)

≤ gm (β2, ŝ)− gm−1 (β1 ∧ β2, ŝ) (A.6)

≤ min
max(y2−d,d)≤ŷ≤y2−d+ P

cŝ

{gm (ŷ, ŝ)} − min
max(y2−d,d)≤ŷ≤y2−d+ P

cŝ

{gm−1 (ŷ, ŝ)} . (A.7)

Equation (A.5) follows from (A.3) and (A.7) follows from (A.4). If β2 ≥ β1, (A.6)

holds with equality. Otherwise, it follows from the induction hypothesis. Since ŝ

was arbitrary, (A.7) holds for all ŝ ∈ S. Therefore, combined with the fact that the

Markov process {Sn}n=N,N−1,...,1 is homogeneous, (A.7) implies:

IE

[

min
max(y1−d,d)≤ŷ≤y1−d+ P

cSm

{gm (ŷ, Sm)} | Sm+1 = s

]

− IE

[

min
max(y1−d,d)≤ŷ≤y1−d+ P

cSm−1

{gm−1 (ŷ, Sm−1)} | Sm = s

]

≤ IE

[

min
max(y2−d,d)≤ŷ≤y2−d+ P

cSm

{gm (ŷ, Sm)} | Sm+1 = s

]

− IE

[

min
max(y2−d,d)≤ŷ≤y2−d+ P

cSm−1

{gm−1 (ŷ, Sm−1)} | Sm = s

]

.

(A.8)

Finally, we have:

gm+1(y
1, s)− gm(y

1, s)

= α · IE
[

Vm(y
1 − d, Sm)

∣

∣Sm+1 = s
]

− α · IE
[

Vm−1(y
1 − d, Sm−1)

∣

∣Sm = s
]

= α · IE

[

min
max(y1−d,d)≤ŷ≤y1−d+ P

cSm

{gm (ŷ, Sm)} | Sm+1 = s

]

− α · IE

[

min
max(y1−d,d)≤ŷ≤y1−d+ P

cSm−1

{gm−1 (ŷ, Sm−1)} | Sm = s

]

(A.9)

≤ α · IE

[

min
max(y2−d,d)≤ŷ≤y2−d+ P

cSm

{gm (ŷ, Sm)} | Sm+1 = s

]

− α · IE

[

min
max(y2−d,d)≤ŷ≤y2−d+ P

cSm−1

{gm−1 (ŷ, Sm−1)} | Sm = s

]

(A.10)
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= α · IE
[

Vm(y
2 − d, Sm)

∣

∣Sm+1 = s
]

− α · IE
[

Vm−1(y
2 − d, Sm−1)

∣

∣Sm = s
]

(A.11)

= gm+1(y
2, s)− gm(y

2, s) .

Here, (A.9) and (A.11) follow from the fact that

IE
[

cSm−1 | Sm = s
]

= IE [cSm
| Sm+1 = s] ,

and (A.10) follows from (A.8). This completes the induction step, and the proof of

(5.7).

Part III - Monotonicity of Thresholds in the Channel Condition: Fi-

nally, we show (5.8), the monotonicity of the thresholds in the channel condition,

when the channel condition process is IID. The far left inequality follows from the

same interchange argument described above, showing bn(s) ≤ n·d for all s and n. We

now show the far right equality of (5.8), bn(sworst) = d. To satisfy feasibility, we must

have bn(s) ≥ d for all n ∈ {1, 2, . . . , N} and s ∈ S. To see that bn(sworst) ≤ d, assume

the channel condition at time n is sworst, and consider two control policies satisfying

(5.5), with the same critical numbers bm(s), for all times m < n. At time n, the first

policy, π1, transmits according to (5.5), with critical number bn(sworst) = d+ε (ε > 0),

and the second, π2, transmits according to (5.5), with critical number bn(sworst) = d.

These two strategies result in the same control action at time n if xn ≥ d + ε, and

we have already shown it is not optimal to fill the buffer beyond n · d, so we only

need to consider the case where xn < d+ ε and ε ≤ (n− 1) · d. Let Z1
n, Z

1
n−1, . . . , Z

1
1

and Z2
n, Z

2
n−1, . . . , Z

2
1 be random variables representing the number of packets trans-

mitted at times n, n − 1, . . . , 1 by π1 and π2, respectively. If d ≤ xn ≤ d + ε, then

Z2
n = 0 and Z1

n − Z2
n = Z1

n = min
{

P
cmax

, d+ ε− xn

}

. If xn < d, then Z2
n = d − xn,

Z1
n = min

{

P
cmax

, d+ ε− xn

}

, and Z1
n − Z2

n = min
{

P
cmax

− d+ xn, ε
}

. Thus, for all

xn < d + ε, we have Z1
n − Z2

n ≥ 0. If Z1
n − Z2

n = 0, the two control policies re-
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sult in the same actions for all remaining times, and therefore result in the same

expected cost. So we only need to consider the case where λ := Z1
n − Z2

n > 0.

Because the critical numbers at times n − 1, n − 2, . . . , 1 are the same for both

policies, for any realization, ω, of the channel condition over future times, we have

Z1
m(ω) ≤ Z2

m(ω), ∀m ∈ {n−1, . . . , 1}. Moreover, because the scheduler must satisfy

the playout requirements for the last n slots, we have
∑n−1

m=1(Z
2
m(ω) − Z1

m(ω)) = λ;

i.e., over the remainder of the horizon, an extra λ packets are transmitted under the

second policy. The total discounted holding costs from time n until the end of the

horizon are therefore lower for π2 than π1, because the number of packets remaining

after transmission in each slot is never greater under policy π2. Furthermore, the

total discounted transmission costs of the extra λ packets are also lower for π2 as

they are transmitted at the maximum cost cmax under π1, and transmitted later

(and therefore discounted more heavily) under π2. Thus, the total discounted trans-

mission plus holding costs are lower for π2 under all realizations, and the expected

discounted cost of π2 is lower than π1. We conclude bn(sworst) = d.

To show cs1 ≤ cs2 implies bn(s
1) ≥ bn(s

2), we follow Kalymon’s methodology for

the proof of Theorem 1.3 in [81]. For all y ∈ [d,∞), we have:

gn

(

y, s2
)

= cs2 · y + h(y − d) + α · IE [Vn−1 (y − d, Sn−1)]

= (cs2 − cs1) · y + cs1 · y + h(y − d) + α · IE [Vn−1 (y − d, Sn−1)]

= (cs2 − cs1) · y + gn

(

y, s1
)

. (A.12)

Assume bn(s
1) < bn(s

2) for some n ∈ {1, 2, . . . , N} and s1, s2 ∈ S, with cs1 ≤ cs2 .

Substituting first y = bn(s
1) and then y = bn(s

2) into (A.12) yields:

(cs2 − cs1) · bn
(

s1
)

+ gn

(

bn
(

s1
)

, s1
)

= gn

(

bn
(

s1
)

, s2
)

≥ gn

(

bn
(

s2
)

, s2
)
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= (cs2 − cs1) · bn
(

s2
)

+gn

(

bn
(

s2
)

, s1
)

. (A.13)

Yet, cs1 ≤ cs2 and bn(s
1) < bn(s

2) imply:

(cs2 − cs1) · bn
(

s1
)

< (cs2 − cs1) · bn
(

s2
)

. (A.14)

Equations (A.13) and (A.14) imply:

gn

(

bn
(

s1
)

, s1
)

> gn

(

bn
(

s2
)

, s1
)

,

which clearly contradicts the fact that bn (s
1) is a global minimizer of gn (·, s

1). We

conclude that cs1 ≤ cs2 implies bn(s
1) ≥ bn(s

2), completing the proofs of (5.8) and

Theorem 5.1.

A.2 Proof of Theorem 5.3

While the proof is similar in spirit to the proof of a finite generalized base-stock

policy in [16, pp. 324–334], some key differences include the introduction of (i)

stochastic channel conditions (ordering costs); (ii) the underflow constraint x+z ≥ d;

and (iii) the power constraint z ≤ z̃max(s).

We show by induction on n that the following two statements are true for every

n ∈ {1, 2, . . . , N} and s ∈ S:

(i) Vn(x, s) is convex in x on IR+.

(ii) There exists a nonincreasing sequence of critical numbers
{

bn,k(s)
}

k∈{−1,0,1,...,K}
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such that the optimal control action with n slots remaining is given by:

z∗n(x, s) :=







































































z̃k−1(s), if bn,k(s)− z̃k−1(s) ≤ x < bn,k−1(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K}

bn,k(s)− x, if bn,k(s)− z̃k(s) ≤ x < bn,k(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K − 1}

bn,K(s)− x, if bn,K(s)− z̃max(s) ≤ x < bn,K(s)− z̃K−1(s)

z̃max(s), if 0 ≤ x < bn,K(s)− z̃max(s)

(A.15)

Base Case: n = 1

V1(x, s) = min
max(0,d−x)≤z≤z̃max(s)

{c(z, s) + h(x+ z − d)} (A.16)

= c
(

max {0, d− x} , s
)

+ h
(

max {0, x− d}
)

,

which is convex because c(·, s) and h(·) are both convex and nondecreasing functions,

and max {0, d− x} and max {0, x− d} are both convex functions (see, e.g., [23, Sec-

tion 3.2] for the relevant results on convexity-preserving operations). Further, let

b1,−1(s) = ∞ and b1,k(s) = d for all k ∈ {0, 1, . . . , K}. Then (A.15) is equivalent to

z∗1(x, s) = max{0, d− x}, which clearly achieves the minimum in (A.16).

Induction Step: We now assume (i)-(ii) are true for n = m − 1 and all s ∈ S, and

show they hold for n = m and an arbitrary s ∈ S. Let x̆, x̂ ∈ IR+ and θ ∈ [0, 1] be

arbitrary, and define x̄ := θ · x̆+ (1− θ) · x̂. We have:

Vm(θ · x̆+ (1− θ) · x̂, s)

= Vm(x̄, s)

= min
max(0,d−x̄)≤z≤z̃max(s)











(z, s) + h(x̄+ z − d)

+α · IE
[

Vm−1(x̄+ z − d, Sm−1) | Sm = s
]
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≤ min
max{0,d−x̆}≤z̆≤z̃max(s)
max{0,d−x̂}≤ẑ≤z̃max(s)











c(θ · z̆ + (1− θ) · ẑ, s) + h(x̄+ θ · z̆ + (1− θ) · ẑ − d)

+α · IE
[

Vm−1(x̄+ θ · z̆ + (1− θ) · ẑ − d, Sm−1) | Sm = s
]











(A.17)

≤ min
max{0,d−x̆}≤z̆≤z̃max(s)
max{0,d−x̂}≤ẑ≤z̃max(s)







































θ · c(z̆, s) + (1− θ) · c(ẑ, s)+

θ · h(x̆+ z̆ − d) + (1− θ) · h(x̂+ ẑ − d)

+α · θ · IE
[

Vm−1(x̆+ z̆ − d, Sm−1) | Sm = s
]

+α · (1− θ) · IE
[

Vm−1(x̂+ ẑ − d, Sm−1) | Sm = s
]







































(A.18)

= θ · min
max{0,d−x̆}≤z̆≤z̃max(s)











c(z̆, s) + h(x̆+ z̆ − d)

+α · IE
[

Vm−1(x̆+ z̆ − d, Sm−1) | Sm = s
]











+ (1− θ) · min
max{0,d−x̂}≤ẑ≤z̃max(s)











c(ẑ, s) + h(x̂+ ẑ − d)

+α · IE
[

Vm−1(x̂+ ẑ − d, Sm−1) | Sm = s
]











= θ · Vm(x̆, s) + (1− θ) · Vm(x̂, s) ,

where (A.18) follows from the convexity of c(·, s), h(·), and IE
[

Vm−1(·, Sm−1) | Sm =

s
]

, the last of which follows from the induction hypothesis. Equation (A.17) follows

from the fact that for every max {0, d− x̆} ≤ z̆ ≤ z̃max(s) and max {0, d− x̂} ≤ ẑ ≤

z̃max(s), there exists a max {0, d− x̄} ≤ z̄ ≤ z̃max(s) (namely, z̄ := θ · z̆ + (1− θ) · ẑ)

such that:

c(z̄, s) + h(x̄+ z̄ − d) + α · IE
[

Vm−1(x̄+ z̄ − d, Sm−1) | Sm = s
]

= c(θ · z̆ + (1− θ) · ẑ, s) + h(x̄+ θ · z̆ + (1− θ) · ẑ − d)

+ α · IE
[

Vm−1(x̄+ θ · z̆ + (1− θ) · ẑ − d, Sm−1) | Sm = s
]

.

This concludes the induction step for (i) and we now proceed to (ii).

Note first that g̃m(y, s) = h(y − d) + α · IE [Vm−1 (y − d, Sm−1)|Sm = s] is convex
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in y, as h(·) is convex, and Vm−1(x, s) is convex in x for every s ∈ S by the induction

hypothesis. Let bm,−1(s) :=∞ and

bm,k(s) := max
{

d, inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

}

, ∀k ∈ {0, 1, . . . , K} ,

where g̃′+m (b, s) represents the right derivative:

g̃′+m (b, s) := lim
y↓b

g̃m(y, s)− g̃m(b, s)

y − b
,

which is nondecreasing and continuous from the right, by the convexity of g̃m(·, s)

[122, Section 24]. Note that
{

bm,k(s)
}

k∈{−1,0,1,...,K}
is a nonincreasing sequence, be-

cause the sequence {c̃k(s)}k∈{0,1,...,K} is nondecreasing. We show the optimal control

action z∗m(x, s) is then given by (A.15), by considering the four exhaustive cases.

Case 1: bm,k(s)− z̃k−1(s) ≤ x < bm,k−1(s)− z̃k−1(s) , k ∈ {0, 1, . . . , K}

In order to show z∗m(x, s) is given by (A.15), it suffices to show:

c′+(z, s) + g̃′+m (x+ z, s) < 0 , for max{0, d− x} ≤ z < z̃k−1(s), and(A.19)

c′+(z, s) + g̃′+m (x+ z, s) ≥ 0 , for z̃k−1(s) ≤ z ≤ z̃max(s) . (A.20)

First, let z ∈
[

max{0, d− x}, z̃k−1(s)
)

be arbitrary, and let j ∈ {0, 1, . . . , k − 1} be

such that z ∈
[

z̃j−1(s), z̃j(s)
)

. If bm,k−1(s) = d, then bm,k(s) = d, as d ≤ bm,k(s) ≤

bm,k−1(s) = d. Yet, bm,k(s) = bm,k−1(s) = d implies d − z̃k−1(s) ≤ x < d − z̃k−1(s),

which is vacuous. Therefore, we need only consider bm,k−1(s) = inf
{

b
∣

∣ g̃′+m (b, s) ≥

−c̃k−1(s)
}

. By the construction of the piecewise-linear function c(·, s), z < z̃k−1(s)

implies:

c′+(z, s) ≤ c̃k−1(s) . (A.21)

We also have:

x+ z < x+ z̃k−1(s) < bm,k−1(s) = inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k−1(s)
}

,
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which implies:

g̃′+m (x+ z, s) < −c̃k−1(s) . (A.22)

Summing (A.21) and (A.22) yields (A.19).

Next, let z ∈
[

z̃k−1(s), z̃max(s)
]

be arbitrary, so that by construction of c(·, s):

c′+(z, s) ≥ c̃k(s) . (A.23)

We also have:

x+ z ≥ x+ z̃k−1(s) ≥ bm,k(s) ≥ inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

,

which, in combination with the nondecreasing nature of g̃′+m (·, s), implies:

g̃′+m (x+ z, s) ≥ g̃′+m

(

inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

, s
)

. (A.24)

Because g̃′+m (·, s) is continuous from the right,

g̃′+m

(

inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

, s
)

≥ −c̃k(s) . (A.25)

Combining (A.24) and (A.25), and summing with (A.23) yields (A.20).

Case 2: bm,k(s)− z̃k(s) ≤ x < bm,k(s)− z̃k−1(s) , k ∈ {0, 1, . . . , K − 1}

In order to show z∗m(x, s) is given by (A.15), it suffices to show:

c′+(z, s) + g̃′+m (x+ z, s) < 0 , for max{0, d− x} ≤ z < bm,k(s)− x, (A.26)

and

c′+(z, s) + g̃′+m (x+ z, s) ≥ 0 , for bm,k(s)− x ≤ z ≤ z̃max(s) . (A.27)

First, let z ∈
[

max{0, d − x}, bm,k(s) − x
)

be arbitrary. This case is vacuous if

bm,k(s) = d, so bm,k(s) = inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

. Thus, we have:

x+ z < bm,k(s) = inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

,
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which implies:

g̃′+m (x+ z, s) < −c̃k(s) . (A.28)

Furthermore, from z < bm,k(s) − x ≤ z̃k(s) and the construction of the piecewise-

linear function c(·, s),

c′+(z, s) ≤ c̃k(s) . (A.29)

Summing (A.28) and (A.29) yields (A.26).

Next, let z ∈
[

bm,k(s)−x, z̃max(s)
]

be arbitrary, so that z ≥ bm,k(s)−x > z̃k−1(s),

which by the construction of the piecewise-linear function c(·, s) implies:

c′+(z, s) ≥ c̃k(s) . (A.30)

We also have x + z ≥ bm,k(s) ≥ inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

. Therefore, because

g̃′+m (·, s) is nondecreasing and continuous from the right,

g̃′+m (x+ z, s) ≥ g̃′+m
(

inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃k(s)
}

, s
)

≥ −c̃k(s) . (A.31)

Summing (A.30) and (A.31) yields (A.27).

Case 3: bm,K(s)− z̃max(s) ≤ x < bm,K(s)− z̃K−1(s)

This case is the same as Case 2, with K in place of k, and z̃max(s) in place of z̃k(s).

Case 4: 0 ≤ x < bm,K(s)− z̃max(s)

Let z ∈
[

max{0, d − x}, z̃max(s)
)

be arbitrary. z̃max(s) ≥ d by assumption, so this

case is vacuous if bm,K = d. Thus, we have bm,K(s) = inf
{

b
∣

∣ g̃′+m (b, s) ≥ −c̃K(s)
}

,

which, in combination with x+ z < x+ z̃max < bm,K(s), implies:

g̃′+m (x+ z, s) < −c̃K(s) . (A.32)

Additionally, z < z̃max(s) implies:

c′+(z, s) ≤ c̃K(s) . (A.33)
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Summing (A.32) and (A.33) yields c′+(z, s)+g̃′+m (x+ z, s) < 0 for all z ∈
[

max{0, d−

x}, z̃max(s)
)

, which implies z∗m(x, s) = z̃max(s).

A.3 Proof of Theorem 5.4

We proceed in a manner similar to [56], incorporating the per slot peak power

constraints and the relaxing the linear ordering costs to piecewise-linear convex or-

dering costs. Before proving Theorem 5.2, we state and prove two lemmas. Let π̄

be a strategy that prescribes transmitting according to (5.18).

Lemma A.2. If π̄ is optimal for periods m− 1,m− 2, . . . , 1, then

α · IE
[

Vl−1

(

(r − 1) · d+ η, S
)

− Vl−1

(

(r − 1) · d, S
)]

≥ −η ·
(

γ̃l,r+1 + h
)

, (A.34)

for all (l, r, η) ∈ Z1 := {(l, r, η) ∈ IN × IN × [0, d] : 1 ≤ l ≤ m, 1 ≤ r ≤ l}.

Proof. We proceed by induction on l.

Base Case: l = 1

l = 1 implies r = 1, so we have:

α · IE
[

Vl−1

(

(r − 1) · d+ η, S
)

− Vl−1

(

(r − 1) · d, S
)]

= α · IE
[

V0
(

η, S
)

− V0
(

0, S
)]

= 0

≥ −η · h

= −η · (γ̃1,2 + h) ,

and we conclude (A.34) holds for l = 1.

Induction Step

Assume (A.34) is true for l = 2, 3, . . . , t and all r and η such that (l, r, η) ∈ Z1.

We show (A.34) is true for l = t + 1 by letting r and η be arbitrary such that
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(t + 1, r, η) ∈ Z1. Note that (t + 1, r, η) ∈ Z1 implies t ≤ m − 1, so π̄ is optimal at

time t, and we have:

α · IE
[

Vt

(

(r − 1)d+ η, S
)

− Vt

(

(r − 1)d, S
)]

=
∑

{

s: bt,0(s)≤(r−1)d
}

α · p(s) ·






h · η + α · IE







Vt−1

(

(r − 2)d+ η, S
)

−Vt−1

(

(r − 2)d, S
)













+
K−1
∑

k=0



















































∑

{

s:
(

r−1+L̃k−1(s)
)

d<bt,k(s)≤
(

r−1+L̃k(s)
)

d

}

− α · p(s) ·
(

η · c̃k(s)
)

+
∑











s: bt,k+1(s)

≤
(

r−1+L̃k(s)
)

d

<bt,k(s)











α · p(s) ·















h · η+

αIE







Vt−1

(

(

r − 2 + L̃k(s)
)

d+ η, S
)

−Vt−1

(

(

r − 2 + L̃k(s)
)

d, S
)







































































+
∑

{

s:
(

r−1+L̃K−1(s)
)

d<bt,K(s)≤
(

r−1+L̃max(s)
)

d

}

− α · p(s) ·
(

η · c̃K(s)
)

+
∑

{

s: bt,K(s)

>

(

r−1+L̃max(s)
)

d

}

α · p(s) ·















h · η

+α · IE







Vt−1

(

(

r − 2 + L̃max(s)
)

d+ η, S
)

−Vt−1

(

(

r − 2 + L̃max(s)
)

d, S
)





















≥
∑

{

s: bt,0(s)≤(r−1)d
}

α · p(s) ·
[

−η · γ̃t,r

]

+
K−1
∑

k=0



























∑

{

s:
(

r−1+L̃k−1(s)
)

d<bt,k(s)≤
(

r−1+L̃k(s)
)

d

}

− α · p(s) ·
(

η · c̃k(s)
)

+
∑

{

s: bt,k+1(s)≤
(

r−1+L̃k(s)
)

d<bt,k(s)

}

α · p(s) ·
[

−η · γ̃t,r+L̃k(s)

]



























+
∑

{

s:
(

r−1+L̃K−1(s)
)

d<bt,K(s)≤
(

r−1+L̃max(s)
)

d

}

− α · p(s) ·
(

η · c̃K(s)
)

+
∑

{

s: bt,K(s)>
(

r−1+L̃max(s)
)

d

}

α · p(s) ·
[

−η · γ̃t,r+L̃max(s)

]
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= −α · η ·















































































∑

s: c̃0(s)≥γ̃t,r

p(s) · γ̃t,r

+
K−1
∑

k=0























∑

s: γ̃
t,r+L̃k(s)≤c̃k(s)<γ̃

t,r+L̃k−1(s)

p(s) · c̃k(s)

+
∑

s: c̃k(s)<γ̃
t,r+L̃k(s)≤c̃k+1(s)

p(s) · γ̃t,r+L̃k(s)























+
∑

s: γ̃
t,r+L̃max(s)≤c̃K(s)<γ̃

t,r+L̃K−1(s)

p(s) · c̃K(s)

+
∑

s: c̃K(s)<γ̃
t,r+L̃max(s)

p(s) · γ̃t,r+L̃max(s)















































































= −η · (γ̃t+1,r+1 + h) ,

where the inequality follows from the induction hypothesis, and the penultimate

equality follows from the definition bn,k := j · d, if γ̃n,j+1 ≤ c̃k(s) < γ̃n,j. This

concludes the induction step, and the proof of Lemma A.2.

Lemma A.3. If π̄ is optimal for periods m− 1,m− 2, . . . , 1, then

α · IE
[

Vl−1

(

(r − 1) · d− η, S
)

− Vl−1

(

(r − 1) · d, S
)]

≥ η ·
(

γ̃l,r + h
)

, (A.35)

for all (l, r, η) ∈ Z2 := {(l, r, η) ∈ IN × IN × [0, d] : 2 ≤ l ≤ m, 2 ≤ r ≤ l}.

Proof. We proceed by induction on l.

Base Case: l = 2

l = 2 implies r = 2, so we have:

α · IE
[

Vl−1

(

(r − 1) · d− η, S
)

− Vl−1

(

(r − 1) · d, S
)]

= α · IE
[

V1
(

d− η, S
)

− V1
(

d, S
)]

= α · IE
[

c(η, S)
]

= η · (γ̃2,2 + h) ,
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where the last equality follows from γ2,2 = −h + α · IE[c̃0(S)], and the fact that

η ≤ z̃0(s) for every s ∈ S. So (A.35) holds with equality for l = 2.

Induction Step

Assume (A.35) is true for l = 2, 3, . . . , t and all r and η such that (l, r, η) ∈ Z2.

We show (A.35) is true for l = t + 1 by letting r and η be arbitrary such that

(t + 1, r, η) ∈ Z2. Note that (t + 1, r, η) ∈ Z2 implies t ≤ m − 1, so π̄ is optimal at

time t, and we have:

α · IE
[

Vt

(

(r − 1)d− η, S
)

− Vt

(

(r − 1)d, S
)]

=
∑

{

s: bt,0(s)≤(r−2)d
}

α · p(s) ·






−η · h+ α · IE







Vt−1

(

(r − 2)d− η, S
)

−Vt−1

(

(r − 2)d, S
)













+
K−1
∑

k=0



















































∑

{

s:
(

r−2+L̃k−1(s)
)

d<bt,k(s)≤
(

r−2+L̃k(s)
)

d

}

α · p(s) ·
(

η · c̃k(s)
)

+
∑











s: bt,k+1(s)

≤
(

r−2+L̃k(s)
)

d

<bt,k(s)











α · p(s) ·















−η · h+

αIE







Vt−1

(

(

r − 2 + L̃k(s)
)

d− η, S
)

−Vt−1

(

(

r − 2 + L̃k(s)
)

d, S
)







































































+
∑

{

s:
(

r−2+L̃K−1(s)
)

d<bt,K(s)≤
(

r−2+L̃max(s)
)

d

}

α · p(s) ·
(

η · c̃K(s)
)

+
∑

{

s: bt,K(s)

>

(

r−2+L̃max(s)
)

d

}

α · p(s) ·















−η · h

+α · IE







Vt−1

(

(

r − 2 + L̃max(s)
)

d− η, S
)

−Vt−1

(

(

r − 2 + L̃max(s)
)

d, S
)
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≥
∑

{

s: bt,0(s)≤(r−2)d
}

α · p(s) ·
[

η · γ̃t,r−1

]

+
K−1
∑

k=0



























∑

{

s:
(

r−2+L̃k−1(s)
)

d<bt,k(s)≤
(

r−2+L̃k(s)
)

d

}

α · p(s) ·
(

η · c̃k(s)
)

+
∑

{

s: bt,k+1(s)≤
(

r−2+L̃k(s)
)

d<bt,k(s)

}

α · p(s) ·
[

η · γ̃t,r−1+L̃k(s)

]



























+
∑

{

s:
(

r−2+L̃K−1(s)
)

d<bt,K(s)≤
(

r−2+L̃max(s)
)

d

}

α · p(s) ·
(

η · c̃K(s)
)

+
∑

{

s: bt,K(s)>
(

r−2+L̃max(s)
)

d

}

α · p(s) ·
[

η · γ̃t,r−1+L̃max(s)

]

= α · η ·















































































∑

s: c̃0(s)≥γ̃t,r−1

p(s) · γ̃t,r−1

+
K−1
∑

k=0























∑

s: γ̃
t,r−1+L̃k(s)≤c̃k(s)<γ̃

t,r−1+L̃k−1(s)

p(s) · c̃k(s)

+
∑

s: c̃k(s)<γ̃
t,r−1+L̃k(s)≤c̃k+1(s)

p(s) · γ̃t,r−1+L̃k(s)























+
∑

s: γ̃
t,r−1+L̃max(s)≤c̃K(s)<γ̃

t,r−1+L̃K−1(s)

p(s) · c̃K(s)

+
∑

s: c̃K(s)<γ̃
t,r−1+L̃max(s)

p(s) · γ̃t,r−1+L̃max(s)















































































= η · (γ̃t+1,r + h) ,

where the inequality follows from the induction hypothesis, and the penultimate

equality again follows from the definition of bn,k(s). This concludes the induction

step, and the proof of Lemma A.3.

We now return to the proof of Theorem 5.2. We first show by induction that

V π̄
n (x, s) = Vn(x, s),∀n ∈ {1, 2, . . . , N}, ∀s ∈ S, and ∀x ∈ {0, d, 2d, 3d, . . .}.
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Base Case: n = 1

With one slot remaining, we have:

V1(x, s) = min
{

max(0,d−x)≤z1≤z̃max(s)
}

{c(z1, s) + h(x+ z1 − d)}

= c
(

max{0, d− x}, s
)

+ h
(

max{0, (x− d)}
)

,

where the minimum is achieved by z1 = max{0, d − x}. γ̃1,1 = ∞ and γ̃1,2 = 0, so

b1,k(s) = d for all s ∈ S and k ∈ {0, 1, . . . , K}. Thus, according to (5.18), z̄1(x, s) is

also equal to max{0, d− x}, the optimal amount.

Induction Step

Assume that for n = {1, 2, . . . ,m− 1},

V π̄
n (x, s) = Vn(x, s), ∀x ∈ {0, d, 2d, 3d, . . .} , ∀s ∈ S.

We show this is also true for n = m by considering first any strategy that transmits

more than π̄ at time m, and then any strategy that transmits less than π̄ at time

m. Let s ∈ S be arbitrary. with γ̃m,jk+1 ≤ c̃k(s) < γ̃m,jk
so that π̄ prescribes

bm,k(s) = jk · d for k ∈ {0, 1, . . . , K}. Let πq be a strategy that at time m transmits

enough to satisfy the demands of slotsm,m−1,m−2, . . . , q+1, and q, and transmits

optimally at times m− 1,m− 2, . . . , 1.

Part I: Do not transmit more than suggested by π̄ at time m

Let π′(ε) be a feasible strategy with z′m = z̄m + ε, where ε > 0, and the optimal

transmission policy at times m − 1,m − 2, . . . , 1. We consider four cases for the

current buffer level x.

Case (a): jk · d− z̃k−1(s) < x ≤ jk−1 · d− z̃k−1(s), k ∈ {0, 1, . . . , K}

In this case, z̄m = z̃k−1(s). Let p be the integer such that x + z̃k−1(s) = p · d. Let
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q, η be such that z′m = z̃k−1(s) + ε = q · d + η − x and 0 ≤ η < d
(

i.e., q =
⌊

z′m+x

d

⌋

and η = z′m + x− q · d
)

. Thus, we have q ≥ p ≥ jk.

Then we have:

V π′(ε)
m (x, s)− V πq

m (x, s) = c
(

z′m, s
)

− c
(

z′m − η, s
)

+η · h

+α · IE
[

Vm−1

(

(q − 1) · d+ η, S
)

− Vm−1

(

(q − 1) · d, S
)

]

≥ c
(

z′m, s
)

− c
(

z′m − η, s
)

−η · γ̃m,q+1 (A.36)

≥ c
(

z′m, s
)

− c
(

z′m − η, s
)

−η · γ̃m,jk+1 (A.37)

≥ η ·
(

c̃k(s)− γ̃m,jk+1

)

(A.38)

≥ 0. (A.39)

Equation (A.36) follows from Lemma A.2, with l = m, r = q, and η = η. Equation

(A.37) follows from q + 1 ≥ jk + 1, which implies γ̃m,q+1 ≤ γ̃m,jk+1. Equation (A.38)

follows from z′m − η ≥ z̃k−1(s) and the construction of c(·, s). Finally, (A.39) follows

from c̃k(s) ≥ γ̃m,jk+1, by construction of jk, and we conclude:

V π′(ε)
m (x, s) ≥ V πq

m (x, s) . (A.40)

Now let t ∈ {q + 1, q + 2, . . . ,m− p,m− p+ 1} be arbitrary. We have:

V πt−1

m (x, s)− V πt

m (x, s) = c
(

(m− t+ 2) · d− x, s
)

−c
(

(m− t+ 1) · d− x, s
)

+ d · h

+α · IE







Vm−1

(

(m− t+ 1) · d, S
)

−Vm−1

(

(m− t) · d, S
)
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≥ c
(

(m− t+ 2) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

−d · γ̃m,m−t+2 (A.41)

≥ c
(

(m− t+ 2) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

−d · γ̃m,jk+1 (A.42)

≥ d ·
(

c̃k(s)− γ̃m,jk+1

)

(A.43)

≥ 0. (A.44)

Equation (A.41) follows from Lemma A.2, with l = m, r = m−t+1 ≤ m−q ≤ m = l,

and η = d. Equation (A.42) follows from:

t ≤ m− p+ 1 ⇔ p+ 1 ≤ m− t+ 2 ⇒ jk + 1 ≤ m− t+ 2

⇒ γ̃m,jk+1 ≥ γ̃m,m−t+2.

Equation (A.43) follows from the construction of c(·, s) and the fact that:

(m− t+ 1) · d− x ≥
[

m− (m− p+ 1) + 1
]

· d− x = p · d− x = z̃k−1(s) .

Finally, (A.44) follows once again from c̃k(s) ≥ γ̃m,jk+1, by construction of jk. Rear-

ranging (A.44) yields:

V πt−1

m (x, s) ≥ V πt

m (x, s), ∀t ∈ {q + 1, q + 2, . . . ,m− p,m− p+ 1} . (A.45)

Noting that V π̄
m (x, s) = V πm−p+1

m (x, s), (A.40) and repeated application of (A.45)

imply:

V π̄
m (x, s)

= V πm−p+1

m (x, s) ≤ V πm−p

m (x, s) ≤ . . . ≤ V πq+1

m (x, s) ≤ V πq

m (x, s)

≤ V π′(ε)
m (x, s) ,

and we conclude π̄ is at least as good as π′(ε).
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Case (b): jk · d− z̃k(s) < x ≤ jk · d− z̃k−1(s), k ∈ {0, 1, . . . , K − 1}

Let q, η be such that z′m = (m−q+1)·d+η−x and 0 ≤ η < d
(

i.e., q = m+1−
⌊

z′m+x

d

⌋

and η = z′m− (m− q+1) · d− x
)

. Note that m− q+1 ≥ jk by the assumption that

z′m ≥ z̄m = jk · d− x. Additionally, because x ≤ jk · d− z̃k−1(s) and m− q + 1 ≥ jk,

we have:

(m− q + 1) · d− x ≥ (m− q + 1− jk) · d+ z̃k−1(s) ≥ z̃k−1(s) ,

which implies:

c
(

(m− q + 1) · d+ η − x, s
)

− c
(

(m− q + 1) · d− x, s
)

≥ η · c̃k(s) . (A.46)

Then we have:

V π′(ε)
m (x, s)− V πq

m (x, s) = c
(

(m− q + 1) · d+ η − x, s
)

−c
(

(m− q + 1) · d− x, s
)

+ η · h

+α · IE







Vm−1

(

(m− q) · d+ η, S
)

−Vm−1

(

(m− q) · d, S
)







≥ c
(

(m− q + 1) · d+ η − x, s
)

−c
(

(m− q + 1) · d− x, s
)

− η · γ̃m,m−q+2 (A.47)

≥ c
(

(m− q + 1) · d+ η − x, s
)

−c
(

(m− q + 1) · d− x, s
)

− η · γ̃m,jk+1 (A.48)

≥ η ·
(

c̃k(s)− γ̃m,jk+1

)

(A.49)

≥ 0. (A.50)

Equation (A.47) follows from Lemma A.2, with l = m, r = m−q ≤ m−1, and η = η.

Equation (A.48) follows from m− q + 2 ≥ jk + 1, which implies γ̃m,m−q+2 ≤ γ̃m,jk+1.

Equation (A.49) follows from (A.46). Finally, (A.50) follows from c̃k(s) ≥ γ̃m,jk+1,
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by construction of jk, and we conclude:

V π′(ε)
m (x, s) ≥ V πq

m (x, s) . (A.51)

Now let t ∈ {q + 1, q + 2, . . . ,m− jk,m− jk + 1} be arbitrary. We have:

V πt−1

m (x, s)− V πt

m (x, s) = c
(

(m− t+ 2) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

+d · h

+α · IE







Vm−1

(

(m− t+ 1) · d, S
)

−Vm−1

(

(m− t) · d, S
)







≥ c
(

(m− t+ 2) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

−d · γ̃m,m−t+2 (A.52)

≥ c
(

(m− t+ 2) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

−d · γ̃m,jk+1 (A.53)

≥ d ·
(

c̃k(s)− γ̃m,jk+1

)

(A.54)

≥ 0. (A.55)

Equation (A.52) follows from Lemma A.2, with l = m, r = m−t+1 ≤ m−q ≤ m = l,

and η = d. Equation (A.53) follows from:

t ≤ m− jk + 1 ⇔ jk + 1 ≤ m− t+ 2 ⇒ γ̃m,jk+1 ≥ γ̃m,m−t+2 .

Similarly to (A.46), equation (A.54) follows from the fact that:

(m− t+ 1) · d− x ≥
[

m− (m− jk + 1) + 1
]

· d− x = jk · d− x ≥ z̃k−1(s) .

Finally, (A.55) follows once again from c̃k(s) ≥ γ̃m,jk+1, by construction of jk. Rear-

ranging (A.55) yields:

V πt−1

m (x, s) ≥ V πt

m (x, s), ∀t ∈ {q + 1, q + 2, . . . ,m− jk,m− jk + 1} . (A.56)
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Noting that V π̄
m (x, s) = V πm−jk+1

m (x, s), (A.51) and repeated application of (A.56)

imply:

V π̄
m (x, s) = V πm−jk+1

m (x, s)

≤ V πm−jk

m (x, s) ≤ . . . ≤ V πq+1

m (x, s) ≤ V πq

m (x, s) ≤ V π′(ε)
m (x, s) ,

and we conclude π̄ is at least as good as π′(ε).

Case (c): jK · d− z̃max(s) < x ≤ jK · d− z̃K−1(s)

Same as Case (b) with K replacing k.

Case (d): 0 ≤ x ≤ jK · d− z̃max(s)

z̄m(x, s) = z̃max(s), the upper bound of the action space, so it is not feasible to

transmit more.

Part II: Do not transmit less than suggested by π̄ at time m

Let π′′(ε) be a feasible strategy with z′′m = z̄m − ε, where ε > 0, and the optimal

transmission policy at times m − 1,m − 2, . . . , 1. To satisfy feasibility, we require

z̄m− ε ≥ max(0, d− x). Define η := ε−
⌊

ε
d

⌋

· d, and note that η ∈ [0, d). Let πl
θ be a

strategy that at time m satisfies the demands of periods m,m− 1, . . . , l, except for

θ units of the demand of period l, where 0 ≤ θ ≤ d, and behaves optimally in slots

m− 1,m− 2, . . . , 1. We consider four exhaustive cases for the current buffer level x.

Case (a): x > j0 · d

z̄m(x, s) = 0, the lower bound of the action space, so it is not feasible to transmit

less.

Case (b): jk · d − z̃k(s) < x ≤ jk · d − z̃k−1(s), k ∈ {0, 1, . . . , K}, where we define

z̃K(s) := z̃max(s)

Define q := m− jk + 1 +
⌊

ε
d

⌋

. By the feasibility of π′′(ε) and ε > 0, we have
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q ∈ {m− jk + 1,m− jk + 2, . . . ,m− 2,m− 1}. Furthermore, we have:

[m− q + 1] · d− x =
[

m−
(

m− jk + 1 +
⌊ ε

d

⌋)

+ 1
]

· d− x ≤ jk · d− x ≤ z̃k(s) ,

which, by the construction of c(·, s), implies:

c
(

(m− q + 1) · d− η − x, s
)

− c
(

(m− q + 1) · d− x, s
)

≥ −η · c̃k(s) . (A.57)

We now compare πq
η and π

q
0:

V π
q
η

m (x, s)− V π
q
0

m (x, s) = c
(

(m− q + 1) · d− η − x, s
)

− c
(

(m− q + 1) · d− x, s
)

−h · η

+α · IE
[

Vm−1

(

(m− q) · d− η, S
)

− Vm−1

(

(m− q) · d, S
)

]

≥ c
(

(m− q + 1) · d− η − x, s
)

− c
(

(m− q + 1) · d− x, s
)

+η · γ̃m,m−q+1 (A.58)

≥ c
(

(m− q + 1) · d− η − x, s
)

− c
(

(m− q + 1) · d− x, s
)

+η · γ̃m,jk
(A.59)

≥ η ·
[

γ̃m,jk
− c̃k(s)

]

(A.60)

≥ 0. (A.61)

Equation (A.58) follows from Lemma A.3 with r = m − q + 1 ≤ m = l and η = η.

Equation (A.59) follows from:

q ≥ m− jk + 1 ⇔ m− q + 1 ≤ jk ⇒ γ̃m,jk
≤ γ̃m,m−q+1 .

Equation (A.60) follows from (A.57). Finally, (A.61) follows from c̃k(s) < γ̃m,jk
.

Rearranging (A.61) yields:

V π
q
0

m (x, s) ≤ V π
q
η

m (x, s) . (A.62)
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Next, let t ∈ {m− jk + 1,m− jk + 2, . . . ,m− 1} be arbitrary. We have:

V πt+1
0

m (x, s)− V πt
0

m (x, s) = c
(

(m− t) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

−h · d

+α · IE







Vm−1

(

(m− t− 1) · d, S
)

−Vm−1

(

(m− t) · d, S
)







≥ c
(

(m− t) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

+d · γ̃m,m−t+1 (A.63)

≥ c
(

(m− t) · d− x, s
)

− c
(

(m− t+ 1) · d− x, s
)

+d · γ̃m,jk
(A.64)

≥ d ·
[

γ̃m,jk
− c̃k(s)

]

(A.65)

≥ 0. (A.66)

Equation (A.63) follows from Lemma A.3 with r = m − t ≤ m = l and η = d.

Equation (A.64) follows from:

t ≥ m− jk + 1 ⇔ m− t+ 1 ≤ jk ⇒ γ̃m,jk
≤ γ̃m−t+1 .

Equation (A.65) follows from construction of c(·, s) and the fact that:

(m− t+ 1) · d− x ≤
(

m− (m− jk + 1) + 1
)

· d− x = jk · d− x ≤ z̃k(s) .

Finally, (A.66) follows from c̃k(s) < γ̃m,jk
. Rearranging (A.66) yields:

V πt
0

m (x, s) ≤ V πt+1
0

m (x, s) ∀t ∈ {m− jk + 1,m− jk + 2, . . . ,m− 1} . (A.67)

Noting that π̄ = π
m−jk+1
0 , (A.62) and repeated application of (A.67) imply:
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V π̄
m (x, s) = V π

m−jk+1
0

m (x, s)

≤ V π
m−jk+2
0

m (x, s) ≤ . . . ≤ V π
q
0

m (x, s) ≤ V π
q
η

m (x, s)

= V π′′(ε)
m (x, s), (A.68)

and we conclude π̄ is at least as good as π′′(ε).

Case (c): jk · d− z̃k−1(s) < x ≤ jk−1 · d− z̃k−1(s), k ∈ {1, . . . , K}

In this case, π̄ = π
m+1−

x+z̃k−1(s)
d

0 . Define p := m+ 1−
x+z̃k−1(s)

d
, and q := p+

⌊

ε
d

⌋

.

Again, we start by comparing πq
η and π

q
0:

V π
q
η

m (x, s)− V π
q
0

m (x, s) = c
(

z′′m − η, s
)

− c
(

z′′m, s
)

−h · η

+α · IE







Vm−1

(

(m− q) · d− η, S
)

−Vm−1

(

(m− q) · d, S
)







≥ c
(

z′′m − η, s
)

− c
(

z′′m, s
)

+η · γ̃m,m−q+1 (A.69)

≥ c
(

z′′m − η, s
)

− c
(

z′′m, s
)

+η · γ̃m,jk−1
(A.70)

≥ η ·
[

γ̃m,jk−1
− c̃k−1(s)

]

(A.71)

≥ 0. (A.72)

Equation (A.69) follows from Lemma A.3 with r = m − q + 1 ≤ m = l and η = η.

Equation (A.70) follows from:

m− q + 1 = m−
(

p+
⌊ ε

d

⌋)

+ 1 =
x+ z̃k−1(s)

d
−

⌊ ε

d

⌋

≤
x+ z̃k−1(s)

d
≤ jk−1 ,

which implies γ̃m,jk−1
≤ γ̃m,m−q+1. Equation (A.71) follows from z′′m < z̃k−1(s) and the

construction of c(·, s). Finally, (A.72) follows from c̃k−1(s) < γ̃m,jk−1
. Rearranging
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(A.72) yields:

V π
q
0

m (x, s) ≤ V π
q
η

m (x, s) . (A.73)

Next, let t̂ ∈ {p, p+ 1, . . . , q − 1} be arbitrary. We have:

V πt̂+1
0

m (x, s)− V πt̂
0

m (x, s) = c
(

(m− t̂) · d− x, s
)

− c
(

(m− t̂+ 1) · d− x, s
)

−h · d

+α · IE







Vm−1

(

(m− t̂− 1) · d, S
)

−Vm−1

(

(m− t̂) · d, S
)







≥ c
(

(m− t̂) · d− x, s
)

− c
(

(m− t̂+ 1) · d− x, s
)

+d · γ̃m,m−t̂+1 (A.74)

≥ c
(

(m− t̂) · d− x, s
)

− c
(

(m− t̂+ 1) · d− x, s
)

+d · γ̃m,jk−1
(A.75)

≥ d ·
[

γ̃m,jk−1
− c̃k−1(s)

]

(A.76)

≥ 0. (A.77)

Equation (A.74) follows from Lemma A.3 with r = m − t̂ ≤ m = l and η = d.

Equation (A.75) follows from:

t̂ ≥ p ⇒ m− t̂+ 1 ≤ m− p+ 1 =
x+ z̃k−1(s)

d
≤ jk−1 ⇒ γ̃m,jk−1

≤ γ̃m−t̂+1 .

Equation (A.76) follows from construction of c(·, s) and the fact that:

(m− t̂+ 1) · d− x ≤ (m− p+ 1) · d− x = z̃k−1(s) .

Finally, (A.77) follows from c̃k−1(s) < γ̃m,jk−1
. Rearranging (A.77) yields:

V πt̂
0

m (x, s) ≤ V πt̂+1
0

m (x, s) ∀t̂ ∈ {p, p+ 1, . . . , q − 1} . (A.78)
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Then (A.73) and repeated application of (A.78) yield:

V π̄
m (x, s) = V π

p
0

m (x, s)

≤ V π
p+1
0

m (x, s) ≤ . . . ≤ V π
q−1
0

m (x, s) ≤ V π
q
0

m (x, s) ≤ V π
q
η

m (x, s)

= V π′′(ε)
m (x, s) ,

and we conclude π̄ is at least as good as π′′(ε).

Case (d): 0 ≤ x ≤ jK · d− z̃max

The same argument as Case (c) applies with k replaced byK+1 and z̃K(s) = z̃max(s).

This completes Part II.

From Parts I and II, we conclude π̄ is optimal if the starting queue level is an

integer multiple of the demand d. By assumption, the starting queue level x at

time N is zero. Thus, π̄ is optimal at time N . z∗N(x, s) = z̄N(x, s) will also be an

integer multiple of demand as bN,k(s), and {z̃k(s)}k=0,1,...,K are all integer multiples

of d. It follows that the queue level at the end of slot N (equal to the queue level

at the beginning of slot N − 1), z∗N(x, s) − d, will also be an integer multiple of d.

Continuing this logic, if the strategy π̄ is used, the queue level at the beginning of

each subsequent time slot will be an integer multiple of demand. Thus, π̄ is optimal.

A.4 Proof of Theorem 5.8

We prove statements (i)-(v) by joint induction on the time remaining, n.

Base Case: n = 1

V0(x, s0) = 0, for all s0, so (i) and (ii) hold trivially. Let s1 ∈ S be arbitrary.

G1(y1, s1) = cT
s1
y1 + h(y1 − d), which is convex and supermodular. Thus, (iii) and
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(iv) are true. Additionally,

G1(y1, s1) =
2

∑

m=1

{cms · y
m
1 + hm (ym

1 − dm)} ,

so inf

{

argmin
y2
1∈[d

2,∞)

{

G1 (y
1
1, y

2
1, s

1
1, s

2
1)

}

}

is independent of y11, and vice versa. Thus, (v)

is true for n = 1, completing the base case.

Induction Step

Assume statements (i)-(v) are true for n = 2, 3, . . . , l− 1. We want to show they are

true for n = l. We let s ∈ S be arbitrary, and proceed in order.

(i) Consider two arbitrary points, x̄, x̃ ∈ IR2
+. Let λ ∈ [0, 1] be arbitrary, and define

x̂ := λx̄+ (1− λ)x̃. Let y∗(x̄, s), y∗(x̃, s), and y∗(x̂, s) be optimal buffer levels

after transmission in slot l − 1, for each of the respective starting points. We

have:

λ · Vl−1(x̄, s) + (1− λ) · Vl−1(x̃, s) = −cT

sx̂+ λ ·Gl−1

(

y∗(x̄, s), s
)

+ (1− λ) ·Gl−1

(

y∗(x̃, s), s
)

≥ −cT

sx̂

+Gl−1

(

λy∗(x̄, s) + (1− λ)y∗(x̃, s), s
)

≥ −cT

sx̂+ min
y∈Ãd(x̂,s)

{Gl−1(y, s)}

= Vl−1(x̂, s)

= Vl−1(λx̄+ (1− λ)x̃, s) , (A.79)

where the first inequality follows from the convexity of Gl−1(·, s) from the in-

duction hypothesis. The second inequality follows from the following argument.

y∗(x̄, s) ∈ Ãd(x̄, s) implies:

y∗(x̄, s) � d ∨ x̄ and cT

s [y
∗(x̄, s)− x̄] ≤ P . (A.80)
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Similarly, y∗(x̃, s) ∈ Ãd(x̃, s) implies:

y∗(x̃, s) � d ∨ x̃ and cT

s [y
∗(x̃, s)− x̃] ≤ P . (A.81)

Multiplying the equations in (A.80) by λ and the equations in (A.81) by 1− λ,

and summing, we have:

λy∗(x̄, s) + (1− λ)y∗(x̃, s) � λ(d ∨ x̄) + (1− λ)(d ∨ x̃) � d ∨ x̂, (A.82)

and

cT

s [λy
∗(x̄, s) + (1− λ)y∗(x̃, s)− x̂]

= λcT

s [y
∗(x̄, s)− x̄] + (1− λ)cT

s [y
∗(x̃, s)− x̃] ≤ P . (A.83)

From (A.82) and (A.83), we conclude λy∗(x̄, s) + (1 − λ)y∗(x̃, s) ∈ Ãd(x̂, s),

as shown in Figure A.1. Thus, the value of Gl−1(·, s) at this point is greater

than or equal to the minimum of Gl(·, s) over the region Ã
d(x̂, s). From (A.79),

we conclude Vl−1(·, s) is convex. This is a similar argument to the one used by

Evans to show convexity in [45].
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Figure A.1. Diagram showing λy∗(x̄, s) + (1 − λ)y∗(x̃, s) ∈ Ãd(x̂, s) in the proof of the convexity
of Vl−1(·, s).
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(ii) Recall that Vl−1(x, s) = −cT
sx+miny∈Ãd(x,s) {Gl−1(y, s)}. The first term, −cT

sx,

is clearly supermodular in x, so it suffices to show that the second term,

miny∈Ãd(x,s) {Gl−1(y, s)}, is also supermodular in x. Let x̄, x̃ ∈ IR2 be arbi-

trary. We want to show:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)}

≤ min
y∈Ãd(x̄∧x̃,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} . (A.84)

If x̄ and x̃ are comparable (i.e., x̃1 ≥ x̄1 and x̃2 ≥ x̄2 or x̃1 ≤ x̄1 and x̃2 ≤ x̄2),

then (A.84) is trivial. So we assume they are not comparable, and also assume

without loss of generality that x̄1 < x̃1 and x̃2 < x̄2. We begin with a quick

lemma.

Lemma A.4. There exist optimal buffer levels after transmission in slot l− 1,

y∗(x̄∧ x̃, s) and y∗(x̄∨ x̃, s), such that y∗(x̄∧ x̃, s) � y∗(x̄∨ x̃, s); i.e., such that

y∗
1
(x̄ ∧ x̃, s) ≤ y∗

1
(x̄ ∨ x̃, s) or y∗

2
(x̄ ∧ x̃, s) ≤ y∗

2
(x̄ ∨ x̃, s).

Proof. Fix a choice of y∗(x̄ ∨ x̃, s) such that

Gl−1

(

y∗ (x̄ ∨ x̃, s) , s
)

= min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} .

Assume that for all optimal choices of y∗(x̄ ∧ x̃, s), we have y∗(x̄ ∧ x̃, s) �

y∗(x̄ ∨ x̃, s). Fix one such choice of y∗(x̄ ∧ x̃, s), and we have:

y∗(x̄ ∧ x̃, s) � y∗(x̄ ∨ x̃, s) � d ∨ (x̄ ∨ x̃) . (A.85)

Further, y∗(x̄ ∧ x̃, s) ∈ Ãd(x̄ ∧ x̃, s) implies cT
s [y

∗(x̄ ∧ x̃, s)− x̄ ∧ x̃] ≤ P , and

thus:

cT

s [y
∗(x̄ ∧ x̃, s)− x̄ ∨ x̃] ≤ cT

s [y
∗(x̄ ∧ x̃, s)− x̄ ∧ x̃] ≤ P . (A.86)

188



Equations (A.85) and (A.86) imply y∗(x̄ ∧ x̃, s) ∈ Ãd(x̄ ∨ x̃, s), and thus:

Gl−1

(

y∗ (x̄ ∨ x̃, s) , s
)

= min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} ≤ Gl−1

(

y∗ (x̄ ∧ x̃, s) , s
)

. (A.87)

However, we also have:

y∗(x̄ ∨ x̃, s) � d ∨ (x̄ ∨ x̃) � d ∨ (x̄ ∧ x̃) , (A.88)

and

cT

s [y
∗(x̄ ∨ x̃, s)− x̄ ∧ x̃] ≤ cT

s [y
∗(x̄ ∧ x̃, s)− x̄ ∧ x̃] ≤ P . (A.89)

Equations (A.88) and (A.89) imply y∗(x̄ ∨ x̃, s) ∈ Ãd(x̄ ∧ x̃, s), which, in com-

bination with (A.87), implies it is optimal to move from x̄ ∧ x̃ to y∗(x̄ ∨ x̃, s),

contradicting the assumption that y∗(x̄ ∧ x̃, s) � y∗(x̄ ∨ x̃, s) for all possible

choices of y∗(x̄ ∧ x̃, s).

Now let y∗(x̄ ∧ x̃, s) and y∗(x̄ ∨ x̃, s) be arbitrary optimal actions such that

y∗(x̄ ∧ x̃, s) � y∗(x̄ ∨ x̃, s). We show (A.84) by considering two exhaustive

cases.

Case 1: y∗(x̄ ∨ x̃, s) � y∗(x̄ ∧ x̃, s)

We start with another lemma.

Lemma A.5. Let f : [d1,∞) × [d2,∞) → IR be convex and supermodular, let

σ, β ∈ [0, 1] be arbitrary, and let z = (z1, z2) � (ẑ1, ẑ2) = ẑ. Define

zλ1,λ2 :=
(

λ1ẑ1 + (1− λ1)z1, λ2ẑ2 + (1− λ2)z2

)

.

Then

f(z) + f(ẑ) ≥ f(zσ,β) + f(z1−σ,1−β) . (A.90)
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Proof.

Step 1: Assume σ, β ≤ 1
2
. Assume without loss of generality that σ ≤ β. By

the convexity of f(·), we have:

f(z) + f(ẑ) ≥ f(zσ,σ) + f(z1−σ,1−σ) , (A.91)

and

f(z1−σ,1−σ) + f(z1−σ,σ) ≥ f(z1−σ,β) + f(z1−σ,1−β) . (A.92)

By the supermodularity of f(·), we have:

f(z1−σ,β) + f(zσ,σ) ≥ f(zσ,β) + f(z1−σ,σ) . (A.93)

Figure A.2 shows these relationships. Combining (A.91)-(A.93), we have:

f(z) + f(ẑ) ≥ f(zσ,σ) + f(z1−σ,1−σ)

≥ f(zσ,σ) + f(z1−σ,β)− f(z1−σ,σ) + f(z1−σ,1−β)

≥ f(zσ,β) + f(z1−σ,1−β) .

Step 2: Now let σ, β ∈ [0, 1], and define σ̂ := min {σ, 1− σ} and

β̂ := min {β, 1− β}. Then σ̂, β̂ ≤ 1
2
, so by Step 1, we have:

f(z) + f(ẑ) ≥ f(zσ̂,β̂) + f(z1−σ̂,1−β̂) . (A.94)

Note that zσ,β ∧ z1−σ,1−β = zσ̂,β̂, and zσ,β ∨ z1−σ,1−β = z1−σ̂,1−β̂, so by the

supermodularity of f(·), we have:

f(zσ̂,β̂) + f(z1−σ̂,1−β̂) ≥ f(zσ,β) + f(z1−σ,1−β) . (A.95)

Combining (A.94) and (A.95) yields the desire result, (A.90).
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Figure A.2. Diagram of the points referred to in Step 1 of the proof of Lemma A.5.

Next, define the following points, shown in Figure A.3:

ȳ :=







x̄1 +max
{

y∗
1
(x̄ ∧ x̃, s)− x̄1, y∗

1
(x̄ ∨ x̃, s)− x̃1

}

,

x̄2 +min
{

y∗
2
(x̄ ∧ x̃, s)− x̃2, y∗

2
(x̄ ∨ x̃, s)− x̄2

}






, and

ỹ :=







x̃1 +min
{

y∗
1
(x̄ ∧ x̃, s)− x̄1, y∗

1
(x̄ ∨ x̃, s)− x̃1

}

,

x̃2 +max
{

y∗
2
(x̄ ∧ x̃, s)− x̃2, y∗

2
(x̄ ∨ x̃, s)− x̄2

}






.

Note that ȳ � d ∨ x̄ and ỹ � d ∨ x̃. Furthermore, we have:

cT

s (ȳ− x̄) = cT

s







max
{

y∗
1
(x̄ ∧ x̃, s)− x̄1, y∗

1
(x̄ ∨ x̃, s)− x̃1

}

,

min
{

y∗
2
(x̄ ∧ x̃, s)− x̃2, y∗

2
(x̄ ∨ x̃, s)− x̄2

}







≤ max











cT
s

(

y∗
1
(x̄ ∧ x̃, s)− x̄1, y∗

2
(x̄ ∧ x̃, s)− x̃2

)

,

cT
s

(

y∗
1
(x̄ ∨ x̃, s)− x̃1, y∗

2
(x̄ ∨ x̃, s)− x̄2

)











= max
{

cT

s

(

y∗ (x̄ ∧ x̃, s)− (x̄ ∧ x̃)
)

, cT

s

(

y∗ (x̄ ∨ x̃, s)− (x̄ ∨ x̃)
)}

≤ P.

By a similar argument, cT
s (ỹ− x̃) ≤ P , and thus ȳ ∈ Ãd (x̄, s), and ỹ ∈
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Ãd (x̃, s). So we have:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)}

≤ Gl−1(ȳ, s) +Gl−1(ỹ, s). (A.96)

0
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Figure A.3. Construction of feasible points ȳ and ỹ in Case 1 of the proof of supermodularity of
Vl−1(·, s).

Now define1:

σ := y∗
1
(x̄∨x̃,s)−ỹ1

y∗
1
(x̄∨x̃,s)−y∗

1
(x̄∧x̃,s)

, and

β := y∗
2
(x̄∨x̃,s)−ỹ2

y∗
2
(x̄∨x̃,s)−y∗

2
(x̄∧x̃,s)

.

Rearranging the definitions of σ and β yields:

ỹ =







(1− σ) · y∗
1
(x̄ ∨ x̃, s) + σ · y∗

1
(x̄ ∧ x̃, s),

(1− β) · y∗
2
(x̄ ∨ x̃, s) + β · y∗

2
(x̄ ∧ x̃, s)






.

It is also straightforward to check that:

ȳ =







σ · y∗
1
(x̄ ∨ x̃, s) + (1− σ) · y∗

1
(x̄ ∧ x̃, s),

β · y∗
2
(x̄ ∨ x̃, s) + (1− β) · y∗

2
(x̄ ∧ x̃, s)






.

1If y∗
1

(x̄ ∨ x̃, s)− y∗
1

(x̄ ∧ x̃, s) = 0, let σ be arbitrary in [0, 1]. Similarly, if y∗
2

(x̄ ∨ x̃, s)− y∗
2

(x̄ ∧ x̃, s) = 0, let
β be arbitrary in [0, 1].
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Note also that

y∗
1

(x̄ ∧ x̃, s) = min
{

y∗
1

(x̄ ∧ x̃, s), y∗
1

(x̄ ∧ x̃, s) + (x̃1 − x̃2)
}

≤ min
{

y∗
1

(x̄ ∨ x̃, s), y∗
1

(x̄ ∧ x̃, s) + (x̃1 − x̃2)
}

= ỹ1

≤ y∗
1

(x̄ ∨ x̃, s) ,

and thus, σ ∈ [0, 1]. Similarly, y∗
2
(x̄ ∧ x̃, s) ≤ ỹ2 ≤ y∗

2
(x̄ ∨ x̃, s), and thus,

β ∈ [0, 1].

Since Gl−1(·, s) is convex and supermodular, we can now apply Lemma A.5,

with y∗(x̄ ∧ x̃, s) playing the role of z; y∗(x̄ ∨ x̃, s) the role of ẑ; ȳ the role of

zσ,β; and ỹ the role of z1−σ,1−β, to get:

Gl−1(ȳ, s) +Gl−1(ỹ, s) ≤ Gl−1

(

y∗(x̄ ∧ x̃, s), s
)

+Gl−1

(

y∗(x̄ ∨ x̃, s), s
)

= min
y∈Ãd(x̄∧x̃,s)

{Gl−1(y, s)}

+ min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} . (A.97)

Combining equations (A.96) and (A.97) yields the desired result, (A.84).

Case 2: y∗(x̄ ∨ x̃, s) � y∗(x̄ ∧ x̃, s) � y∗(x̄ ∨ x̃, s)

There are two possibilities for this case. The first possibility is that y∗
1
(x̄ ∧

x̃, s) > y∗
1
(x̄ ∨ x̃, s) and y∗

2
(x̄ ∧ x̃, s) ≤ y∗

2
(x̄ ∨ x̃, s). The second possibility

is that y∗
1
(x̄ ∧ x̃, s) ≤ y∗

1
(x̄ ∨ x̃, s) and y∗

2
(x̄ ∧ x̃, s) > y∗

2
(x̄ ∨ x̃, s). We show

(A.84) under the first possibility, and a symmetric argument can be used to

show (A.84) under the second possibility. We have:

y∗
1

(x̄ ∧ x̃, s) > y∗
1

(x̄ ∨ x̃, s) ≥ max
{

(x̄ ∨ x̃)1, d1
}

= max
{

x̃1, d1
}

, (A.98)

y∗
2

(x̄ ∧ x̃, s) ≥ max
{

(x̄ ∧ x̃)2, d2
}

= max
{

x̃2, d2
}

, (A.99)
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and

cT

s

[

y∗(x̄ ∧ x̃, s)− x̃
]

≤ cT

s

[

y∗(x̄ ∧ x̃, s)− (x̄ ∧ x̃)
]

≤ P . (A.100)

Equations (A.98), (A.99), and (A.100) imply y∗(x̄ ∧ x̃, s) ∈ Ãd (x̃, s). If it also

happens that y∗(x̄ ∨ x̃, s) ∈ Ãd (x̄, s), then we have:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)}

≤ Gl−1

(

y∗(x̄ ∧ x̃, s), s
)

+Gl−1

(

y∗(x̄ ∨ x̃, s), s
)

= min
y∈Ãd(x̄∧x̃,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} .

Otherwise, define:

γ :=
cT
s

[

y∗(x̄ ∨ x̃, s)− x̄
]

− P

cT
s

[

y∗(x̄ ∨ x̃, s)− y∗(x̄ ∧ x̃, s)
] .

From y∗(x̄ ∨ x̃, s) /∈ Ãd (x̄, s) and y∗(x̄ ∧ x̃, s) ∈ Ãd (x̄ ∧ x̃, s), we know:

cT

sy
∗(x̄ ∨ x̃, s) > cT

sx̄+ P ≥ cT

s(x̄ ∧ x̃) + P ≥ cT

sy
∗(x̄ ∧ x̃, s) . (A.101)

It is clear from (A.101) that the numerator and denominator of γ are positive,

and γ ∈ [0, 1]. Now define:

ȳ := γy∗(x̄ ∧ x̃, s) + (1− γ)y∗(x̄ ∨ x̃, s), and

ỹ := (1− γ)y∗(x̄ ∧ x̃, s) + γy∗(x̄ ∨ x̃, s).

It is somewhat tedious but straightforward to show that ȳ ∈ Ãd (x̄, s), and

ỹ ∈ Ãd (x̃, s). Thus, we have:

min
y∈Ãd(x̄,s)

{Gl−1(y, s)}+ min
y∈Ãd(x̃,s)

{Gl−1(y, s)}

≤ Gl−1(ȳ, s) +Gl−1(ỹ, s). (A.102)
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In Figure A.4, ȳ is the point where the line segment connecting y∗(x̄∧ x̃, s) and

y∗(x̄∨ x̃, s) intersects the budget constraint (hypotenuse) of Ãd (x̄, s), and ỹ is

a point along this line segment the same distance from y∗(x̄∧ x̃, s) as ȳ is from

y∗(x̄ ∨ x̃, s). By the convexity of Gl−1(·, s) along this line segment, we have:

Gl−1(ȳ, s) +Gl−1(ỹ, s) ≤ Gl−1

(

y∗(x̄ ∧ x̃, s), s
)

+Gl−1

(

y∗(x̄ ∨ x̃, s), s
)

= min
y∈Ãd(x̄∧x̃,s)

{Gl−1(y, s)}

+ min
y∈Ãd(x̄∨x̃,s)

{Gl−1(y, s)} . (A.103)

Combining (A.102) and (A.103) yields the desired result, (A.84).
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Figure A.4. Construction of feasible points ȳ and ỹ in Case 2 of the proof of supermodularity of
Vl−1(·, s).

(iii) Gl(y, s) = cT
sy + h(y − d) + α · IE

[

Vl−1(y − d,S)
]

. By (i), for all s, Vl−1(x, s)

is convex in x; thus, Vl−1(y − d, s) is convex in y as it is the composition of a

convex function with an affine function. IE
[

Vl−1(y− d,S)
]

is also convex as it

is the nonnegative weighted sum/integral of convex functions. It follows that

Gl(y, s), the sum of convex functions, is convex in y.
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(iv) Supermodularity of Gl(y, s) follows from the same series of arguments as (iii),

because, like convexity, supermodularity is preserved under addition and scalar

multiplication (Smith and McCardle refer to these as closed convex cone prop-

erties [149]).

(v) This step basically follows from Topkis’ Theorem 2.8.1 [159, pg. 76], but, for

the reader’s benefit, we reproduce the proof here with our notation. Let y2, ŷ2 ∈

[d2,∞) be arbitrary with y2 < ŷ2. Let ȳ1 ∈ argminy1∈[d1,∞)

{

Gl (y
1, y2, s)

}

and

ỹ1 ∈ argminy1∈[d1,∞)

{

Gl (y
1, ŷ2, s)

}

be arbitrary. We want to show:

ȳ1 ∧ ỹ1 ∈ argmin
y1∈[d1,∞)

{

Gl

(

y1, ŷ2, s
)}

.

If ỹ1 ≤ ȳ1, this is trivial, so we check that it is true for ỹ1 > ȳ1. Since ȳ1 is a

minimizer of Gl (·, y
2, s), we have:

Gl

(

ȳ1, y2, s
)

≤ Gl

(

ỹ1, y2, s
)

, (A.104)

and since ỹ1 is a minimizer of Gl (·, ŷ
2, s), we have:

Gl

(

ỹ1, ŷ2, s
)

≤ Gl

(

ȳ1, ŷ2, s
)

. (A.105)

By the supermodularity of Gl(·, s), we have:

Gl

(

ỹ1, y2, s
)

+Gl

(

ȳ1, ŷ2, s
)

≤ Gl

(

ỹ1 ∧ ȳ1, y2 ∧ ŷ2, s
)

+ Gl

(

ỹ1 ∨ ȳ1, y2 ∨ ŷ2, s
)

= Gl

(

ȳ1, y2, s
)

+Gl

(

ỹ1, ŷ2, s
)

,

or, rearranging terms:

Gl

(

ỹ1, y2, s
)

−Gl

(

ȳ1, y2, s
)

≤ Gl

(

ỹ1, ŷ2, s
)

−Gl

(

ȳ1, ŷ2, s
)

. (A.106)
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Combining (A.104), (A.105), and (A.106) yields:

0 ≤ Gl

(

ỹ1, y2, s
)

−Gl

(

ȳ1, y2, s
)

≤ Gl

(

ỹ1, ŷ2, s
)

−Gl

(

ȳ1, ŷ2, s
)

≤ 0.(A.107)

So (A.107) holds with equality throughout, implying

Gl (ỹ
1, ŷ2, s) = Gl (ȳ

1, ŷ2, s), and we conclude:

ỹ1 ∧ ȳ1 = ȳ1 ∈ argmin
y1∈[d1,∞)

{

Gl

(

y1, ŷ2, s
)}

.

Since ȳ1 and ỹ1 were chosen arbitrarily, we have:

inf

{

argmin
y1

n∈[d
1,∞)

{

Gn

(

y1n, y
2
n, s

1, s2
)

}

}

≥ inf

{

argmin
y1

n∈[d
1,∞)

{

Gn

(

y1n, ŷ
2
n, s

1, s2
)

}

}

.

The first implication in (v) follows from a symmetric argument.

A.5 Proof of Theorem 5.9

Let n ∈ {1, 2, . . . , N} and s ∈ S be arbitrary. We start by proving (5.25). First,

let x ∈ RI(n, s) and ŷ ∈ Ãd(x, s) be arbitrary. We know from Theorem 5.8 that

Gn(·, s) is convex on [d
1,∞)× [d2,∞), which implies that Gn(·, s) is also convex on

any line segment in [d1,∞)× [d2,∞) (see, e.g., [122, Theorem 4.1]). Specifically, by

the convexity of Gn(·, s) along the line y
1 = ŷ1 and the fact that ŷ2 ≥ x2 ≥ f 2n(ŷ

1, s),

we have:

Gn(ŷ, s) ≥ Gn

(

(ŷ1, x2), s
)

≥ Gn

(

(

ŷ1, f2n(ŷ
1, s)

)

, s
)

. (A.108)

Similarly, by the convexity of Gn(·, s) along the line y2 = x2 and the fact that

ŷ1 ≥ x1 ≥ f 1n(x
2, s), we have:

Gn

(

(ŷ1, x2), s
)

≥ Gn(x, s) ≥ Gn

(

(

f 1n(x
2, s), x2

)

, s
)

. (A.109)

Combining (A.108) and (A.109) yields:

Gn(ŷ, s) ≥ Gn

(

(

ŷ1, x2
)

, s
)

≥ Gn(x, s) ,
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and we conclude Gn(x, s) = miny∈Ãd(x,s) {Gn(y, s)}.

Second, let x ∈ RII(n, s) be arbitrary. Then bn(s) ∈ Ã
d(x, s) and bn(s) is a global

minimizer of Gn(·, s), so it is clearly optimal to transmit to bring the receivers’ buffer

levels up to bn(s).

Next, let x ∈ RIII−A(n, s) and ỹ ∈ Ãd(x, s) be arbitrary. By definition of f 1n(·, s),

we have:

Gn(ỹ, s) ≥ Gn

(

(

f 1n(ỹ
2, s), ỹ2

)

, s
)

. (A.110)

Furthermore, the function miny1∈[d1,∞)

{

Gn

(

(y1, y2), s
)}

is convex in y2 since [d1,∞)

is a convex set (see, e.g., [23, pp. 101-102]). Thus, ỹ2 ≥ x2 ≥ b2n(s) implies:

Gn

(

(

f 1n(ỹ
2, s), ỹ2

)

, s
)

≥ Gn

(

(

f 1n(x
2, s), x2

)

, s
)

(A.111)

≥ Gn

(

(

f 1n(b
2
n(s), s), b

2
n(s)

)

, s
)

= Gn

(

bn(s), s
)

.

Combining (A.110) and (A.111) yields:

Gn(ỹ, s) ≥ Gn

(

(

f 1n(x
2, s), x2

)

, s
)

,

and x ∈ RIII−A(n, s) implies
(

f 1n(x
2, s), x2

)

∈ Ãd(x, s). Since ỹ ∈ Ãd(x, s) was

arbitrary, we conclude y∗n(x, s) =
(

f 1n(x
2, s), x2

)

is optimal.

The optimality of y∗n(x, s) =
(

x1, f2n(x
1, s)

)

for x ∈ RIII−B(n, s) follows from a

symmetric argument, using the convexity of Gn(·, s) along the curve
(

x1, f2n(x
1, s)

)

.

Finally, we prove (5.26). Define:

Hd(x, s) :=
{

y ∈ [d1,∞)× [d2,∞) : y � x and cT

s [y− x] = P
}

⊂ Ãd(x, s) .
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First, let x ∈ RIV−B(n, s) and ŷ ∈ Ãd(x, s) be arbitrary such that cT
s [ŷ− x] < P .

Define

λ0 :=
cT
sbn(s)− cT

sx− P

cT
sbn(s)− cT

sŷ
.

Note that cT
s [ŷ− x] < P and cT

s [bn(s)− x] > P imply λ0 ∈ (0, 1). Then define:

ỹ := λ0ŷ+ (1− λ0)bn(s) .

By the convexity of Gn(·, s) along the line segment from ŷ to bn(s), we have:

Gn(ŷ, s) ≥ Gn(ỹ, s) ≥ Gn

(

bn(s), s
)

.

Since ŷ ∈ Ãd(x, s) was arbitrary, we conclude:

min
y∈Ãd(x,s)

{

Gn(y, s)
}

= min
y∈Hd(x,s)

{

Gn(y, s)
}

.

Next, let x ∈ RIV−C(n, s) and ŷ ∈ Ãd(x, s) be arbitrary such that cT
s [ŷ− x] < P .

We consider two exhaustive cases, and for each case, we construct a ỹ ∈ Hd(x, s)

such that Gn (ỹ, s) ≤ Gn (ŷ, s).

Case 1: ŷ2 < f2n (ŷ
1, s) and ȳ :=

(

ŷ1, f2n (ŷ
1, s)

)

/∈ Ãd(x, s)

Let ỹ :=
(

ŷ1, x2 +
P−c

s1 ·[ŷ
1−x1]

c
s2

)

. Then, by the convexity of Gn(·, s) along y
1 = ŷ1,

the definition of f 2n (ŷ
1, s), and ŷ2 ≤ ỹ2 ≤ f 2n (ŷ

1, s), we have:

Gn (ȳ, s) = Gn

(

(

ŷ1, f2n(ŷ
1, s)

)

, s
)

≤ Gn (ỹ, s) ≤ Gn (ŷ, s) .

It is also straightforward to check that ỹ ∈ Hd(x, s), as desired.

Case 2: All other ŷ ∈ Ãd(x, s) such that cT
s [ŷ− x] < P

By the definition of f 2n (ŷ
1, s), we have:

Gn (ŷ, s) ≥ Gn

(

(

ŷ1, f2n(ŷ
1, s)

)

, s
)

. (A.112)
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Define:

ỹ1 := sup
{

y1 ∈
[

x1, ŷ1
)

: cT

s

(

y1, f2n
(

y1, s
)

)

≥ cT

sx+ P
}

, and

ỹ2 :=
P − cs1 · [ỹ1 − x1]

cs2

.

By the convexity of Gn(·, s) along
(

y1, f2n (y
1, s)

)

, we have:

Gn

(

(

ŷ1, f2n(ŷ
1, s)

)

, s
)

≥ Gn

(

(

ỹ1, f2n(ỹ
1, s)

)

, s
)

. (A.113)

Furthermore, we have:

Gn

(

(

ỹ1, f2n(ỹ
1, s)

)

, s
)

= Gn

(

(

ỹ1, ỹ2
)

, s
)

= Gn (ỹ, s) . (A.114)

If ỹ2 = f 2n (ỹ
1, s), (A.114) is trivial. Otherwise, there is a discontinuity in f 2n(·, s) at

ỹ1, and we have:

lim
y1↗ỹ1

f 2n
(

y1, s
)

≥ ỹ2 ≥ lim
y1↘ỹ1

f 2n
(

y1, s
)

, (A.115)

with at least one of the inequalities being strict. Nonetheless, Gn

(

(

y1, f2n(y
1, s)

)

, s
)

is a continuous function of y1, and therefore:

Gn

(

(

ỹ1, lim
y1↗ỹ1

f 2n
(

y1, s
))

, s
)

= Gn

(

(

ỹ1, lim
y1↘ỹ1

f 2n
(

y1, s
))

, s
)

= Gn

(

(

ỹ1, f2n
(

ỹ1, s
))

, s
)

. (A.116)

The convexity of Gn(·, s) along the line y
1 = ỹ1 and (A.116) imply:

Gn

(

(

ỹ1, y2
)

, s
)

= Gn

(

(

ỹ1, f2n
(

ỹ1, s
))

, s
)

, ∀y2 ∈

[

lim
y1↘ỹ1

f 2n
(

y1, s
)

, lim
y1↗ỹ1

f 2n
(

y1, s
)

]

,

which in combination with (A.115) implies (A.114). Combining (A.112)-(A.114)

yields the desired result: Gn (ỹ, s) ≤ Gn (ŷ, s) for a ỹ ∈ Hd(x, s).

The validity of (5.26) for x ∈ RIV−A(n, s) follows from a symmetric argument,

completing the proof of (5.26) and Theorem 5.9.
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Appendix B

Infinite Horizon Discounted Expected Cost Proofs for
Problem (P5.2)

B.1 Proof of Theorem 5.5

Our line of analysis is similar in spirit to [48], [69, Chapter 8], and [77]. Let x ∈ IR+

and s ∈ S be arbitrary. First, we show inductively that V1(x, s) ≤ V2(x, s) ≤ . . . ≤

Vn(x, s) ≤ Vn+1(x, s) ≤ . . ..

Base Case: n = 1

V1(x, s) = min
{

max(0,d−x)≤z≤z̃max(s)
}

{c(z, s) + h(x+ z − d)}

≤ min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+α · IE
[

V1(x+ z − d, S1)
∣

∣ S2 = s
]











= V2(x, s) ,

where the inequality follows from V1(x, s) ≥ 0, ∀x, ∀s.

Induction Step: Assume Vn(x, s) ≤ Vn+1(x, s) for n = 1, 2, . . . ,m− 1. We show it is

true for n = m:

Vm(x, s) = min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+α · IE
[

Vm−1(x+ z − d, Sm−1)
∣

∣ Sm = s
]
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≤ min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+α · IE
[

Vm(x+ z − d, Sm)
∣

∣ Sm+1 = s
]











= Vm+1(x, s) ,

where the inequality follows from the induction hypothesis and the homogeneity of

the Markov process representing the channel condition. So, for every x ∈ IR+ and

s ∈ S, {Vn(x, s)}n=1,2,... is a nondecreasing sequence.

Next, consider a policy πd transmitting d packets in every slot, regardless of

channel condition. Define:

c̃max := sup
s∈S

k∈{0,1,...,K}

{c̃k(s)} <∞ . (B.1)

Then we have:

Vn(x, s) ≤ V πd

n (x, s) ≤
(

c̃max · d+ h(x)
)1− αn

1− α
≤

(

c̃max · d+ h(x)
) 1

1− α
<∞ ,

so {Vn(x, s)}n=1,2,... is a bounded nondecreasing sequence, implying limn→∞ Vn(x, s)

exists and is finite, ∀x ∈ IR+,∀s ∈ S.

We now move on to part (b). Recall from Section A.1 that Vn(x, s) is convex in x,

for all n and all s. Define V∞(x, s) := limn→∞ Vn(x, s). Let s ∈ S be arbitrary, but

fixed. V∞(x, s) = supn∈IN Vn(x, s), so V∞(x, s) is convex in x as it is the pointwise

supremum of the convex functions {Vn(x, s)}n=1,2,....

Define g̃∞ : [d,∞)× S → IR+ by

g̃∞(y, s) := h(y − d) + α · IE [V∞(y − d, S ′) | S = s]

= h(y − d) + α · IE
[

lim
n→∞

Vn(y − d, S ′) | S = s
]

= h(y − d) + α · lim
n→∞

IE [Vn(y − d, S ′) | S = s] (B.2)

= lim
n→∞

g̃n(y, s) ,
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where (B.2) follows from the homogeneity of the Markov process representing the

channel condition and the Monotone Convergence Theorem. Furthermore, for each

s ∈ S, g̃∞(y, s) is convex in y and lim
y→∞

g̃∞(y, s) ≥ lim
y→∞

h(y−d) =∞. Thus, for every

s, at least one finite number achieves the global minimum of g̃∞(y, s).

Next, we proceed to part (d), and let s ∈ S be arbitrary. Define b∞,−1(s) := ∞

and

b∞,k(s) := max
{

d, inf
{

b
∣

∣ g̃′+∞(b, s) ≥ −c̃k(s)
}

}

, ∀k ∈ {0, 1, . . . , K} .

Clearly, b∞,−1(s) = lim
n→∞

bn,−1(s), as bn,−1(s) :=∞ for every n. Let k ∈ {0, 1, . . . , K}

be arbitrary. We want to show:

lim
n→∞

bn,k(s) = lim
n→∞

max
{

d, inf
{

b
∣

∣ g̃′+n (b, s) ≥ −c̃k(s)
}

}

= max
{

d, inf
{

b
∣

∣ g̃′+∞(b, s) ≥ −c̃k(s)
}

}

:= b∞,k(s) .

By the continuity of max{d, ·}, it suffices to show:

lim
n→∞

{

inf
{

b
∣

∣ g̃′+n (b, s) ≥ −c̃k(s)
}

}

= inf
{

b
∣

∣ g̃′+∞(b, s) ≥ −c̃k(s)
}

. (B.3)

Before proceeding to show (B.3), we present a lemma due to Sobel [151, Lemma

3, pg. 732], which is also presented in [69, Lemma 8-5, pg. 425].

Lemma B.1 (Sobel, 1971). Let g, g1, g2, . . . be convex functions on an open convex

subset X of IR such that gn(x) → g(x) as n → ∞ and gn(x) ≤ gn+1(x) for all n

and x. Let g′−n (x) and g′−(x) denote derivatives from the left and g′+n (x) and g′+(x)

denote derivatives from the right. Then for all x ∈ X:

g′−(x) ≤ lim inf
n→∞

g′−n (x) ≤ lim sup
n→∞

g′+n (x) ≤ g′+(x) . (B.4)

We now prove (B.3) by contradiction. Define:

b̂n,k(s) := inf
{

b
∣

∣ g̃′+n (b, s) ≥ −c̃k(s)
}

, and
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b̂∞,k(s) := inf
{

b
∣

∣ g̃′+∞(b, s) ≥ −c̃k(s)
}

.

First, assume lim inf
n→∞

b̂n,k(s) < b̂∞,k(s), so there exists an x0 ∈ IR+ such that d <

x0 < b̂∞,k(s), and a sequence {ni}i=1,2,... such that lim
i→∞

b̂ni,k(s) = x0. Then we have:

−c̃k(s) ≤ lim
i→∞

g̃′+ni
(x0, s) (B.5)

≤ lim sup
n→∞

g̃′+n (x0, s)

≤ g̃′+∞(x0, s) . (B.6)

Here, (B.5) follows from lim
i→∞

b̂ni,k(s) = x0, and the fact that g̃′+n (·, s) is continuous

from the right. Equation (B.6) follows from Lemma B.1. Yet, g̃′+∞(x0, s) ≥ −c̃k(s)

implies b̂∞,k(s) ≤ x0, which is a contradiction. We conclude:

lim inf
n→∞

b̂n,k(s) ≥ b̂∞,k(s). (B.7)

Next, assume lim sup
n→∞

b̂n,k(s) > b̂∞,k(s) ≥ d, and define:

x1 :=

lim sup
n→∞

b̂n,k(s) + b̂∞,k(s)

2
.

Then we have:

−c̃k(s) ≤ g̃′+∞
(

b̂∞,k(s), s
)

(B.8)

≤ g̃′−∞
(

x1, s
)

(B.9)

≤ lim inf
n→∞

g̃′−n
(

x1, s
)

(B.10)

≤ lim inf
n→∞

g̃′+n
(

x1, s
)

(B.11)

Here, (B.8) follows from the fact that g̃′+∞(·, s) is continuous from the right; (B.10)

follows from Lemma B.11; and (B.9) and (B.11) follow from the fact (see, e.g., [122,

1One hypothesis of Lemma B.1 is that all functions are defined on an open convex subset of IR. While our
functions g̃∞(·, s) and {g̃n(·, s)}n∈IN are defined on [d,∞), we only apply Lemma B.1 at the points x0, x1 ∈ (d,∞).
Thus, equations (B.6) and (B.10) follow from the application of Lemma B.1 to the restrictions of the functions
g̃∞(·, s) and {g̃n(·, s)}n∈IN to the domain of (d,∞).
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pg. 228]) that for a proper convex function f on IR, z1 < x < z2 implies:

f ′+(z1) ≤ f ′−(x) ≤ f ′+(x) ≤ f ′−(z2) .

lim inf
n→∞

g̃′+n
(

x1, s
)

≥ −c̃k(s) implies that for every sequence {nj}j=1,2,..., we have:

lim
j→∞

g̃′+nj

(

x1, s
)

≥ −c̃k(s) ,

and, in turn:

lim
j→∞

b̂nj ,k(s) ≤ x1 .

Therefore, lim sup
n→∞

b̂n,k(s) ≤ x1, which is a contradiction. We conclude:

lim sup
n→∞

b̂n,k(s) ≤ b̂∞,k(s) . (B.12)

Equations (B.7) and (B.12) imply (B.3).

We are now ready to prove parts (e) and (f) of Theorem 5.5. Define

z∗∞(x, s) :=







































































z̃k−1(s), if b∞,k(s)− z̃k−1(s) < x ≤ b∞,k−1(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K}

b∞,k(s)− x, if b∞,k(s)− z̃k(s) < x ≤ b∞,k(s)− z̃k−1(s) ,

k ∈ {0, 1, . . . , K − 1}

b∞,K(s)− x, if b∞,K(s)− z̃max(s) < x ≤ b∞,K(s)− z̃K−1(s)

z̃max(s), if 0 ≤ x ≤ b∞,K(s)− z̃max(s)

Clearly, lim
n→∞

bn,k(s) = b∞,k(s) implies

lim
n→∞

z∗n(x, s) = z∗∞(x, s), ∀x ∈ IR+,∀s ∈ S .

Furthermore, g̃n(y, s)→ g̃∞(y, s) and z
∗
n(x, s)→ z∗∞(x, s) as n→∞ imply:

lim
n→∞

g̃n

(

x+ z∗n(x, s)
)

= g̃∞
(

x+ z∗∞(x, s)
)

, ∀x ∈ IR+,∀s ∈ S . (B.13)
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So for all x ∈ IR+ and s ∈ S, we have:

V∞(x, s) = lim
n→∞

Vn(x, s)

= lim
n→∞

min
{

max(0,d−x)≤z≤z̃max(s)
}

{

c(z, s) + g̃n(x+ z, s)
}

= lim
n→∞

{

c
(

z∗n(x, s), s
)

+ g̃n

(

x+ z∗n(x, s), s
)

}

(B.14)

= c
(

z∗∞(x, s), s
)

+ g̃∞
(

x+ z∗∞(x, s), s
)

(B.15)

= min
{

max(0,d−x)≤z≤z̃max(s)
}

{

c(z, s) + g̃∞(x+ z, s)
}

(B.16)

= min
{

max(0,d−x)≤z≤z̃max(s)
}











c(z, s) + h(x+ z − d)

+α · IE
[

V∞(x+ z − d, S ′)
∣

∣ S = s
]











.

Equation (B.14) follows from Theorem 5.1, and (B.15) follows from (B.13) and the

continuity of c(·, s). Equation (B.16) follows from the same line of analysis as part

(ii) of the induction step in the proof of Theorem 5.3, with g̃∞(·, s), b∞,k(s), and

z∗∞(·, s) replacing g̃m(·, s), bm,k(s), and z
∗
m(·, s), respectively. Thus, V∞(·, ·), the limit

of the finite horizon value functions, satisfies the α-DCOE (5.20) and is also equal

to the infinite horizon discounted expected cost-to-go resulting from the stationary

policy π∗

∞
:= (z∗∞, z

∗
∞, . . .). We conclude π∗

∞
, the natural extension of the finite

horizon optimal policy, is optimal for the infinite horizon problem (see, for example,

[20, Propositions 9.12 and 9.16]).

B.2 Proof of Theorem 5.10

We follow the same line of analysis as the proof of Theorem 5.5. Let x ∈ IR2
+

and s ∈ S be arbitrary. First, we show inductively that V1(x, s) ≤ V2(x, s) ≤ . . . ≤

Vn(x, s) ≤ Vn+1(x, s) ≤ . . ..
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Base Case: n = 1

V1(x, s) = min
z∈Ad(x,s)

{cT

sz+ h(x+ z− d)}

≤ min
z∈Ad(x,s)











cT
sz+ h(x+ z− d)

+α · IE
[

V1(x+ z− d,S1)
∣

∣ S2 = s
]











= V2(x, s) ,

where the inequality follows from V1(x, s) ≥ 0, ∀x,∀s.

Induction Step: Assume Vn(x, s) ≤ Vn+1(x, s) for n = 1, 2, . . . ,m− 1. We show it is

true for n = m:

Vm(x, s) = min
z∈Ad(x,s)











cT
sz+ h(x+ z− d)

+α · IE
[

Vm−1(x+ z− d,Sm−1)
∣

∣ Sm = s
]











≤ min
z∈Ad(x,s)











cT
sz+ h(x+ z− d)

+α · IE
[

Vm(x+ z− d,Sm)
∣

∣ Sm+1 = s
]











= Vm+1(x, s) ,

where the inequality follows from the induction hypothesis and the homogeneity of

the Markov process representing the channel condition. So, for every x ∈ IR2
+ and

s ∈ S, {Vn(x, s)}n=1,2,... is a nondecreasing sequence.

Next, consider a policy πd transmitting d1 packets to user 1 and d2 packets to

user 2 in every slot, regardless of channel condition. Define:

cT

max :=
(

c1max, c
2
max

)T
, where cimax := sup

si∈Si

{csi} <∞ . (B.17)

Then we have:

Vn(x, s) ≤ V πd

n (x, s) ≤
(

cT

maxd+ h(x)
)1− αn

1− α
≤

(

cT

maxd+ h(x)
) 1

1− α
<∞ ,

so {Vn(x, s)}n=1,2,... is a bounded nondecreasing sequence, implying limn→∞ Vn(x, s)

exists and is finite, ∀x ∈ IR2
+,∀s ∈ S.
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Next, recall from Theorem 5.8 that Vn(x, s) is convex and supermodular in x, for

all n and all s. Define V∞(x, s) := limn→∞ Vn(x, s). Let s ∈ S be arbitrary, but

fixed. V∞(x, s) = supn∈IN Vn(x, s), so V∞(x, s) is convex in x as it is the pointwise

supremum of the convex functions {Vn(x, s)}n=1,2,.... Furthermore, the pointwise

limit of supermodular functions is supermodular (see, e.g., [159, Lemma 2.6.1]), so

V∞(x, s) is also supermodular in x.

Define G∞ : [d1,∞)× [d2,∞)× S → IR+ by

G∞(y, s) := cT

sy+ h(y− d) + α · IE
[

V∞(y− d,S′)
∣

∣ S = s
]

= cT

sy+ h(y− d) + α · IE
[

lim
n→∞

Vn(y− d,S′)
∣

∣ S = s
]

= cT

sy+ h(y− d) + α · lim
n→∞

IE
[

Vn(y− d,S′)
∣

∣ S = s
]

(B.18)

= lim
n→∞

Gn(y, s) , (B.19)

where (B.18) follows from the homogeneity of the Markov process representing the

channel condition and the Monotone Convergence Theorem. Furthermore, for each

s ∈ S, G∞(y, s) is convex and supermodular in y as it is the sum of an affine

function of y, a convex separable function of y−d and a weighted sum of the convex

supermodular functions V∞ (y− d, s′). Additionally, lim
||y||→∞

G∞(y, s) ≥ lim
||y||→∞

cT
sy =

∞. Thus, for every s, at least one finite vector achieves the global minimum of

G∞(y, s); B∞(s) is a non-empty closed convex set; and b∞(s), f
1
∞(·, s), and f

2
∞(·, s)

are well-defined. The structure of the optimal policy outlined in (b) then follows

from the same line of analysis used to prove the the structure of the optimal policy

in the induction step of Theorem 5.9.

Moreover, since for a fixed s ∈ S and x2 ∈ [d2,∞),

f 1n(x
2, s) := inf

{

argmin
y1∈[d1,∞)

{

Gn

(

y1, x2, s1, s2
)

}

}

= inf
{

b1
∣

∣ G′+n
(

b1, x2, s1, s2
)

≥ 0
}

,
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the convergence of f 1n(x
2, s) to f 1∞(x

2, s) follows from the same argument used to show

(B.3). The convergence of f 2n(x
1, s) to f 2∞(x

1, s) follows from a symmetric argument.

For all s ∈ S and x1 ∈ [d1,∞), define:

Ψn(x
1, s) := min

x2∈[d2,∞)

{

Gn(x
1, x2, s1, s2)

}

= Gn

(

x1, f2n(x
1, s), s1, s2

)

, ∀n ∈ IN,

and

Ψ∞(x
1, s) := min

x2∈[d2,∞)

{

G∞(x
1, x2, s1, s2)

}

= G∞
(

x1, f2∞(x
1, s), s1, s2

)

.

For fixed but arbitrary x1 and s, f 2n(x
1, s) converges to f 2∞(x

1, s), and, by Dini’s

Theorem, Gn(x
1, ·, s) converges to G∞(x

1, ·, s) uniformly on a compact interval con-

taining f 2∞(x
1, s). Thus, Ψn(x

1, s) converges pointwise to Ψ∞(x
1, s). Moreover, for

every s, {Ψn(x
1, s)}n∈IN and Ψ∞(x

1, s) are all convex in x1 with the limit as x1 ap-

proaches infinity equal to infinity. Therefore, by the same argument used to show

(B.3), b1n(s) converges pointwise to b
1
∞(s).

For all s ∈ S and x2 ∈ [d2,∞), define:

Ψ̃n(x
2s) := Gn

(

b1n(s), x
2, s1, s2

)

, ∀n ∈ IN,

and

Ψ̃n(x
2s) := G∞

(

b1∞(s), x
2, s1, s2

)

.

For fixed but arbitrary x2 and s, b1n(s) converges to b
1
∞(s), and, by Dini’s Theo-

rem, Gn(·, x
2, s) converges to G∞(·, x

2, s) uniformly on a compact interval around

b1∞(s). Thus, Ψ̃n(x
2, s) converges pointwise to Ψ̃∞(x

2, s). Moreover, for every s,

{Ψ̃n(x
2, s)}n∈IN and Ψ̃∞(x

2, s) are all convex in x2 with the limit as x2 approaches

infinity equal to infinity. Therefore, by the same argument used to show (B.3), b2n(s)

converges pointwise to b2∞(s), and we conclude b∞(s) = lim
n→∞

bn(s).
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Appendix C

Infinite Horizon Average Expected Cost Proofs for Problem
(P5.3)

In this appendix, we prove Theorem 5.11 using the vanishing discount approach

(see, e.g., [68]). The proof of Theorem 5.6 is nearly identical, and we note the few

key differences.

Substituting (5.28) and (5.30) into the α-DCOE (5.27) and rearranging yields:

(1− α) ·m∞,α + w∞,α(x, s)

= min
y∈Ãd(x,s)

{

cT

s[y− x] + h (y− d) + α · IE
[

w∞,α(y− d,S′)
∣

∣ S = s
]

}

,

∀x ∈ IR2
+,∀s ∈ S. (C.1)

The main idea of the vanishing discount approach is to take the limit as α goes to

1, and show that (C.1) converges to the ACOE (5.31).

We start by presenting five conditions from the literature on the vanishing discount

approach.

Condition (G). ρ := inf
π∈Π

inf
x∈IR2

+
s∈S

{

lim sup
N→∞

1
N
V π

N,1(x, s)

}

<∞.

Condition (W). (i) The state space IR2
+×S is a locally compact space with count-

able base.
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(ii) The action space Ãd(x, s) is a non-empty compact subset of the state space

IR2
+ × S, and the multifunction φ : (x, s) 7→ Ãd(x, s) is upper semicontinuous; that

is, φ−1(F ) is closed in IR2
+ × S for every closed set F ⊂ IR2

+.

(iii) The transition law is weakly continuous (see, e.g., [68, Appendix C]).

(iv) The one-stage cost c(z, s)+h(x+z−d) is lower semicontinuous and nonnegative.

Condition (B). sup
α<1

w∞,α(x, s) <∞ for all x ∈ IR2
+ and s ∈ S.

Condition (B2). There is a measurable function κ̄ : IR2
+ × S → IR+ such that

κ̄ ≥ w∞,α for all α ∈ [0, 1), and:

IE
[

κ̄(y− d,S′)
∣

∣ S = s
]

<∞, ∀(x, s) ∈ IR2
+ × S, ∀y ∈ Ã

d(x, s) . (C.2)

Condition (E). For every increasing sequence of discount factors {α(l)}l=1,2,... ap-

proaching 1, the sequence
{

w∞,α(l)

}

l=1,2,...
is equicontinuous.

We show below that our model satisfies these five conditions, but first we show

how they lead to Theorem 5.11. Parts (b), (c), and (e) of Theorem 5.11 follow

directly from the following theorem due to Schäl [130, Theorem 3.8] and adapted to

our notation.

Theorem C.1 (Schäl, 1993). Suppose conditions (G), (W), and (B) hold. Then the

minimum average cost ρ∗ = inf
π∈Π

inf
x∈IR2

+
s∈S

{

lim sup
N→∞

1
N
V π

N,1(x, s)

}

= lim
α↗1

(1 − α) · m∞,α.

Moreover, there exists an optimal selector y∗∞,1(·, ·) such that:

ρ∗ + w∞,1(x, s) ≥ min
y∈Ãd(x,s)











cT
s[y− x] + h (y− d)

+IE
[

w∞,1(y− d,S′)
∣

∣ S = s
]











(C.3)

= cT

s

[

y∗∞,1(x, s)− x
]

+ h
(

y∗∞,1(x, s)− d
)

+ IE
[

w∞,1

(

y∗∞,1(x, s)− d,S′
)∣

∣

∣S = s
]

, ∀x ∈ IR2
+, ∀s ∈ S,
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where for every (x, s) ∈ IR2
+ × S and any increasing sequence of discount factors

{α(l)}l=1,2,... approaching 1,

w∞,1(x, s) := lim inf
l→∞

w∞,α(l)(x, s) . (C.4)

Furthermore, for every (x, s) ∈ IR2
+×S and any increasing sequence of discount fac-

tors {α(l)}l=1,2,... approaching 1, there exists a subsequence {α(li)}i=1,2,... approaching

1 and a sequence {x(i)}i=1,2,... approaching x such that:

y∗∞,1(x, s) = lim
i→∞

y∗∞,α(li)
(x(i), s) .

To get the opposite inequality from (C.3), we use a method from [50] and [111,

Theorem 4.1] (which is presented in [68, Section 5.5]). Namely, for every x ∈ IR2
+,

s ∈ S, y ∈ Ãd(x, s), and α(l) from (C.4), (C.1) implies:

(1− α(l)) ·m∞,α(l) + w∞,α(l)(x, s)

≤ cT

s[y− x] + h (y− d) + α(l) · IE
[

w∞,α(l)(y− d,S′)
∣

∣ S = s
]

. (C.5)

Furthermore, in combination with Conditions (B) and (E), the Arzelá-Ascoli Theo-

rem implies there exists a subsequence {α(li)}i=1,2,... of {α(l)}l=1,2,... such that:

w∞,1(x, s) = lim
i→∞

w∞,α(li)(x, s) ,∀x ∈ IR
2
+, ∀s ∈ S . (C.6)

Then, taking the limit of (C.5) as α goes to 1 along the sequence {α(li)}i=1,2,...,

(5.29), (C.6), Condition (B2), and the Lebesgue Dominated Convergence Theorem

imply:

ρ∗ + w∞,1(x, s) ≤cT

s[y− x] + h (y− d) + IE
[

w∞,1(y− d,S′)
∣

∣ S = s
]

,

∀x ∈ IR2
+, ∀s ∈ S, ∀y ∈ Ã

d(x, s) ,
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which implies:

ρ∗ + w∞,1(x, s) ≤ min
y∈Ãd(x,s)











cT
s[y− x] + h (y− d)

+IE
[

w∞,1(y− d,S′)
∣

∣ S = s
]











, ∀x ∈ IR2
+, ∀s ∈ S .

(C.7)

Equations (C.3) and (C.7) yield the ACOE (5.31). Moreover, from (C.6) and the

fact that convexity and supermodularity are preserved under pointwise limits, we

conclude that for every s ∈ S, w∞,1(x, s) is convex and supermodular in x. Then,

by the same argument as the one used in Theorems 5.9 and 5.10, there exists an

optimal stationary policy with the same structure as statement (b) in Theorem 5.10

that minimizes the right hand side of the ACOE.

Thus, it just remains to show our model satisfies the five conditions. We proceed

in order, beginning with Condition (G). Consider again the policy πd transmitting

d1 packets to user 1 and d2 packets to user 2 in every slot, regardless of channel

condition. Let the initial vector of buffer levels x0 = (0, 0), and let the initial vector

of channel conditions s0 be arbitrary. Then we have:

ρ := inf
π∈Π

inf
x∈IR2

+
s∈S

{

lim sup
N→∞

1

N
V π

N,1(x, s)

}

≤ lim sup
N→∞

1

N
V πd

N,1(x0, s0) ≤ cT

maxd <∞ ,

where cT
max is defined in (B.17).

1

The only nontrivial statement in Condition (W) is the weak continuity of the

transition law. Let {xi}i=1,2,..., {si}i=1,2,..., and {yi}i=1,2,... be sequences approaching

x, s, and y, respectively, and let Γ be a bounded, continuous function on IR2
+ × S.

We need to show:

lim
i→∞

IE [Γ (X′,S′)|X = xi,S = si,Y = yi] = IE [Γ (X′,S′)|X = x,S = s,Y = y] .

1For the proof of Theorem 5.6, we use c̃max defined in (B.1) instead.
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This is true, as

lim
i→∞

IE [Γ (X′,S′)|X = xi,S = si,Y = yi]

= lim
i→∞

∑

s′∈S

Pr (S′ = s′ | S = si) · Γ (yi − d, s′)

=
∑

s′∈S

[

lim
i→∞

Pr (S′ = s′ | S = si)
]

·
[

lim
i→∞

Γ (yi − d, s′)
]

=
∑

s′∈S

Pr (S′ = s′ | S = s) · Γ (y− d, s′)

= IE [Γ (X′,S′)|X = x,S = s,Y = y] .

Next, we prove Conditions (B) and (B2). Let α ∈ [0, 1) be arbitrary. For every

s ∈ S, V∞,α(x, s) is convex in x, and

lim
||x||→∞

V∞,α(x, s) ≥ lim
||x||→∞

h(x− d) =∞ ,

so there exists an x∗(s) ∈ IR2
+ such that:

min
x∈IR2

+

{V∞,α(x, s)} = V∞,α

(

x∗(s), s
)

.

Define:

s∗ := argmin
s∈S

{V∞,α(x
∗(s), s)} ,

so that

m∞,α = V∞,α(x
∗(s∗), s∗) .

Define also the stationary policy π̆ = (y̆, y̆, . . .), where

y̆(x, s) :=
(

y̆1(x1, s1), y̆2(x2, s2)
)

, and for m ∈ {1, 2},

y̆m(xm, sm) :=



























xm, if xm∗(s∗) + dm ≤ xm

xm∗(s∗) + dm, if xm∗(s∗) + dm −
P
2

csm
≤ xm < xm∗(s∗) + dm

xm +
P
2

csm
, if xm < xm∗(s∗) + dm −

P
2

csm

.
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The stationary policy π̆ calls for the scheduler to allocate at most P
2
units of

power for transmission to each user, and tries to bring receiver m’s buffer towards

xm∗(s∗) + dm (before transmission), regardless of the random channel conditions.2

For m ∈ {1, 2}, let τm(xm, sm) be the random number of time slots until receiver

m’s buffer level at the beginning of a slot reaches xm∗(s∗) under policy π̆, start-

ing from state (xm, sm). Define also τmax(x, s) := max {τ 1(x1, s1), τ 2(x2, s2)}, and

τmin := min {τ 1(x1, s1), τ 2(x2, s2)}. Note that if xm > xm∗(s∗), then τm(xm, sm) =
⌈

x−xm∗ (s∗)
dm

⌉

, and the total discounted expected transmission and holding cost asso-

ciated with receiver m for the first τm(xm, sm) slots is upper bounded by:

ατm(xm,sm)−1 · cmmax · d
m +

τm(xm,sm)
∑

t=1

αt−1 · hm (x− t · dm)

≤ cmmax · d
m +

⌈

x−xm∗ (s∗)
dm

⌉

∑

t=1

hm (x− t · dm) . (C.8)

On the other hand, if xm ≤ xm∗(s∗), IE[τm(xm, sm)] is finite.3 Therefore, by Wald’s

Lemma, the total discounted expected transmission and holding cost associated with

receiver m for the first τm(xm, sm) slots is upper bounded by:

τm(xm,sm)
∑

t=1

αt−1 ·

[

P

2
+ hm

(

xm∗(s∗)
)

]

≤ IE[τm(xm, sm)] ·

[

P

2
+ hm

(

xm∗(s∗)
)

]

. (C.9)

So for m ∈ {1, 2}, we define:

κ̄m(xm, sm) :=



















cmmax · d
m +

⌈

x−xm∗ (s∗)
dm

⌉

∑

t=1

hm (x− t · dm) , if xm∗(s∗) < xm

IE[τm(xm, sm)] ·
[

P
2
+ hm

(

xm∗(s∗)
)]

, if xm ≤ xm∗(s∗)

.

Next, let τswitch(x, s) be the random number of time slots until the state
(

x∗(s∗), s∗
)

is reached at the beginning of a slot under policy π̆, starting from state (x, s). We
2For the proof of Theorem 5.6, the policy π̆ calls for the scheduler to allocate the full P units of power for

transmission to the single receiver when its buffer is below x∗(s∗) + d. The bounds are adjusted accordingly.
3In order to guarantee IE[τm(xm, sm)] is finite, we actually need an additional assumption that

Pr

(

P

2

cm
max

= dm

)

< 1. However, this assumption is harmless, for if it is not true, the channel condition does not vary

over time, a scenario outside of our scope of interest.
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define a new policy π̄ that follows π̆ for τswitch(x, s) slots (a random stopping time),

and then behaves optimally. Then we have:

V∞,α(x, s) ≤ V π̄
∞,α(x, s) ≤ κ̄(x, s) + V∞,α

(

x∗(s∗), s∗
)

, (C.10)

where

κ̄(x, s) :=κ̄1(x1, s1) + κ̄2(x2, s2)

+ IE
[

τswitch(x, s)− τmin(x, s)
]

·
[

cT

maxd+ h1
(

x1
∗

(s∗)
)

+ h2
(

x2
∗

(s∗)
)]

.

(C.11)

The third term in (C.11) is an upper bound on the transmission and holding costs

required to keep the vector of buffer levels at x∗(s∗) while waiting for the vector of

channel condition realizations to reach s∗. Since the vector of channel conditions is a

finite-state ergodic Markov process, this quantity is finite. Equation (C.10) implies:

w∞,α(x, s) = V∞,α(x, s)−m∞,α

= V∞,α(x, s)− V∞,α(x
∗(s∗), s∗)

≤ κ̄(x, s) <∞ .

The important thing to note here is that the bounding function κ̄(x, s) is independent

of α, so Condition (B) holds. The function κ̄(x, s) is also measurable and satisfies

(C.2), so Condition (B2) also holds.

Finally, Condition (E) follows from the fact that for every l ∈ {1, 2, . . .} and s ∈ S,

w∞,α(l)(·, s) is convex. Thus, by the finiteness of S and essentially the same argument

used by Fernández-Gaucherand, Marcus, and Arapostathis in [50, pp. 178-179],

{

w∞,α(l)(·, ·)
}

l=1,2,...
is locally equi-Lipschitzian and equicontinuous.
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Appendix D

Proof of Proposition 7.2

We prove (7.2) for the submodular case. The other statements follow from symmetric

arguments. First, assume f(·, ·) is dv(c, 2)-submodular; i.e., for every x ∈ IR2,

∆1 > 0, ∆2 > 0, and ∆̂2 :=
c2

c1
·∆2, we have:

f(x1 + ∆̂2, x
2) + f(x1 +∆1, x

2 +∆2)

≤ f(x1, x2 +∆2) + f(x1 +∆1 + ∆̂2, x
2) . (D.1)

Rearranging (D.1) yields:

f(x1 +∆1 + ∆̂2, x
2)− f(x1 + ∆̂2, x

2)

≥ f(x1 +∆1, x
2 +∆2)− f(x1, x2 +∆2) . (D.2)

Add f(x1, x2)−f(x1+∆1, x
2) to both sides of (D.2), and divide both sides by ∆1 ·∆̂2

to get:

[

f(x1 +∆1 + ∆̂2, x
2)− f(x1 + ∆̂2, x

2)
]

−
[

f(x1 +∆1, x
2)− f(x1, x2)

]

∆1 · ∆̂2

≥

[

f(x1 +∆1, x
2 +∆2)− f(x1 +∆1, x

2)
]

−
[

f(x1, x2 +∆2)− f(x1, x2)
]

∆1 · ∆̂2

. (D.3)
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Now, take the limits of (D.3) as ∆1 and ∆̂2 go to 0:

∂2f

∂x1∂x1

= lim
∆1→0,∆̂2→0

[

f(x1+∆1+∆̂2,x2)−f(x1+∆̂2,x2)

]

−

[

f(x1+∆1,x2)−f(x1,x2)

]

∆1·∆̂2

≥ lim
∆1→0,∆̂2→0

[

f(x1+∆1,x2+∆2)−f(x1+∆1,x2)
]

−
[

f(x1,x2+∆2)−f(x1,x2)
]

∆1·∆̂2

= lim
∆1→0,∆2→0

c1

c2
·

[

f(x1+∆1,x2+∆2)−f(x1+∆1,x2)
]

−
[

f(x1,x2+∆2)−f(x1,x2)
]

∆1·∆2

= c1

c2
· ∂2f

∂x1∂x2 ,

where the second to last equality follows from the substitution ∆̂2 =
c2

c1
·∆2.

Next, assume

∂2f

∂x1∂x1
≥

c1

c2
·

∂2f

∂x1∂x2
, ∀x ∈ IR2 . (D.4)

Let y ∈ IR2, ∆1 > 0, and ∆2 > 0 be arbitrary, and define ∆̂2 :=
c2

c1
· ∆2. Then we

have:

f(y1 + ∆̂2, y
2) + f(y1 +∆1, y

2 +∆2)− f(y1, y2 +∆2)− f(y1 + ∆̂2 +∆1, y
2)

= f
(

g(y1 + ∆̂2, y
2)
)

+ f
(

g(y1 + ∆̂2 +∆1, y
2 +∆2)

)

− f
(

g(y1 + ∆̂2, y
2 +∆2)

)

− f
(

g(y1 + ∆̂2 +∆1, y
2)
)

= h(y1 + ∆̂2, y
2) + h(y1 + ∆̂2 +∆1, y

2 +∆2)

− h(y1 + ∆̂2, y
2 +∆2)− h(y1 + ∆̂2 +∆1, y

2) , (D.5)

where h := f ◦ g and the change of variables g : IR2 → IR2 is defined by:

g(x1, x2) :=
(

x1 −
c2

c1
· (x2 − y2), x2

)

.
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Moreover,

h(y1 + ∆̂2, y
2) + h(y1 + ∆̂2 +∆1, y

2 +∆2)

− h(y1 + ∆̂2, y
2 +∆2)− h(y1 + ∆̂2 +∆1, y

2)

=

∫ y1+∆̂2+∆1

y1+∆̂2

∫ y2+∆2

y2

∂2h

∂x1∂x2
(u, v) dv du . (D.6)

Straightforward application of the chain rule yields:

∂2h

∂x1∂x2
(u, v) =

∂2f

∂x1∂x2
(

g(u, v)
)

−
c2

c1
·

∂2f

∂x1∂x1
(

g(u, v)
)

. (D.7)

Combining (D.5), (D.6), and (D.7), we have:

f(y1 + ∆̂2, y
2) + f(y1 +∆1, y

2 +∆2)− f(y1, y2 +∆2)− f(y1 + ∆̂2 +∆1, y
2)

=

∫ y1+∆̂2+∆1

y1+∆̂2

∫ y2+∆2

y2

∂2f

∂x1∂x2
(

g(u, v)
)

−
c2

c1
·

∂2f

∂x1∂x1
(

g(u, v)
)

dv du

≤ 0 , (D.8)

where the inequality in (D.8) follows from (D.4).
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Appendix E

Proofs for Problem (P7.1)

E.1 Proof of Theorem 7.3

We prove the statements by joint induction on the time remaining, n. The proofs

of statements (i), (ii), (iv), (v), and (vi) are essentially the same as the proofs of

the corresponding statements in Theorem 5.8, except that the functions no longer

depend on the ordering prices, which are time-invariant. So we prove statements (iii)

and (vii) here.

Base Case: n = 1

V0(x) = 0 for all x ∈ IR2, so (iii) holds trivially. Let ȳ, ỹ ∈ IR2 be arbitrary. We

show G1(y1) is dv(c, 1)-submodular by showing:

G1(ȳ) +G1(ỹ) ≥ G1(ȳ ∧dv(c,1) ỹ) +G1(ȳ ∨dv(c,1) ỹ) , (E.1)

and that G1(y1) is dv(c, 2)-submodular follows by a symmetric argument. If ȳ and ỹ

are dv(c, 1) comparable (i.e., ȳ �dv(c,1) ỹ or ỹ �dv(c,1) ȳ), then (E.1) holds trivially.

Assume ȳ and ỹ are not dv(c, 1) comparable, and assume without loss of generality

that ỹ1 > ȳ1. Thus, in order for ȳ and ỹ to not be dv(c, 1) comparable, we also have
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cTȳ > cTỹ, and therefore

ȳ ∧dv(c,1) ỹ =
(

ȳ1, cTỹ−c1·ȳ1

c2

)

, and

ȳ ∨dv(c,1) ỹ =
(

ỹ1, cTȳ−c1·ỹ1

c2

)

.

These locations of the meet and join imply:

cT(ȳ ∧dv(c,1) ỹ) + cT(ȳ ∨dv(c,1) ỹ) = cT

(

ȳ1,
cTỹ− c1 · ȳ1

c2

)

+ cT

(

ỹ1,
cTȳ− c1 · ỹ1

c2

)

= c1 · ȳ1 + cTỹ− c1 · ȳ1 + c1 · ỹ1 + cTȳ− c1 · ỹ1

= cTȳ+ cTỹ .

Thus, cTy is dv(c, 1)-submodular (it is actually a dv(c, 1)-valuation). Note that

ỹ1 > ȳ1 and cTȳ > cTỹ imply:

ȳ2 − ỹ2 ≥
c1

c2
·
(

ỹ1 − ȳ1
)

≥ 0 . (E.2)

Next, let d be an arbitrary realization of the random vector D. Then we have:

l
(

ȳ ∧dv(c,1) ỹ− d
)

+ l
(

ȳ ∨dv(c,1) ỹ− d
)

= l1
(

ȳ1 − d1
)

+ l2
(

cTỹ− c1 · ȳ1

c2
− d2

)

+ l1
(

ỹ1 − d1
)

+ l2
(

cTȳ− c1 · ỹ1

c2
− d2

)

= l1
(

ȳ1 − d1
)

+ l1
(

ỹ1 − d1
)

+ l2
(

ỹ2 − d2 +
c1

c2
·
(

ỹ1 − ȳ1
)

)

+ l2
(

ȳ2 − d2 −
c1

c2
·
(

ỹ1 − ȳ1
)

)

≤ l1
(

ȳ1 − d1
)

+ l1
(

ỹ1 − d1
)

+ l2
(

ȳ2 − d2
)

+ l2
(

ỹ2 − d2
)

= l (ȳ− d) + l (ỹ− d) ,
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where the inequality follows from the convexity of l(·), and (E.2). Since dv(c, 1)-

submodularity is preserved under addition and positive scalar multiplication, the

dv(c, 1)-submodularity of the function l (y− d) implies IE
[

l (y−D)
]

is also dv(c, 1)-

submodular, and therefore, G1(y1), the sum of dv(c, 1)-submodular functions, is also

dv(c, 1)-submodular. This completes the base case.

Induction Step

Assume statements (i) - (vii) are true for n = 2, 3, . . . , l − 1. We now show (iii)

and (vii) are true for n = l. We show (iii) for i = 1, and it follows for i = 2 by a

symmetric argument. As discussed in Section 7.3, it suffices to construct ŷ and y̌,

depending on the relative locations of x̄, x̃, y∗(x̄), and y∗(x̃), so as to ensure:

min
y∈Â(x̄)

{

Ĝl−1(y)
}

+ min
y∈Â(x̃)

{

Ĝl−1(y)
}

= Ĝl−1

(

y∗(x̄)
)

+ Ĝl−1

(

y∗(x̃)
)

≥ Ĝl−1(ŷ) + Ĝl−1(y̌) (E.3)

≥ min
y∈Â(x̄∧dv(c,1)x̃)

{

Ĝl−1(y)
}

+ min
y∈Â(x̄∨dv(c,1)x̃)

{

Ĝl−1(y)
}

.

If x̄ and x̃ are dv(c, 1)-comparable, the desired conclusion is trivial, so we assume

without loss of generality that x̄1 ≤ x̃1 and cTx̄ ≥ cTx̃. For x = x̄, x̃, let

y∗(x) =
(

y1
∗

(x), y2
∗

(x)
)

= min
y∈Â(x)

{

Ĝl−1(y)
}

.

Before proceeding, we note that for two vectors z̄, z̃ ∈ IR2,

z̄ ∧dv(c,1) z̃ =







max {z̄1, z̃1} ,

max
{

z̄2 − c1

c2
·max{0, z̃1 − z̄1}, z̃2 − c1

c2
·max{0, z̄1 − z̃1}

}






,

and z̄ ∨dv(c,1) z̃ =







min {z̄1, z̃1} ,

min
{

z̄2 + c1

c2
·max{0, z̄1 − z̃1}, z̃2 + c1

c2
·max{0, z̃1 − z̄1}

}






.

222



We now consider four exhaustive cases for the relative locations of x̄, x̃,y∗(x̄), and

y∗(x̃).

Case 1: y1
∗

(x̄) ≤ y1
∗

(x̃)− (x̃1 − x̄1) and cTy∗(x̄) ≥ cTy∗(x̃)

Define:

ŷ := x̄ ∧dv(c,1) x̃+ y∗(x̃)− x̃, and

y̌ := x̄ ∨dv(c,1) x̃+ y∗(x̄)− x̄ .

Clearly ŷ ∈ Â
(

x̄ ∧dv(c,1) x̃
)

and y̌ ∈ Â
(

x̄ ∨dv(c,1) x̃
)

, so we just need to show:

Ĝl−1

(

y∗(x̄)
)

+ Ĝl−1

(

y∗(x̃)
)

≥ Ĝl−1(ŷ) + Ĝl−1(y̌) . (E.4)

For that matter, define:

z1 :=

(

y1
∗

(x̄),
cTy∗(x̃)− c1 · y1

∗

(x̄)

c2

)

, and

z2 :=

(

y1
∗

(x̄) + x̃1 − x̄1,
cTy∗(x̃)− c1 ·

(

y1
∗

(x̄) + x̃1 − x̄1
)

c2

)

.

See Figure E.1 for a diagram of these points. Note that z1, z2, ŷ, and y∗(x̃) all lie on
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Figure E.1. Diagram of the points referred to in Case 1 of the proof of dv(c, 1)-submodularity.
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the line:

{

y ∈ IR2 : cTy = cTy∗(x̃)
}

. (E.5)

Furthermore, we have:

z12 − z11 = x̃1 − x̄1 = y1
∗

(x̃)− ŷ1, (E.6)

z11 = y1
∗

(x̄) ≤ y1
∗

(x̄) + x̃1 − x̄1 = z12 ≤ y1
∗

(x̃), and (E.7)

z11 = y1
∗

(x̄) ≤ y1
∗

(x̃) + x̄1 − x̃1 = ŷ1 ≤ y1
∗

(x̃). (E.8)

Equations (E.6)-(E.8) and the convexity of Ĝl−1(·) along the line defined in (E.5)

imply:

Ĝl−1

(

y∗(x̃)
)

≥ Ĝl−1(z2)− Ĝl−1(z1) + Ĝl−1(ŷ). (E.9)

Additionally, by the dv(c, 1)-submodularity of Ĝl−1(·), we have:

Ĝl−1

(

y∗(x̄)
)

≥ Ĝl−1

(

y∗(x̄) ∧dv(c,1) z2
)

+ Ĝl−1

(

y∗(x̄) ∨dv(c,1) z2
)

− Ĝl−1(z2)

= Ĝl−1(z1) + Ĝl−1(y̌)− Ĝl−1(z2). (E.10)

Summing (E.9) and (E.10) yields the desired result, (E.4).

Case 2: y1
∗

(x̄) ≤ y1
∗

(x̃)− (x̃1 − x̄1) and cTy∗(x̄) ≤ cTy∗(x̃)

If y2
∗

(x̄) < y2
∗

(x̃) + c1

c2
· (x̃1 − x̄1), then y∗(x̄) ∈ Â

(

x̄ ∧dv(c,1) x̃
)

and

y∗(x̃) ∈ Â
(

x̄ ∨dv(c,1) x̃
)

. So in this case, we just let ŷ = y∗(x̄) and y̌ = y∗(x̃).

Otherwise, we have:

y2
∗

(x̄) ≥ y2
∗

(x̃) +
c1

c2
· (x̃1 − x̄1) . (E.11)

Define ŷ and y̌ the same way as in Case 1, and define:

z1 := y∗(x̄) ∨dv(c,2) ŷ =

(

cTy∗(x̃)− c2 · y2
∗

(x̄)

c1
, y2

∗

(x̄)

)

, and
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z2 := y∗(x̃) ∨dv(c,2) y̌

=

(

cTy∗(x̃)− c2 · y2
∗

(x̄) + c1 · (x̃1 − x̄1)

c1
, y2

∗

(x̄)−
c1

c2
·
(

x̃1 − x̄1
)

)

.

See Figure E.2 for a diagram of these points. The rest of the argument to show (E.4)
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Figure E.2. Diagram of the points referred to in Case 2 of the proof of dv(c, 1)-submodularity.

is the same as Case 1, except that (E.10) follows from the dv(c, 2)-submodularity of

Ĝl−1(·) rather than the dv(c, 1)-submodularity of Ĝl−1(·).

Case 3: y1
∗

(x̃)− (x̃1 − x̄1) ≤ y1
∗

(x̄) ≤ y1
∗

(x̃)

If cT [y∗(x̃)− x̃] ≥ c1 ·
(

y1
∗

(x̄)− x̄1
)

, let

ŷ := y∗(x̄) ∧dv(c,1) y
∗(x̃), and

y̌ := y∗(x̄) ∨dv(c,1) y
∗(x̃) .

Then (E.4) follows directly from the dv(c, 1)-submodularity of Ĝl−1(·). A fair bit of

algebra shows that ŷ ∈ Â
(

x̄ ∧dv(c,1) x̃
)

and y̌ ∈ Â
(

x̄ ∨dv(c,1) x̃
)

, as desired.

Otherwise, we have:

cT [y∗(x̃)− x̃] ≤ c1 ·
(

y1
∗

(x̄)− x̄1
)

.
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Define:

ŷ := x̄ ∧dv(c,1) x̃+ y∗(x̄)− x̄,

y̌ := x̄ ∨dv(c,1) x̃+ y∗(x̃)− x̃,

z1 := y∗(x̄) ∧dv(c,1) y̌ =

(

y1
∗

(x̃),
cTy∗(x̄)− c1 · y1

∗

(x̃)

c2

)

, and

z2 := y∗(x̃) ∨dv(c,1) ŷ =

(

y1
∗

(x̃),
cTŷ− c1 · y1

∗

(x̃)

c2

)

.

See Figure E.3 for a diagram of these points. Then, by the convexity of Ĝl−1(·) along
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Figure E.3. Diagram of the points referred to in Case 3 of the proof of dv(c, 1)-submodularity.

the line y1 = y1
∗

(x̃), we have:

Ĝl−1 (y
∗(x̃)) ≥ Ĝl−1 (y̌) + Ĝl−1 (z2)− Ĝl−1 (z1) , (E.12)

and by the dv(c, 1)-submodularity of Ĝl−1(·), we have:

Ĝl−1 (y
∗(x̄)) ≥ Ĝl−1 (ŷ) + Ĝl−1 (z1)− Ĝl−1 (z2) . (E.13)

Summing (E.12) and (E.13) yields the desired result, (E.4).
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Case 4: y1
∗

(x̃) ≤ y1
∗

(x̄)

If y2
∗

(x̃) ≥ (x̄ ∧dv(c,1) x̃)2 = x̃2 + c1

c2
· (x̃1 − x̄1), then y∗(x̃) ∈ Â

(

x̄ ∧dv(c,1) x̃
)

and

y∗(x̄) ∈ Â
(

x̄ ∨dv(c,1) x̃
)

. So in this case, we just let ŷ = y∗(x̃) and y̌ = y∗(x̄).

Otherwise, we have:

y2
∗

(x̄) ≥ x̄2 ≥ (x̄ ∧dv(c,1) x̃)
2 = x̃2 +

c1

c2
· (x̃1 − x̄1) > y2

∗

(x̃) .

Let β ∈ (0, 1) be such that:

β · y2
∗

(x̄) + (1− β) · y2
∗

(x̃) = (x̄ ∧dv(c,1) x̃)
2 .

Then define:

ŷ := βy∗(x̃) + (1− β)y∗(x̄), and

y̌ := (1− β)y∗(x̃) + βy∗(x̄) .

See Figure E.4 for a diagram of these points. It is straightforward to show ŷ ∈
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Figure E.4. Diagram of the points referred to in Case 4 of the proof of dv(c, 1)-submodularity.

Â
(

x̄ ∧dv(c,1) x̃
)

and y̌ ∈ Â
(

x̄ ∨dv(c,1) x̃
)

, and (E.4) follows directly from the convexity

of Ĝl−1(·). This completes the induction step for (iii).
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Statement (vii), the dv(c, i)-submodularity of Gl(y), follows from the same series

of arguments as (iii) and (iv) in Theorem 5.8, because, like convexity and supermod-

ularity, dv(c, i)-submodularity is preserved under addition and positive scalar multi-

plication.

E.2 Proof of Theorem 7.4

The structure of the optimal policy when the vector of starting inventories is in

regions R̂I(n), R̂II(n), R̂III−A(n), and R̂III−B(n) follows from essentially the same

arguments as Theorem 5.9. Let x ∈ R̂IV−A(n) be arbitrary. Also let ỹ ∈ Â(x) be

arbitrary, and define:

z1 := ỹ ∧dv(c,2)

(

f̂ 1n(x
2), x2

)

=

(

cTỹ− c2 · x2

c1
, x2

)

, and

z2 := ỹ ∨dv(c,2)

(

f̂ 1n(x
2), x2

)

=

(

c1 · f̂ 1n(x
2) + c2 · x2 − c2 · ỹ2

c1
, ỹ2

)

.

See Figure E.5 for a diagram of these points. By the dv(c, 2)-submodularity of Ĝn(·),

0
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Figure E.5. Diagram of the points referred to in the proof of the optimal control action in region
R̂IV−A(n).

we have:

Ĝn(z1) + Ĝn(z2) ≤ Ĝn(ỹ) + Ĝn

(

(

f̂ 1n(x
2), x2

)

)

. (E.14)
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Furthermore, by the definition of f̂ 1n(·) and the convexity of Ĝn(·) along the curve
(

f̂ 1n(x
2), x2

)

, we have:

Ĝn(z2) ≥ Ĝn

(

(

f̂ 1n(ỹ
2), ỹ2

)

)

≥ Ĝn

(

(

f̂ 1n(x
2), x2

)

)

. (E.15)

Equations (E.14) and (E.15) imply:

Ĝn(z1) ≤ Ĝn(ỹ) , (E.16)

and the convexity of Ĝn(·) along the line y
2 = x2 implies:

Ĝn

(

(

f̂ 1n(x
2), x2

)

)

≤ Ĝn

(

x1 +
P

c1
, x2

)

≤ Ĝn(z1) . (E.17)

Equations (E.16) and (E.17) imply:

Ĝn

(

x1 +
P

c1
, x2

)

≤ Ĝn(ỹ) ,

and since ỹ ∈ Â(x) was arbitrary, we have:

Ĝn

(

x1 +
P

c1
, x2

)

= min
y∈Â(x)

{

Ĝn(y)
}

.

The optimality of y∗n(x) =
(

x1, x2 + P
c2

)

for x ∈ R̂IV−C(n) follows from a symmetric

argument.

Next, let x ∈ R̂IV−B(n) be arbitrary. The fact that cT [y∗n(x)− x] = P follows

from essentially the same argument as Theorem 5.9, so we want to show here that

there exists a y∗n(x) � b̂n. First, let ỹ ∈ Â(x) be arbitrary with ỹ2 > b̂2n. Define the

points:

z1 := ỹ ∧dv(c,2) b̂n =

(

cTỹ− c2 · b2

c1
, b2

)

, and

z2 := ỹ ∨dv(c,2) b̂n =

(

cTb̂n − c2 · ỹ2

c1
, ỹ2

)

.

See Figure E.6 for a diagram of these points. By the dv(c, 2)-submodularity of Ĝn(·),
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Figure E.6. Diagram of the points referred to in the proof of the optimal control action in region
R̂IV−B(n).

we have:

Ĝn(z1) + Ĝn(z2) ≤ Ĝn(ỹ) + Ĝn

(

(

f̂ 1n(x
2), x2

)

)

. (E.18)

Furthermore, by the global optimality of b̂n, we have:

Ĝn(z2) ≥ Ĝn(b̂n) . (E.19)

Equations (E.18) and (E.19) imply:

Ĝn(z1) ≤ Ĝn(ỹ) .

Note that, by construction, z1 ∈ Â(x) and z1 � b̂n. By a symmetric argument,

for every ỹ ∈ Â(x) with ỹ1 > b̂1n, there exists a ȳ ∈ Â(x) with ȳ � b̂n such

that Ĝn(ȳ) ≤ Ĝn(ỹ). Thus, there exists a choice of y∗n(x) such that y∗n(x) � b̂n.
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