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Abstract

This dissertation is concerned with control of systems subject to input and state

constraints. Model Predictive Control (MPC) is one promising control technique

that is capable of dealing with constraints. Its flexible formulation also provides

mechanisms to tune the closed loop system for desired performance. However, due

to computational complexity and its dependency on accurate models of the system,

the MPC applications for systems with fast dynamics or with model uncertainties

are not wide spread. The focus of this dissertation is to develop methodologies and

tools that can enhance the computational efficiency and address robustness issues of

constrained dynamic systems. The core contribution of this dissertation is that it

provides a computational efficient MPC solver, referred to as InPA-SQP (Integrated

Perturbation Analysis and Sequential Quadratic Programming).

The main results include four major components. First, a neighboring extremal

control method is proposed for discrete-time optimal control problems subject to

a general class of inequality constraints. A closed form solution for the neighbor-

ing extremal (NE) control is provided and a sufficient condition for existence of the

neighboring extremal solution is specified. Second, the NE method is integrated with

sequential quadratic programming that leads to InPA-SQP. Third, a robust control

method is introduced for linear discrete-time systems subject to mixed input-state

constraints. Unlike conventional MPC, the method does not require repeatedly solv-

ing an optimization problem online while guarantees states convergence to a minimal

invariant set. Fourth, it is shown that if the dynamics of disturbances are incor-

porated, the attractor set associated with the proposed constrained robust control

methods can be considerably smaller, leading to a much less conservative design.

Applications of the InPA-SQP and proposed constrained robust control constitute

the other key element of the study. The InPA-SQP is employed in two experimental

applications: one for voltage regulation of a DC/DC converter and another for path

following of a model ship. Both applications show effectiveness of the method in

terms of computation and constraints handling. These applications not only serve as

validation platforms but also motivate new research topics for further investigation.

xi



Chapter 1

Introduction

This dissertation is concerned with control of systems subject to input and state

constraints. Most systems are subject to constraints due to physical and operational

limitations such as actuators saturation. The control of these constrained dynamical

systems has been a subject of research for decades. Conventional control systems

are designed such that systems operate conservatively away from boundaries of con-

straints while prominent properties such as stability are attained.

Another approach which has increasingly become popular, is to use available dy-

namic model to predict system behavior as a function of control variations and choose

the control action that produces the best behavior. This idea, which involves an op-

timization in each control decision making, led to Model Predictive Control (MPC),

also known as Receding Horizon Control technology. MPC has been primarily used

in the petro-chemical and process control industries [3]. In these industries, the

operating points are obtained by solving linear programs and due to economic con-

siderations they are required to be on the boundary of feasibility. This made MPC

quite attractive.

However, due to computational complexity and its dependency on accurate mod-

els of the system, the MPC applications for systems with fast dynamics or with model

uncertainties are not wide spread. With the advent of faster and cheaper comput-

ers, it was expected that this technology can be used beyond process control. The

focus of this dissertation is to develop methodologies and tools that can enhance the

computational efficiency of MPC or other optimization-based control strategies and

address robustness issues of constrained dynamic systems.
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1.1 Background

One of the most prominent optimization-based control methods is MPC [1], while

other forms of optimization-based control, such as a reference governor [2], have

also been developed to deal with constrained dynamic systems. In MPC, a control

sequence is determined at every sampling time instant to minimize a specified cost

function defined for a discrete-time system model, then the first element of the optimal

sequence is used as the control action. The cost function is a tool for MPC to achieve

a desired performance. The accuracy of the model also affects the performance as

well as constraints satisfaction.

The system to be controlled is usually described, or approximated, by an ordinary

differential equation but, since the control is normally piecewise constant, is usually

modelled, in the MPC literature, by a difference equation:

x(k + 1) = f(x(k), u(k)), (1.1)

where x ∈ Rn is the state vector and u ∈ Rm is the input vector. u(·) or u is employed

to denote a control sequence and xu(·;x) denotes a state trajectory resulting from

the initial state x and control sequence u. The control and state must satisfy the

constraint (u(k), x(k)) ∈ Ω ⊂ Rm+n. For the observed state x(k), the cost is defined

by

J(x(k),u) :=
k+N−1∑

i=k

L(xu(i;x(k)), u(i)) + Φ(xu(N + k;x(k))), (1.2)

where u = {u(k), u(k + 1), · · · , u(k +N − 1)}, N is length of the prediction horizon,

and L(x, u) and Φ(x) are non-negative functions of (x, u) and x, respectively. A

terminal constraint xu(N+k;x(k)) ∈ Xf is sometimes imposed to guarantee stability

of the system. At time instant k, the state x(k) is observed and the optimization

problem P(x(k)) defined by

P(x(k)) : J∗(x(k)) = min
u
J(x(k),u)

subject to the dynamic equation (1.1)

and constraints (u(i), xu(i;x(k))) ∈ Ω

(1.3)

is typically solved numerically to obtain the, not necessarily unique, optimal control

sequence u∗. The first element of u∗ is applied to the plant until new measurements

2



become available at the next sampling time instant at which point the optimization

is repeated.

For simplicity, the control, prediction and constraint horizons in (1.3) are all as-

sumed to be equal to N . There are many variations of the problem (1.3) which can

help reduce the computational effort or improve performance. For instance, a con-

trol horizon within the prediction horizon can be defined to reduce the optimization

dimension by assuming u is constant beyond the control horizon [4]. The horizon

over which the constraints are enforced can also be different from the control horizon.

Reference [5] proposes the block MPC that uses a subsequence of optimizing control

inputs to achieve stabilization and to reduce the frequency of optimization.

The MPC framework can explicitly address constraints as the constraints can

be easily incorporated in the on-line optimization problem. In addition, it provides

a flexible mechanism for shaping the transient response by adjusting the weights

in the cost function and for handling hybrid/switching dynamic systems as well as

reconfigurable control applications. For instance, failures or system changes can be

handled by MPC with relative ease as long as these changes are reflected in the model

used during the on-line optimization.

However, there are major challenges associated with MPC such as stability, com-

putational efficiency, robustness, and imperfect measurement that are discussed in

the sequel.

1.1.1 Stability of MPC

The standard MPC formulation (1.3) for system (1.1) may not always lead to a stable

closed-loop system. In fact, it is well-known that “optimality in the MPC framework

does not imply stability” and the issue of ensuring stability has been long recognized

as fundamental. Starting from the work by Keerthi and Gilbert [6], considerable

progress has been made in the last 20 years, and many different algorithms and

mechanisms have been proposed to assure closed-loop stability. See, for instance, the

book [7]. In fact, the theory of stability of model predictive control has reached a

relatively mature stage, as elaborated in the 2000 survey paper by Mayne et. al. [1].

There are several mechanisms for guaranteeing stability in MPC. They include

extending the prediction horizon, incorporating an appropriately defined terminal

cost, imposing constraints on the final state at the end of the prediction horizon

and imposing an artificial condition on a positive-definite function of system terminal

states. The assumption of the existence of a local stabilizing controller, whose function

3



is to stabilize the system within a neighborhood of the origin without violating the

constraints, has played a prominent role in the stability treatments of MPC. The value

function is almost universally employed as a Lyapunov function for stability analysis

of MPC. In [1], seeking to unify the existing results, four axioms are formulated

as sufficient conditions for MPC closed-loop system stability. Various modifications

of MPC aimed at guaranteeing stability are shown to differ only in their choice of

terminal cost, terminal constraint set and local stabilizing controller.

It is interesting to note that in practical applications of MPC, the above mech-

anisms for guaranteeing stability are not always used because they may limit the

performance of the system. An a posteriori check of stability via either simulations or

construction of Lyapunov functions may be used if the above mechanisms for guar-

anteing stability are not incorporated a priori.

Another critical issue in practical applications of MPC is feasibility in tracking or

disturbance rejection. Final constraint sets or sufficiently long length of prediction

horizon are sometimes required, especially if state constraints are involved.

1.1.2 Computational considerations in MPC

Parallel to the stability research, much effort has been dedicated to improving the

computational aspects of MPC, with the goal to broaden the range of its applications

to systems with fast dynamics and limited computing capability.

Several different venues have been explored. Some of the basic ideas involved are

briefly described below.

Model complexity reduction

Several schemes aimed at reducing computational time can be found in the literature,

including model reduction techniques [8, 9, 10, 11].

Model complexity reduction can dramatically reduce the required computing re-

sources. The reduced order models used for MPC can be developed through various

mechanisms. For example, the required computing resources can be dramatically re-

duced by leveraging the time scale decomposition of dynamics of different components

and focusing just on dominant dynamics. See, for instance, [12, 13]. Some methods

have achieved a reduction in computation by using regional linear approximation of

nonlinear models [14, 16].
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Another idea involves approximation of a nonlinear model with a linear model

(either a time-invariant linear model or a time-varying linear model obtained by lin-

earizing the nonlinear system around the solution trajectory to the MPC problem

from the previous time instant), of approximation of the cost with a quadratic func-

tion, and approximation of the constraints by linear constraints. By tightening the

constraints to appropriately account for the differences between the linear and non-

linear model, feasibility can be assured, while the optimization reduces to solving a

quadratic programming problem.

However, model reduction leads to model uncertainties which might reduce per-

formance or potentially cause instability.

Explicit MPC

For linear and piecewise affine linear systems with 1-, 2- or ∞- norm based costs and

affine constraints, an explicit solution to the MPC problem can be generated off-line

by using multi-parameteric quadratic programming and linear programming solvers

[17, 18, 19]. The explicit solution has the form of a set of polyhedral regions and

in each region the control is an affine function of the state. Once such a solution is

computed off-line, the on-line computations reduce to finding the polyhedral region

to which the state belongs and computing the affine control function defined for that

region. When applied to nonlinear systems, this method requires approximation of

nonlinearities by piecewise affine functions. Recent implementation of the piecewise

affine system identification toolbox (PWAID) [20, 21] greatly facilitates the applica-

tion of this method. The state dimension and control horizon limit the applicability

of this method due to the rapid growth in the number of the polyhedral regions as

these parameters increase. The closed loop system using an explicit MPC law is

amenable to an a posteriori stability check using LMI techniques [22]. However, for

the approach with explicit solution, polyhedral partitions grow exponentially with

respect to the length of horizon which causes problems when long horizon is required

for stability.

Reformulation to a lower dimensional optimization problem

By reformulating the MPC as a lower dimensional optimization problem, the compu-

tational complexity can be reduced thereby making the on-line solution more com-

putationally feasible. The reference governor is a representative example along these

5



lines, where a one-dimensional optimization is typically employed, together with the

maximum admissible set concept, to provide both stability and constraint enforcement

properties for the closed loop system [23, 24, 2]. The parameter governor approaches

proposed in [25] have a similar flavor.

Decentralized and hierarchical MPC

With a decentralized or hierarchical implementation of MPC, the treatment of large

scale MPC problems may become feasible as an original, large size, optimization

problem can be reduced to a set of smaller and more tractable optimization problems.

In multi-agent systems, the agents can solve these smaller optimization problems

in parallel. The work in this direction includes references [26, 27, 28, 29]. It is

interesting that the treatment of hierarchical MPC problems in which a higher level

MPC controller calculates set-points for lower level MPC controllers have received

less attentions, even though a higher level MPC solution may be used by the lower

level MPC controllers as a preview. For recent work in this direction, see [30].

Special purpose computing hardware

Special purpose hardware solutions may play a role in the future implementation of

MPC algorithms. The work in this direction includes [31, 32].

1.1.3 Online optimization

In many applications, due to nonlinearity of the system and the need for a long length

of horizon for stability and enhanced performance, on-line implementation of MPC is

the best, if not the only, choice.

In MPC algorithms based on online optimization, Quadratic Programming (QP)

problems often arise as subproblems during the iterative nonlinear solution procedure,

so that several QPs may need to be solved in each sampling time. In most MPC algo-

rithms, the arising QPs are treated using well tested and efficient standard methods

for optimization. When sampling times become so short that the computation times

for QP solutions can no longer be neglected, specialized algorithms that exploit the

structure of the QPs become an interesting alternative to standard QP solvers. Inte-

rior Point Method [33] is a category of approaches to solve the QPs associated with

6



MPC [34]. The drawback of the method is that, so far, no efficient warm start, i.e.,

suitable initial guess, exists for implementation of MPC at each sample time.

On the other hand, approximating the solution of the MPC optimization problem

using a pre-computed nominal optimal solution, i.e., an optimal solution correspond-

ing to a fixed initial state, can also reduce the on-line MPC computational require-

ments. If the current state is sufficiently close to the initial state associated with the

nominal solution, the optimal solution corresponding to the current state can be ap-

proximated. The nominal solution can be pre-computed off-line for different regions,

or it can be computed online between two sample instants, using state predictions

[35], [36]. The idea of using the previous solution as the warm start for solving QPs

arising in MPC is introduced in [37] where QPs are solved based on an active set

method. In MPC strategy, the previous observed state and current state are close

for short sampling times. Therefore, the idea of using previous optimal solution to

compute current one can be interpreted as calculating the perturbation in an optimal

solution, once the initial state is perturbed. The approximation of such a perturba-

tion can follow the well known Neighboring Extremal method, which was developed

in the 1960’s. Given an optimal control problem and an optimal solution with a

nominal initial state, the Neighboring Extremal (NE) method provides a closed form

first order approximation to the optimal solution corresponding to an initial state

perturbed from the nominal value. MPC is one of many applications where knowing

a nominal optimal solution, it is desired to calculate the NE solution.

The neighboring extremal solution for unconstrained continuous-time systems is

presented in several papers [38, 39], [40], [41] and [42], while its discrete-time counter-

part can be found in [43, 44, 45]. Subsequently, the NE solution for continuous-time

systems with inequality constraints and discontinuities has been derived using multi-

point boundary value techniques, as presented in [40].

For discrete-time systems subject to constraints, the finite horizon optimal control

problem, in general, can be reformulated as a nonlinear programming problem. Con-

sequently, exploiting sensitivity analysis for the nonlinear programming problem, the

NE solution can be calculated as shown in [46]. If N denotes the length of the hori-

zon in the optimization problem, the computational complexity of the corresponding

nonlinear programming problem and of the method in [46] is of the order N3. A con-

strained NE method, i.e., extension of the existing NE method to constrained dynamic

optimization problems, is needed to calculate first order approximation of optimal so-

lution of order of N . The constrained NE can be employed in MPC optimization

to provide a computationally efficient MPC solver. Moreover, the constrained NE
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method can be used in applications where a pre-computed nominal optimal solution

needs to be modified online due to the presence of state disturbances.

1.1.4 Robust MPC

It is important for MPC strategy to maintain stability and constraint compliance in

the presence of model uncertainties and disturbances. With regard to stability, it

is shown experimentally that MPC is robust with respect to some degree of model

mismatch. Moreover, it is shown theoretically that MPC is inherently robust with

respect to special class of model uncertainties, such as small gain perturbations [15].

Even though it is shown that MPC is inherently robust to sufficiently small distur-

bances, for general disturbances stability is not guaranteed. To guarantee stability,

open-loop input control sequence MPC strategies, proposed in [16], in which the con-

trol action is taken as the first element of an optimal control sequence, may result

in a small (or even empty) domain of attraction in the presence of disturbances. As

a remedy, a min-max optimization over open loop control trajectories or feedback

strategies is proposed [47]. However, optimization over arbitrary feedback policies,

in the presence of constraints, may be especially difficult. Therefore, this problem is

considered as open for general systems. A special, but important, class of systems are

linear systems subject to polyhedral constraints on states and inputs and bounded

additive state disturbances. The robust control of this class of systems has been

studied employing reference governors [24, 48] and model predictive controllers [1, 49]

with guaranteed stability and convergence properties.

Robust MPC for this class of systems is based on the idea of assuring robustness

of the resulting controlled system by tightening the constraints on states and controls

over the prediction horizon. This was proposed initially in [50] as well as in [51, 52,

53, 54]. The key idea is to retain a suitable margin from constraint violation over

the prediction horizon so that feasibility is guaranteed for the future iterations, in

the presence of allowable disturbances. In the framework of the constraint tightening

approach, some MPC strategies, which were focused on affine feedback policies, were

employed where the state feedback gain(s) are calculated off-line and optimization

was performed over constant terms [52, 55, 56].
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1.1.5 MPC with output feedback

MPC strategy generally relies on full state information [1]. However, in practical

applications, perfect information of the state is not available. For linear systems with

no disturbance, an observer and a linear controller provide closed-loop stability based

on separation principle. However, in the presence of disturbances and constraints,

combination of an observer and the predictive controller does not necessarily guar-

antees stability. This problem is dealt with by involving the state estimator error in

the design of the predictive controller. Assuming that the estimator error is bounded,

control of linear system with unknown states can be transformed to model predictive

control of a linear system subject to bounded additive disturbance [57]. Control of the

reformulated system is widely addressed in the robust MPC literature as discussed in

Section 1.1.4. Hence, the same techniques are used for control of constrained systems

with imperfect state information.

1.2 Contributions

This dissertation deals with approaches to improve efficiency and robustness of MPC.

For computational efficiency, the constrained NE method is developed and is inte-

grated with SQP to provide integrated perturbation analysis and SQP (InPA-SQP).

The method is employed in two experimental applications that demonstrate its effec-

tiveness. Even though the constrained NE method was developed for efficient MPC

implementation, it has a broader formulation and application in approximating a

perturbed optimal solution [58].

Regarding robustness of MPC, it is shown that without repeatedly solving an

optimization problem, stability and successive feasibility in the presence of additive

disturbance can be achieved for a class of linear systems. Moreover, it is shown that

if the dynamics of disturbances are taken into account, considerably less conservative

robust controllers can be designed. In the following subsections, the highlighted

contributions are briefly reviewed.
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1.2.1 Constrained Neighboring Extremal Method and InPA-
SQP

As a step towards a computationally efficient MPC algorithm, a NE method is de-

veloped in this dissertation for discrete-time systems subject to general inequality

constraints on inputs and states with the computational complexity of order N as

opposed to N3 [59]. Moreover, a second order sufficient optimality condition for the

nominal optimal solution is provided that is computationally verifiable of order N (in-

cluding the case where linearization is performed on-line). This is the same condition

for existence of NE solution and for local convexity of the nonlinear dynamic optimiza-

tion in the vicinity of the nominal optimal solution. The NE approach has application

beyond efficient MPC implementation. It can be employed in any circumstance where

an optimal solution is available a priori and the optimal solution corresponding to

new initial state needs to be approximated, see [40, 60]. The developed NE method

(or perturbation analysis) is combined with sequential quadratic programming (SQP)

with active set method to provide Integrated Perturbation Analysis and Sequential

Quadratic Programming (InPA-SQP) approach, for the MPC implementation [61]. It

synergistically combines the solutions derived using perturbation analysis and SQP

to solve the optimization problem with an initial state perturbation and input/state

constraints. Numerical examples and simulation results are provided in this disser-

tation that show effectiveness of the InPA-SQP method. InPA-SQP is based on the

same idea as introduced in [37], [62] where, based on active set method, anominal

optimal solution is used to calculate the current MPC optimal solution. However,

thanks to the developed constrained NE method, as mentioned above, it enjoys the

following properties which are lacking in other active set based strategies:

• InPA-SQP provides an explicit solution for QPs with equality constraints associ-

ated with active set method iteration. InPA-SQP has computational complexity

of order N .

• The second order sufficient conditions derived in the dissertation can be verified

to order N, making it possible to check optimality of the solutions calculated

by any optimization solver.

• The necessary and sufficient conditions for degeneracy of the QPs arising in

MPC are determined.

It is important to note that the constrained NE method provides second order

sufficient optimality conditions (SOSC) for discrete-time dynamic optimization prob-
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lems. All dynamic optimization problem solvers are based on first order necessary

conditions (KKT conditions) and therefore once the solution converges it is not guar-

anteed that the solution is actually optimal.

The computational complexity being of order N , is the property that Interior

Point based MPC solvers also posses. However, interior point methods, as opposed

to SQP, lack the advantage of warm start using the previous optimal solution as

previously mentioned. That is why sequential quadratic programming based on active

set method is better suited for solving MPC optimization problems.

1.2.2 InPA-SQP implementation and Experimental Results

Another important contribution in this dissertation is the application of the MPC,

and InPA-SQP algorithms. InPA-SQP is employed in two experimental applications.

As the first application, MPC is implemented via the proposed InPA-SQP to reg-

ulate the output voltage of a DC/DC converter with peak current protection. A

DC/DC converter has very fast dynamics and therefore requires an efficient MPC

implementation algorithm to achieve sub-millisecond sampling time. The full bridge

DC/DC Converter was initially proposed in previous studies [63], [64] for both high

power density and high power applications. It is very attractive because of its zero

voltage switching, low component stresses, and high power density features [65], [66].

Moreover, its high frequency transformer prevents fault propagation and enables a

high output/input voltage ratio. Therefore, with a full bridge DC/DC converter as

the power conditioning system, low voltage energy systems can be applied to high

DC voltage applications, such as the DC zonal electrical distribution system of an all

electric ship [67]. To investigate the voltage regulation of a full bridge DC/DC based

power conditioning system, an experimental testbed was developed at the University

of Michigan to support model development and to facilitate a model based control

design approach [68]. The voltage regulation problem is formulated as an MPC prob-

lem using a nonlinear model to predict the future plant behavior. The peak current

protection requirement is formulated as a nonlinear constraint. To achieve 300 µ s

sampling time and handle the nonlinear constraint, the InPA-SQP method is em-

ployed to solve the constrained optimal control problem. The InPA-SQP solver can

significantly improve computational efficiency while effectively handling the nonlinear

constraints, making real-time implementation of MPC feasible for a power electron-

ics systems with fast dynamics. The experimental results reveal that the NMPC

algorithms successfully achieve voltage regulation and peak current protection. The
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details about the DC/DC converter test bed, and implementation of InPA-SQP will

be explained [69].

As the second application, InPA-SQP is also used for control of a model ship

in Marine Hydro-Dynamic Lab (MHL) to follow a pre-specified path. InPA-SQP is

used for the path following problem for a model ship via rudder control. 3-degree-of-

freedom simplified nonlinear and linear models are adopted in the controller design

and a corresponding 6-degree-of-freedom nonlinear container ship model is used in

simulations in order to study and compare the performance of the MPC using the

linear and nonlinear models. The InPA-SQP algorithm is used to implement both the

linear and nonlinear MPC on a model ship to experimentally validate the algorithm

and compare the performance. Experimental results show the effectiveness of the

proposed MPC solver [70].

1.2.3 Robust MPC

To achieve successive feasibility and stability, for constrained linear dynamic systems,

it turns out that it is not necessary to solve repeatedly an on-line optimization prob-

lem. In this dissertation, a robust control method is introduced for linear discrete-

time systems subject to mixed input-state constraints. The proposed scheme, which

is based on the constraint tightening approach [51]-[54], has several special features.

First, unlike robust MPC approaches, our proposed method does not involve repeated

online optimization to determine the control action. Second, under appropriate and

easily verifiable conditions, the proposed controller guarantees feasibility. Third, the

minimal invariant set corresponding to the off-line calculated state feedback is an

attractor, i.e., all trajectories converge to this set. Fourth, our approach does not

require the terminal constraint set to be contained in the desired target set, which

is a typical assumption made in the prior literature, except for [53]. In fact, the ter-

minal constraint set, namely the set to which the final predicted state must belong,

can be much larger than the target set. Finite-time convergence to the target set is

guaranteed as long as the target set contains the minimal invariant set. Moreover,

our method requires no explicit knowledge of the minimal invariant set.

As an example to illustrate the applications of the proposed algorithm, the roll

control problem for a high speed ship equipped with stabilizing fins is considered in

this dissertation. Control of the roll motion of ships has been extensively considered

in the literature [71]-[73]. As elaborated in [72], large roll motions induced by ocean

waves can severely affect the safety and performance of surface ships. To reduce
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the roll motion, different devices have been developed, including the so called “fin

stabilizer” used for high speed ships [74, 75]. The fin stabilizer reduces roll motion by

controlling the mechanical angle of the fin according to the ship roll angle and roll rate.

However, the fin stabilizer is only effective in reducing the roll motion within a certain

range of operating conditions determined by the ship’s state and input variables. We

show that the roll motion of the ship in the presence of wave disturbances can be

stabilized using the proposed algorithm while the input-state constraints and input

saturation constraints can be effectively enforced and the domain of recoverable initial

ship states is large [76, 77].

1.2.4 Minimal attractor sets

In robust control strategies, concerned with control of constrained linear systems

subject to additive disturbances, minimal robust positive invariant sets (mRPI) are

important for synthesis of controllers for uncertain systems and for computing max-

imal robust positive invariant sets [78, 79]. The set mRPI is defined as the set of

states that can be reached from the origin under a bounded state disturbance. The

mPRI sets are attractors in robust MPC with constraints tightening approach [52]

and are essential in the synthesis of tube MPC [53]. Since computation of mPRI sets

is prohibitive, the characterization and the computation of approximations of mPRI

sets have been considered (see [80] and references therein).

In all of the aforementioned approaches, it is assumed that disturbances are con-

fined to a given compact set and, at any time instant, allowed to take arbitrary

values within the set. However, this assumption may lead to conservative results in

the case where the disturbance dynamics are known or can be estimated. A special

and prevailing case is when the disturbances are generated by physical processes and

are inherently rate limited. Another case is when disturbances can be modelled as

an output of a dynamic system driven by a set-bounded signal. Finally, the dis-

turbances may represent the effects of omitted nonlinearities of dynamic systems and

their bounds may be state-dependent. Rate-bounded additive disturbances, as special

cases of general disturbance dynamics, are considered in [81] where the rate bound on

the disturbance is used to calculate an approximation to maximal control admissible

set. Note that this approximation set is less conservative than in the case when no

rate bound is assumed. Since the disturbance at each time instance is dependent on

previous values, it is expected that incorporating the previous values of disturbance

in the controller may provide better control performance including smaller minimal
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invariant set and larger basin of attraction.

Considering the dynamics of the system and disturbances, the invariant set anal-

ysis is concerned with the augmented system of state and disturbance where the dis-

turbance is confined in a set which is dependent on the augmented state. It turns out

that if the set containing disturbances is state dependent, then the minimal invariant

set may not be an attractor and therefore can not be used in robust control synthesis

and analysis. Hence, the notion of minimal robust invariant attractor (MRIA) is

introduced in this dissertation which is used in robust control design.

The MRIA set for linear systems subject to additive disturbances confined in a

state-dependent and bounded set are analyzed and characterized. In particular, exis-

tence of a MRIA set is proved and the set is characterized when the state dependent

set is upper-semi continuous. Moreover, built on such characterization, the existence

of a minimal attracting invariant set is established for the case when disturbances

evolve within a compact set according to a linear dynamic model. The MRIA set

is smaller if the disturbance model is used in comparison to the case where only the

boundedness of the additive disturbance is assumed. A numerical example is provided

that shows the size of the minimal invariant attracting set is considerably different

in the two cases. Furthermore, we have shown that the MRIA set can be employed

in the design of robust MPC strategies, such as tube MPC [53], to achieve robust

stability, improve control response and to reduce conservativeness.

1.3 Dissertation Outline

This dissertation is organized as follows:

• In Chapter 2 the constrained NE method and an efficient MPC solver, referred

to as InPA-SQP, are introduced. Two numerical examples are provided in

Chapter 2 to show the benefits and advantages of the InPA-SQP algorithm.

• In Chapter 3, the effectiveness of InPA-SQP is validated by applying it to

regulate the output voltage of a full bridge DC/DC based power conditioning

system in an experimental testbed developed at the University of Michigan.

The dynamics of the DC/DC converter, experimental setup, and experimental

results are illustrated. Chapter 3 also shows how the InPA-SQP method is used

for path following of a model ship (based on MPC) in Marine Hydro-Dynamic

Lab (MHL) at the University of Michigan.
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• Chapter 4 provides a robust control strategy for constrained linear systems with

less conservative region of attraction and no online optimization required.

• To provide a less conservative robust control strategy for linear systems subject

to bounded additive disturbances, Chapter 5 characterizes MRIA sets once the

dynamics of the bounded additive disturbance has been incorporated. It is

shown that MRIA sets are smaller and results in less conservative robust control

strategies once the dynamic of disturbance is incorporated.
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Chapter 2

Integrated Perturbation Analysis and
Sequential Quadratic Programming

In this chapter, we consider the general problem of optimal control of discrete-time

systems. The constrained NE method is introduced for a general class of constraints.

A second order sufficient condition (SSC) for optimality of the nominal optimal solu-

tion for the problem P(x), defined in (1.3) is provided. The same condition is also

proven to be a sufficient condition for existence of the neighboring extremal solution

and it is computationally verifiable of order N . In Section 2.1, the NE method is

illustrated and its application in approximating optimal solutions is provided. In

Section 2.2, it is shown how the NE method is combined with SQP to exploit the

special structure of MPC and provide a computationally efficient MPC solver.

2.1 First order approximation of the optimal solu-

tion: A neighboring extremal approach

In this section, the focus is on NE method that is used to make the optimization-

based control methods, including MPC, computationally feasible for real-time im-

plementation. The NE method provides a first order approximation of the optimal

solution corresponding to a perturbed initial state for systems subject to input-state

constraints. Such an approximation will be used to accelerate computation of MPC-

optimal solution, as will be described in Sections 2.2 and 2.3.

As mentioned before, the optimization problem P(x(k)) (defined in (1.3)) is

solved at each time instant k. Given that the change in state from one sample to the

next is often incremental, i.e., x(k + 1) − x(k) is small, it is desired to approximate

the optimal solution for the problem P(x(k + 1)) using the solution of the problem

P(x(k)). In other words, the optimal solution is approximated, if the initial state
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x(k) for the problem P(x(k)), is perturbed by x(k + 1) − x(k). This provides an

optimal solution for the problem P(x(k + 1)).

In this section, a closed form NE solution is provided under the assumption that

the activity status of constraints does not change due to a small state perturbation.

The proposed NE solution require order N computations [61]. If the perturbation

in initial state is large enough to violate this assumption, an algorithm is provided

in Subsection 2.1.5 that handles a large perturbation. Moreover, a second order

sufficient condition for optimality of the nominal optimal solution is provided that is

the same as the sufficient condition for existence of the NE solution. This condition

is computationally verifiable of order N .

The NE approach can be employed in circumstances where an optimal solution

is available a priori and the optimal solution corresponding to a perturbed initial

state needs to be approximated, thereby avoiding the burden of solving again the

optimization problem, see [40, 60]. In particular, these results can be used for the

development of fast MPC algorithms [61], that is described in Section 2.2.

2.1.1 NE Formulation

Consider the following optimal control problem

P(x0) : min
u:[0,N ]→Rm,x:[0,N ]→Rn

J [u(·), x(·)], (2.1)

where

J [u(·), x(·)] =
N−1∑

k=0

L(x(k), u(k)) + Φ(x(N)) (2.2)

subject to:

x(k + 1) = f(x(k), u(k)), f : Rn+m → Rn; (2.3)

x(0) = x0, x0 ∈ Rn; (2.4)

C(x(k), u(k)) ≤ 0, C : Rn+m → Rl, (2.5)

C̄(x(k)) ≤ 0 C̄ : Rn → Rl̄. (2.6)

We assume that the functions L, Φ, f , C, and C̄ are twice continuously dif-

ferentiable with respect to their arguments. Here, the state-only constraints C̄ are

separated from the mixed state-input constraints C, for reasons which will become

apparent later on in Section 2.1.3.

Let xo(k), uo(k), k ∈ [0, N ] be the state and control vector sequences corre-
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sponding to the optimal solution in the problem of minimizing (2.2) subject to the

constraints (2.3)-(2.5) with the initial condition x(0). The solution (xo, uo) which

is assumed to be given in the context of NE analysis, is referred to as the nominal

solution.

Let Ca(x(k), u(k)) be a vector consisting of those elements of the vector C(x(k), u(k))

which correspond to active inequality constraints. That is, Ca(x(k), u(k)) is the empty

vector if no inequality constraints are active at the time instant k and Ca(x(k), u(k)) ∈
Rl′ , if l′(out of l) constraints are active. Hence, once number of active constraints

change, the dimension of the vector Ca(x(k), u(k)) changes. Similar definitions apply

to C̄a.

Moreover, let µ(k) and µ̄(k) be the Lagrange multipliers associated with con-

straints Ca and C̄a and λ(k + 1) be the Lagrange multiplier associated with the

equality constraint (2.3), which is traditionally referred to as the vector of co-states.

We can then define the Hamiltonian function as follows:

H(x(k), u(k), λ(k+1), µ(k))=L(x(k), u(k))+µ̄(k)TC̄a(x(k)) + λ(k + 1)Tf(x(k), u(k))

+ µ(k)TCa(x(k), u(k)).

(2.7)

Before proceeding, the following compact notation is defined for partial derivatives

that will be used for the rest of the section, and where for notational simplicity the

dependency of the partial derivatives on x, u has been dropped and replaced by k:

Huu(k) :=
∂2H

∂u2
(x(k), u(k), λ(k + 1), µ(k)), fu(k) :=

∂f

∂u
(x(k), u(k)),

Hux(k) :=
∂

∂x
(
∂HT

∂u
(x(k), u(k), λ(k + 1), µ(k))), fx(k) :=

∂f

∂x
(x(k), u(k)),

Hxu(k) := Hux(k)T , Ca
u(k) :=

∂Ca

∂u
(x(k), u(k)),

Hxx(k) :=
∂2H

∂x2
(x(k), u(k), λ(k + 1), µ(k)), Ca

x(k) :=
∂Ca

∂x
(x(k), u(k)),

C̄a
x(k) :=

∂C̄a

∂x
(x(k)),

for k = 0, · · · , N − 1 and

Φx(N) :=
∂Φ

∂x
(x(N)), Φxx(N) :=

∂Φ

∂x
(Φx(N))
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Since the nominal solution xo(·) and uo(·) is optimal, it satisfies the following necessary

optimality conditions, or Karush-Kuhn-Tucker (KKT) conditions, namely

λ(k) = Hx(k), k = 0, · · · , N − 1,

Hu(k) = 0, k = 0, · · · , N − 1,

λ(N) =
∂Φ

∂x
(x(N)) + µ̄(N)T C̄(

xN),

µ(k) > 0, µ̄(k) > 0 k = 0, · · · , N.

(2.8)

Definition 2.1.1. The Neighboring Extremal (NE) solution refers to the state and

control sequences which minimize the second order variation of the Hamiltonian func-

tion H(·) subject to linearized constraints, i.e., it is a solution of the following opti-

mization problem:

min
δu(·),δx(·)

δ2J̄ (2.9)

δ2J̄ =
1

2
δx(N)T (Φxx(N) +

∂

∂x
(C̄T

x (x(N))µ̄(N)))δx(N)

+
1

2

N−1∑

k=0

[
δx(k)

δu(k)

]T [
Hxx(k) Hxu(k)

Hux(k) Huu(k)

][
δx(k)

δu(k)

]
, (2.10)

subject to the constraints:

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k), (2.11)

δx(0) = δx0, (2.12)

Ca
x(x(k), u(k))δx(k)+Ca

u(x(k), u(k))δu(k)=0, (2.13)

C̄a
x(x(k))δx(k) = 0. (2.14)

Remark 2.1.1. It can be verified that the NE solution approximates the optimal state

and control sequences for the perturbed initial state, provided that the perturbation is

sufficiently small [46]. Specifically, the NE solution is a first order correction to

the optimal state and control sequences so that the necessary conditions (2.8) for

optimality are maintained for the perturbed initial condition.

In the sequel, the NE solution for the problem (2.1) is developed.
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2.1.2 Constraint back-propagation

Before providing the NE solution, an approach is introduced which can be used to

transform the set of constraints (2.11)-(2.14) to an equivalent set of constraints, (2.11),

(2.12) and

C̃x(x(k), u(k))δx(k)+C̃u(x(k), u(k))δu(k)=0, (2.15)

with C̃u(x(k), u(k)) being of full row rank. This is necessary to avoid singularity in

the NE solution, as it will be clarified in the sequel.

When the number of active inequality constraints at time k is greater than the

number of inputs, i.e., Ca
u has more rows than columns, Ca

u(k) has dependent rows

and it can be transformed into the following form

[
C̃u(k)

0

]

for some C̃u(k) with independent rows. Therefore, equation (2.13) can be decomposed

into

C̃x(k)δx(k) + C̃u(k)δu(k) = 0, (2.16)

Ĉx(k)δx(k) = 0, (2.17)

for appropriately defined C̃x(k) and Ĉx(k). Using the linearized version of (2.3),

namely

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k) (2.18)

for k > 0, (2.17) can be rewritten as

Ĉx(k) (fx(k − 1)δx(k − 1) + fu(k − 1)δu(k − 1)) = 0. (2.19)

Therefore, one can effectively replace the constraints (2.13) by (2.16), and the re-

maining constraints (2.17) are back-propagated to the time instant k − 1, thereby

imposing constraints on δx(k − 1) and δu(k − 1). This technique, which refines the

constraints at time k and shifts other state-only constraints to k− 1, is referred to in

this chapter as constraint backpropagation.

Remark 2.1.2. While the concept of back-propagation is illustrated here for the case

where the constraint is a function of x and u, it can be applied to the case when the

constraints are not dependent explicitly on u.
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Since the back-propagated constraints (2.19) have to be enforced, together with

other active constraints, at time k−1, the resulting active constraints may outnumber

control inputs at the time k− 1. If this does indeed happen, then the same technique

has to be applied repeatedly until at some time instant k − j the back-propagated

constraints can be absorbed by the matrix Ca(k − j) while C̃u(k) has full row rank

for k = 0, · · · , N − 1.

Having the general constraint back-propagation for the neighboring extremal so-

lution explained conceptually, the detailed formulation of the neighboring extremal

solution is provided in the next section.

2.1.3 Neighboring Extremal solution for discrete time opti-
mal control problem subject to general constraints

In this section a NE solution is derived for nonlinear systems subject to general input-

state constraints. Let matrix sequences C̃u(·), Ĉx(·), C̃x(·) and S(·) be defined using

the following backward, recursive equations. Let

Ĉx(N) := C̄a
x(x(N)),

S(N) := Φxx(N) +
∂

∂x
(C̄T

x (x(N))µ̄(N)),
(2.20)

and, at the time instant k, define

Caug(k) :=

[
Ca
u(k)

Ĉx(k + 1)fu(k)

]
,

r̃k := rank(Caug(k)).

(2.21)

At each time instant k, there is a matrix P (k) that transforms the matrix Caug(k)

into the block form,

P (k)Caug(k) =

[
C̃u(k)

0

]
, (2.22)

with C̃u(k) ∈ Rr̃k×m having linearly independent rows. Note that if Caug(k) is of full

row rank, then P (k) = I, and the zero matrix on the right hand side of (2.22) is

empty.

By denoting

Γ(k) :=



P (k)

[
Ca
x(k)

Ĉx(k + 1)fx(k)

]

C̄a
x(k)


 , (2.23)
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and assuming that γk is the number of rows of matrix Γ(k), Γ can be partitioned into

a block matrix as Γ(k) =

[
C̃x(k)

Ĉx(k)

]
, where C̃x, Ĉx being the first r̃k and last γk − r̃k

rows of Γ respectively, namely:

C̃x(k) := [Ir̃k×r̃k 0r̃k×(γk−r̃k)]Γ(k) ∈ Rr̃k×m,

Ĉx(k) := [0(γk−r̃k)×r̃k I(γk−r̃k)×(γk−r̃k)]Γ(k) ∈ R(γk−r̃k)×m.
(2.24)

The above manipulations (2.21)-(2.24) enable our constraint back-propagation

approach in which the state equation x(k) = f(x(k−1), u(k−1)) is used to transform

the constraints to overcome the issue with Ca
u(k) not being full rank.

Define Zuu(·), Zux(·) and Zxx(·) as

Zuu(k) := Huu(k) + fTu (k)S(k + 1)fu(k),

Zux(k) := Zxu(k)T = Hux(k) + fTu (k)S(k + 1)fx(k),

Zxx(k) := Hxx(k) + fTx (k)S(k + 1)fx(k).

(2.25)

The matrix S(k) for k < N is defined as follows

S(k) = Zxx(k)− [Zxu(k) C̃T
x (k)]K0(k)

[
Zux(k)

C̃x(k)

]
, (2.26)

where

K0(k) =

[
Zuu(k) C̃u(k)T

C̃u(k) 0

]−1

. (2.27)

Using equation (2.20) as an initial condition for backward iteration, the matrix

sequences Zuu(·), Zux(·), Zxx(·), C̃u(·), C̃x(·), Ĉx(·), S(·) and P (·) are calculated

according to equations (2.22), (2.24), (2.25), and (2.26). The role of constraint back-

propagation becomes apparent in (2.27), where the invertibility of the matrix on

the right-hand side requires that C̃u(·) is full row rank, once Zuu is strictly positive

definite.

Lemma 2.1.1. If Ĉx(0) is empty, and

Zuu(k) � 0 for k ∈ [0, N − 1],

then the problem (2.9) subject to constraints (2.11)-(2.14) is convex.
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Proof. The existence of neighboring extremal solution is guaranteed if the quadratic

cost (2.9) is positive definite in the linear variety defined by equations (2.11)-(2.14).

Note that, the equality constraints (2.13) and (2.14) is equivalent to constraints (2.61).

It is therefore sufficient to prove that the optimization problem with the cost (2.9)

subject to constraints (2.11), (2.12), and (2.61) is convex.

Assuming that at the time instant k rank(C̃u(k)) = rk, and {ek,1, · · · , ek,m−rk}
form a basis for the null space of the matrix C̃u(k) such that

eTk,tZuu(k)ek,s =

{
1, if t = s;

0, otherwise.
.

Let us define the vector Ωk,i as follows

Ωk,i:=[δxk,i(N)T , δuk,i(N−1)T , δxk,i(N−1)T , · · · δuk,i(0)], (2.28)

where

δuk,i(j) = 0 j = 0, · · · , k − 1,

δxk,i(j) = 0 j = 0, · · · , k,
δuk,i(k) = ek,i,

δxk,i(k + 1) = fu(k)ek,i,

δxk,i(j + 1) = (fx(j) + fu(j)K
∗(j))δxk,i(j) ,

j=k+1, · · · , N−1,

δuk,i(j) = K∗(j)δxk,i(j), j = k + 1, · · · , N − 1,

(2.29)

for k = 0, · · · , N − 1 and i = 1, · · · ,m− rk.
In addition, let us define

Ω∗:=[δx∗(N)T , δu∗(N−1)T , δx∗(N−1)T , · · · δu∗(0)] (2.30)

where

δx∗(0) = δx(0),

δu∗(k) = K∗(k)δx∗(k),

δx∗(k + 1) = (fx(k) + fu(k)K∗(k))δx∗(k), k=0, · · · , N−1.

(2.31)

It can then be seen that Ω∗+ [((Ωk,i)
m−rk
i=1 )N−1

k=1 ] forms the linear variety characterized
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by equations (2.11-2.13). To show that the problem is convex if Zuu(k) � 0, k =

0, · · · , N − 1, it is sufficient to show that

δ2J̄ :=1/2δxm,i(N)TΦxx(N)δxn,j(N)+1/2
N−1∑

k=0

[
δxm,i(k)

δum,i(k)

]T[
Hxx(k) Hxu(k)

Hux(k) Huu(k)

][
δxn,j(k)

δun,j(k)

]

=

{
eTm,iZuu(k)em,i if m = n and i = j

0 otherwise

(2.32)

Lemma 2.1.2. if p > m, n then

δ2J̄p :=δxm,i(p+1)TS(p+1)δxn,j(p+1)+

[
δxm,i(p)

δum,i(p)

]T[
Hxx(p) Hxu(p)

Hux(p) Huu(p)

][
δxn,j(p)

δun,j(p)

]

= δxm,i(p)
TS(p)δxn,j(p)

(2.33)

Proof. From equations (2.29) and (2.11) we have

δxm,i(p+ 1)TS(p+ 1)δxn,j(p+ 1)

= δxm,i(p)
T (fx(p)+fu(p)K

∗(p))TS(p+1)(fx(p)+fu(p)K
∗(p))δxn,j(p).

(2.34)
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Using the definitions (2.47), (2.25) and equation (2.34) , we have

δ2J̄p = δxm,i(p)
T (fx(p)+fu(p)K

∗(p))TS(p+1)(fx(p)+fu(p)K
∗(p))δxn,j(p)+

[
δxm,i(p)

δum,i(p)

]T [
Hxx(p) Hxu(p)

Hux(p) Huu(p)

][
δxn,j(p)

δun,j(p)

]

= δxm,i(p)
TZxx(p)δxn,j(p)

+ δxm,i(p)
T ([fu(p) 0]K0(p)

[
Zux(p)

C̃x(p)

]
)TS(p+1)([fu(p) 0]K0(p)

[
Zux(p)

C̃x(p)

]
)δxn,j(p)

− δxm,i(p)T ([fu(p) 0]K0(p)

[
Zux(p)

C̃x(p)

]
)TS(p+ 1)fx(p)δxn,j(p)

− δxm,i(p)Tfx(p)TS(p+ 1)([fu(p) 0]K0(p)

[
Zux(p)

C̃x(p)

]
)δxn,j

+ δxm,i(p)
T ([I 0]K0(p)

[
Zux(p)

C̃x(p)

]
)THuu(p)([I 0]K0(p)

[
Zux(p)

C̃x(p)

]
)δxn,j(p)

− δxm,i(p)T ([I 0]K0(p)

[
Zux(p)

C̃x(p)

]
)THux(p)δxn,j(p)

− δxm,i(p)THux(p)
T ([I 0]K0(p)

[
Zux(p)

C̃x(p)

]
)δxn,j(p).

The above equation can be further simplified, using definition (2.25), to the following

form

δ2J̄p = δxm,i(p)
TZxx(p)δxn,j(p) + δxm,i(p)

T [Zux(p)
T C̃x(p)

T ]×

K0(p)

[
Zuu(p) 0

0 0

]
K0(p)

[
Zux(p)

C̃x(p)

]
δxn,j(p)

− δxm,i(p)T [Zux(p)
T C̃x(p)

T ]K0(p)

[
Zux(p)

0

]
δxn,j(p)

− δxm,i(p)T
[
Zux(p)

0

]T
K0(p)

[
Zux(p)

C̃x(p)

]
δxn,j(p).

(2.35)
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According to equality (2.13), we have

δxm,i(p)
T [Zux(p)

T C̃x(p)
T ]K0(p)

[
0

C̃u(p)δun,j(p)+C̃x(p)δxn,j(p)

]

+ δxn,j(p)
T [Zux(p)

T C̃x(p)
T ]K0(p)

[
0

C̃u(p)δun,j(p)+C̃x(p)δxm,i(p)

]

=: Np = 0

(2.36)

Using the optimal feedback equation (2.46) and (2.47), Np can be expanded to the

following form

Np = δxm,i(p)
T [Zux(p)

T C̃x(p)
T ]K0(p)

[
0

C̃u(p)

]
[I 0]K0(k)×

[
Zux(p)

C̃x(p)

]
δxn,j(p) + δxm,i(p)

T

[
Zux(p)

C̃x(p)

]T
K0(p)

[
I

0

]
×

[0 C̃u(p)
T ]K0(p)

[
Zux(p)

C̃x(p)

]
δxn,j(p)

+ δxm,i(p)
T [Zux(p)

T C̃x(p)
T ]K0(p)

[
0

C̃x(p)

]
δxn,j(p)

+ δxm,i(p)[0 C̃x(p)
T ]K0(p)

[
Zux(p)

C̃x(p)

]
δxn,j(p).

(2.37)
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From equations (2.35), (2.36), and (2.37) and some algebraic simplification we have

δ2J̄p = δ2J̄p +Np

= δxm,i(p)
TZxx(p)δxn,j(p) + δxm,i(p)

T [Zux(p)
T C̃x(p)

T ]×

K0(p)

[
Zuu(p) C̃u(p)

T

C̃u(p) 0

]
K0(p)

[
Zux(p)

C̃x(p)

]
δxn,j(p)

− δxm,i(p)T [Zux(p)
T C̃x(p)

T ]K0(k)

[
Zux(p)

C̃x(p)

]
δxn,j(p)

− δxn,j(p)T [Zux(p)
T C̃x(p)

T ]K0(k)

[
Zux(p)

C̃x(p)

]
δxm,i(p)

= δxm,i(p)
T (Zxx(p)− [Zux(p)

T C̃x(p)
T ]K0(k)

[
Zux(p)

C̃x(p)

]
)

× δxn,j(p) = δxm,i(p)
TS(p)δxn,j(p). �

(2.38)

From equation (2.33) and definition of δ2J̄ in equation (2.32), we can see that if

m = n then

δ2J̄ = eTm,i(fu(p)
TS(p+ 1)fu(p) +Huu(p))em,j

= eTm,iZuu(p)en,j,
(2.39)

and therefore the equation (2.32) is satisfied.

If m 6= n then without lost of generality we can assume that n > m. Then

δ2J̄ = δxm,i(n)T (fx(n) + fu(n)K∗(n))TS(n+ 1)fu(n)en,j

+ δum,i(n)THuu(n)en,j + δxm,i(n)THxu(n)en,j.
(2.40)
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Substituting equation (2.47) in (2.40) and using equation (2.25) we have

δ2J̄ = δxm,i(n)TZxu(n)en,j

+ δxm,i(n)T

[
Zux(n)

C̃x(n)

]T
K0(n)

[
−fu(n)TS(n+1)fu(n)

0

]
en,j

+ δxm,i(n)T

[
Zux(n)

C̃x(n)

]T
K0(n)

[
−Huu(n)

0

]
en,j

= δxm,i(n)TZux(n)en,j

+ δxm,i(n)T

[
Zux(n)

C̃x(n)

]T
K0(n)

[
−Zuu(n)

0

]
en,j.

(2.41)

Since en,j belongs to the null space of the matrix C̃u(n), the equation (2.41) can be

written as

δ2J̄ = δxm,i(n)TZxu(n)en,j + δxm,i(n)T

[
Zux(n)

C̃x(n)

]T
K0(n)

[
−Zuu(n)

−C̃u(n)

]
en,j. (2.42)

Substituting K0(n) from equation (2.27) we have

δ2J̄ = δxm,i(n)TZxu(n)en,j + δxm,i(n)T

[
Zux(n)

C̃x(n)

]T[
−I
0

]
en,j = 0. (2.43)

Equations (2.39) and (2.43) show that the sufficient condition (2.32) is satisfied and

the proof is complete.

It should be noted that the system is linearized at the optimal solution which is

time-varying and hence the linearized system is time-varying. The following theorem

provides sufficient condition for the existence of the NE solution.

Theorem 2.1.1. If Ĉx(0) is empty and xo(·) and uo(·) satisfy the necessary condition

for optimality (2.8) and

Zuu(k) � 0 for k ∈ [0, N − 1], (2.44)

then xo(·) and uo(·) satisfy the strong second order optimality condition and a NE

solution subject to the inequality constraints and initial state perturbation δx(0) exists

and is unique.
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Proof. The condition of Ĉx(0) being empty implies linear independence of the gradi-

ents of active constraints (including equality constraint (2.3)). Moreover, the condi-

tion (2.44) guarantees strong convexity of the problem P(x0) at the nominal solution

xo(·) and uo(·). Therefore, assuming that xo(·) and uo(·) satisfy the necessary op-

timality condition (2.8) with strict complementarity, i.e., µ(k) > 0 and µ̄(k) > 0,

the strong second order sufficient condition for the problem P(x0) is satisfied and

therefore the pair xo(·) and uo(·) is a strong local minimum. This shows existence

of NE solution [83]. Uniqueness is the direct consequence of strong convexity that is

implied by (2.44) and Lemma 2.1.1.

Remark 2.1.3. If conditions of Theorem 2.1.1 are satisfied, and Lagrange multipliers

associated with inequalities (2.5) and (2.6) are strictly positive, then the strong second

order sufficient condition (SSC) for optimality is satisfied at the nominal solution uo(·)
and xo(·). The SSC has an important consequence that there exists a neighborhood of

initial state x0, N (x0), and continuously differentiable functions u(k)(x0) : N (x0)→
Rm, for k = 0, · · · , N − 1, and x(k)(x0) : N (x0) → Rn, for k = 1, · · · , N , such that

for all x′0 ∈ N (x0):

1. The control and state sequences u(·)(x′0) and x(·)(x′0) are the optimal solution

to the problem (2.1) with initial state x′0.

2. The active constraints corresponding to the optimal solutions u(·)(x′0) and x(·)(x′0)

are the same as those of the nominal optimal solution xo(·) = x(·)(x0) and

uo(·)(x0) = u(·)(x0).

These results can be found in [46, 83]. The NE solution is the first order approxima-

tion of u(·)(x′0) and x(·)(x′0) in terms of initial state variation x′0 in the neighborhood

N (x0).

Remark 2.1.4. The convexity condition (2.44) in the absence of inequality con-

straints (2.5)-(2.6) reduces to the convexity condition provided in [45]. The proposed

NE method provides a unified framework to calculate the NE solution and check a

sufficient condition for the existence of the solution for systems subject to general

constraints, including the unconstrained problem as a special case. However, note that

the proof of sufficiency of condition (2.44) for the existence of NE solution requires

a different approach than that in [43], [45]. Note that for continuous-time systems,

convexity of the problem in the vicinity of the optimal solution has been considered as

a mechanism to assure existence of NE solution in the prior work [40, 82].
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Remark 2.1.5. Note that only gradients of active constraints are considered when

checking the strong second order sufficient condition in a general nonlinear program-

ming problem.

Remark 2.1.6. For the infinite length of horizon, i.e., N = ∞, the existence of

an optimal control sequence u(·) that renders a cost finite is usually guaranteed by

stabilizability assumption on the linearized system (2.3). However, for finite length of

horizon, i.e., if N < ∞, the cost is always finite and such stabilizability assumption

is not required.

Remark 2.1.7. The condition Ĉx(0) being empty implies that the constraint back

propagation does not produce a constraint on the initial state variation δx(0) which

is not a variable. The treatment of the case when Ĉx(0) is empty in the context of

receding horizon optimal control is presented in Appendix A.

The following Theorem provides the NE solution for the problem formulated in

Section 2.1.1.

Theorem 2.1.2. Suppose the perturbation δx(0) in the initial state x(0) does not

change the activeness status of the constraints, i.e., the optimal solution corresponding

to initial state x(0) + δx(0) has the same active constraints as the optimal solution to

x(0), where δx(0) represents a perturbation in initial state. If

Zuu(k) � 0 for k ∈ [0, N − 1], (2.45)

then the NE solution for the initial state perturbation δx(0), i.e., solution to (2.9), is

δx(k) and δu(k), k ∈ [0, N ] where

δu(k) = K∗(k)δx(k), (2.46)

and K0, Zux, and C̃x are defined in (2.27), (2.25), (2.24), respectively, and

K∗(k) = −[I 0]K0(k)

[
Zux(k)

C̃x(k)

]
. (2.47)

Proof. Let us assume that δλ(·), δµ(·) and δµ̄(·) are the Lagrange multipliers associ-

ated with constraints (2.11), (2.13) and (2.14), respectively. Hereafter, the superscript

a is dropped for notational simplicity, assuming that the constraints appearing in the

equations are active.
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Assuming (2.44) is satisfied, by applying the Karush-Kuhn-Tucker (KKT) condi-

tions to the problem (2.9) for the time instant k = N , and with δu(N) = 0

δλ(N) =

(
Φxx(N) +

∂

∂x
(C̄T

x (xo(N))µ̄(N))

)
δx(N) + C̄T

x (xo(N))δµ̄(N),

C̄x(x
o(N))δx(N) = 0.

(2.48)

Defining δµ̂(N) := δµ̄(N), T (N) := 0, Ĉx(N) := C̄x(x(N)) and

S(N) := Φxx(N) +
∂

∂x
(C̄T

x (xo(N))µ̄(N)),

the first equality in (2.48) can be expressed as

δλ(N) = S(N)δx(N) + T (N) + ĈT
x (N)δµ̂(N). (2.49)

Now assume that for the time instant k + 1, δλ(k + 1) can be represented as

δλ(k + 1) = S(k + 1)δx(k + 1) + T (k + 1) + ĈT
x (k + 1)δµ̂(k + 1) (2.50)

and

Ĉx(k + 1)δx(k + 1) = 0. (2.51)

Equation (2.51) can be written as

Ĉx(k+1)fu(k)δu(k)+Ĉx(k+1)fx(k)δx(k)=0. (2.52)

Applying the Karush-Kuhn-Tucker (KKT) conditions to the problem (2.9) at time k,

δλ(k) = Hxxδx(k) +Hxuδu(k) + fTx (k)δλ(k + 1) + CT
x (k)δµ(k) + C̄T

x (k)δµ̄(k).

(2.53)

Combining equation (2.52) with equations (2.13) and (2.14):




Cu(k)

Ĉx(k + 1)fu(k)

0


 δu(k) +




Cx(k)

Ĉx(k + 1)fx(k)

C̄x(k)


 δx(k) = 0. (2.54)

31



Substituting δλ(k + 1), using the expression given by (2.50) into (2.53), obtain:

δλ(k) = Zxx(k)δx(k) + Zxu(k)δu(k) + fTx (k)T (k + 1) +




Cx(k)

Ĉx(k+1)fx(k)

C̄x(k)




T

δµ(k)

δµ̂(k+1)

δµ̄(k)


 .

(2.55)

Using the definition of Γ(k), the following can be written

[
Cx(k)

Ĉx(k + 1)fx(k)

]T [
δµ(k)

δµ̂(k + 1)

]
+ C̄x(k)δµ̄(k)

=

(
P (k)

[
Cx(k)

Ĉx(k + 1)fx(k)

])T
P (k)−T

[
δµ(k)

δµ̂(k + 1)

]
+ C̄x(k)δµ̄(k)

=Γ(k)



P (k)−T

[
δµ(k)

δµ̂(k+1)

]

δµ̄(k)


 .

(2.56)

By defining

δµ̃(k) := [Ir̃k×r̃k 0r̃k×(γk−r̃k)]



P (k)−T

[
δµ(k)

δµ̂(k+1)

]

δµ̄(k)


 ,

δµ̂(k) := [0(γk−r̃k)×r̃k I(γk−r̃k)×(γk−r̃k)]



P (k)−T

[
δµ(k)

δµ̂(k+1)

]

δµ̄(k)




(2.57)

where δµ̃(k) ∈ Rr̃k , δµ̂(k) ∈ R(γk−r̃k), and referring to (2.23) for the definition of C̃x(·)
and Ĉx(·)

δλ(k) = Zxx(k)δx(k) + Zxu(k)δu(k) + fTx (k)T (k + 1) + C̃x(k)T δµ̃(k) + Ĉx(k)δµ̂(k).

(2.58)

Moreover, note that equation (2.51), using (2.11), can be written as

Ĉx(k + 1)fu(k)δu(k) + Ĉx(k + 1)fx(k)δx(k) = 0. (2.59)
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Equations (2.59), (2.13), and (2.14) imply




Cx(k)

Ĉx(k + 1)fu(k)

0


δu(k) +




Cx(k)

Ĉx(k + 1)fx(k)

C̄x(k)


δx(k) = 0. (2.60)

Using (2.21), (2.22) and (2.24), it can be concluded that

[
C̃u(k)

0

]
δu(k) +

[
C̃x(k)

Ĉx(k)

]
δx(k) = 0

or

C̃u(k)δu(k) + C̃x(k)δx(k) = 0, (2.61)

Ĉx(k)δx(k) = 0

where C̃u(k) has independent rows.

In addition, by applying the Karush-Kuhn-Tucker (KKT) conditions to the prob-

lem (2.9)-(2.14), δx(k), δu(k), δλ(k) and δµ(k) should satisfy the following equation,

Hux(k)δx(k)+Huu(k)δu(k)+fu(k)T δλ(k+1) + Cu(k)Tδµ(k)=0. (2.62)

Using equations (2.62), (2.50), and (2.22)

Zuu(k)δu(k) + C̃T
u (k)δµ̃(k)=−Zux(k)δx(k)− fTu (k)T (k + 1). (2.63)

Since C̃u(k) is full row rank and Zuu(k) is positive definite, the matrix

K0(k) =

[
Zuu(k) C̃T

u (k)

C̃u(k) 0

]−1

(2.64)

is well defined and from equations (2.61) and (2.63)

[
δu(k)

δµ̃(k)

]
=−K0(k)

[
Zux(k)

C̃x(k)

]
δx(k)−K0(k)

[
fTu (k)T (k+1)

0

]
. (2.65)

Applying equation (2.65) to (2.58),

δλ(k) = S(k)δx(k) + T (k) + ĈT
x (k)δµ̂(k) (2.66)
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where ĈT
x (k) and S(k) are calculated from equation (2.24) and (2.26), respectively,

and T (k) ≡ 0. Therefore, from (2.65), (2.46) is achieved.

Ĉx(0) being empty guarantees that (2.11)-(2.14) are linearly independent. If

Ĉx(0) is non-empty and Ĉx(0)δx(0) 6= 0, then (2.11)-(2.14) have no solution. If

Ĉx(0)δx(0) = 0, then (2.11)-(2.14) are linearly dependent.

Remark 2.1.8. Our approach is based on the assumption that an optimal solution is

known a priori. If such an a priori known solution is suboptimal, then the NE solution

can be modified using the InPA-SQP method which is illustrated in Section 2.2, to

improve it towards optimality. Moreover, if the optimal solution is pre-computed and

stored for a grid of initial states, the NE solution can be used to correct the stored

optimal solutions and provide a first order approximation for optimal solutions with

initial states inside the grid.

2.1.4 NE Algorithm

To implement the NE method, one needs to be able to calculate the Lagrange multi-

pliers λ(·), µ(·) and µ̄(·). A method for these calculation is proposed in Appendix B.

The procedure for determining the NE solution can be summarized as follows,

once the Lagrange multipliers are calculated:

• Initialize matrices S(N) and Ĉx(N) using equation (2.20).

• Calculate, in a backward run, matrix sequences P (·) (according to equation

(2.22)), C̃u(·) and C̃x(·) (using equations (2.22) and (2.24)), Zuu(·), Zux(·),
Zxx(·) (using equation (2.25)) and S(·) (using equation (2.26)).

• Given initial state variation δx(0), in a forward run, calculate δx(·) and δu(·)
using equation (2.11) and (2.46).

The assumption that the constraint activeness status remains unchanged, when

the initial state is perturbed, is essential for Theorem 2.1.2 to hold. Large per-

turbations for which this assumption may be violated can be handled by repeated

application of Theorem 2.1.2 as illustrated in next subsection.

2.1.5 Handling large perturbation in x(0)

Theorem 2.1.2 is derived under the assumption that activity status of constraints does

not change. To deal with the initial state variation that is large enough to change
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activity status of constraints, the perturbed Lagrange multipliers associated with the

inequality constraints are analyzed and the perturbed value of C(x(k), u(k)) to deter-

mine the status of constraint activity after perturbation. The following proposition

provides the relation between the initial condition perturbation and the Lagrange

multipliers that will allow us to predict the constraint activity change.

Proposition 2.1.1. If the initial condition x(0) is perturbed by δx(0), the optimal

Lagrange multiplier perturbation δµ(k) at the time instant k when the constraint is

active can be approximated as follows:

δµ(k) = −[0 I]K0(k)

[
Zux(k)

C̃x(k)

]
Υ(k)δx(0),

Υ(k) =
k−1∏

i=0

M(i),

M(i) := fx(i) + fu(i)K
∗(i), i = 0, · · · , k − 1

(2.67)

In addition, if the constraint is not active, then the constraint perturbation can be

expressed as

δC(x(k), u(k))=(Cx(k)+Cu(k)K∗(k))Υ(k)δx(0), (2.68)

with K0(·) and K∗(·) being defined as in Theorem 2.1.2.

Proof. By combining equations (2.65), (2.46) and (2.61), the expression (2.67) can

be derived. (2.68) follows directly by taking partial derivatives of C(·, ·) and noting

that δx(k) = Υ(k)δx(0).

Note that the perturbed optimal Lagrange multiplier associated with active con-

straints µ1(k) is:

µ1(k) = µ(k) + δµ(k), (2.69)

where µ(·) is the nominal Lagrange multiplier and δµ(·) is calculated from (2.67). If

µ(1)(k) ≥ 0, one can conclude that the constraint will remain active at the time k

for the perturbed solution. Otherwise, it may become inactive because the Lagrange

multiplier must always be greater than or equal to zero. Similarly, using equation

(2.68), the value of the constraint function corresponding to the perturbed optimal

solution is:

C(x(1)(k), u(1)(k))=C(x(k), u(k))+δC(x(k), u(k)), (2.70)

where x(1)(k) and u(1)(k) are the following linear approximations of the optimal so-
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lution

x(1)(k) = x(k) + δx(k), u(1)(k) = u(k) + δu(k). (2.71)

If C(x(1)(k), u(1)(k)) < 0, the constraint remains inactive. Otherwise, it will become

active.

For large perturbation δx(0) which causes changes in the constraint activeness

status, we consider the line connecting the initial state x(0) and perturbed state x(0)+

δx(0). We may identify several intermediate points where the status of constraints

activeness changes, while between two consecutive points the status remains the same.

The solution to the original problem is then formulated by combining several solutions.

Using Proposition 2.1.1, the following algorithm is proposed that identifies inter-

mediate initial states and calculates the corresponding NE solution to approximate

the optimal solution when initial state perturbations change the status of the con-

straints activity:

1. Set i = 0, δx(0)(0) = δx(0) and x0(0) = x(0);

2. If the constraint is active at the time instant k, compute αik as:

αik =
µ(i)(k)

δµ(i)(k)
. (2.72)

If it is inactive at k, compute αik as

αik = − C(x(i)(k), u(i)(k))

δC(x(i)(k), u(i)(k))
, (2.73)

where δC(x(i), u(i)) is calculated by (2.68), δµ(i)(k) is calculated by (2.67), and

all involved matrices should be evaluated at x(i)(k) and u(i)(k). Then find the

smallest αik ∈ [0, 1] such that the perturbation αikδx
(i)(0) changes the status of

the constraint at least at one instant, namely:

αi = min
k
{αik, k = 0, · · · , N − 1 0 ≤ αik ≤ 1}.

If, for all k ∈ [0 : N ], αik < 0 or αik > 1, set αi = 1.

3. Compute an approximation to the perturbed optimal solution δx(i)(·), δu(i)(·)
for the intermediate perturbation min{αi, 1}δx(i)(0) and initial condition x(i)(0)

using the perturbation analysis developed in Section 2.1.3.

4. If αi = 1, terminate. Otherwise:
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• If αi = 0, change the activity status of the corresponding constraint ac-

cordingly. That is, if αi corresponds an active (inactive) constraint, set

the constraint inactive (active). Go to step 2.

• If αi < 1 set

δx(i+1)(0) = (1− αi)δx(i)(0),

x(i+1)(0) = x(i)(0) + αiδx
(i)(0),

i = i+ 1.

Go to step 2.

Figure 2.1: Intermediate initial states which handle the large perturbation.

Figure 2.1 shows the line connecting the initial and perturbed states , where the

intermediate points are highlighted. Note that the intermediate perturbed initial

states lie on the line connecting x(0) to x(0) + δx(0). These intermediate states are

nominal states at which Theorem 2.1.2 can be repeatedly applied to derive approx-

imations to the optimal solution. Therefore the perturbed optimal control solution

corresponding to a large perturbation δx(0) can be approximated by augmenting the

nominal solution as:

u(k) +
∑

i

δui(k) .

So far, a perturbation analysis is introduced which provides first order approx-

imation of the optimal solution corresponding to the perturbed initial state. The

developed perturbation analysis is used in next section to construct a fast MPC al-

gorithm, exploiting the special structure of MPC.
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2.2 An Integrated Perturbation Analysis and Se-

quential Quadratic Programming Approach to

MPC

In this section, exploiting the developed perturbation analysis, a computationally

efficient method is introduced, which is refered to as the Integrated Perturbation

Analysis and Sequential Quadratic Programming (InPA-SQP) approach, for the MPC

implementation. It synergistically combines the solutions derived using perturbation

analysis and SQP to solve the optimization problem with initial state perturbation

and input/state constraints.

The InPA-SQP integrates the perturbation analysis and SQP into a single unified

framework to speed up the calculation of the optimal solution for a given nominal

solution. The unification is critically dependent on a special formulation of the SQP

algorithm which will be presented in Section 2.2.1. This special formulation allows

us to cast the solution of the SQP into the same formula as that of the perturbation

analysis, thereby facilitating their seamless integration. With the integrated algo-

rithm, one does not need to make a choice of whether to use perturbation analysis or

SQP. Instead, the algorithm renders itself to the proper formula automatically when

certain conditions are satisfied.

It is worth noting that the InPA-SQP formulation is used to calculate the optimal

solution instead of estimating the solution using perturbation analysis or using SQP

method alone to compute it. Because of the structure of the unifying formulation, the

algorithm is equivalent to SQP method when there is no initial condition perturbation

and it falls into perturbation formulation when the optimal nominal solution is given

together with a perturbed initial condition. Therefore in either case the InPA-SQP

formulation is used to calculate the optimal solution.

2.2.1 Sequential quadratic optimal control based on active
set method

In this section, the sequential quadratic programming (SQP) method is formulated for

the optimization problem (2.1) as a prelude to introducing the InPA-SQP approach in

the next section. This formulation is different from the one of [108] in the sense that it

provides a closed form solution based on recursive matrix calculations. When there is

no constraint, this formulation is reduced to the one proposed by [43]. Therefore the

SQP method to be presented in this section can be considered as an extended version

of the one presented in [43] to the case where there is an input-state constraint.
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We start with a feasible initial guess of the optimal control u(k), state x(k), co-

state λ(k) and with Lagrange multipliers µ(k) and µ̄(k) associated with the inequality

constraints such that they satisfy equations (2.3)- (2.6) and the KKT conditions (2.8).

Note that since the initial guess is not an optimal solution, it may not satisfy the

optimality condition

Hu(k)(k) = 0. (2.74)

The active inequality constraints at the time instants k are treated as the equality

constraints during the active set iteration. The corrections δu(k) and δx(k) are ob-

tained by solving the following equality constrained quadratic programming problem

(QP)

min
δu(·),δx(·)

N−1∑

k=0

HT
u(k)(k)δu(k) + δ2J̄

subject to: δx(k + 1) = fx(k)δx(k) + fu(k)δu(k),

δx(0) = 0,

Ca
x(x(k), u(k))δx(k)+Ca

u(x(k), u(k))δu(k)=0,

C̄a
x(x(k))δx(k) = 0

(2.75)

where δ2J̄ is defined in (2.10).

Proposition 2.2.1. Let u(k), x(k) and λ(k) be the control, state and co-state, respec-

tively, that satisfy the constraints (2.3)- (2.6) and (2.8) and let µ(k) be the Lagrange

multiplier associated with the inequality constraint. In addition, assume that the ma-

trix Zuu(k), defined in (2.25), is positive definite for k = 1, . . . , N . Then the solution

of the QP with equality constraint (2.75) is given by

[
δu(k)

δµ(k)

]
=−K0(k)

[
Zux(k)δx(k)+fTu (k)T (k + 1)+Hu(k)

C̃x(k)δx(k)

]

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k)

δx(0) = 0

(2.76)

where K0(k), Zuu(k), Zux(k) and Zxx(k) are defined in (2.25). Moreover, the matrices
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S(·) and T (·) are calculated using the following backward recursive equations

S(N) = Φxx(N),

S(k) = Zxx(k)− [Zxu(k) C̃T
x (k)]K0(k)

[
Zux(k)

C̃x(k)

]
,

T (N) = 0,

T (k)=fTx (k)T (k +1)−[Zxu C̃
T
x (k)]K0(k)

[
fTu (k)T (k +1)+Hu(k)

0

]
.

(2.77)

Using the result of Proposition 2.2.1, the active set method, which is introduced

in [109], is implemented as follows:

First the minimum value of 0 < α ≤ 1 is found such that there exists a time instant

k and an element j in the vector Ca(x(k), u(k)) or C̄a(x(k)), i.e., Ca
j (x(k), u(k)) or

Ca
j (x(k)) that satisfy

Ca
j (x(k) + αδx(k), u(k) + αδu(k)) = 0 or C̄a

j (x(k) + αδx(k)) = 0. (2.78)

where δu(k) and δx(k) are calculated using equation (2.76). If there exist such α that

satisfies the condition (2.78) then the corresponding inactive inequality constraint is

added to the set of active constraints. δu(k) and δx(k) are calculated using (2.76)

and the equality constraint problem (2.75) is solved at the next iteration with the

initial solution x(·) + αδx(k) and u(k) + αδu(k).

If no such α exists, then the sign of Lagrange multipliers µ(k), calculated using

equation (2.67), is examined. If all the Lagrange multipliers µ(k) are nonnegative,

then the necessary optimality conditions are satisfied. If, in addition, Zuu(k) � 0 then

a local optimal solution has been reached. In the other case, one inequality constraint

with negative multiplier is deleted from the set of active constraints.

2.2.2 InPA-SQP Approach

In section 2.1.5, a method is introduced to deal with large initial state perturbation

that causes change in the set of active constraints. The idea is based on moving along

the line which connects the nominal initial condition x(0) to the point x(0) + δx(0)

until the status of one of the constraints changes. Then the optimal correction is cal-

culated using Theorem 2.1.2, and this process is repeated for each intermediate point

up to the point x(0)+δx(0). Note that Theorem 2.1.2 can be used to calculate the op-
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timal correction at each intermediate point only if the nominal solution corresponding

to each intermediate point is optimal at each iteration. However, since the nominal

solution used at each iteration of the algorithm introduced in Section 2.1.5 is the first

order approximation of the optimal solution, the optimality condition Hu(k) = 0 may

not be satisfied for the nominal solution.

In this section, a method that unifies NE method and SQP (with active set method

formulation) is introduced to achieve faster convergence in calculating the perturbed

optimal solution, given the nominal optimal solution. This algorithm combines the

computational advantages of NE method and the optimality of the SQP solution, and

provides a convenient formulation to calculate the perturbed solution while satisfying

the optimality condition.

Let us assume that the optimal solution corresponding to the initial condition

x(0) = x0 is u(k), k = 0, · · · , N−1, with the corresponding state trajectory x(k), k =

0, · · · , N − 1. As the first step to calculate the optimal solution corresponding to the

initial condition x(0) = x0 + δx(0), let us assume that the perturbation δx(0) is

small enough so that the activity status of the constraints along the horizon does not

change. Therefore, the results of Theorem 2.1.2 can be employed to determine the

first order approximation of the optimal solution because u(·) and x(·) satisfy the

optimality conditions.

If the activity status of the constraints changes when the initial condition is per-

turbed, that is the set of active constraints corresponding to the optimal solution is

changed, the optimal solution corresponding to some intermediate initial conditions

can be approximated, as illustrated in Section 2.1.5. According to the method pro-

posed in Section 2.1.5, the first intermediate point is the closest initial condition to

x(0) on the line connecting the nominal initial condition x(0) to the point x(0)+δx(0)

where the activity status of the constraints change.

Searching for the intermediate point is performed by constructing the set of dif-

ferent options using equations (2.69) and (2.70) and singling out the smallest one as

illustrated in the second step of the algorithm proposed in Section 2.1.5. Once the

first intermediate point is determined, the second intermediate point is determined

using the algorithm proposed in Section 2.1.5 and the iteration is continued in the

same way.

Since Theorem 2.1.2 provides the first order approximation of the optimal solution,

the optimal solution corresponding to the first intermediate initial condition, which is

calculated using Theorem 2.1.2, may not satisfy the necessary optimality conditions,

namely the condition Hu(k) = 0. Therefore, the approximate optimal solution can not
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be used as the nominal solution in Theorem 2.1.2 to calculate the next approximated

optimal solution corresponding to the next intermediate initial condition.

To address the above issue the following ancillary remedy is introduced. We

perform SQP iterations described in Section 2.2.1 to achieve the exact optimal solution

corresponding to the intermediate initial condition using equation (2.76). Then the

optimal solution can be used as the initial state in Theorem 2.1.2 to calculate the

next intermediate initial state and its corresponding optimal solution. Therefore,

after specifying each intermediate point, the following two steps can be performed:

First, the optimization problem (2.75) is solved iteratively, which results in equa-

tion (2.76), to obtain the optimal solution corresponding to the intermediate point.

Second, Theorem 2.1.2 is used, to find the next intermediate point based on active

set method and its corresponding optimal solution approximation.

Instead of applying the two-step method illustrated above, a unifying approach

is introduced which exploits the SQP formulation to modify the large perturbation

analysis so that optimality condition is considered. If one compare the two optimiza-

tion problems (2.9) and (2.75), an interesting observation is that the optimization

problem (2.75) is identical to (2.9) if Hu(k) = 0 and δx(0) = δx0. By applying the

same substitutions, the optimal solution (2.76) can be also converted to (2.46). This

fact, for each intermediate initial state, can be interpreted as follows: equation (2.76)

moves the approximated solutions toward the optimal solution when x(0) = x0 while

equation (2.46) moves the approximated solutions toward the approximated optimal

solution when x(0) = x0 + δx(0).

Based on the above observations, the following formulation is proposed which

merges the two optimization steps into one:

δu(k)=−[I 0]K0(k)

[
Zux(k)δx(k)+fTu (k)T (k + 1)+Hu(k)

C̃x(k)δx(k)

]

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k)

δx(0) = δx0,

(2.79)

where Hu(k) is the derivative of the Hamiltonian function with respect to control u

at the time instance k.

Using this approach at each iteration, if the nominal solution is not optimal such

that Hu(k) assumes considerable non-zero values, the optimal correction δu(k) not

only takes the initial state perturbation δx(0) into account but it moves the nomi-

nal solution u(k) and x(k) in the decent direction calculated according to the SQP
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method. Based on this approach, the steps of the algorithm described in Subsec-

tion 2.1.5 are followed, while in step 3 the perturbed optimal solution is calculated

using equation (2.79). Through such combination, solving one optimization problem

at each iteration is spared.

Remark 2.2.1. If one consider the equality x(0) − x0 = 0 as an equality con-

straint with λ(0) being the associated Lagrange variable calculated using (2.8), then

the augmented cost function can be reformulated by adding the term λ(0)(x(0)− x0).

If the SQP method is applied to the reformulated problem, the equality constraint

δx(0) = x0 − x(0) appears in the equation (2.76) and forms the equation (2.79).

Therefore, the InPA-SQP is the result of applying SQP on the reformulated problem

and consequently benefits from the convergence property that SQP provides.

Remark 2.2.2. It should be noted that both InPA-SQP and SQP methods solve the

following necessary optimality conditions




−I Hxx(0) Hxu(0) Cx(0)T fx(0)T 0

0 Hux(0) Huu(0) Cu(0)T fu(0)T 0

0 I 0 0 0 0

fx(0) fu(0) 0 0 0 −I
0 Cx(0) Cu(0) 0 0 0







δλ(0)

δx(0)

δu(0)

δµ(0)

δλ(1)

δx(1)




=




0

−Hu(0)

x0 − x(0)

0

0




(2.80)




−I Hxx(k) Hxu(k) Cx(k)T fx(k)T 0

0 Hux(k) Huu(k) Cu(k)T fu(k)T 0

fx(k) fu(k) 0 0 0 −I
0 Cx(k) Cu(k) 0 0 0







δλ(k)

δx(k)

δu(k)

δµ(k)

δλ(k+1)

δx(k+1)




=




0

−Hu(k)

0

0




(2.81)
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for k = 1, · · · , N − 1, and

[
−I Φxx(N)

] [ δλ(N)

δx(N)

]
=

[
0

0

]
. (2.82)

The difference is that in the InPA-SQP, initially, Hu(k) = 0, for k = 0, · · · , N − 1

and x0 − x(0) 6= 0. However, in SQP, initially, Hu(k) 6= 0, k = 0, · · · , N − 1 and

x0 − x(0) = 0. In both methods, the iterations continue until the norm of the vector

Λ is sufficiently small where

Λ=[ 0 ,−Hu(0), (x0−x(0))T , 0 , 0 , 0 , Hu(1), 0, 0, · · · , 0, 0 ]. (2.83)

We can show that a small change in the initial condition can lead a trajectory far

away from the optimal one, due to large Hu(·) [59]. For the case of systems with fast

dynamics, it is noted that the norm of Λ for SQP method is initially considerably

larger than that for InPA-SQP. So it can be expected that InPA-SQP converge to the

optimal solution faster than SQP.

2.2.3 MPC implementation using InPA-SQP approach

The InPA-SQP approach introduced in the previous section can be employed to reduce

the computational time of solving the MPC optimal control problem comparing to

the conventional SQP-based approach.

As illustrated before, according to MPC strategy, at time instant k with observed

state x(k) the optimization problem P(x(k)) (defined in (1.3)) is solved, rendering

the optimal control sequence

u∗(x) = {u∗0(x), u∗1(x), ..., u∗N−1(x)}, (2.84)

and the model predictive control law

h(x) := u∗0(x). (2.85)

At the time instant k + 1, the state x(k + 1) is observed and the optimal control

problem PN(x(k + 1)) must be solved. It should be noted that by the time instant

k + 1, the solution to the problem PN(x(k)) is available, which can be exploited to

improve the efficiency of optimization. The MPC implementation strategy which is
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described in the following uses the optimal solution calculated in the previous step k

to approximate the optimal solution at the time k + 1 so as to reduce the required

computational time for solving the optimization problem. Defining

dx(k) := x(k + 1)− x(k) (2.86)

as the initial state perturbation, one can use the InPA-SQP algorithm to approxi-

mate the solution of the problem P(x(k + 1)) using the solution of P(x(k)). If the

approximated optimal solution is close to the actual optimal solution, that is

Hu(k) u 0,

then the approximated solution is applied. Otherwise, more SQP iteration is per-

formed to achieve the optimal solution. Since the InPA-SQP method takes into ac-

count the initial state disturbance and optimality simultaneously, it is expected that

the computational time is reduced considerably comparing to the SQP optimization

with negligible effect on the performance of the MPC. In addition, it should be noted

that calculating the perturbed optimal solution using the InPA-SQP method can also

be used as the compensation part of the forecasting MPC [107].

2.2.4 Numerical results

As test cases, the InPA-SQP is employed to solve the optimal control problem as-

sociated with the Model Predictive Control (MPC) in two examples: an inverted

pendulum on a cart as a toy example and a ship steering problem as an applica-

tion. Computational advantages of the proposed approach are clearly demonstrated

through examples in numerical computation.

Inverted Pendulum

First, the MPC is implemented using the SQP optimization method as well as the

InPA-SQP approach, described so far in this chapter, on an inverted pendulum on

a cart to compare the computational time and performance corresponding to each

of these methods. The following model, taken out from [110], is used for numerical

simulation:
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ẋ1 = x2

ẋ2 =
−0.5(x2

2sinx1cosx1 + sinx1)

1 + 0.5sin2(x1)
− cosx1

1+0.5sin2(x1)
u

ẋ3 = x4

ẋ4 =
1.5(x2

2sinx1 − cosx1sinx1)

1 + 0.5sin2(x1)
+

3

1 + 0.5sin2(x1)
u

where x1, x2 are the angle and angular velocity of the pendulum (see Figure 2.2), x3, x4

are the cart position and velocity, respectively. The control u is the force applied to

the cart, as shown in Figure 2.2.

The control objective is to keep the pendulum at the upright position and keep

the cart at the origin. We assume that this is a computational resource limited

application where the processor and communication channels have sample interval of

100 ms and the computation plus communication delays could add up to as much

as 60 msec. In addition, there is uncertainty up to 40% in the length of pendulum.

The length of pendulum is 1.47 m. Here, a saturation limit on the control input is

imposed to limit u(·) to be in the range [−520 520].

Figure 2.2: Inverted pendulum on cart: an example

In Figure 2.3, the result of MPC using SQP with active set method is shown by the

solid line while the result of implementing MPC using the InPA-SQP is shown by the

dot line. The threshold for Hu(k) according to which the iterations is terminated in

both optimization methods is 10−3. Figure 2.4 compares the cumulative computation

time of SQP method and InPA-SQP method at each time step. It can be seen from

Figures 2.3 and Figure 2.4 that the two methods yield almost equal performance while

the average computational time using the InPA-SQP approach is 40% less than that

of SQP with the active set method. Note that the simulations are performed on a

computer with Intel(R) CPU @ 1.83GHz and computation time is measured using

CPU time.
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Figure 2.3: Implementing MPC using SQP with active set method and InPA-SQP approach.

Ship Steering Problem

The following ship model, taken out from [111], is used for numerical simulation:

ẋ1 = x5cos(x3)− (r1x4 + r3x
3
4)sin(x3),

ẋ2 = x5sin(x3) + (r1x4 + r3x
3
4)cos(x3),

ẋ3 = x4,

ẋ4 = −ax4 − bx3
4 + cur,

ẋ5 = −fx5 −Wx2
4 + ut,

(2.87)

where x1 and x2 are the ship position (in nautical miles (nm)) in the X1 −X2 plane,

x3 is the heading angle (in radians (rad)), x4 is the yaw rate (rad/min), and x5 is the

forward velocity (nm/min). The two control inputs are: the rudder angle ur (rad),

and the propeller’s thrust ut (nm/min2). Moreover, it is assumed that all states are

measurable.

The model parameters are summarized in Table I. With these parameters, the

ship has a maximum speed of .25 nm/min = 15 knots for a maximum thrust of 0.215

nm/min2. For maximal rudder angle of 35o, the stationary rate of turn is 1o/sec.
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Figure 2.4: Cumulative computation time of SQP with active set method and InPA-SQP approach
for inverted pendulum on cart.

Table I: Constant parameters of ship model

Parameter value unit

a 1.084 1/min

b 0.62 min/rad2

c 3.553 1/min2

r1 −0.0375 nm/rad

r3 0 Nm.min2/rad3

f 0.86 1/min

W 0.067 nm/rad2

The discrete-time model of ship dynamics is derived using Euler approximation

with sampling period T = 0.1 sec. The target position is described by a circle with a

radius 0.1 (nm) around the origin. To minimize the energy consumption during the

maneuvering, define

L(x(k), u(k)) = 0.1ur(k)2 + 10ut(k)3/2

Φ(x) = 2000(x2
1 + x2

2)
(2.88)

and with N = 140 as the length of horizon. The resulting MPC optimization problem
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is

min
u(·),x(·)

139∑

k=0

(0.1ur(k)2 + 10ut(k)3/2) + 2000(x1(140)2 + x2(140)2) (2.89)

subject to constraints:

0.02 ≤ ur(k) ≤ 0.61 rad

− 0.215 ≤ ut(k) ≤ 0.215 nm/min2.
(2.90)

The total number of optimization variables, including states and inputs, for the

length of horizon N = 140, is 978, which is substantial from computational point of

view. The initial optimal solution for k = 0 is calculated off-line using SQP algorithm.

Figure 2.5: Implementing MPC using SQP with active set method and InPA-SQP approach on
ship.

For a fair comparison, the formulation proposed in Section 2.2.1 is implemented

for SQP, which is equivalent to the InPA-SQP in the absence of initial state pertur-

bation. Simulations are performed on a computer with Intel(R) CPU @ 1.83GHz and

computation time is measured using CPU time and controller code is implemented

in Matlab.

Figure 2.5 shows the ship trajectory in the X1−X2 plane and the propeller’s thrust

using both SQP and InPA-SQP for initial condition of x(0) = [3, 0, π/3, 0, 0.25]. The

two solutions overlap in Figure 2.5 as they are nearly identical. The computational

time of the two methods are compared in Figure 2.6. The InPA-SQP results in almost

280% reduction in the average computational time when compared with the SQP.
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Figure 2.6: Computational time of SQP with active set method and InPA-SQP approach for ship
steering problem.

In the next section, another NE-based approach is introduced for MPC implemen-

tation.

2.3 Forecasting MPC (FMPC) with local compen-

sation: an application of the perturbation anal-

ysis solution

In this section, exploiting the NE method described in Subsections 2.1.1-2.1.3, the

so-called forecasting MPC implementation strategy is introduced [36, 107], which

aims at eliminating the computational time delay of solving the MPC-optimization

problem.

In order to compensate for the computational delay, the solution to the problem

P(x̂(k)) is pre-computed within the interval [k−1, k] where x̂(k) = f(x(k−1), u(k−
1)) is the predicted state at the time instant k using the measurement x(k − 1) and

x(k−1) is the measured state at the time instant k−1. Denoting the optimal control

sequence as u∗(x̂(k)), the FMPC control law at the time instant k is

u(k) = u∗1(x̂(k)), (2.91)

where u∗1 denotes the first element in the sequence u∗. This strategy assures that

the control input u(k) is available at time k, therefore providing an MPC action with

minimal computational time delay.

In the presence of disturbances or model uncertainties, however, the predicted

states x̂(k) and x(k) may not match exactly. Using the perturbation analysis de-
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veloped in the previous sections, the optimal solution corresponding to x(k) can be

derived by making a correction to the control signal (2.91) (computed in advance)

with a perturbation term δu, that is computed once the state measurement is taken

at time instant k. Namely,

u(x(k)) ≈ u∗1(x̂(k)) + δu1(δx0) (2.92)

where δx0 = x(k) − x̂(k). The second term in (2.92), which is designed to compen-

sate the effects of disturbances and unmodeled dynamics in the predicted solution, is

referred to as the local compensation in [107] and is calculated using the NE solution

described in Subsection 2.1.3. Since δu1 can be computed much faster than the solu-

tion of the original optimization problem, the effects of uncertainty and disturbance

can be immediately compensated.

It should be noted that the FMPC law (2.91) can also be calculated using the

perturbation analysis approach. In this case, δx0 = x̂(k)−x(k−1). Several extensions

of our basic approach can be proposed. One is to situations when the solution to the

optimization problem takes larger than one sampling interval or even random time

interval to compute. Opportunities also exist to combine this approach with the

block MPC in [5]. With these approaches, the optimization problem can be solved

less frequently, making an implementation of MPC strategy feasible for systems with

fast dynamics or with slow computing hardware.

2.4 Summary

So far in this chapter, the InPA-SQP solver is introduced and two numerical examples

are provided which demonstrate the efficiency of the method. In the next chapter,

two experimental applications, a DC/DC converter and ship maneuvering, are pre-

sented and details specific to how these applications are treated using InPA-SQP are

discussed.
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Chapter 3

Applications of MPC using InPA-SQP

In this chapter, it will be shown how the InPA-SQP algorithm is employed suc-

cessfully in two experimental applications. The first application is output voltage

regulation of a DC/DC converter on an experimental testbed at the University of

Michigan [69]. The second one is path following of a model ship constructed in the

Marine Hydrodynamic Laboratories (MHL) at the University of Michigan. Details of

models, experimental setups, and experimental results for DC/DC converter and the

model ship are presented in Section 3.1 and 3.2 respectively.

3.1 DC/DC converter

The full bridge DC/DC Converter was initially proposed [63], [64] for both high

power density and high power applications. It is very attractive because of its zero

voltage switching, low component stresses, and high power density features. More-

over, its high frequency transformer prevents fault propagation and enables a high

output/input voltage ratio. Therefore, with a full bridge DC/DC converter as the

power conditioning system, low voltage energy system can be applied to high DC

voltage applications, such as the DC zonal electrical distribution system of an all

electric ship [67]. To investigate the voltage regulation of a full bridge DC/DC based

power conditioning system, an experimental testbed was developed at the University

of Michigan to support model development and to facilitate a model based control

design approach [68]. Figure 3.1 depicts the configuration of the power stage of a full

bridge DC/DC converter, while parameters of the full bridge DC/DC converter are

shown in Table 3.1.

Several challenges arise for the DC/DC converter control design. First, the power

devices of the DC/DC converters have very complicated time varying switching be-

havior which defines the shape of the inductor current, making the dynamic model
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Figure 3.1: A full bridge DC/DC converter.

Table 3.1: Parameters of the testbed prototype
Item Parameter

Inductor L 10.5µH
Capacitor Co 1410µF

Transformer turn ratio n 2
Switching period T 100µs

V1 (nominal) 60V
Desired Vo 80V

Nominal load R 6.4Ω
Rated power 1000W

development of power converters a challenge. Second, DC/DC converters as power

conditioning devices typically have a wide range of operating conditions, further com-

plicating the control design. Furthermore, the control input is bounded due to physi-

cal limitations of power converters. Finally, safe operation requirements such as peak

current limitation may impose additional nonlinear constraints.

Traditionally, there are two classes of algorithms for DC/DC converter control,

namely the voltage mode control and current mode control. Voltage mode control

achieves voltage regulation through a single-loop voltage control scheme. To limit the

current during transient operation within safe operation range, the feedback control

gain must be carefully chosen, otherwise an additional protection circuit has to be

incorporated. In addition to a voltage feedback loop, current mode control employs

an inner inductor current feedback loop to improve performance. Performance en-

hancements, including superb line regulation and inherent over-current protection,

can be achieved for current mode control. However, current mode control has a sub-

harmonic oscillation problem when the duty ratio is greater than 0.5 [84]. Besides,

this method requires inductor current sensing, which increases system cost and tends
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to have noise sensitivity problems. The development of advanced control algorithms,

together with the increased computational power of microprocessors, enables us to

deal with the control problem from a new perspective. For example, Model Predic-

tive Control (MPC) has been implemented in power converters [85, 88] and in an

electric drive system for direct torque control [86, 87]. For the full bridge DC/DC

converter under investigation, the peak current protection problem can be formulated

as a constraint for an optimal control problem, which can be effectively dealt with

using MPC.

This section is concerned with the closed loop system performance of the MPC

schemes for a full bridge DC/DC converter. The control objective is to regulate the

output voltage without violating the peak current constraint. The voltage regulation

problem is formulated as an MPC problem using a nonlinear model to predict the

future plant behavior. The peak current protection requirement is formulated as a

nonlinear constraint. To achieve 300µs sampling time and handle the nonlinear con-

straint, the InPA-SQP method is employed to solve the constrained optimal control

problem. The InPA-SQP solver can significantly improve computational efficiency

while effectively handling the nonlinear constraints, making the implicit MPC feasi-

ble for a power electronics system with very fast dynamics. The experimental results

reveal that the MPC algorithms successfully achieved voltage regulation and peak

current protection.

The rest of the section is organized as follows: In Subsection 3.1.1, the inductor

peak current constraint of the full bridge DC/DC converter will be presented. Subsec-

tion 3.1.2 is devoted to an observer design for states and parameter estimation using

a large signal dynamic model. Subsection 3.1.3 focuses on MPC problem formulation.

Experimental results will be presented in Subsection 3.1.4, followed by conclusions in

Section 3.1.5.

3.1.1 Inductor peak current constraint

The full bridge DC/DC converter is typically modulated by the phase shift modulation

signals VQ1 ∼ VQ4 shown in Figure 3.2(a), where β ∈ [0, 1] is the normalized phase

shift between the two half bridges composed of Q1/Q2 and Q3/Q4, respectively. By

shifting the phase between the two half bridges, different combinations of Vac1 and

Vac2 can be applied to shape the current iL and consequently to manipulate the power

flow. Based on the shape of iL, there are two operation modes for the full bridge

converter, namely the Discontinuous-Conduction-Mode (DCM) and the Continuous-

Conduction-Mode (CCM) [68].
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For a full bridge DC/DC converter operating with Discontinuous-Conduction-

Mode (DCM), the ideal voltage waveforms of Vac1 and Vac2 are shown in Figure 3.2(b)

and Figure 3.2(c). The voltage across the inductor is VL = Vac1 − Vac2/n, leading to

the ideal inductor current iL slope at each segment shown in Figure 3.2(d). Given

the inductor current slopes shown in Figure 3.2(d), the peak current (iL(t0 + βT
2

)) for

DCM can be calculated as [69]:

iL(t0 +
βT

2
) =

(nV1 − Vo)βT
2nL

. (3.1)

T
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Figure 3.2: Modulation sequence and ideal waveforms of the full bridge DC/DC converter for
DCM.

Similarly, the peak current (iL(t0 + βT
2

)) for Continuous-Conduction-Mode (CCM)

can be calculated as:

iL(t0 +
βT

2
) =

(nV1 − Vo)(Vo + nV1β)T

8nLV1

. (3.2)

The operating mode of the DC/DC converter is determined by V1, Vo and β. For

different combinations of V1 and Vo, the phase shift boundary line Lβb between the

CCM and DCM can be calculated as follows if we set τc = 0 for DCM:

Lβb = {(β, V1, Vo)|β =
Vo
nV1

}. (3.3)

Moreover, let ipk denote the maximum tolerable peak current of the converter.
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Using (3.1) and (3.2), one can determine the limits on the phase shift to avoid over-

peak-current. If the converter operates with CCM, the phase shift constraint curve

Lβc can be calculated from (3.2) as follows:

Lβc = {(β, V1, Vo)|β =
8Lipk

T (nV1 − Vo)
− Vo
nV1

}. (3.4)

Similarly, if the converter operates with DCM, the phase shift constraint curve

Lβd can be calculated from (3.1) as follows:

Lβd = {(β, V1, Vo)|β =
2nLipk

T (nV1 − Vo)
}. (3.5)
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Figure 3.3: DCM/CCM boundary line Lβb and peak current constraint curves Lβd and Lβc for
V1 = 60V and ipeak = 75A.

Figure 3.3 shows the phase shift boundary line Lβb and the peak current constraint

curves Lβd and Lβc for V1 = 60V and Vo = 0V ∼ 90V . Note that: (a) the full

bridge DC/DC converter operates with the CCM if the phase shift is larger than the

corresponding boundary value; (b) the peak current constraint curves Lβd and Lβc

are calculated using equations (3.4) and (3.5) for ipk = 75A. For our system with a

nominal output power of 1000W , the phase shift at the nominal operating point is

0.62 which is smaller than the boundary value 0.67. Therefore, the converter operates

with the DCM at steady state for the nominal output power. From Figure 3.3, the

DCM peak current constraint curve Lβd is always above the boundary line Lβb, so the

peak current constraint will not be violated if the power converter operates with DCM

at steady state. However, for the cases of starting process and overload, the power

converter operates at CCM, where the CCM peak current constraint may be violated.

Therefore, an active constraint enforcement mechanism needs to be incorporated to

protect the converter.
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3.1.2 Dynamic model development and observer design

Given the challenges the control of power converters faces, it is desirable to employ

a model based control design approach to achieve satisfactory closed loop system

performance. Since the full bridge DC/DC converter has a wide operating range, it

is necessary to derive a large signal dynamic model for the system to facilitate the

model based control design. For this work, an averaged dynamic model as developed

for other power converters [89, 90, 92] is needed for control design. Following the

same technique in [90], the dynamic model of the full bridge DC/DC converter can

be derived as:

d̄iL
dt

=
βV1

L
− 4̄iLV̄o
βT (nV1 − V̄o)

, (3.6)

dV̄o
dt

=
īL
nCo
− V̄o
RCo

, (3.7)

y = V̄o. (3.8)

Note that: īL and V̄o represent the average current and the average output voltage over

a switching period. The output capacitor acts as a filter for the ripple on the output

voltage. Hence, output voltage samples, with sampling rate as much as switching

frequency, represent average output voltage over switching period.

For the dynamic system represented by (3.6)-(3.8), the implementation of ad-

vanced control strategies requires a current sensor to obtain the average current īL

for state feedback. On one hand, the current sensor must have high bandwidth to

accurately reconstruct the current signal. On the other hand, due to electromagnetic

interference, it is often necessary to use a low-pass filter to remove noise. However,

a low-pass filter typically introduces additional phase lag for the closed loop system.

To overcome those drawbacks, a nonlinear observer is used to estimate the average

current īL while keeping the voltage V̄o as the only measured variable. The nonlinear

observer is expressed as follows:

d̂̄iL
dt

=
βV1

L
− 4̂̄iL

ˆ̄Vo

βT (nV1 − ˆ̄Vo)
+H1(y − ŷ), (3.9)

d ˆ̄Vo
dt

=
ˆ̄iL
nCo
−

ˆ̄Vo
RCo

+H2(y − ŷ), (3.10)

ŷ = ˆ̄Vo. (3.11)

To derive the gains H1 and H2 for the nonlinear observer, the plant is linearized at the
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desired operating point. The faster eigenvalue is around −800. We chose H1 = 2759

and H2 = 2859 to place the eigenvalues of the observer at −2000 to achieve fast

convergence of the observer.
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Figure 3.4: Comparison of estimated and measured states.

Figure 3.4 compares the estimated states with the actual measured states. The

observed states closely track the real states for different operating points. This figure

also confirms the accuracy of the nonlinear model.

3.1.3 MPC formulation

This section presents the formulation of the MPC controller for the voltage regulation

problem of the full bridge DC/DC converter. The dynamic system represented by

(3.6)-(3.8) can be easily linearized with nominal value xo = [25, 80]T and uo = 0.62.

Let x1 = īL− 25, x2 = V̄o− 80 and u = β − 0.62, the system can be transformed into

its discrete-time version for a specific sampling time:

x(k + 1) = f(x(k), u(k)) := Ax(k) +Bu(k), (3.12)

y(k) = Fx(k). (3.13)

where A ∈ Rn×n, B ∈ Rn×m, F ∈ Rm×n. Note that n = 2 and m = 1 for the system

under investigation.
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For a given ipeak, the CCM peak current (3.2) must satisfy

(nV1 − Vo)(Vo + nV1a)T

8nLV1

≤ ipeak. (3.14)

(3.14) can be rewritten in terms of the state and control variables as:

E1(x(k), u(k)) ≤ 0. (3.15)

where,

E1(x(k), u(k)) =
(nV1 − (xo2 + x2(k)))((xo2 + x2(k)))

V1

+
(nV1 − (xo2 + x2(k)))(nV1(uo + u(k)))

V1

− 8nLipeak
T

.

(3.16)

Then the MPC online optimization problem can be formulated as follows: at the

time instant k, the state of the system, x(k), is observed and the following optimal

control problem PN(x(k)) is solved

PN(x0) : V ∗N(x0) = min
u
{VN(x0,u)} (3.17)

VN(x0,u) =
N−1∑

k=0

G(x(k), u(k)) + Φ(x(N))

(3.18)

subject to

x(k + 1) = f(x(k), u(k)), f : Rn+m → Rn; (3.19)

x(0) = x0, x0 ∈ Rn; (3.20)

E(x(k), u(k)) ≤ 0, E : Rn+m → Rl. (3.21)

where,

u = {u(0), u(1), ..., u(N − 1)}, (3.22)

is the control sequence,

x(k) := xu(k;x), (3.23)

is the state trajectory at time instant k resulting from an initial state x0. Since the

separation principle does not hold for nonlinear systems with observer, here we rely on

inherent robustness of MPC to deal with the effect of the observer. The incremental
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cost is

G(x(k), u(k)) = x(k)TQx(k) + u(k)TWu(k), (3.24)

and Φ(x(N)) is the penalty for the final states, Q ∈ Rn×n and W ∈ Rm×m are

the corresponding weighting matrices which are used to penalize the deviation of the

output and the control input to their corresponding desired value, N is the prediction

horizon, and E(x(k), u(k)) is the constraint matrix and can be written as follows with

l = 3: 

u(k)− (1− uo)
−u(k)− uo
E1(x(k), u(k))


 . (3.25)

Note that each component in (3.25) is bounded above by zero.

Since the full bridge DC/DC converter has the millisecond level time constant, a

rational choice of the sampling time is between 100µs and 200µs [91]. The length of

the prediction horizon N is a basic tuning parameter for MPC controllers. Generally

speaking, the closed loop system performance improves as N increases. However, ad-

ditional computational effort associated with a long horizon could be troublesome for

implicit MPC of power electronics systems. We choose 150µs as the sampling time for

the controller and N = 10 as the prediction horizon. The weighting matrices Q and

W are the main tuning parameters of the quadratic cost function (3.18) to shape the

closed-loop response for desired performance. The closed loop performance criteria

is defined: (1) to achieve fast output response with small output overshoot; and (2)

to avoid high frequency control input oscillation which might cause high slew rate

for the inductor current and high stress for switching components. We evaluate the

performance to different combinations of weighting matrix using a virtual hardware.

The virtual hardware is developed using MATLAB/Simulink/SimPowerSystems tool-

box and has the same parameters as the real hardware. The preliminary evaluation

results lead to the choice of Q = [0 0; 0 0.01] and W = 1. Furthermore, the final

states x(N) is not penalized, meaning Φ(x(N)) = 0.

Given the fast dynamics of the converter, a fast algorithm needs to be applied

to solve the above optimization problem online in real-time. Therefore, InPA-SQP

method is employed for experimental implementation of MPC. The next section shows

experimental results of such implementation.
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3.1.4 Experimental validation

The goal of this section is to present the experimental results to validate the effec-

tiveness of the MPC controller using the InPA-SQP as the optimization solver.

Experimental setup

Figure 4.5(a) demonstrates a DC hybrid power system testbed which includes RT-

LABr system, power converters, power sources and electronic loads. Figure 4.5(b)

shows the full bridge DC/DC converter(DC/DC1) under investigation which delivers

power from power source1 to load1. The RT-LABr system is a PC cluster based

platform which can perform real-time simulation, hardware in the loop test and rapid

control prototyping for large scale system. For this work, the RT-LABr system

serves the following three functions: (1) as the real-time simulator to control the

programmable power source1 such that it emulates the behavior of a PEM fuel cell;

(2) as the rapid control prototyping unit to generate the 10kHz modulation signals for

the full bridge DC/DC converter according to feedback information; (3) as the data

acquisition device to acquire and store experimental data to enable detailed offline

analysis. Note that only one target (Target1) is used in this application although our

RT-LABr system has four targets. Parameters of the full bridge DC/DC converter

are shown in Table.3.1.

Experimental results

First, the closed-loop performance is investigated in the presence of a large step

change in the load resistance R. Figure 3.5 compares simulation and experimental

waveforms for a step-down change of R when the control algorithm is applied to

control the nonlinear model represented by (3.6)-(3.8) and the full bridge DC/DC

converter shown in Figure 4.5(b). Initial R is 12.8Ω (500W output power). A step-

down change of the load resistance R is then applied to demand 1000W output power

(nominal). The transient responses of the MPC applied to both the large signal

dynamic model and the actual DC/DC converter are essentially the same. Moreover,

for both of the loads, the output voltage is regulated to the desired value, which

confirms the robustness of the control scheme. The peak of the current of inductor

does not get close to the upper limit of 75 A. As can be seen, the peak of the current

is less than 50 A and therefore, the constraint remains inactive during transient.
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Figure 3.5: Simulation and experimental waveforms for a step-down change of R from 12.8Ω to
6.4Ω (iL(avg) = īL).

Figure 3.6 shows the experimental waveforms for the starting process. The peak

current is limited within the maximum tolerable value 75A while the output voltage

is regulated to 80V . From the third plot, the phase shift (control input) first hits the

nonlinear constraint and then is constrained by the upper limit during the starting

process.

Finally, Figure 3.7 shows the experimental waveforms for the over load case. Dur-

ing the steady state, the peak current is limited within the maximum tolerable value

75A although the peak current is slightly higher than 75A for about 1ms during the

transient. This is partially due to the fact that a current sensor is not used in the

control scheme. The output voltage drops from 80V to 32V during the transient since

iL is constrained. From the third plot, the phase shift (control input) first hits the

upper limit and then is constrained by the peak current constraint.

The results reveal that the MPC controller successfully achieves voltage regulation

and peak current protection. The successful implementation of MPC in real-time

verifies that the InPA-SQP can significantly improve computational efficiency while

gracefully handling the nonlinear constraint. Therefore, it is feasible to apply implicit

MPC for fast dynamic systems such as the power electronics system if the InPA-SQP

solver is applied.

3.1.5 Conclusion

In this section, the operation of the full bridge DC/DC converter is analyzed. Based

on the analysis, a large signal dynamic model for the full bridge DC/DC converter
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Figure 3.6: Experimental waveforms for starting process with R = 6.4Ω (nominal).

is developed. The voltage regulation problem of the converter is formulated in the

context of MPC, where the peak current protection requirement is represented as a

mixed state and control input constraint. To achieve sub-millisecond level sampling

time and simultaneously handle the nonlinear constraint, the InPA-SQP method is

employed to solve the constrained optimal control problem. The InPA-SQP solver can

meet the computational efficiency demand while handling the nonlinear constraint.

The effectiveness of the proposed control algorithm, including the peak current pro-

tection capability, has been verified with experimental results. In the next section,

InPA-SQP is employed experimentally to control a model ship to follow a certain

path.
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Figure 3.7: Experimental waveforms for over load R = 1.6Ω.

3.2 Path following of the Model Ship

Controlling of marine surface vessels to follow a prescribed path or track a given

trajectory has been a representative control problem for marine applications and it has

attracted considerable attention from the control community [93]-[94]. One challenge

for path following problem is that the surface vessel system is underactuated, as the

path-following and heading control are often achieved using rudder angle as the only

control input. Another challenge is the physical constraints imposed on the system

such as rudder saturation. Model Predictive Control (MPC) is an attractive candidate

to achieve zero cross tracking error and heading angle error via minimizing a suitable

cost function while taking into account physical constraints. In this section, the

effectiveness of MPC that is implemented via InPA-SQP method for path following

of a model ship is experimentally demonstrated.

MPC has been employed for tracking control of marine surface vessels under rud-

der saturation constraint, [95], and for roll motion control with fin stabilizers [96].

In [98], the path-following control problem is considered where MPC is used and

the performance is evaluated using simulations when the ship is subject to roll con-

straints and rudder saturation. This work focuses on the experimental validation of

the algorithm, reported in [59], for path following control.

This section presents the MPC design using InPA-SQP for the path following

problem for a model ship via rudder control. 3-DoF simplified nonlinear and linear

models are adopted in the controller design and a corresponding 6-DoF nonlinear
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container model is used in simulations in order to study and compare the performance

of the MPC with the linear and nonlinear model. The InPA-SQP algorithm is used

to implement both the linear and nonlinear MPC on a model ship to experimentally

validate the algorithm and compare the performance. Finally the effects of delay in the

feedback loop on control signals are analyzed via simulation and a delay compensation

method, which is based on estimating the current state of the system in the MPC

controller, is applied to mitigate oscillations in the rudder angle commands.

3.2.1 Ship dynamic model

The control objective is to achieve path following for a model ship constructed in

the Marine Hydrodynamic Laboratories (MHL) at the University of Michigan. The

model ship, a 1:16 replica of a replenish vessel whose principal parameters are shown

in Table I, is actuated with two contra-rotating main propellers and two rudders aft.

Propellers and rudders are actuated by two DC servo motors fitted with encoders and

tachometers, respectively. Both the propeller speed and rudder angles are controlled

by an embedded processor (PC 104) through proper mechatronic interfaces.

The control code is loaded on a PC 104 through which the control signal is gener-

ated for servo motors to position the rudder accordingly. However, when the model

ship is tested in the towing tank located in the Marine Hydrodynamics Laborato-

ries (MHL) of the University of Michigan, the GPS signals are not available (even

they were available, the accuracy of GPS signals is not high enough for the model

test). Four infra-red cameras are used, in lieu of the GPS system, to provide the

feedback signals to the control system. A picture of the instrumented model is shown

in Figure 3.8.

Table 3.2: Parameters describing the Model Ship.
Item Symbol Value

Length L 1.60 m
Breadth B 0.38 m
Height H 0.17 m
Mass m 38 kg

Inertia Iz 2.7 kgm2

The following model characterizes the dynamics of the model ship. The procedure
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Note that |e[1]

ψ̃
| ≤ |eψ̃| and ψ̃r := −εo e(t)−φ, we obtain

Ẇ ≤ −(εo + ke) U
sin( ~ψ+φ)

ψ̃+φ
e2(t)− ||eψ̃(t)||2

+U sin( ~ψ+φ)

ψ̃+φ
· ||e(t)|| · ||eψ̃(t)||

≤ −(εo + ke) U∆ e2(t)− ||eψ̃(t)||2

+U · ||e(t)|| · ||eψ̃(t)||.

(19)

We assume that ψ̃+φ varies over (−π+δo, π−δo) where δo is
a small positive constant, and define ∆ = min( sin( ~ψ+φ)

ψ̃+φ
) =

sin(π−δo )
π−δo

, Eq. (19) can be further formulated in a quadratic
form as follows:

Ẇ ≤ −
[
||e||
||eψ̃||

]T
ACOM

[
||e||
||eψ̃||

]
(20)

where

ACOM =
[

(εo + ke) U∆ −U
2

−U
2

1

]
. (21)

Using the standard Lyapunov stability argument, one can
show that if the following condition is satisfied:

εo + ke >
U

4∆
, (22)

we have Ẇ negative definite and therefore the overall system
is exponentially stable. It can be seen that the sway velocity v
adversely affects the system stability since a large v implies
a large U

∆ , However, in practical ship maneuvering, the
sway velocity is relatively small compared to other motion
variable (namely | v

u
| << 1). Hence, its effects are often

neglected. Under the assumption | vu | << 1, both the cross
tracking error e(t) and course heading angle ψ̃r approach to
zero. In addition, ke, which is a design parameter in the
inner loop control law, can be properly selected to meet
certain performance criteria of the outer loop system. This
observation can be made by plugging ψ̃−ψ̃r = e

[1]

ψ̃
−kee+φ

into Eq. (7) as follows:

V̇o(t) = −(εo + ke) U sin( ~ψ+φ)

ψ̃+φ
e2(t) + U sin( ~ψ+φ)

ψ̃+φ
e(t)e

[1]

ψ̃
.

(23)

IV. EXPERIMENTAL PLATFORM AND ITS

MATHEMATICAL MODEL DEVELOPMENT

To support the control development, the fully instrumented
model ship is designed so that the control algorithm de-
veloped in Section II can be experimentally evaluated. The
model ship, which is a 1:50 scaled model of an offshore
supply vessel, has a length of 1.6 m, a mass of 38 kg, and
its breadth is 0.3 m. It is actuated with two contra-rotating
main propellers and two rudders aft. Propellers and rudders
are actuated by two DC servo motors fitted with encoders
and tachometers, respectively.

When the model ship is tested in a towing tank where
GPS signals are not available, four infra-red cameras are

used, in lieu of the GPS system, to provide the position
feedback signal to the control system. Meanwhile, an off-
the-shelf gyro is installed on-board the model ship to get the
information of the ship orientation in real time. A picture of
the instrumented model is shown in Fig. 2.

Fig. 2. A system overview of the fully instrumented model ship.

Fig. 3. Wireless link between devices.

The real-time feedback control is accomplished using a
PC-based PC104 hardware which runs the QNX real-time
operating system. PC104 communicates, through a wireless
LAN, to a host PC, on which the control algorithm is pro-
grammed and tuned, data acquisition function is performed,
and ship position signals are collected from the camera
system and transmitted to PC104. This model ship will
be used to validate the control algorithm proposed in the
previous section. In the sequel, we first describe the modeling
process and present a mathematical model for the platform.
This model will allow the algorithm to be evaluated first in
the simulation environment before it is finally tested on the
real hardware.

A. Development of Mathematical Model

Note that for the generic model, the terms
Xh, Yh, Nh, τx, τy and τz in Eq. (1) are not specified
in Section II. In our modeling effort, we determine these

Figure 3.8: A system overview of the fully instrumented model ship.

of model derivation and experimental validation is explained in [99].

ė = u sin(ψ) + v cos(ψ)

φ̇ = r

u̇ =
1

m−Xu̇

(mvr +Xuu+Xuu|u|u+Xuuuu
3 + 1.8902× 10−5 × |Up| × Up)

v̇ =
1

m− Yv̇
(−mur + Yvv + Yrr + Yvv|v|v + (−0.0298 + 1.435× 10−4 × 350)δ)

ṙ =
1

Iz −Nṙ

(Nvv +Nrr + (0.0227− 1.0002× 10−4350)δ)

(3.26)

with the parameters shown in Table 3.3 where Up is the propeller speed, e is the

distance of the ship from the desired path, called cross tracking error, and u, v, r,

and ψ are surge, sway, yaw velocities and heading angle respectively. The system is

subject to saturation constraint on the rudder input δ with saturation constraint

−30o ≤ δ ≤ 30o. (3.27)

For way-point paths, the path following problem can be formulated as a regulation

problem where the goal is steering the cross tracking error and heading angle error

(3.26) to the origin. Given the constraints, MPC is employed to address the regulation

problem. To proceed with the MPC design, first the following assumption is made:

Assumption 3.2.1. The vessel surge velocity u is constant.

Note that the propeller speed is not treated as a control variable in our path follow-
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Table 3.3: Parameters of the dynamics of the Model Ship.
Parameter Value

m 38.0
Iz 2.7
Xu̇ -6.8558
Xu 3.0211
Xuu -12.9059
Xuuu 2.7759
Yv̇ -17.5
Yv -20.5
Yr -0.835
Yvv -24.2
Nṙ -1.2
Nv 1.1965
Nr -1.2522

ing problem formulation. Assumption 3.2.1 can be satisfied by properly controlling

the propeller speed to maintain constant vessel surge speed. With Assumption 3.2.1,

the state u can be eliminated and the following simplified model can be used for MPC

design [99]:

v̇ = 0.029975δ − 0.31755v − 0.47213ur

ṙ = −0.13155δ − 0.2841r + 1.654175uv

ė = u cos(ψ) + v sin(ψ)

ψ̇ = r,

(3.28)

with the nominal value u = .4 m/s. The state of the system is x = [v r e ψ]T and δ

is the rudder angle which acts as the only input to the system.

3.2.2 Path following using MPC

For the ship path following problem where the objective is to regulate the cross track

and heading angle to zero, subject to the dynamic equation (3.28) and inequality

constraint (3.27), the MPC optimization problem PN(x(k)) (defined by equation
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1.3) is solved online where

L(x(k), u(k)) = x(k)TQx(k) + u(k)TRu(k),

Φ(x(N)) = αx(N)TSfx(N),

Q = diag([0 0 100 800]),

(3.29)

and Sf is the solution of the matrix Ricatti equation associated with R and Q, i.e.,

Sf = Q+ AT (P − PB(R +BTPB)−1BTP )A,

where x(k + 1) = Ax(k) + Bu(k) is the linearized version of the nonlinear dynamic

(3.28). For MPC optimization, one can either use the nonlinear model (3.28), which

leads to a non-linear MPC (NLMPC), or a linearized version of (3.28) which results in

linear MPC (LMPC). In this work, both LMPC and NLMPC are considered and their

performances are analyzed for ship path following under the given implementation

hardware.

Consider the initial state of the system (3.26) as x0 = [2, 0, 0.5, 0, 0]T . To compare

the linear and nonlinear model, the optimization problem P(x0) is solved with N =

200 and sampling time 0.01, for both linear and nonlinear systems. Figure 3.9 shows

the resulting open loop optimal control command for linear and nonlinear systems.

Figure 3.9: Open loop optimal control commands determined by nonlinear and linear MPC.

It is shown that the optimal solution for both systems are almost identical. When

used in the MPC feedback control, the response of the closed-loop LMPC and NLMPC

are shown in Figures 3.11 and 3.12 for the cross tracking error and rudder command

respectively. Note that both LMPC and NLMPC are applied to the nonlinear model

(3.26) in our simulations. It can be seen that while the performance of the two

controllers are the same, the control commands for the nonlinear and linear MPC
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are not similar. Accumulation of the small difference, shown in Figure 3.9, over the

horizon is the cause of such difference.

Figure 3.10: Cross tracking error and control command for nonlinear system with N = 7
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Figure 3.11: The resulting cross tracking error generated by MPC

Besides the performance, computational demand is another important considera-

tion in deciding which class of MPC is more appropriate for our application. With

the InPA-SQP algorithm, both LMPC and NLMPC are evaluated on a real-time sim-

ulator with a sampling time of 0.01 sec. We note that both LMPC and NLMPC are

computationally feasible without any overrun.
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Figure 3.12: Control command generated by MPC

Note that |e[1]

ψ̃
| ≤ |eψ̃| and ψ̃r := −εo e(t)−φ, we obtain

Ẇ ≤ −(εo + ke) U
sin( ~ψ+φ)

ψ̃+φ
e2(t)− ||eψ̃(t)||2

+U sin( ~ψ+φ)

ψ̃+φ
· ||e(t)|| · ||eψ̃(t)||

≤ −(εo + ke) U∆ e2(t)− ||eψ̃(t)||2

+U · ||e(t)|| · ||eψ̃(t)||.

(19)

We assume that ψ̃+φ varies over (−π+δo, π−δo) where δo is
a small positive constant, and define ∆ = min( sin( ~ψ+φ)

ψ̃+φ
) =

sin(π−δo )
π−δo

, Eq. (19) can be further formulated in a quadratic
form as follows:

Ẇ ≤ −
[
||e||
||eψ̃||

]T
ACOM

[
||e||
||eψ̃||

]
(20)

where

ACOM =
[

(εo + ke) U∆ −U
2

−U
2

1

]
. (21)

Using the standard Lyapunov stability argument, one can
show that if the following condition is satisfied:

εo + ke >
U

4∆
, (22)

we have Ẇ negative definite and therefore the overall system
is exponentially stable. It can be seen that the sway velocity v
adversely affects the system stability since a large v implies
a large U

∆ , However, in practical ship maneuvering, the
sway velocity is relatively small compared to other motion
variable (namely | v

u
| << 1). Hence, its effects are often

neglected. Under the assumption | vu | << 1, both the cross
tracking error e(t) and course heading angle ψ̃r approach to
zero. In addition, ke, which is a design parameter in the
inner loop control law, can be properly selected to meet
certain performance criteria of the outer loop system. This
observation can be made by plugging ψ̃−ψ̃r = e

[1]

ψ̃
−kee+φ

into Eq. (7) as follows:

V̇o(t) = −(εo + ke) U sin( ~ψ+φ)

ψ̃+φ
e2(t) + U sin( ~ψ+φ)

ψ̃+φ
e(t)e

[1]

ψ̃
.

(23)

IV. EXPERIMENTAL PLATFORM AND ITS

MATHEMATICAL MODEL DEVELOPMENT

To support the control development, the fully instrumented
model ship is designed so that the control algorithm de-
veloped in Section II can be experimentally evaluated. The
model ship, which is a 1:50 scaled model of an offshore
supply vessel, has a length of 1.6 m, a mass of 38 kg, and
its breadth is 0.3 m. It is actuated with two contra-rotating
main propellers and two rudders aft. Propellers and rudders
are actuated by two DC servo motors fitted with encoders
and tachometers, respectively.

When the model ship is tested in a towing tank where
GPS signals are not available, four infra-red cameras are

used, in lieu of the GPS system, to provide the position
feedback signal to the control system. Meanwhile, an off-
the-shelf gyro is installed on-board the model ship to get the
information of the ship orientation in real time. A picture of
the instrumented model is shown in Fig. 2.

Fig. 2. A system overview of the fully instrumented model ship.

Fig. 3. Wireless link between devices.

The real-time feedback control is accomplished using a
PC-based PC104 hardware which runs the QNX real-time
operating system. PC104 communicates, through a wireless
LAN, to a host PC, on which the control algorithm is pro-
grammed and tuned, data acquisition function is performed,
and ship position signals are collected from the camera
system and transmitted to PC104. This model ship will
be used to validate the control algorithm proposed in the
previous section. In the sequel, we first describe the modeling
process and present a mathematical model for the platform.
This model will allow the algorithm to be evaluated first in
the simulation environment before it is finally tested on the
real hardware.

A. Development of Mathematical Model

Note that for the generic model, the terms
Xh, Yh, Nh, τx, τy and τz in Eq. (1) are not specified
in Section II. In our modeling effort, we determine these

Figure 3.13: Wireless link between devices.

3.2.3 Experimental Platform and Experimental Results

For real-time implementation, feedback control is accomplished using a PC-based

PC104 hardware which runs the QNX real-time operating system. PC104 commu-

nicates, through a wireless LAN, to a host PC, on which the control algorithm is

programmed and tuned, data acquisition function is performed. Ship position signals

are collected from the camera system and transmitted to PC104 via RF modems.

The key control and communication devices are shown in Figure 3.13, together with

the connections among the devices.

To implement MPC with a nonlinear model, the InPA-SQP algorithm is employed

for efficient solution of PN(x(k)) at each time instant k. For NLMPC, the parameters
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R and α in (3.29) are tuned to R = .5 and α = 1.5 and for LMPC, the parameters are

tuned to R = .8 and α = 1.5. The length of prediction horizon N = 7. Figures 3.14

and 3.15 show the experimental results of implementing linear and non-linear MPC

on the ship with sampling rate 0.01 sec. In the figures, Ypos represents the position of

the ship. As expected, the results observed in simulations are achieved with the same

MPC parameters, except that now oscillations in control command are observed. The

observed oscillation can be attributed to delays incurred in the wireless communica-

tion, in the computation of the position of the ship from signals provided by cameras,

and unmodelled delay of the system. In the next section, the effects of the delay in

the feedback loop is considered and a compensating strategy is introduce to mitigate

its effects.

Figure 3.14: Response of LMPC with N = 7

Figure 3.15: Response of NLMPC with N = 7
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3.2.4 Delay Compensation

Given that the position of the ship is captured via cameras and the images are sent to

the monitoring computer to calculate the states before the results are sent back to the

ship controller, the whole process involves communication and computation delays as

well as delay is system dynamics. It is shown in experiment and simulation that such

delays can deteriorate the performance of the system in the sense that they cause

oscillations in the rudder control command. Since the time-delay is often the main

cause of performance degradation and instability, it has been treated extensively in

the control literature ( see [100], [101] and references therein).

For MPC, however, only a few algorithms have been published that handle time-

delay systems explicitly, such as [102, 103, 104]. In [102], the time delay is handled

by augmenting the state space representation such that the augmented model has

structural uncertainty without delay. Then the robust MPC is applied on the aug-

mented model which requires solving Linear Matrix Inequalities (LMI). In [103], a

simple receding horizon control is suggested for continuous time systems with state

delays, where a reduction technique is used so that an optimal control problem for

system with delay in state is transformed to an optimal control problem for delay-

free ordinary systems. However, the method is confined to unconstrained systems. In

[104], an MPC strategy is introduced where an upper bound to a worst value of the

cost (for different values of delay) is minimized subject to constraints of the system

and an LMI which is imposed to guarantee stability.

For the ship control problem under consideration, the delay in the observation of

the state is faced in implementation of the MPC strategy. Therefore, if the delay in

the loop is d and the current state of the system is x(k), the observed state is x(k−d),

with d× (sampling time) represents the overall delay in the closed loop system. We

can compensate the delay simply by estimating the current state of the system x(k),

using the observed state x(k − d), the control command applied to the system from

the time k − d to the the current time k, and the model of the system. While the

methods proposed in literature can handle observation delays, the prediction method,

described in the following, compensates the delay without solving LMI, leading to a

simpler solution.

Consider the system

x(k + 1) = f(x(k), u(k)),

y(k) = x(k − d),

x(k) ∈ X, u(k) ∈ U

(3.30)
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where X and U are state and input constraint sets respectively, x(k) ∈ Rn, u(k) ∈ Rm,

and d is the delay in the observation that is due to sensor dynamics or communication

networks. The system without delay is assumed to be fully observable or the states

can be measured real-time. Defining x̂(k) := x(k−d), (3.30) can be transformed into

a model with a time delay d in the input, i.e.,

x̂(k + 1) = f(x̂(k), u(k − d)). (3.31)

Defining the new states as

η(k) := [u(k − d)T , · · · , u(k − 1)T ]T , (3.32)

the system (3.31) is written in the following form

[
x̂(k + 1)

η(k + 1)

]
=

[
f(x̂(k), Cη(k))

Dη(k)

]
+

[
0(n+(d−1)m)×m

Im×m

]
u(k), (3.33)

where

C = [Im×m 0m×dm],

D =




0 Im×m · · · 0

0 0 Im×m · · · 0
...

0 0 · · · Im×m

0 0 · · · 0



.

(3.34)

Suppose that at each time instant k η(k), the history of applied control sequence

up until k, and y(k) = x(k − d) = x̂(k) are available. Therefore, the states of the

system (3.33) are observed at the time instant k and the state x(k) can be estimated

as follows:
x(k − d+ 1) = f(x(k − d), u(k − d)),

...

x(k) = f(x(k − 1), u(k − 1)).

(3.35)

We can use the estimated current state of the system, i.e., x(k), as the initial state

for the MPC optimization problem.

We propose the following MPC strategy to tackle the delay in the system (3.30).

• At each time instant k, predict the state x̂(k + d) = x(k) using the states η(k),
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x̂(k) = x(k − d) and (3.35).

• Solve the optimization problem PN(x(k)) (defined by equation 1.3), and im-

plement the first element of the optimal control sequence.

It can be easily seen that the delay in the observation is compensated by estimation

of the current state of the system (x(k)) if the model of the system is perfectly known.

To validate the algorithm, a delay of 0.3s is assumed in the communication channel

and the system (3.26) is simulated with and without delay compensation. From

Figure 3.16, it can be seen that oscillations in the rudder command are effectively

compensated by estimating the current state of the system (x(k)), considering the

delay of the system. It can be observed in Figure 3.17 that the cross tracking error

with almost the same settling time is achieved while the ruder oscillation is mitigated.

Figure 3.16: Rudder command for systems with and without delay compensator

Figure 3.17: Cross tracking error for systems with and without delay compensator
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3.2.5 Conclusion

In this section, InPA-SQP is employed for path following of a model ship subject

to input constraints. The effectiveness of the proposed MPC has been verified with

experimental results. Moreover, the effects of the communication delay and the delay

in system dynamics are considered and mitigated through estimating the current

(actual) state of the system using stored control input history and observed state of

the system.

So far, the computational feasibility of MPC has been the main focus and the

InPA-SQP method is developed to address this issue and to facilitate implementa-

tion of MPC. However, another major concern regarding MPC is robustness of the

resulting closed loop system with respect to model uncertainties or disturbances. As

illustrated in Section 1.1.4, for general nonlinear systems, guaranteed robust strategies

is an open problem. However, many applications fall in the category of constrained

linear systems subject to additive bounded disturbances. In the next chapter, it

is shown that it is possible to guarantee robustness and stability and comply with

constraints for such class of systems, while the requirement of repeatedly solving an

optimization problem is relaxed.
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Chapter 4

Robust control of constrained linear
systems

In this chapter, a control problem is considered for constrained discrete time linear

systems that are subject to bounded additive disturbances. Our goal is to provide a

control method that enforces specified state and input constraints in the presence of

disturbances and steers state trajectories to a given target set.

4.1 Problem Statement

Consider a class of linear, time-invariant, discrete-time systems described by

x(k + 1) = Ax(k) +Bu(k) + w(k),

x(k) ∈ Rn, u(k) ∈ Rm, w(k) ∈ Rn
(4.1)

where x(k), u(k) and w(k) are, respectively, the state, control and disturbance vectors;

x(k + 1) denotes the successor state of x(k) and k ∈ N, where N is the set of non-

negative integers.

We assume that the disturbance w belongs to a polytope W , the control and state

are subject to hard constraints, i.e.,

(u(k), x(k)) ∈ Ω ⊂ U× X and w(k) ∈ W, (4.2)

where U and W are (convex, compact) polytopes, containing the origin in their in-

terior, and X is a (convex) closed polyhedron. Finally, a target constraint set Xt is

given by

Xt = {x ∈ Rn|Y x ≤ q}, Y ∈ Rr×n, q ∈ Rr. (4.3)
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We assume that Xt is bounded (so it is a polytope) and 0 ∈ int(Xt). The control

objective is to find u that steers the state into the target set Xt. Moreover, the

existence of a feedback gain matrix K ∈ Rm×n is assumed such that AK = A+BK

is an exponentially stable matrix and the minimal robust invariant set1 FK for the

system x(k + 1) = AKx(k) + w(k), defined in [78], satisfies

FK ⊆ Xt. (4.4)

In the sequel, the Pontryagin difference [78] is used which, for two sets S ⊂ Rn

and T ⊂ Rn, is defined as S ∼ T = {x|x+ t ∈ S, ∀ t ∈ T}.

4.2 Robust Control Algorithm

For any initial state x ∈ X, the following control sequence

u∗(x) := {u∗0(x), u∗1(x), · · · , u∗N−1(x)}

and associated state sequence

x∗(x) := {x∗0(x), x∗1(x), · · · , x∗N(x)}

are feasible if they satisfy the following set of constraints C(x):

x∗0(x) = x,

x∗i+1(x) = Ax∗i (x) +Bu∗i (x), i = 0, · · · , N − 1,
(4.5)

Ω0 = Ω,

Ωi+1 = Ωi ∼ [KT I ]TAiKW, i = 0, · · · , N − 1,

(u∗i (x), x∗i (x)) ∈ Ωi i = 0, · · · , N − 1,

(4.6)

x∗N(x) ∈ Xf , (4.7)

1The robust invariant set FK for the system x(k+1) = AKx(k)+w(k) is minimal if for all closed
robust invariant sets X such that AKX +W ⊂ X, it follows that FK ⊂ X [78].
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where Xf is a robust invariant set for the system

x(k + 1) = AKx(k) + w(k), k ∈ N (4.8)

with w ∈ ANKW , i.e.,

AKXf + ANKW ⊂ Xf (4.9)

which satisfies the constraint

[KT I ]TXf ⊂ ΩN . (4.10)

Let us assume that for an initial state x(0), u∗(x(0)) and x∗(x(0)) are feasible con-

trol and state sequences. Computing these initial sequences involves finding a point

inside the polyhedron defined by (4.5)-(4.7). Now the following iterative algorithm is

proposed, where at each time instant k, the feasible control sequence u∗(x(k)) is con-

structed using the feasible control and state sequences u∗(x(k− 1)) and x∗(x(k− 1)),

where x(k) is the observed state at the current time instant and x(k− 1) denotes the

predecessor state:

u∗i (x(k)) = u∗i+1(x(k − 1))+K(x∗i (x(k))−x∗i+1(x(k − 1)),

for i = 0, · · · , N−2,

u∗N−1(x(k)) = Kx∗N−1(x(k));

(4.11)

x∗0(x(k)) = x(k),

x∗i+1(x(k)) = Ax∗i (x(k)) +Bu∗i (x(k)), i = 0, · · · , N−1.
(4.12)

At each time instant, the first element of the feasible control sequence is applied

as the control signal, therefore the robust control law is

u(k) = κ∗N(x(k)) := u∗0(x(k)). (4.13)

Theorem 4.2.1. Suppose the set of constraints C(x(0)) is satisfied with the feasible

control, u∗(x(0)), and state, x∗(x(0)), sequences. Then the state and input trajecto-

ries of the system (4.1) with the control law defined by (4.13) satisfy the input and

state constraints (4.2). Furthermore, the set of constraints C(x(k)) is satisfied by the

control and state sequences u∗(x(k)) and x∗(x(k)), defined by (4.11) and (4.12), for

all k > 0.

Proof. Here, denote the state at the time instant k as the current state x and state
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at the time instant k+ 1 as the successor state x(k+ 1). Assume u∗(x) and x∗(x) are

feasible control and state sequences for C(x). Considering the state evolution (4.12)

and control update (4.11),

x∗i+1(x(k + 1)) = Ax∗i (x(k + 1)) +Bu∗i (x(k + 1))

= Ax∗i (x(k + 1)) +Bu∗i+1(x(k))+BK(x∗i (x(k + 1))−x∗i+1(x(k)))

= AK(x∗i (x(k + 1))−x∗i+1(x(k))) + x∗i+2(x(k)), i = 0, · · · , N−2

(4.14)

where the last equality is achieved by adding and subtracting AKx
∗
i+1(x(k)) and using

equation (4.12). From (4.12),

x∗0(x(k + 1))−x∗1(x(k))=x(k + 1)−Ax(k)−Bu∗0(x(k)) = w0 ∈ W, (4.15)

and using (4.14) it can be easily shown that

x∗i (x(k + 1))− x∗i+1(x(k)) = AiKw0 ∈ AiKW, i = 0, · · · , N − 1. (4.16)

Moreover, from (4.11) and (4.16)

u∗i (x(k + 1))− u∗i+1(x(k)) = KAiKw0 ∈ KAiKW, i = 0, · · · , N − 2. (4.17)

From equations (4.16) and (4.17),

[
u∗i (x(k + 1))

x∗i (x(k + 1))

]
=

[
u∗i+1(x(k))

x∗i+1(x(k))

]
+

[
K

I

]
AiKw0, (4.18)

for i = 0, · · · , N − 2. Considering (4.6) and the feasibility of u∗(x(k)), x∗(x(k)),

(4.18) can be written as follows:

[
u∗i (x(k + 1))

x∗i (x(k + 1))

]
∈ Ωi+1 +

[
K

I

]
AiKW

= (Ωi ∼
[
K

I

]
AiKW ) +

[
K

I

]
AiKW ⊆ Ωi.

(4.19)
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From (4.11) and (4.16), where i = N − 1,

[
u∗N−1(x(k + 1))

x∗N−1(x(k + 1))

]
=

[
K

I

]
x∗N−1(x(k + 1))

=

[
K

I

]
(x∗N(x(k)) + AN−1

K w0).

(4.20)

Since (according to the terminal predicted state constraint (4.10)) x∗N(x(k)) ∈ Xf ,

(4.20) implies that

[
u∗N−1(x(k + 1))

x∗N−1(x(k + 1))

]
∈ ΩN +

[
K

I

]
AN−1
K W ⊆ ΩN−1, (4.21)

where the last inclusion follows from (4.6).

On the other hand, from equations (4.11) and (4.12),

x∗N(x(k + 1)) = Ax∗N−1(x(k + 1)) +Bu∗N−1(x(k + 1))

= (A+BK)x∗N−1(x(k + 1)) = AKx
∗
N−1(x(k + 1)).

(4.22)

From (4.16), where i = N − 1,

x∗N−1(x(k + 1))− x∗N(x(k)) ∈ AN−1
K W. (4.23)

Multiplying (4.23) by AK and using (4.22),

x∗N(x(k + 1)) ∈ {AKx∗N(x(k))}+ ANKW. (4.24)

Since x∗N(x(k)) ∈ Xf and the set Xf is a robust invariant set for the system (4.8) and

disturbance set ANKW ,

{AKx∗N(x(k))}+ ANKW ⊂ AKXf + ANKW ⊂ Xf .

Thus, x∗N(x(k + 1)) ∈ Xf . This and (4.21) imply that x(k)∗(x(k + 1)), u∗(x(k + 1))

satisfy constraints (4.6)-(4.7).

To investigate convergence properties of the controller (4.13), first recall that the
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minimal robust invariant set FK can be expressed as [78]:

FK =
∞∑

i=0

AiKW. (4.25)

We need the following auxiliary results to establish the domain of attraction for the

proposed control algorithm.

Lemma 4.2.1. Let u∗(x(k)) and x∗(x(k)) be feasible control and state sequences

corresponding to state x(k), and let u∗(x(k+1)) and x∗(x(k+1)) be control and state

sequences generated by (4.11) and (4.12), where x(k+1) is the successor state defined

in (4.1). Moreover, assume FK is the minimal disturbance invariant set as defined

earlier. Then

d(x∗i (x(k + 1)), AiKFK) ≤ d(x∗i+1(x(k)), Ai+1
K FK), i = 0, · · · , N−1. (4.26)

Proof. Equations (4.15) and (4.16) imply that for i = 0, · · · , N − 1,

∃w ∈ AiKW s.t. x∗i (x(k + 1)) = x∗i+1(x(k)) + w. (4.27)

Moreover, if w ∈ AiKW , from (4.25)

Ai+1
K FK + {w} ⊂ Ai+1

K FK + AiKW = AiKFK . (4.28)

Therefore, from (4.27) and (4.28)

d(x∗i (x(k + 1)), AiKFK)) ≤ d(x∗i+1(x(k)) + w,Ai+1
K FK + {w})

= d(x∗i+1(x(k)), Ai+1
K FK)

for i = 0 · · · , N−1.

(4.29)

Lemma 4.2.2. Let x(k+1) = AKx(k)+w(k), w ∈ ANKW , P be the Lyapunov matrix

corresponding to the stable matrix AK, i.e., P � 0 and ∃Q � 0 s.t. ATKPAK − P =

−Q, and the norm ‖ · ‖p be defined as ‖x‖p :=
√
xTPx, x ∈ Rn. If the distance is

defined in the normed space (Rn, ‖ · ‖p) and ‖D‖p is the induced norm of any square

matrix D ∈ Rn×n, then

∃ 0 < α < 1 s.t. ‖AK‖p ≤ α

and d(x(k + 1), ANKFK) ≤ αd(x(k), ANKFK)
(4.30)
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Proof. Given ATKPAK − P = −Q,

∀x ∈ Su = {x ∈ Rn| xTPx = 1}
xTATKPAKx = 1− xTQx.

Since Su is compact

∃ x̄ ∈ Su s.t.

‖AK‖p = sup
x∈Su

√
xTATKPAKx =

√
1− x̄TQx̄ < 1.

The last inequality is due to the fact that Q � 0.

Moreover,

d(x(k + 1), ANKFK) = d(AKx(k) + w(k), AN+1
K FK + ANKW ).

Since w ∈ ANKW ,

d(AKx(k) + w,AN+1
K FK + ANKW )

< d(AKx(k) + w,AN+1
K FK + {w})

= d(AKx(k), AN+1
K FK).

(4.31)

According to the definition of distance in the normed space

d(AKx(k), AN+1
K FK) = inf

w∈ANKFK
‖AKx− AKw‖p

≤ ‖AK‖p inf
w∈ANKFK

‖x− w‖p

= ‖AK‖pd(x,ANKFK).

(4.32)

From (4.31) and (4.32),

d(x(k + 1), ANKFK) ≤ ‖AK‖pd(x(k), ANKFK), (4.33)

and the proof is complete.

Theorem 4.2.2. If for an initial state x(0), there exist control and state sequences

satisfying the set of constraints C(x(0)), then the set FK is robustly attractive (all

trajectories converge to FK despite disturbances) for the controlled uncertain system

x(k + 1) = Ax(k) +Bκ∗N(x(k)) + w(k), (4.34)
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where w(k) ∈ W . Furthermore, the region of attraction is

R = {x ∈ Rn| C(x) is feasible}.

Proof. Let us define the cost J(x(k),u∗(x(k))) as follows

J(x(k),u∗(x(k))) :=
N∑

i=0

d(x∗i (x(k)), AiKFK), (4.35)

where x∗i (x(k)), i = 0, · · · , N is defined in (4.12). If x(k + 1) is the successor state

defined in (4.1), according to Lemma 4.2.1

N−1∑

i=0

d(x∗i (x(k + 1)), AiKFK) ≤
N∑

i=1

d(x∗i (x(k)), AiKFK). (4.36)

From definition (4.35) and inequality (4.36) and the fact that x(k) = x∗0(x(k)),

J(x(k + 1),u∗(x(k + 1)))− J(x(k),u∗(x(k))) ≤d(x∗N(x(k + 1)), ANKFK)− d(x(k), FK).

(4.37)

Making summation over the inequality (4.37) from time instant 0 to M < ∞, the

following is obtained

M∑

k=0

d(x(k), FK) ≤
M+1∑

k=1

d(x∗N(x(k)), ANKFK)

+ J(x(0),u∗(x(0)))− J(x(M+1),u∗(x(M+1)))

≤ J(x(0),u∗(x(0))) +
M+1∑

k=1

d(x∗N(x(k)), ANKFK).

(4.38)

On the other hand, from inequality (4.30),

d(x∗N(x(k)), ANKFK) ≤ αkd(x∗N(x(0)), ANKFK). (4.39)

Therefore, for all integer M,

M+1∑

k=1

d(x∗N(x(k)), ANKFK) ≤ α

1− αd(x∗N(x(0)), ANKFK). (4.40)
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From (4.38) and (4.40),

M∑

k=0

d(x(k), FK) ≤ J(x(0),u∗(x(0))) +
α

1− αd(x∗N(x(0)), ANKFK). (4.41)

Since ‖x(0)‖p < ∞ and the set U is compact, the right hand side of the above

inequality is bounded. Therefore, the sequence {VM :=
∑M

k=0 d(x(k), FK)} is bounded

and non-decreasing in Rn. Hence, {VM} is convergent and, as the result,

d(x(M), FK) = VM+1 − VM → 0, as M →∞. (4.42)

Therefore, FK attracts all trajectories with feasible initial state.

Remark 4.2.1. The important feature of the proposed method is that the attraction

to FK is achieved without involving any repeated optimization or minimal robust in-

variant set approximation, while in MPC based methods [52, 53] attraction to FK is

achieved by solving online an optimization problem.

Remark 4.2.2. The proposed robust control method may be viewed as based on tight-

ening constraints, at each time instance over the prediction horizon, by AiKW . In

this regard, the proposed scheme is similar to [49, 54]. However, the advantage of

the proposed method is that it does not require the terminal constraint set Xf to be a

subset of the desired target set Xt. In fact, the target set Xt is only required to contain

the minimal robust invariant set FK, i.e., FK ⊂ Xt, in order to be attractive.

In the next section the proposed method is employed for the roll control of a ship

equipped with the stabilizer fins.

4.3 Application: Control of Ship Fin Stabilizer

Control of the roll motion of ships has been extensively considered in the literature

(see [71]-[72] and references therein). As elaborated in [72], large roll motions induced

by ocean waves can severely affect the safety and performance of surface ships. For

ships that normally operate above certain speeds, using fins is one of the most effec-

tive roll control techniques [74]. Ship fin stabilizers consist of a pair of fins located

approximately amidship on the bilge of the hull, as indicated in Figure 4.1. These

fins have the freedom to rotate in a certain range, and the control system changes
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the mechanical angle of the fins, αm, according to a control algorithm that uses mea-

surements of the roll angle, φ, and roll rate, p. Defining the angle of attack, αe, as

the angle of the flow with respect to the fin, hydrodynamic forces, proportional to

the angle of attack, are induced on the fins. Due to the location of the fins on the

hull, these forces produce a moment that counteract and reduce the wave-induced

roll motion.

Figure 4.1: Ship roll fin stabilizer.

Depending on the size of the ship and the severity of the sea state, the effectiveness

of the fin stabilizer can be degraded due to nonlinear effects associated with unsteady

hydrodynamics of the fin. This phenomenon is called the dynamic stall. For a small

angle of attack, the roll moment starts to increase linearly as a function of the angle

of attack. When the angle of attack exceeds a certain threshold, the roll moment

generated by the fin decreases nonlinearly, as the angle of attack increases. This gain

reversal in the nonlinear hydrodynamic moment results in the loss of control in the

fin stabilizer.

The dynamic stall depends on the operation of the fins and their location on the

hull. It usually occurs when a group of high waves appears over a short time interval

and makes the angle of attack exceed a certain value, αstall [97]. Under the dynamic

stall condition, the control system becomes ineffective and as the result, the roll

angle, in the presence of high waves, increases rapidly and significantly. A common

approach to deal with these effects in practice is to reduce the gain of the controller.

Since the conditions for dynamic stall may not be always present, this conservative

approach reduces the overall performance when dynamic stalls are not present. MPC

is employed in [71] as an alternative approach to enforce input constraints associated

with the mechanical angle of the fin as well as the output constraint associated with

the effective angle of attack of the fin. The fin stabilizer control problem is considered

as a robust control problem in this section, where the linear dynamics of the system

are affected by a bounded additive disturbance, and the robust control algorithm
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proposed in Section 4.2 is employed, which does not require repeated on-line solution

of an optimization problem.

4.3.1 Equations of motion

For roll stabilization, the ship model from [71, 72] is employed for control design. The

following linear equations describe the roll motion in a frame fixed at the center of

gravity of the ship:

φ̇ = p,

Iφφṗ+Dp+Gφ = τc + τw,
(4.43)

where φ is the roll angle, p is the roll rate, τc is the control moment produced by

the fins, and τw is the wave excitation moment. Moreover, Iφφ is the total inertia in

roll about the axis along the ship longitudinal direction, D is the equivalent linear

damping (which accounts for potential and viscous effects), and G is the linear roll

restoring coefficient [71, 73].

For a ship fin stabilizer, the effective angle of attack can be calculated as follows

αe = −αpu − αm, (4.44)

where αm is the mechanical angle of the fin (control input) and αpu is the flow angle

induced by the combination of forward speed, U , and roll rate, p. It is calculated as

follows

αpu = arctan(rfp/U) ≈
rf
U
p. (4.45)

If the angle of attack is less than a certain value, i.e.,

αe < αstall,

the roll moment generated by one fin is approximately proportional to the angle of

attack as follows:

τc ≈ Kααe. (4.46)

The above linear relation does not hold if the angle of attack (αe) exceeds αstall [97].
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4.3.2 Constraints

We consider two set of constraints:

• Input constraint which reflects saturation of the mechanical angle of the fin:

|αm| ≤ αsat, (4.47)

• Input-state constraint that is aimed at preventing dynamic stall:

|αe| = |
rf
U
p+ αm| ≤ αstall. (4.48)

4.4 Controller design and Simulation results

To proceed with the controller design and performance evaluation of the proposed

system, the vessel model introduced in [72] is used where parameters for (4.43)-

(4.46) are given. The vessel travels at 15 kts forward speed, i.e., U = 15 kst, with a

magnitude constraint for the mechanical angle of the fin of 0.436 rad, and a magnitude

constraint for the angle of attack of 0.41 rad. Moreover, the coefficients in (4.43),

(4.45) are:

Iφφ = 3.4263× 106 Kgm2/rad,

D = 0.5× 106 Kgm2/(rad/sec),

G = 3.57× 109 Nm/rad, rf = 4.22 m.

(4.49)

A discrete-time model of (4.43), with sampling period Ts=0.1 sec, is

x(k + 1) = Adx(k) +Bdu(k) +Bwτw(k) (4.50)

where x = [φ p]T , u = αm and

Ad=

[
0.99 0.095

−0.08 0.90

]
, Bd=

[
−0.007

−0.142

]
, Bw=

[
0.004

0.095

]
. (4.51)

Assuming |τw| ≤ 0.2Iφφ, according to the general formulation (4.1), the disturbance

set W is:

W = {Bww, |w| ≤ .2Iφφ}.
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The feedback gain K = [−6.31 − 3.66] is designed using LQR technique with weight

R = 10 for control input and the weight Q = diag[10 2] for the states. With the

designed feedback gain K, the corresponding minimal invariant set is a subset of the

target set

Xt = {(φ p)|φ ∈ [−0.02 0.02], p ∈ [−0.06 0.06]}

for the disturbance set W . Considering the constraints (4.47) and (4.48), the sets

Ωi, i = 1, · · · , N are defined as follows:

Ωi=





(u, x)

∣∣∣∣∣∣∣∣∣∣∣

|cuu+ cxx| ≤ αstall −
i−1∑

j=0

hAjkW
(cx + cuK)

|u| ≤ αsat −
i−1∑

j=0

hAjkW
(K)





(4.52)

where

cu = 1, cx = [0
rf
U

] (4.53)

and for a set S ⊂ Rn, hS(·) denotes its support function, see e.g. [78]. The value of

N = 10 was chosen to provide large domain of attraction.

Moreover, for this example, the set Xf in the robust control algorithm is chosen

as the maximal robust invariant set. The set Xf is contained in the following set as

shown in Figure 4.2,

XN:=





x

∣∣∣∣∣∣∣∣∣∣∣

|(cuK+cx)x|≤αstall−
N−1∑

j=0

hAjkW
(cx+cu.K)

|Kx|≤αsat−
N−1∑

j=0

hAjkW
(K)





. (4.54)

Given the sets Xf and Ωi, the control law for the fin stabilizer is determined according

to (4.11) and (4.12).

The simulation of the closed loop was performed for a given sinusoidal wave torque

profile with period of 7sec and magnitude of 0.2Iφφ.

Figure 4.2 shows the trajectory of the system with initial condition [φ p] =

[0 rad 0.45 rad/sec]. It can be seen that in the presence of sinusoidal wave distur-

bance, the ship roll motion is stabilized around the origin within a minimal invariant

set characterized by the matrix AK and the set W , while saturation constraints as

well as the constraint on the angle of attack αe are satisfied. Figure 4.3 shows the
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angle of the fin and the angle of attack.

For comparison, the robust MPC method is also applied to the roll control prob-

lem. The set of tightened constraints (4.52) and (4.54) was used along with the cost

function
9∑

i=0

Ru(i)2 + x(i)TQx(i) + x(10)TSfx(10),

where Sf is the solution of the associated discrete-time Riccati equation for the in-

finite horizon problem. Figures 4.4 and 4.5 show the roll angle and angular velocity

when the proposed robust method and robust MPC are employed. Referring to Fig-

ures 4.4 and 4.5, similar performance can be observed. For the initialization of the

proposed algorithm, a LP problem is solved at k = 0 to provide a feasible trajec-

tory, no optimization problem is solved for k > 0, which leads to considerably less

computational time compared to the MPC at each time instant k > 0 (according

to simulation results, three order of magnitude less than the computational time of

MPC). As one can see from these figures, the constraints are satisfied. The region

of attraction of robust controller is shown in Figure 4.6. The MPC is implemented

using the same set of constraints as the robust controller; thereby providing the same

region of attraction.

Figure 4.2: Trajectory of the system with initial condition [φ p]=[0 rad, 0.45 rad/sec].
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Figure 4.4: Roll angle of the system with initial condition [φ p]=[0 rad, 0.45 rad/sec].
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Figure 4.5: Angular velocity of the system with initial condition [φ p]=[0 rad, 0.45 rad/sec].
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4.5 Conclusion

This chapter presented a robust controller for a class of constrained linear systems

subject to mixed state and input constraints with bounded disturbances. The novel

feature of the robust controller is that the control action is a linear combination of

known data at each sampling time and therefore it is highly computationally effective.

The proposed controller guarantees convergence of state trajectory to a minimal in-

variant set of the desired system while explicit specification or approximation of such

set is not required. The method was employed in the chapter for control of roll motion

of a high speed ship, to enforce the dynamic stall and fin saturation constraints. Con-

vergence to a desired target set in the presence of sea waves has been demonstrated.

Simulation results were presented to show the effectiveness of the proposed method.

Other constraints, e.g., rate limits, can be handled similarly. In this chapter, it was

assumed that the disturbance is confined in a compact set W . While in practical

applications the disturbances are rate bounded or follow the low-pass-filtering nature

of physical systems, this assumption is conservative since it allows the disturbance

to vary freely inside W or even jump from one point to another. In the next chap-

ter the dynamic of disturbances are incorporated, leading to a smaller attractor set.

Consequently, smaller attractor allows smaller target set Xt (defined in (4.3)).
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Chapter 5

Robust Control of Constrained Systems
with Filtered Bounded Disturbances

In this chapter, the minimal robust invariant attractor (MRIA) set for linear

systems subject to additive disturbances confined in a state-dependent and bounded

set is analyzed and characterized. In particular, existence of a MRIA set is proved and

the set is characterized when the state dependent set is upper-semi continuous. Built

on this result, the existence of a minimal attracting invariant set is established for the

case when disturbances evolve within a compact set according to a linear dynamic

model. The MRIA set is smaller if the disturbance model is considered compared

to the case where only the boundedness of the additive disturbance is assumed. A

numerical example is provided that shows the size of the minimal invariant attracting

set is considerably different in the two cases. Not only does the analysis provide

smaller target set Xt in Chapter 4, but it characterizes the MRIA set that can be

employed in the design of robust MPC strategies, such as tube MPC [53], to achieve

robust stability, improve control response and reduce conservativeness.

This chapter is organized as follows: in Section 5.1, the existence of MRIA set is

established for linear systems subject to additive disturbance where the disturbance

belongs to an upper-semi-continuous state dependent set. In Section 5.2, the system

where the disturbance evolves inside a compact set according to a known disturbance

model is introduced and shown to be a special case of the system described in Sec-

tion 5.1. Given the dynamics of disturbance, existence of a MRIA set is established

in the lifted space of state and disturbance in Section 5.3. Robust MPC design using

the MRIA set in the lifted space is described in Section 5.4 followed by a numerical

example where it is shown that the MRIA set is considerably less conservative if the

the dynamics of disturbances are considered.
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Basic definitions

The sets of non-negative integers and reals are denoted by N and R+, respectively,

i,e, N := {0, 1, 2, · · · } and R+ := {x ∈ R : x ≥ 0}. Given two sets X ⊂ Rn and

Y ⊂ Rn, the Minkowski set addition is defined by X⊕Y := {x+y : x ∈ X, y ∈ Y }.
We write x⊕X instead of {x}⊕X. Given a set X and a real matrix M of compatible

dimension, let MX := {Mx : x ∈ X}. Given a matrix M ∈ Rn×n, ρ(M) denotes

the largest absolute value of its eigenvalues. A family of non-empty compact subsets

of Rn is denoted by Com(Rn). For X ⊂ Rn, Cl(X) denotes the closure of X. A

function δ : Com(Rn) × Com(Rn) → R is a Hemimetric on Com(Rn) if δ(A,B) ≤
δ(A,C) + δ(C,B) for all A,B,C ∈ Com(Rn) and δ(A,A) = 0 for all A ∈ Com(Rn).

If δ is a Hemimetric, then an open ball centered at X ∈ Com(Rn) and radius ε is

denoted by Bε(X) := {Y ∈ Com(Rn) | δ(X, Y ) < ε}.
In Hemimetric space (Com(Rn), δ), a set is open if it is a union of open balls, de-

fined by Hemimetric δ. The Hemimetrics δl and δu are defined as δl(X, Y ) := inf{ε >
0 | X ⊂ Bε(0)⊕Y } and δu(X, Y ) := δl(Y,X), respectively. The Hausdorff distance of

two sets A, B ⊂ Rn is a metric given by δH(A,B) = max{δl(A,B), δu(A,B)}. A mul-

tivalued function f : Rn → Com(Rn) is upper-semicontinuous / lower-semicontinuous

if for any open set A in Hemimetric space (Com(Rn), δu)/ (Com(Rn), δl), f
−1(A) :=

{x ∈ Rn | f(x) ∈ A} is open in Rn. A multi valued function is continuous if it is

upper-semicontinuous and lower-semicontinuous, i.e., it is continuous with respect to

space Com(Rn) and metric δH .

The Graph of a multi-valued function f : X ⊂ Rn → Com(Rn) is Gr f :=

{(x, y) | x ∈ X, y ∈ f(x)}. A set valued function is called a correspondence. For a

correspondence f , strong pre-image of a set A ⊂ Rn is f s(A) := {x ∈ Rn | f(x) ⊂ A}.
For a set sequence {Ai}, i ∈ N, lim supi→∞Ai =

⋂∞
n=1

⋃∞
i=nAi.

5.1 Characterization of MRIA Sets: The General

Case

Consider a discrete-time linear time-invariant system:

z(k + 1) = Az(k) + ω, ω ∈ W(z(k)), k ∈ N (5.1)

where z(k) ∈ Rr is the current state, z(k + 1) is the successor state and ω ∈ Rr

is an unknown disturbance taking values in a state dependent set W(z(k)) where
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W : Rr → Com(Rr). The standing assumptions are

Assumption 1. The state transition matrix A is strictly stable.

Assumption 2. The multi-valued function W is upper-semicontinuous.

Assumption 3. There exists a compact set W ⊂ Rr such that for all z ∈ Rr,

W(z) ⊆W.

These assumptions are reasonable for applications of our subsequent results to

Model Predictive Control. The following Lemma provides another interpretation of

upper-semicontinuity, which is introduced in the Definition Section, [113].

Lemma 5.1.1. A correspondence f is upper-semicontinuous if for every open set G

in Rr, the pre-image f s(G) is open in Rr.

We recall the following standard definition [114].

Definition 5.1.1. A set Ω is an invariant set for the system (5.1) if for all z ∈ Ω,

Az ⊕W(z) ⊆ Ω.

Definition 5.1.2. A nonempty set Ω is an attractor for system (5.1), if for all initial

conditions z(0) ∈ Rr, any solution z(k) at the dynamics z(k) = Az(k − 1) + ω, ω ∈
W(z(k−1)) converges to Ω as k →∞. A set is a minimal attractor if it is contained

in any attractor of the system.

In this chapter, existence of the MRIA set for the system (5.1) under the Assump-

tions 1-3 is established.

Consider the map W , R : Com(Rr) → 2Rr , induced by the set valued function

given by:

R(Z) := {Az + ω : z ∈ Z, ω ∈ W(z)} (5.2)

where 2Rr denotes the set of all subsets of Rr. We denote by Rj(·) the j-th iterate

of the map R(·), given by (5.2), and R0(Z) = Z for Z ⊂ Rr. If z ∈ Rr, R(z) :=

{Az+ω : ω ∈ W(z)}. Thus a set Ω ⊂ Rr is invariant if and only if R(Ω) ⊆ Ω. A set

Ω ⊂ Rr is an attractor if and only if for all Z ∈ Com(Rr), lim supj→∞Rj(Z) ⊆ Ω.

Lemma 5.1.2. For any Z ∈ Com(Rr), R(Z) is compact.

Proof. Since W : Z → Com(Rr) is upper-semicontinuous, so is R : Z → Com(Rr)

given by R(z) = Az +W(z). Moreover, R is compact valued and given that Z is

compact, R(Z) =
⋃
z∈Z R(z) is compact (See page 90 of [113]).
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Therefore, R(·) maps Com(Rr) to itself.

Lemma 5.1.3. Assume Assumptions 1 and 3 hold. Then the set

F := Cl(
∞⊕

i=0

AiW) (5.3)

is an attracting invariant set, i.e., R(F ) ⊆ F and for any K ∈ Com(Rr),

lim sup
j→∞

Rj(K) ⊆ F

.

Proof. The Lemma follows from Assumption 3 and the fact that F is an attracting

invariant set for the system z(k + 1) = Az(k) + ω(k), ω(k) ∈W. [112].

Lemma 5.1.4. Suppose {Zi}, i ∈ N is a sequence of non-empty compact sets in Rr

where Zi+1 ⊆ Zi for i ∈ N. Then Z̄ :=
⋂∞
i=1 Zi 6= ∅. Moreover, for all open sets

G ⊂ Rr such that Z̄ ⊂ G, there exists M ∈ N such that ZM ⊂ G.

Remark 5.1.1. This is a standard result, see [116].

Theorem 5.1.1. Suppose Assumptions 1-3 hold and F is defined by (5.3). Then

Ω∗ :=
∞⋂

j=0

Rj(F ) (5.4)

is non-empty and compact, i.e., Ω∗ ∈ Com(Rr), and

R(Ω∗) = Ω∗. (5.5)

Proof. The proof is similar to the one given for Theorem 8.2.1 in [113]. According to

Lemma 5.1.3, R(F ) ⊆ F . Therefore, Rj(F ) ⊆ Rj−1(F ) for j ∈ N. Since W(z) 6= ∅
for all z ∈ Rr, Rj(F ) 6= ∅. Hence, according to Lemma 5.1.4, Ω∗ =

⋂∞
j=0Rj(F ) 6= ∅.

If z ∈ Ω∗, then for all n > 0, z ∈ Rn(F ). Hence, R(z) ⊂ Rn+1(F ), n > 0. Therefore,

R(z) ⊂ Ω∗ and R(Ω∗) ⊆ Ω∗. Now the reverse inclusion need to be proved. Assume

z0 ∈ Ω∗\R(Ω∗). Then R(Ω∗) and z0 can be separated by disjoint open sets U1 and

U2. Since R(·) is upper-semicontinuous, Rs(U1) is open and since R(Ω∗) ⊂ U1,

Ω∗ ⊂ Rs(U1). Therefore, according to Lemma 5.1.4, there exists M ∈ N such that

RM(F ) ⊂ Rs(U1). Hence, Ω∗ ⊂ RM+1(F ) ⊂ U1 and z0 ∈ Ω∗ ⊂ U1 which contradicts

z0 ∈ U2. Therefore, Ω∗\R(Ω∗) = ∅ and R(Ω∗) = Ω∗.
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Theorem 5.1.2. Suppose Assumptions 1-3 hold. Then Ω∗ ∈ Com(Rr), defined in

(5.4), is a minimal robust attractor with the basin of attraction being the whole space,

Com(Rr).

Proof. Given K ∈ Com(Rr), according to Lemma 5.1.3,

∀ ε > 0,∃ M1 ∈ N, s.t ∀n ≥M1, Rn(K) ⊂ F ⊕Bε(0) (5.6)

where Bε(z0) := {z ∈ Rr | ‖z − z0‖ < ε}. For any set S ∈ Com(Rr), S ⊕ Bε(0) =⋃
z∈S Bε(z). Therefore, S ⊕Bε(0) is an open set. From Assumption 2, R(·) is upper-

semicontinuous. Hence, according to Lemma 5.1.1, Rs(R(S)⊕Bε(0)) is open. Since

the set F , defined in (5.3), is compact and contained in the open setRs(R(F )⊕Bε(0)),

for ε > 0, there exists δ(ε) such that F ⊕Bδ(ε)(0) ⊂ Rs(R(F )⊕Bε(0)). Hence, for all

ε > 0, there exists δ(ε) > 0 such that

R(F ⊕Bδ(ε)(0)) ⊂ R(F )⊕Bε(0). (5.7)

According to Lemma 5.1.4 and (5.4), given ε > 0, there exists M2(ε) > 0 such that

RM2(F ) ⊂ Ω∗ ⊕Bε/2(0). (5.8)

Considering (5.7), it is implied that R(RM2−1(F )⊕ Bδ(ε/2)(0)) ⊂ RM2(F )⊕ Bε/2(0).

Applying (5.7) recursively, it is deduced

RM2(F ⊕BδM2 (ε/2)(0)) ⊂ RM2(F )⊕Bε/2(0) (5.9)

where δi+1(ε/2) := δi(ε/2) and δ0(ε/2) = ε/2. (5.8) and (5.9) imply

RM2(F ⊕BδM2 (ε/2)(0)) ⊂ Ω∗ ⊕Bε(0). (5.10)

According to (5.6), if δ̂ := δM2(ε/2)), there exists M1(δ̂) ∈ N such that for all n >

M1(δ̂)

Rn(K) ⊂ F ⊕Bδ̂(0). (5.11)

(5.11), for all n > M1 + M2, implies that Rn(K) = RM2(Rn−M2(K)) ⊂ RM2(F ⊕
Bδ̂(0)) and from (5.10), RM2(F ⊕ Bδ̂(0)) ⊂ Ω∗ ⊕ Bε(0). Therefore, for all n >

(M1 + M2)(ε), Rn(K) ⊂ Ω∗ ⊕ Bε(0). Hence, lim supn→∞Rn(K) ⊆ Ω∗. Therefore Ω∗

is an attractor. Assume Ω is another attractor. Then lim supn→∞Rn(Ω∗) ⊆ Ω. Since

R(Ω∗) = Ω∗, Ω∗ ⊂ Ω.
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In the sequel, as a special case, existence and uniqueness of minimal attracting

sets for linear systems subject to constraints and additive bounded disturbance that

evolves according to a given dynamic model are considered.

5.2 Linear System and Disturbance Models

In this section, the problem, where the disturbance evolves inside a compact set

according to a known disturbance model is formulated. We consider a discrete-time

linear system

x(k + 1) = Ax(k) +Bu(k) + Cw(k), k ∈ N (5.12)

where x(k) ∈ Rn is the current state, u(k) ∈ Rm is the current control, w(k) ∈ Rp is

the disturbance, x(k+ 1) ∈ Rn is the successor state and matrices A, B and C are of

compatible dimensions.

The disturbance equation can be equivalently expressed as follows

w(k) = Fw(k − 1) +Gv(k − 1), (5.13)

where w(k− 1) ∈ Rp is the predecessor disturbance , v(k− 1) ∈ Rl is the predecessor

disturbance model input and w(k) ∈ Rp is the current disturbance.

The disturbance model state and input are subject to the following constraints:

w(k) ∈ W, w(k − 1) ∈ W and v(k − 1) ∈ V, (5.14)

where W ∈ Com(Rp) and V ∈ Com(Rl).

Remark 5.2.1. Assuming that C is full column rank, at each time instant k, the

predecessor disturbance w(k − 1) is accessible via the following relation:

w(k − 1) = (CTC)−1CT (x(k)− Ax(k − 1)−Bu(k − 1)).

However, the current value of disturbance w(k) and the disturbance model input v(k)

is unknown.

Remark 5.2.2. By measuring the predecessor disturbance, the disturbance model

(5.13)-(5.14) can be constructed using system identification techniques applied to dis-

turbance measurement.
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In the following, it is demonstrated that (5.12)-(5.14) can be represented as linear

system with additive, state-dependent bounded disturbance.

The constraint (5.14) induces the following constraint

w(k) ∈ {Fw(k − 1) +Gv(k − 1) | v(k − 1) ∈ V, Fw(k − 1) +Gv(k − 1) ∈ W}
= (Fw(k − 1) +GV ) ∩W.

(5.15)

Defining a correspondence g : W → Com(W ) as

g(w) := (Fw +GV ) ∩W. (5.16)

Note that (5.13) and(5.14) imply

w(k) ∈ g(w(k − 1)), w(k − 1) ∈ W. (5.17)

Clearly for all w ∈ W, g(w) 6= ∅. It is assumed that at each time instant, the current

state x(k) and the predecessor disturbance w(k − 1) are accessible to the controller

but v(k − 1) or the current value of disturbance, w(k), are not. Given the known

state and disturbances x(k) and w(k − 1) at each time instant k, it is assumed that

the controller applies a linear feedback given by:

u(k) = Lx(k) +Mw(k − 1), (5.18)

where L is chosen such that the matrix AL := A+BL is strictly stable. Incorporating

the control law (5.18), the system and disturbance dynamics (5.12) and (5.13) subject

to disturbance constraints (5.14) take the following closed-loop form:

(
x(k + 1)

w(k)

)
=

(
A+BL BM

0 0

)(
x(k)

w(k − 1)

)
+

(
C

I

)
w(k), (5.19)

w(k) ∈ g(w(k − 1)). (5.20)

Introducing the augmented state z(k) = (x(k), w(k−1)), (5.19) takes the following

form:

z(k + 1) = Ãz(k) + ω, ω ∈ W(z(k)), (5.21)
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where W : Rn ×W → Rn ×W is given by

W(z) := B̃g([0 I]z), (5.22)

and

Ã :=

(
A+BL BM

0 0

)
, B̃ :=

(
C

I

)
, (5.23)

Remark 5.2.3. Note that by augmenting (5.12) to (5.13) and viewing v(k − 1) as a

disturbance input, a linear discrete time system with a set bounded input is obtained.

While such a system can be treated using existing techniques in the literature, less

conservative results can be developed by including additional information that w(k) ∈
W, w(k − 1) ∈ W.

The augmented system (5.21) has the form of system (5.1). In the sequel the

results of Section 5.1 are used to characterize the MRIA set for the augmented system

(5.19). Our assumptions for system (5.19) that are related to assumptions 1-3 are

now summarized as follows:

Assumption 4. The sets V and W are compact.

Assumption 5. For all w ∈ W , g(w) = (Fw ⊕GV ) ∩W 6= ∅.

Assumption 6. The matrix AL := A+BL is strictly stable.

Note that Assumption 6 can be easily satisfied if the pair (A,B) is stabilizable,

e.g. by any pole placement techniques.

5.3 Characterization of MRIA Sets: The Special

Case

In this section, existence of a MRIA set is established once the disturbance dynami-

cally evolves inside a compact set according to a dynamic. To analyze existence and

uniqueness of a minimal invariant set for augmented system (5.21), existence and

uniqueness of the fixed point for the mapping

R(Ω) := {Ãz + w | z ∈ Ω, w ∈ W(z)} (5.24)

is considered.
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Proposition 5.3.1. Suppose Assumptions 4 and 5 hold. Then the correspondence g

defined in (5.16) is upper-semicontinuous.

Proof. The graph of g is

Gr g = {(x, y) | x ∈ W, y ∈ (Fx+GV ) ∩W}.

Since V and W are compact, the sets G1 := {(x, y) | x ∈ W, y ∈ Fx + GV } and

G2 := {(x, y) | x ∈ W, y ∈ W} are compact. Hence, Gr g = G1 ∩ G2 is compact.

Therefore, since the range of g is the compact set W and its graph is closed, g is

upper-semicontinuous [115].

Remark 5.3.1. We note that even if the sets V and W are compact and convex with

zero in their interior, the multifunction g may not be continuous.

The following example illustrates the above observation (see also Figure fig3MRIA:

Example 5.3.1. Let W be the following convex cone:

W =

{
(1−α)

[
1 0 1

]T
+α
[
r cos(θ) r sin(θ) 0

]T
|r ∈ [0 1], α ≥ 0, θ ∈ [−π π]

}

∩ {w|‖w‖∞ ≤ 10}
(5.25)

and V = [−1 1]. Moreover, let us assume F = I and G = [0 0 1]T . Consider the

sequence {wn := [cos(π/2n) sin(π/2n) 0]T}. According to definition (5.16),

g(wn) = (wn +GV) ∩W = {[cos(π/2n) sin(π/2n) α]T |α ∈ [−1 0], n ∈ N} (5.26)

if w0 := [1 0 1]T and ŵ := [1 0 0]T , then, if Euclidian norm is used, the following

holds true: limn→∞wn → ŵ, w0 ∈ g(ŵ), and

lim
n→∞

d(w0, g(wn)) =
√

((1− cos(π/2n))2 + sin(π/2n)2 + 1)→ 1.

Therefore g(·) is not continuous.

Proposition 5.3.2. Suppose Assumptions 4 and 5 hold. Then the correspondence

W, defined in (5.22), is upper-semicontinuous.

Proof. Functions h1 : Rn+p → Rp given by h1(z) := {[0 I]z} and h2 : Rp → Rn+p

given by h2(z) := {B̃z} are continuous and g is upper-semicontinuous (according to

Proposition 5.3.1). Therefore, W(z) = h2 · g · h1 is upper-semicontinuous.
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Figure 5.1: Pictorial description of W and function g(·)

Theorem 5.3.1. Suppose Assumptions 4-6 hold and

F := Cl(
∞⊕

i=0

ÃiB̃W ). (5.27)

Then

Γ∗ :=
∞⋂

j=0

Rj(F ) (5.28)

is non-empty and compact, i.e., Γ∗ ∈ Com(Rn), and R(Γ∗) = Γ∗, with R defined

in (5.24). Moreover, Γ∗ is robust invariant and is the minimal attractor for the

augmented system (5.21) with the basin of attraction being the whole space, Com(Rn).

Proof. According to Assumption 6, Ã is stable. Hence, Assumption 1 is satisfied for

augmented system (5.21). According to Assumptions 4 and 5 and Proposition 5.3.2,

W is upper-semicontinuous. So Assumption 2 is satisfied for augmented system (5.21).

Since g(w) ⊆ W for all w ∈ W , W(z) ⊆ B̃W for all z ∈ Rn ×W. Therefore, As-

sumption 3 is satisfied for augmented system (5.21). With Assumptions 1-3 satisfied,

according to Theorem 5.1.1, Γ∗ is non-empty and is a fixed point of R. Moreover,

according to Theorem 5.1.2, Γ∗ is the minimal attractor for the augmented system

(5.21) with the basin of attraction being the whole space. The robust invariance is

the immediate result of R(Γ∗) = Γ∗.

We consider the uniqueness of the fixed point Γ∗ of the mapping R in the sequel.

Lemma 5.3.1. Suppose Assumptions 4-6 hold and ∆ ∈ Com(W ) be the fixed point of

g, i.e. g(∆) = ∆. If Γ̄n := {∑n
i=0 Ã

n−iB̃wi|w0 ∈ ∆, wi+1 ∈ g(wi), i = 0, · · · , n− 1},
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there exists Γ̄ ∈ Com(Rn ×W ) s.t

Γ̄n → Γ̄, as n→∞, (5.29)

in the space Com(Rn ×W ) with Hausdorff metric.

Proof. Let us define g−1 : ∆ 7→ Com(∆) as follows

g−1(w) := {x ∈ ∆|g(x) = w}. (5.30)

Since g(∆) = ∆, ∀ w ∈ ∆, g−1(w) 6= ∅. It can be easily shown that

En := {[w0, · · · , wn]|w0 ∈ ∆, wi+1 ∈ g(wi), i = 0, · · · , n− 1}
= {[w0, · · · , wn]|wn ∈ ∆, wi ∈ g−1(wi+1), i = 0, · · · , n− 1}.

(5.31)

Therefore Γ̄n = {∑n
i=0 Ã

iB̃wi|w0 ∈ ∆, wi+1 ∈ g−1(wi), i = 0, · · · , n− 1}. Since AL is

Schur, so is Ã. Therefore, the set F∞ :=
⊕∞

i=0 Ã
iB̃∆ is bounded. Therefore,

∀ ε > 0, ∃ N(ε) > 0, s.t. ∀n > N(ε), ÃnF∞ ⊂ Bε(0) = {w|‖w‖ < ε} (5.32)

Given ε > 0, and r > N(ε/2), if x ∈ Γ̄r, then

x =
r∑

i=0

ÃiB̃wi =
N∑

i=0

ÃiB̃wi +
r∑

i=N+1

ÃiB̃wi, for some [w0, · · · , wr] ∈ En (5.33)

But
∑N

i=0 Ã
iB̃wi ∈ Γ̄N and

∑r
i=N+1 Ã

iB̃wi ∈ Bε/2. Therefore for all x ∈ Γ̄r,

d(x, Γ̄N) < ε/2 and hence,

Γ̄r ⊂ Γ̄N ⊕Bε/2(0) (5.34)

If x ∈ Γ̄N , ∃ [w0, · · · , wN ] ∈ EN , s.t. x =
∑N

i=0 Ã
iB̃wi. Choosing ŵ1, · · · , ŵr−N s.t.

[ŵ0, w1, · · · , ŵr−N ] ∈ Er−N , and ŵ0 ∈ g(wN), we have x+
∑r−N

i=1 ÃN+iB̃ŵi ∈ Γ̄r. Since∑r−N
i=1 ÃN+iB̃ŵi ∈ Bε/2(0), we have ∀ x ∈ Γ̄N d(x, Γ̄r) < ε/2, and hence,

Γ̄N ⊂ Γ̄r ⊕Bε/2(0). (5.35)

From (5.34) and (5.35), we have

∀ r > N, δH(Γ̄N , Γ̄r) < ε/2. (5.36)
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From (5.36), we have

∀ r1, r2 > r, δH(Γ̄r1 , Γ̄r2) < δH(Γ̄N , Γ̄r1) + δH(Γ̄N , Γ̄r2) < ε/2 + ε/2 = ε. (5.37)

Therefore, {Γ̄n : n ∈ N} is Cauchy and by completeness of Hausdorff metric in

Com(Rn ×W ), Γ̄n converges to some Γ̄ ∈ Com(Rn ×W )

Lemma 5.3.2. Suppose Assumptions 4-5 hold. Then the mapping g(·) has a minimal

attracting fixed point ∆, that is,

gn(W )→ ∆ as n→∞. (5.38)

Proof. Proof follows from the fact that gi+1(W ) ⊂ gi(W ) and Lemma 5.1.4.

Theorem 5.3.2. Suppose Assumptions 4-6 hold. Then,

∀ Λ ∈ Rn, Rn(Λ×W )→ Γ̄ as n→∞, (5.39)

where Γ̄, defined in (5.29). Moreover, Γ̄ = Γ∗, defined in (5.28).

Theorem 5.3.3. If in (5.16), F = G = I and W and V are compact, and have zero

in the interior, and W is path connected, then W is the unique attracting fixed point

of the mapping g. Moreover,

∀ Λ ∈ Com(W ), gn(Λ)→ W, as n→∞.

Remark 5.3.2. We note that if W and V are compact, convex, and zero in their

interior and the matrix F is Schur, the mapping g may not have a unique fixed point.

Consider the sets:

W = {x ∈ R2 | |[4 1]x| ≤ 4, |[4 −1]x| ≤ 4}, V = [−1 1] ∈ Com(R) (5.40)

with F =

[
0 −0.5

0.5 0

]
and G = [2 4]T . It can be checked that the sets W and

{[0 4]T} are fixed points of the mapping g defined in (5.16). Therefore, the mapping

g may not have a unique fixed point even if W and V are compact and convex and

have zero in their interior and F is Schur.

Remark 5.3.3. We note that the results of this section holds as long as AL is Schur,

independent of the choice of the Matrix M . However, the matrix M contributes in

the size of the minimal attractor Γ̄.
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5.4 MRIA for Robust MPC

In this section, the control of the system (5.12) subject to additive disturbance with

the dynamics (5.13) is considered. We use the minimal attractor, Γ∗, which is in-

troduced in Section 5.2 to construct an MPC controller which provides the robust

asymptotic stability of Γ∗.

The system (5.12) and the disturbance dynamics (5.13) can be written in the

following augmented form:

z(k + 1) =

(
A CF

0 F

)
z(k) +

(
B

0

)
u(k) +

(
CG

G

)
v(k − 1) (5.41)

where z(k) = [x(k)T (w(k−1))T ]T . We note that at any time instant k the controller

knows the current state x(k) and the predecessor disturbance w(k − 1) but does

not know the disturbance model input v(k − 1) nor the current disturbance w(k).

Therefore, at each time instant the state z(k) is known and the knowledge of the

predecessor disturbance is used in the feedback law generated by Tube MPC. We

define the corresponding nominal system

y(k + 1) = Āy(k) + B̄u(k), k ∈ N (5.42)

where y(k) is the current state, u(k) is the current control action, and y(k+ 1) is the

successor state of the nominal system and

Ā =

(
A CF

0 F

)
, B̄ =

(
B

0

)
(5.43)

We assume the system (5.41) is subject to constraints:

x(k) ∈ X, u(k) ∈ U, w(k) ∈ W, w(k − 1) ∈ W and v(k − 1) ∈ V, (5.44)

where the sets X, W , and V are compact and convex with zero in their interior. Using

Theorem 3.1, if u = [L M ]z, the MRIA set for the system (5.41), Γ∗, is calculated by

applying the mapping R(·) on the set F defined in (5.27).

Considering the system (5.41) and the corresponding nominal system (5.42), the
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tube MPC approach introduced in [53] is applied. Let us define

VN(x,u) :=
N∑

i=0

l(x(i), u(i)) + Vf (x(N)),

where u = [u(0), u(1), , · · · , u(N − 1)] and l and Vf are positive definite, chosen to

properly guarantee the stability of the linear system, once the MPC strategy is applied

to the linear system in the absence of additive disturbance. Moreover, let us define

K := [L M ], Z̄ := X×W ∼ Γ∗, Ū := U ∼ KΓ∗ (5.45)

Observing the current state z, the optimization problem PN(z) is solved:

min
z0,u

VN(z0,u)

subject to: z(i+ 1) = Āz(i) + B̄u(i), z(i) ∈ Z̄, z(N) ∈ Zf , u(i) ∈ Ū, z ∈ z0 ⊕ Γ∗

(5.46)

where Zf is an invariant set for the nominal system (5.42) contained in Z̄. The solution

to PN(z) yields the optimal control sequence u∗(z) := [u∗(0; z), · · · , u∗(N − 1; z)] and

state sequence z∗(z) := [z∗(0; z), · · · , z∗(N − 1; z)]. The implicit control law κ∗N(·) is

κ∗N(z) := u∗(0; z) +K(z − z∗(0; z)). (5.47)

Using an analysis similar to the one introduced in [53], it can be shown that by

applying the control law (5.47), the state in the system (5.41) converges to the MRIA

set Γ∗.

Remark 5.4.1. Note that as guaranteed by Theorem 5.3.1, the minimal attractor set

Γ∗ is robust positive invariant.

5.5 Computation of an approximation of MRIA

As illustrated in Lemma 5.3.1, to calculate the MRIA set Γ̄, infinite number of itera-

tions is required. However, the set Γ̄ can be approximated as closely as desired by Γ̄n

when n is sufficiently large. In this section, we consider the rate-bounded disturbance

where in (5.13), F = G = I and propose a method to calculate Γ̄n recursively as n

increases. We assume that the sets W and V are polytopes.

Since disturbance dynamics can be written as w(k) = w(k−1)+v(k−1), w(k−1) ∈
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W, v ∈ V(w(k − 1)) := {v ∈ V | w(k − 1) + v ∈ W}, (5.21) can be written as

z(k + 1) = Âz(k) + B̃v(k), z(k) = [x(k)T w(k − 1)T ]T (5.48)

where v(k) ∈ V([0 I]z(k)) and

Â :=

(
A+BL BM + C

0 I

)
(5.49)

Since Γ̄n = Rn({0}), by induction, it can be easily shown that Γ̄n is a polytope

for all n > 0. To calculate an arbitrary close approximation of Γ̄ by Γ̄k for sufficiently

large k, we proceed by providing a method to calculate Γ̄n+1 once Γ̄n is a given

polytope. Given Γ̄n, we have

Γ̄n+1 = R(Γ̄n) = {Âz + B̃v | z ∈ Γ̄n, v ∈ V([0 I]z)}.

If we define y := Âz + B̃v. Then

Γ̄n+1 =

{
y ∈ Rn+p |∃ v ∈ V s.t.

Â−1(y − B̃v) ∈ Γ̄n

v + [0 I]Â−1(y − B̃v) ∈ W

}
.

If the set Θn is defined as

Θn :=





[yT vT ]T ∈ Rn+p+l

∣∣∣∣∣∣∣

v ∈ V
Â−1(y − B̃v) ∈ Γ̄n

v + [0 I]Â−1(y − B̃v) ∈ W




. (5.50)

then

Γ̄n+1 = {y ∈ Rn+p | ∃ v ∈ Rl s.t.[yT vT ]T ∈ Θn} (5.51)

Let the projection of a set A ⊂ S ×X onto the space S be defined as

ProjS(A) : {x ∈ S | ∃ y ∈ X s.t. [xT yT ] ∈ S ×X}.

Then (5.51) can be written as

Γ̄n+1 = ProjRn+p(Θn). (5.52)

Since Γ̄n is a polytope, Θn defined in (5.50) is also a polytope, hence the projection

Γ̄n+1 is also a polytope.
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The Keerthi-Gilbert projection algorithm [117] may, for instance, be used to cal-

culate the projection of a polytope into a subspace.

5.6 Numerical Example

In this section, we demonstrate the effect of rate bound of the disturbance on the

MRIA set. We revisit roll dynamics of a ship equipped with fin stabilizers described

in Chapter 4. The discrete-time model of roll dynamics, (4.50), with feedback gain

K introduced in Section 4.4 leads to

x(k + 1) = (Ad +KBd)x(k) +Bww(k) (5.53)

where x(k) = [φ(k) p(k)]T , w(k) : τw(k)
Iφφ

is the normalized wave moment with |w(k)| ≤
1 which acts as unmeasured disturbance, and matrices Ad, K, Bd, and Bw are intro-

duced in (4.51).

As illustrated before, the MRIA set for the system (5.53) plays a pivotal roll in the

design of constrained robust controllers. Practically, the wave moment does not vary

arbitrarily and is rate-bounded. We consider two cases where the normalized rate

bound on the wave moment, i.e. rw := w(k + 1) − w(k), is ∞ and 0.1, respectively.

Figure 5.2 shows the MRIA sets corresponding to the two rates in the lifted space,

viewed from above. Due to point of view, it also shows the projections of MRIA sets

onto R2 which are MRIA sets in the state space of the system (5.53). Clearly, in

the lifted space the MRIA is considerably smaller once the rate-boundedness of the

disturbance w is considered. Moreover, the MRIA set for system (5.53), i.e. projection

of MRIA set from lifted space onto R2, is sizably larger if the rate-boundedness is

neglected. The reduction of size in MRIA set when rate bounds are considered leads

to less conservative robust controller design.
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Figure 5.2: MRIA sets for rw =∞ (blue) and rw = 0.1 (red), viewed from above (third axis is not
shown).

5.7 Conclusion

In this chapter, the attractiveness and minimality of invariant sets for linear systems

subject to bounded state-dependent additive disturbances is examined. Assuming

upper-semi-continuity and boundedness of the correspondence associated with addi-

tive disturbance, existence and uniqueness are proved for a minimal attractor set,

which is robust invariant. In case where the dynamics of disturbance are known, the

results are use to characterize a minimal attractor set. The minimal attractor set

can be employed in the design of robust MPC strategies to achieve robust stability,

improve control response and reduce conservativeness.
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Chapter 6

Conclusion and future research directions

6.1 Conclusion

The purpose of this thesis was to develop a fast MPC solver and a efficient robust

MPC approach to reduce computation time and effort as well as conservatism. In

MPC, a control sequence is determined at every sampling time instant to minimize a

specified cost function defined for a discrete-time system model, then the first element

of the optimal sequence is used as the control action. The cost function of MPC is

chosen so that a desired performance is achieved.

Even though, many off-line computed strategies were proposed so far for imple-

mentation of MPC, in many applications, on-line implementation of MPC is the best,

if not the only, choice due to model changing on-line, nonlinearity of the system or

constraints and the need for a long length of horizon. Long length of control horizon

may be necessary in many applications to acquire feasibility, large domain of attrac-

tion, stability, and enhancement of performance. However, the number of partitions

of state space in off-line strategies grows exponentially as the length of control hori-

zon increases. Hence, long control horizons are not directly achievable with off-line

approach.

In this thesis a computationally efficient MPC solver is introduced, using the

optimal solution at the time (k − 1) to approximate and further refine the solution

at the time k. The idea can be realized by calculating the perturbation in optimal

solution, viewing the state deviation at the time k from state at the time (k − 1)

as a perturbation in initial state in an optimal control problem. The perturbation

from optimal solution can be computed using Neighboring Extremal (NE) method

originally developed in the 70’s for problems without state constraints.

In this dissertation, the NE method is generalized to discrete-time systems subject

to general inequality constraints on inputs and states. Its computational complexity
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is of order N , where N is length of horizon, as opposed to N3 for SQP-like approaches

[59]. Moreover, a second order sufficient optimality condition for the nominal optimal

solution is provided that is verifiable with computational complexity of order N .

Another contribution of this dissertation was to combine the developed NE method

(or perturbation analysis) with sequential quadratic programming (SQP) based on ac-

tive set method to provide Integrated Perturbation Analysis and Sequential Quadratic

Programming (InPA-SQP) approach. The InPA-SQP provides faster convergence to

an optimal solution as compared to SQP.

The InPA-SQP was demonstrated in two experimental applications. As the first

application, MPC is implemented based on the proposed InPA-SQP to regulate the

output voltage of a DC/DC converter with peak current protection. To investigate

the voltage regulation of a full bridge DC/DC based power conditioning system, an

experimental testbed was developed at the University of Michigan. The DC/DC

converter has very fast dynamics and therefore requires an efficient MPC implemen-

tation algorithm to achieve sub-millisecond sampling time. By employing InPA-SQP

method to solve the constrained optimal control problem, 300 µs sampling times

is achieved and nonlinear constraints are handled. The experimental results reveal

that the MPC algorithms successfully achieved voltage regulation and peak current

protection.

As the second application, InPA-SQP is also used for control of a model ship

in Marine Hydro-Dynamic Lab (MHL) to follow a pre-specified path. InPA-SQP

was used for the path following problem for a model ship via rudder control. 3-

DoF simplified nonlinear and linear models are adopted in the controller design and

a corresponding 6-DoF nonlinear container model was used in simulations in order

to study and compare the performance of the MPC with the linear and nonlinear

model. The InPA-SQP algorithm was used to implement both the linear and nonlinear

MPC on a model ship to experimentally validate the algorithm and compare the

performance. Experimental results show the effectiveness of the proposed MPC solver.

Besides computational feasibility, it is important for MPC strategy to maintain

stability and constraint compliance in the presence of model uncertainties and dis-

turbances. In this dissertation, a robust control method was introduced for linear

discrete-time systems subject to mixed input-state constraints. The proposed scheme,

which is also based on the constraint tightening approach, has several special features.

First, unlike the robust MPC approaches, our proposed method does not involve re-

peated online optimization to determine the control action. Second, under appro-

priate and easily verifiable conditions, the proposed controller guarantees recursive
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feasibility. Third, the minimal invariant set corresponding to the off-line calculated

state feedback is an attractor, i.e., all trajectories will converge to this set. As an

example to illustrate the applications of the proposed algorithm, the roll control prob-

lem for a high speed ship equipped with stabilizing fins was considered. We show that

the roll motion of the ship in the presence of wave disturbance can be stabilized using

the proposed algorithm while the input-state constraints and input saturation con-

straints can be effectively enforced while, no optimization problem is solved except

for a linear programming problem to address initial feasible solution seeking.

Moreover, it was shown in this thesis that if the dynamics of measured disturbance

are taken into account the attractor set associated with the constrained robust control

methods can be made considerably smaller thereby leading to a less conservative

controller design.

In summary, the contributions of this dissertation are highlighted as follows:

• A NE method for constrained discrete-time systems is developed and a sufficient

condition for existence of NE solution was provided.

• The NE method was integrated with SQP to provide an efficient MPC solver,

called InPa-SQP.

• The InPA-SQP method effectiveness was demonstrated in two experimental

applications. One application is voltage regulation of a DC/DC converter. The

other one is path following of a model container ship.

• A robust model based constrained control strategy was proposed that does

not require repeated solving an optimization problem on-line while achieving

convergence to a minimal invariant set.

• Existence of minimal invariant attractor sets for systems subject to bounded

additive state-dependent disturbance was shown for linear systems.

• The above result is used to characterize minimal robust invariant attractor sets

(MRIA) for linear systems subject to bounded disturbances where the dynamics

and past values of disturbance is known. It is shown that the MRIA sets can

be much smaller if the dynamics of disturbance are taken into account.

In the next section possible future directions are discussed.
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6.2 Future research directions

6.2.1 NE solution for distributed systems

The closed form NE solution was derived using the sparsity of the cost matrices ap-

pearing in the arising QP problem. In case when distributed systems are cooperating

to achieve a common objective, like flocking problem of UAV’s or a power network,

the matrices fx(k) and fu(k) in (2.11) are large but sparse. If any system has limited

and well defined connections with neighboring systems, then it is expected that a

closed form NE solution for a network of systems can be derived. With this approach

MPC implementation on networked systems becomes possible.

6.2.2 Maximal invariant sets for systems with constrained
rate-bounded disturbances

In this thesis, minimal invariant attracting set was characterized and a computation

method was provided for the set to be approximated. Another important set is the

maximal invariant set which characterizes the region of attraction of a stabilizing lin-

ear controller and is used in robust constrained control methods such as the reference

governor. Considering a system as

x(k + 1) ∈ f(x(k)), x ∈ X ⊂ Rn

where f is a correspondence, traditionally the maximal invariant set is derived by

∞⋂

i=0

Ri(X)

where R(Ω) := f s(Ω) and Ri+1(Ω) = R(Ri(Ω)). Confining to the case where f(x)

is polytop for all x and X is polytop and f is defined by (5.48), Ri(X) is not convex

but union of polytops. This fact shows the need for future research for have a new

approach, probably different than traditional one, to calculate the maximal invariant

set which is highly important in robust control of linear systems.
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6.2.3 MPC with time varying disturbance

In many applications such as ship control in a wave field, the wave response is pre-

dictable for short future horizon, but it is time varying. In this case, robust control

theory even with negligence towards practicality is not well developed and needs

extensive research. Ship control in a wave field subject to constraints is a specific

application of MPC with time varying disturbances. A time varying robust control

strategy that satisfies roll angle constraint and follows a pre-specified path is subject

of future research.

6.2.4 Distributed MPC in Power Networks

MPC can be employed in a network of systems to achieve a global objective subject

to constraints. Specially in power networks, decentralized robust MPC can lead to

an increase in power system transition capacity, achieve energy conservation, and en-

hance the stability of power networks, which is crucial for advanced power networks

(conceptualized as smart grids). The broader impact of the research is on decentral-

ized cooperative systems which has broader application beyond power systems, such

as formation flight control and cooperative UAV’s.

The developed computationally efficient MPC method can be employed for ef-

ficient control of constrained systems with fast dynamics such as power electronic

converters, which are essential parts of power networks. However, in a power net-

work, local controllers should be designed to operate such that imperfect information

or disturbances imposed by network do not affect performance of the controller at

the local level, i.e, the controller must be robust. Even though there exists a body of

previous work on robust MPC, the existing robust MPC methods are mostly confined

to a special class of systems or they are computationally intensive. In this regard,

the future research plan is to modify the existing fast MPC to a robust version to

achieve the desired performance in the presence of disturbances inflicted through the

power network. High performance local controllers in the power network contribute

in the stability of the network. For example, efficient control of flexible AC transmis-

sion devices (FACTS), leads to increase inpower system transmission capability and

enhances the stability of weakly coupled systems in the event of critical faults.

On the other hand, local controllers in a power network must act cooperatively

using the information that is provided by other neighboring controllers to achieve

global objectives and overall stability of the power network. In this regard, the
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plan for future research is to design a mechanism that provides an objective for each

controller at the local level (that is reflected in the cost function of the MPC controller)

so that a system-wide objective, such as large scale optimal energy consumption and

power network stability, is achieved.
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Appendix A

Degeneracy

In this Appendix, the case where Ĉx(0) is non-empty is considered. In this

case two cases may happen. If Ĉx(0)δx(0) 6= 0 then the problem is infeasible. If

Ĉx(0)δx(0) = 0, it means that linear constraints (2.11)-(2.14)are dependent. In this

case, the problem is degenerate and instead of solving the original QP problem, we

now shift our attention to finding a feasible descent direction.

In order to enforce the original nonlinear constraints, we modify the linear equality

constraints

Ca
x(k)δx(k) + Ca

u(k)δu(k) = −Ca(x(k), u(k)),

C̄a
x(k)δx(k) = −C̄a(x(k)),

into the following linear inequality constraints:

Ca
x(k)δx(k) + Ca

u(k)δu(k) ≤ −Ca(x(k), u(k)),

C̄a
x(k)δx(k) ≤ −C̄a(x(k)).

We now introduce the following linear programming (LP) problem:

min
δu(·),δx(·)

N−1∑

k=0

(Lx(k)δx(k) + Lu(k)δu(k)) + Φx(N)δx(N)

subject to:

δx(k + 1) = fx(k)δx(k) + fu(k)δu(k),

δx(0) = δx0,

Cx(k)δx(k) + Cu(k)δu(k) ≤ −C(x(k), u(k)),

C̄x(k)δx(k) ≤ −C̄(x(k)).

(A.1)

to find the next feasible direction. In solving the LP problem (A.1) we achieve: (i)
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the value of the active constraints will not be increased, but can be decreased which

will lead to a reduced number of active constraints for the next iteration; (ii) the

original cost function will be decreased whenever possible.

Note that solving the LP problem (A.1) can be performed in a time efficient

manner so that it will not be a barrier for fast optimization. In addition, the LP

problem is solved only when the QP problem is degenerate or infeasible, identified by

the condition Ĉx(0) being non-empty.
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Appendix B

Calculating Lagrange multipliers for NE
method

Assuming the nominal state and control sequences are available, we need to calcu-

late the Lagrange multipliers µ(·) and λ(·) in order to be able to determine the Hessian

matrices in (2.25), so that the neighboring extremal algorithm described above can

be applied. In general, numerical algorithms for computing an optimal solution u0

and x0, also yield a satisfactory approximation for Lagrange multipliers Λ, µ, and µ̄.

An alternative procedure, to calculate Λ, µ, and µ̄ on-line, which avoids to store these

values, is given below.

Let us assume that the optimal control and state vector sequences are, respectively,

uo(k), k = 1, · · · , N − 1, and xo(k), k = 0, · · · , N . From (2.8), we have

λ(k) = Hx(k)T ,

Hu(k) = 0,

which can be written, using (2.3) and (2.7), as

λ(k) = Lx(x
o(k), uo(k))T + fx(k)Tλ(k + 1) + Cx(x

o(k), uo(k))Tµ(k) + C̄x(k)T µ̄(k),

Lu(x
o(k), uo(k))T +fu(k)Tλ(k+1) + Cu(k)Tµ(k)=0

(B.1)

for k = 1, · · · , N − 1. As in Appendix II, the superscript a has been dropped for

notation simplicity, assuming that the constraints appearing in the equations are

active. In addition, we have

λ(N) = Φx(N)T + C̄x(N)T µ̄(N). (B.2)

Let us define µ̂(N) := µ̄(N), D(N) := Φx(N)T , and Ĉx(N) := C̄x(N). From (B.2),
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we have

λ(N) = D(N) + Ĉx(N)T µ̂(N). (B.3)

Now assume

λ(k + 1) = D(k + 1) + Ĉx(k + 1)T µ̂(k + 1).

Using C̃u(k), Ĉx(k), and C̃x(k) as defined in (2.22) and (2.24) and applying the

transformation
[
µ̃(k)

µ̂(k)

]
:=



P (k)−T

[
µ(k)

µ̂(k+1)

]

µ̄(k)


 (B.4)

to (B.1), we obtain

λ(k) = Lx(x
o(k), uo(k))T + fx(k)TD(k + 1) + C̃x(k)T µ̃(k) + Ĉx(k)T µ̂(k),

Lu(x
o(k), uo(k))T + fu(k)TD(k + 1) + C̃u(k)T µ̃(k) = 0.

(B.5)

Since C̃u(k) is of full row rank, we have

µ̃(k)=−(C̃u(k)C̃u(k)T )−1
{
Lu(k)T+fu(k)TD(k+1)

}
. (B.6)

If we define

D(k) := Lx(k)T + fx(k)TD(k + 1) + C̃x(k)T µ̃(k), (B.7)

then

λ(k) = D(k) + Ĉx(k)T µ̂(k). (B.8)

Now the algorithm for calculating Lagrange multipliers can be summarized as follows:

• In a backward run, calculate D(k), with D(N) = Φx(N)T , using (B.7), and

µ̃(k), using (B.6).

• If Ĉx(0) is empty, set µ̂(0) = empty matrix. Now with µ̃(·) and P (·) being

avoidable, one can calculate µ(k), µ̂(k + 1), and µ̄(k) in a forward run, using

transformation (B.4) which is rearranged as followsB1:




µ(k)

µ̂(k + 1)

µ̄(k)


 =

[
P (k)T 0

0 I

][
µ̃(k)

µ̂(k)

]
,

B1Note that number of rows of P (k) is not necessarily equal to that of µ̃(k).
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and λ(k) using (B.8).
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