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ABSTRACT 
 

 

By analyzing complex biological networks, I explore the nascent field of systems 

biology to address some of the most long-lasting and difficult questions in genetics and 

evolution.  First, I study modular structure and test whether the modular organization in 

cellular function arises from modularity in the underlying molecular interaction networks.  

I show that although protein interaction networks are highly modular, there is little 

evidence to suggest that these network modules correspond to functional units or that 

they are evolutionarily conserved.  I demonstrate that network modules can originate 

simply as a byproduct of gene duplication.  Then, I investigate another systems level 

feature, redundancy, the evolutionary maintenance of which is puzzling.  I infer that 37-

47% of reactions are functionally redundant in E. coli and yeast metabolic networks, but 

the majority of them are preserved because they are efficiently used under different 

conditions or their loss causes an immediate fitness reduction.  These results challenge 

the adaptive backup hypothesis and suggest that genetic robustness is likely an 

evolutionary byproduct.  Subsequently, I study the genomic pattern of pleiotropy, another 

systems attribute of genes.  A low level of pleiotropy is observed for the majority of 

genes in multiple species.  A greater per-trait effect size is also observed for genes 

affecting more traits, which leads to the highest rate of adaptation for organisms of 

intermediate complexity.  These findings suggest that pleiotropy not only allowed but 

may have also promoted the origin of complexity.  Lastly, I apply the systems approach 

to study protein evolutionary rate.  Simulating thousands of nutritional conditions using 

metabolic networks, I find that there is no condition or combination of conditions for 

which the gene importance correlates well with the observed gene evolutionary rate.  It 

suggests that the weakness of the empirical correlation between gene importance and 

evolutionary rate is factual rather than artifactual.  Together, my studies using systems 



 xii 

approach deepen our understanding of the genetic systems and provide fresh perspectives 

on the fundamental characteristics of life. 
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CHAPTER 1 
 

Introduction 
 

 

1.1 INTRODUCTION 
The reductionist approach has dominated biological research for over 50 years, 

yielding significant insights into the mechanisms of relatively simple biological 

phenomena.  However, our mechanistic understanding is far less complete on complex 

biological phenomena, such as homeostasis (Lopez-Maury, Marguerat, and Bahler 2008), 

circadian rhythm (Takahashi et al. 2008) and cancer (Lazebnik 2010).  These biological 

phenomena generally involve dynamic interactions among multiple molecules.  Previous 

studies on small-scale genetic systems and pathways have revealed biological features 

that are not observable at the single gene level (Nishizuka 1986; Barinaga 1999).  

Nevertheless, these case studies are constrained by the availability of large-scale 

biological data, and thus the application of the conclusions is limited.  More importantly, 

there are far more systemic properties that could not be revealed by small-scale case 

studies.  Because a biological system is not simply an assembly of all of its parts, 

properties of the system cannot be fully understood without an integrative view of the 

whole system. 

Systems biology is made possible by major advances in two fields.  First, 

functional genomics provides not only functional information for every gene in a genome 

but also the information of interactions between genes (Uetz et al. 2000; Giot et al. 2003).  

Second, theoretical advances in several fields, especially network sciences, provide a 

theoretical framework for describing and testing hypotheses on the relationship between 

the structure and function of a system (Barabasi and Oltvai 2004).  These two fields 

underwent rapid advancement in the first decade of 21st century, enabling systems 
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biology to thrive.  In this dissertation, I explored the nascent field of systems biology to 

address some of the most long-lasting and difficult questions in evolutionary biology. 

 My dissertation is comprised of two main sections.  In the first section (Chapters 

2-4), I study the genome-wide patterns and evolutionary originations of three commonly 

observed systems level properties: modularity, redundancy, and pleiotropy. 

In Chapter 2, I investigate the modular structure in protein interaction networks.  

Because cellular functions are organized in a highly modular manner (Hartman, Garvik, 

and Hartwell 2001; Wagner, Pavlicev, and Cheverud 2007), where each module is 

composed of a group of tightly linked components and performs a relatively independent 

task, I ask whether this modularity in cellular function arises from the modularity in the 

underlying molecular interaction networks.  If the network modules correspond to 

functional units, it is also expected to find evolutionarily conserved modules across 

species.  I examined yeast, fly, and nematode protein networks, but failed to find 

functionally cohesive and evolutionarily conserved modules.  Using computer simulation, 

I demonstrated that the network modules can originate simply as a byproduct of the 

process of evolutionary by gene duplication. 

 Because there is no transmission of signal or mass through the protein interaction 

network, I decided to study a network that is biologically more meaningful.  In Chapter 3, 

I study the metabolic network because (i) there is actual transmission of atoms through 

the network, (ii) our knowledge about metabolic networks is quite complete for several 

model organisms, and (iii) computational tools such as the flux balance analysis (FBA) 

allow inferences of metabolic functions from metabolic network structures (Price, Reed, 

and Palsson 2004; Palsson 2006).  I use metabolic network analysis to address a key 

question in evolutionary systems biology, the maintenance of functional redundancy.  I 

inferred that 37-47% of metabolic reactions in E. coli and yeast can be individually 

removed without blocking the production of any biomass component under any 

nutritional condition.  However, the majority of these redundant reactions are preserved, 

because they have differential maximal efficiencies at different conditions or their loss 

causes an immediate fitness reduction that can only be regained via mutation, drift, and 

selection in evolution.  The remaining redundancies are attributable to pleiotropic effects 
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or recent horizontal gene transfers.  These results suggest that genetic robustness is likely 

an evolutionary byproduct. 

 In Chapter 4, I study another commonly observed attribute of genes, pleiotropy, 

which refers to the phenomenon of one gene affecting multiple distinct phenotypic traits 

(Tyler et al. 2009).  Although the concept of pleiotropy has far-reaching implications, it 

remains one of the least characterized biological properties (Williams 1957; Albin 1993; 

Tyler et al. 2009).  I found, based on yeast, nematode, and mouse functional genomic 

data, that the fraction of traits altered appreciably by the deletion of a gene is minute for 

most genes, and the gene-trait relationship is highly modular.  The size of the phenotypic 

effect of a gene on a trait is approximately normally distributed with variable standard 

deviations for different genes, resulting in a greater per-trait effect size for genes 

affecting more traits.  This property alleviates the “cost of complexity” (Orr 2000), 

leading to the highest rate of adaptation for organisms with intermediate levels of 

complexity.  The findings explain why complex organisms could have evolved and 

suggest a potential limit of biocomplexity. 

 In the second section (Chapter 5), I use systems biology tools to address an 

evolutionary biology question.  Slower evolution of functionally more important genes is 

widely regarded as the foremost principle of molecular evolution and is used by 

molecular biologists in daily practice (Karp 2008). However, recent genomic analysis of 

a diverse array of organisms found only weak negative correlations between the 

evolutionary rate of a gene and its functional importance (Hurst and Smith 1999; Zhang 

and He 2005).  A frequently proposed explanation of the weakness of the correlation is 

that gene importance is measured under a benign lab condition and thus may differ 

substantially from the true value in the organism’s natural environment (Wolf 2006).  

However, this hypothesis is difficult to test using traditional methods.  In Chapter 5, I am 

able to show that this difficult question can be approached using systems biology tools.  

Simulating thousands of nutritional conditions, I test whether there is any condition or 

combination of conditions for which the importance of a metabolic enzyme gene, 

measured by FBA, correlates well with the observed rate of its sequence evolution.  My 

result, however, is negative.  This and other analyses led to my conclusion that the 

weakness of the correlation is factual rather than artifactual. 
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 Overall, with the available high throughput functional genomic data, I constructed 

the complex biological networks and studied the genetic patterns and their evolutionary 

originations at systems level.  This systems biology approach provides me with a fresh 

perspective on complex genetic and evolutionary phenomena. 
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CHAPTER 2 
 

In Search of the Biological Significance of Modular Structures in 
Protein Networks 

 

 

2.1 ABSTRACT 
Many complex networks such as computer and social networks exhibit modular 

structures, where links between nodes are much denser within modules than between 

modules.  It is widely believed that cellular networks are also modular, reflecting the 

relative independence and coherence of different functional units in a cell.  While many 

authors have claimed that observations from the yeast protein-protein interaction (PPI) 

network support the above hypothesis, the observed structural modularity may be an 

artifact because the current PPI data include interactions inferred from protein complexes 

through approaches that create modules (e.g., assigning pairwise interactions among all 

proteins in a complex).  Here we analyze the yeast PPI network including protein 

complexes (PIC network) and excluding complexes (PEC network).  We find that both 

PIC and PEC networks show a significantly greater structural modularity than that of 

randomly rewired networks.  Nonetheless, there is little evidence that the structural 

modules correspond to functional units, particularly in the PEC network.  More 

disturbingly, there is no evolutionary conservation among yeast, fly, and nematode 

modules at either the whole-module or protein-pair level.  Neither is there a correlation 

between the evolutionary or phylogenetic conservation of a protein and the extent of its 

participation in various modules.  Using computer simulation, we demonstrate that a 

higher-than-expected modularity can arise during network growth through a simple 

model of gene duplication, without natural selection for modularity.  Taken together, our 

results suggest the intriguing possibility that the structural modules in the PPI network 

originated as an evolutionary byproduct without biological significance. 
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2.2 INTRADUCTION 
Many complex networks are naturally divided into communities or modules, 

where links within modules are much denser than those across modules (Newman 2003) 

(Figure 2.1).  For example, human individuals belonging to the same ethnic groups 

interact more than those from different ethnic groups (Lin 1999).  Studying the 

modularity of a network not only provides structural information about the network, but 

may also reveal the underlying mechanisms that determine the network structure.  The 

concept of modularity is not new to biologists.  In fact, cellular functions are widely 

believed to be organized in a highly modular manner, where each module is a discrete 

object composed of a group of tightly linked components and performs a relatively 

independent task (Hartwell et al. 1999; Ihmels et al. 2002; Ravasz et al. 2002; Barabasi 

and Oltvai 2004; Wall, Hlavacek, and Savageau 2004).  It is interesting to examine 

whether this modularity in cellular function arises from modularity in molecular 

interaction networks such as the transcriptional regulatory network and protein-protein 

interaction (PPI) network.  Many authors have attempted to separate modules in the PPI 

network based on either the network topology alone or with additional information about 

gene function and expression (Spirin and Mirny 2003; Tornow and Mewes 2003; Pereira-

Leal, Enright, and Ouzounis 2004; Poyatos and Hurst 2004; Chen and Yuan 2006; 

Farutin et al. 2006; Lu et al. 2006; Valente and Cusick 2006; Zhang, Liu, and Zhou 

2006).  They generally report high modularity in the PPI network, with evidence for a 

rough correspondence between PPI modules and functional units.  All these analyses, 

however, suffered from a serious bias in the current PPI data.  The PPI data include 

binary interaction information that is either directly obtained from experiments such as 

the yeast two-hybrid (Y2H) assay (Uetz et al. 2000; Ito et al. 2001), or indirectly inferred 

from stable protein complexes (Bader and Hogue 2002).  High-throughput protein 

complex identification is usually mass-spectrometry-based (Gavin et al. 2002; Ho et al. 

2002; Gavin et al. 2006; Krogan et al. 2006) (e.g., tandem-affinity purification).  These 

methods involve the discovery of a complex of interacting proteins including a tagged 

bait protein, but do not provide information about direct pairwise protein-protein 

interactions (Bader and Hogue 2002; von Mering et al. 2002).  Some small-scale 

biochemical methods, such as co-immunoprecipitation (Sacher et al. 2000) and affinity 
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precipitation (Fatica et al. 2002), can also identify protein complexes without providing 

pairwise protein interaction information.  Protein complex data obtained by one of these 

methods are then translated into binary PPIs by either the “matrix” or the “spoke” model 

(Bader and Hogue 2002) (Figure 2.2).  The matrix model assumes that all members of a 

protein complex interact with each other, whereas the spoke model assumes that all non-

bait members of a complex interact with the bait.  It is obvious that use of the matrix 

model creates PPI modules corresponding to protein complexes.  The spoke model can 

also affect modularity because the bait is interpreted by the model as a hub (i.e., a highly 

connected node), while in reality it may not be a hub.  Because the reliability of the two 

models is unknown, it is possible that the prevailing modularity of PPI networks is an 

artifact of these models.  In this work, we explore the above possibility by analyzing the 

modularity of two yeast PPI networks.  The first is referred to as the PIC network, as it is 

the PPI network including protein complex data, whereas the second is named the PEC 

network, as it the PPI network excluding all edges inferred from protein complexes.  

Because we are assessing the modularity of the PPI network per se, only the network 

topology will be used in separating modules.  Our analyses show that although both PIC 

and PEC networks are highly modular, the identified modules lack obvious 

correspondence to functional units and are not evolutionary conserved.  We use computer 

simulation to show that modularity can arise in a simple model of network growth 

through gene duplication, without the involvement of selection for modularity.  Together, 

our findings suggest that structural modules in PPI networks may have arisen as an 

evolutionary byproduct without biological significance. 

 

 

2.3 RESULTS 
2.3.1 Do PPI networks show modular structures? 

We downloaded the PPI data for the budding yeast Saccharomyces cerevisiae 

from the Munich Information Center for Protein Sequences (MIPS) (Guldener et al. 

2006).  The dataset was human-curated and contained mostly binary interactions directly 

observed in Y2H experiments.  In addition, about 10% of the binary interactions in the 

dataset were inferred using either the spoke or matrix model from protein complexes 



 9 

identified by high-confidence small-scale experiments.  This entire dataset is referred to 

as the PIC network here.  Based on the MIPS annotation, we removed from the PIC 

network those binary interactions that were inferred from protein complexes, resulting in 

the PEC network.  Because it is only meaningful to separate modules within a connected 

part of a network, we studied the largest connected subset (i.e., the giant component), of a 

network.  The giant component contains over 90% of all nodes in the yeast PPI network.  

For simplicity, we refer to the giant component of a network as the network, unless 

otherwise noted.  Table 2.1 lists some important parameters for the PIC and PEC 

networks studied here.   

The extent of modularity for a particular modular separation of a network is often 

measured by , where N is the number of modules, L is the total 

number of edges in the network, ls is the number of edges within module s, and ks is the 

sum of the degrees of the nodes in module s (Newman and Girvan 2004; Guimera and 

Amaral 2005).  The degree of a node is simply the number of edges that the node has.  

The particular separation that maximizes M is considered the optimal modular separation 

and the corresponding M is referred to as the modularity of the network (Figure 2.1).  In 

essence, M is the difference between the observed and expected proportions of within-

module edges in the network.  Here, the expected proportion is computed from a non-

modular network where edges are equally likely to be within and between modules. 

Several algorithms are available to separate a network into modules and obtain the 

maximal M.  Empirical and simulation studies showed that the method of Guimera and 

Amaral (Guimera and Amaral 2005) has the best performance because it can give the 

most accurate module separation and highest M (Danon et al. 2005).  We therefore used 

this method to separate modules in the yeast PIC and PEC networks.  To obtain the 

highest M, we used delicate parameter settings in the simulated annealing algorithm.  It 

took a typical desktop computer ~3 days to separate a yeast PPI network.  The PIC 

network is separated into 26 modules with a modularity of 0.6672, while the PEC 

network is divided into 22 modules with a modularity of 0.6583 (Table 2.1).  The density 

ratio, defined by the ratio of the number of within-module edges to the number of 

between-module edges is only slightly lower for PEC than for PIC networks (Table 2.1). 
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A random network may also have a non-zero modularity by chance or due to 

certain degree distributions (Guimera, Sales-Pardo, and Amaral 2004).  Also, the 

modularity values of two networks with different sizes or different average degrees 

cannot be compared directly (Guimera, Sales-Pardo, and Amaral 2004).  Thus, to 

measure the modularity of a network, we compare it with a random network of the same 

size and same degree distribution, which is generated by the local rewiring algorithm 

(Maslov, Sneppen, and Zaliznyak 2004).  To speed up the computation, we used 

moderate parameter settings and faster runs (~ 4 hours per network) to estimate 

modularity.  For the yeast PIC network, the modularity for 500 randomly rewired 

networks has a mean of 0.5466 and a standard deviation of 0.0023, while the real PIC 

network has a modularity of 0.6555 under this parameter setting (Figure 2.3A).  We use 

z-score, or the number of standard deviations higher than the random expectation to 

measure the deviation of the modularity of a network from its random expectation.  This 

z-score, referred to as the scaled modularity to differentiate it from z-scores of other 

properties, is (0.6555-0.5466)/0.0023 = 47 for the PIC network.  Under the same 

parameter setting, the modularity for the real PEC network is 0.6481.  The modularity for 

500 randomly rewired PEC networks has a mean of 0.5764 and a standard deviation of 

0.0027 (Figure 2.3B).  In other words, the scaled modularity for the PEC network is 

(0.6481-0.5764)/0.0027 = 27.  Thus, both PIC and PEC networks show significantly 

greater modularity than randomly rewired networks.  As expected, the scaled modularity 

of PIC is much greater than that of PEC.  This difference is largely due to the exclusion 

of protein complex data in the PEC network.  In fact, when we randomly removed 10% 

of edges from the PIC network, the scaled modularity decreased only slightly (from 47 to 

42). 

Given the substantive difference in scaled modularity, PIC and PEC networks 

should also differ in the compositions of their modules.  We measured the similarity in 

module composition between different separations of the same network (or shared nodes 

in the case of different networks) by the normalized mutual information (NMI) index 

(Danon et al. 2005).  A higher NMI indicates a higher similarity in module composition.  

The NMI between the PIC network and PEC network is 0.35.  As a control, we measured 

the NMI between the PIC network and a reduced network generated by random removal 
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of 10% of the edges in PIC.  This control NMI has a mean of 0.41 and a standard 

deviation of 0.018 (from 200 replications).  Thus, the NMI between PIC and PEC is 

significant lower than that between PIC and its randomly reduced networks (P < 0.002) 

(Figure 2.3C).  Because simulated annealing is a stochastic algorithm, different runs may 

yield slightly different partitions.  We thus separated modules in PIC and PEC networks 

with different random seeds 50 times and these replications confirmed that the above 

finding of a lower NMI between PIC and PEC than by chance is genuine (P < 10-10, 

Mann-Whitney U test).  Together, these analyses demonstrate that the inclusion of 

interactions inferred from protein complexes in the PPI network has a great impact on 

network modularity.  

 

2.3.2 Are structural modules functional units? 
Because we identified the PPI modules based entirely on the topology of the 

network, it is important to ask whether such structural modules correspond to functional 

units.  To address this question, we utilized the functional annotation of yeast genes in the 

CYGD database (Guldener et al. 2005).  At the highest level of annotation, each yeast 

gene is classified into one or several of 17 functional categories (Figure 2.4).  If the 

structural modules correspond to functional units, we should expect a nonrandom among-

module distribution of the genes of a given functional category.  For example, in the PIC 

network, there are 361 genes belonging to functional category A (cell type 

differentiation; see Figure 2.4A).  A !2 test showed that these genes are not randomly 

distributed across the 26 PIC modules (!2 = 317, df = 25, P < 10-5; see the circles in 

Figure 2.4A).  This test was conducted for each functional category and almost all 

functional categories showed significant nonrandom distributions across PIC modules 

(even after considering multiple testing).  In contrast, the PEC network has fewer 

functional categories showing significant nonrandom distributions.  This trend is 

particularly evident at the highest level of statistical significance (6 categories in PEC vs. 

14 in PIC) (Figure 2.4B).   

If structural modules correspond to functional units, we also expect that the 

majority of genes in a module belong to only one or a few functional categories.  In other 

words, each module should have one or a small number of overrepresented functional 
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categories.  Testing this prediction is not easy because one gene may belong to multiple 

functional categories.  We thus used computer simulations.  For example, module 1 of the 

PIC network comprises of 227 proteins, 92 of which belong to functional category A 

(Figure 2.4A).  We randomly chose 227 genes from the network and counted the number 

of category A genes.  We repeated this procedure 100,000 times to estimate the 

probability that the number of category A genes in the randomly picked 227 genes is 

equal to or greater than 92.  This probability is indicated with different colors in the small 

squares of Figure 2.4A.  Because 17 functional categories were tested for each module, to 

control for multiple testing we used 10-3 as the cutoff for statistical significance for each 

category.  It can be seen that in 16 (62%) of the 26 PIC modules, at least one functional 

category is enriched.  In comparison, only 7 (32%) of the 22 PEC modules have at least 

one enriched functional category.  The above difference between PIC and PEC modules 

is statistically significant (P < 0.05, !2 test).   

The two analyses above revealed nonrandom distributions of protein functions 

across structural modules.  To quantitatively measure how well structural modules 

correspond to functional units, we used a correlation analysis.  For a pair of proteins from 

a PPI network, we ask if they belong to the same module (co-membership) and if they 

belong to the same functional category (co-functionality).  Two proteins are regarded to 

possess co-functionality as long as they share at least one function.  If structural modules 

correspond well to functional units, protein pairs within the same module should share 

function whereas protein pairs across modules should not share function.  In other words, 

we should observe a strong positive correlation between co-membership and co-

functionality of protein pairs.  We enumerated all possible protein pairs and found the 

correlation to be statistically significant in both PIC (P < 10-300) and PEC (P < 10-100) 

networks.  However, the level of correlation is extremely low in both PIC (r2 = 0.0813%) 

and PEC (r2 = 0.00675%) networks (Figure 2.4C and 2.4D), indicating that less than 

0.1% of the variance in protein-pair co-membership is explainable by co-functionality.  

We also found that the r value for PEC is significantly lower than that for PIC when we 

repeated module separations 50 times with different random seeds (P < 10-5, Mann-

Whitney U test).  The observation of a low level of correlation is not due to the presence 

of many multifunctional proteins, because the low correlation is also observed even when 
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we consider only monofunctional proteins (r2 = 0.0384% and P < 10-37 for PIC; r2 = 

0.0331% and P < 10-30 for PEC).  Hence, although there is significant nonrandomness in 

protein functions across structural modules, the correspondence between structural 

modules and functional units is extremely weak in both PIC and PEC networks, 

especially the latter. 

We also examined the cellular locations of each protein (Huh et al. 2003) and 

tested whether members of a structural module tend to be co-localized, as would be 

expected if structural modules represent functional units.  Our results were generally 

similar to those for functional categories.  Although some nonrandom patterns were 

observed, the correspondence between structural modules and cellular locations is 

extremely weak in both PIC and PEC networks, especially the latter (Figure C.1).   

 

2.3.3 Are structural modules evolutionarily conserved? 
If a structurally defined PPI module represents a functional unit, the composition 

of the module should be evolutionarily conserved.  To test this prediction, we applied the 

same module separation algorithm to the fruit fly (Drosophila melanogaster) PPI 

network, which was constructed from binary PPIs obtained in high-throughput Y2H 

experiments (Giot et al. 2003).  Because the fly data do not contain any interactions 

inferred from protein complexes, we expect that the fly PPI network behaves more 

similarly to the yeast PEC network than to the PIC network.  We thus examine the 

evolutionary conservation of modular structures between the yeast PEC network and the 

fly network.   

We separated the fly network into 27 modules, with a modularity of 0.6851 and a 

scaled modularity of 29 (Table 2.1).  Hence, the scaled modularity of the fly network is 

comparable to that of the yeast PEC network (27).  There are 691 orthologous proteins 

between the giant component of the yeast PEC network and that of the fly network.  We 

here again use NMI to measure the similarity in module compositions between two 

networks.  The NMI value between the yeast PEC and fly PPI networks is 0.14.  If the 

modular structures are evolutionary conserved between the two networks, the above NMI 

value should be significantly greater than that between the actual fly network and a 

randomly separated yeast network.  We randomly separated the yeast PEC network into 
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26 modules by conserving the actual module sizes and then computed NMI between the 

real fly modules and the randomly separated yeast modules.  To make this comparison, 

we repeated this process 10,000 times and obtained the frequency distribution of NMI 

(Figure 2.5A).  The observed NMI between the real fly and real yeast networks falls in 

the central part of the distribution, indicating that the yeast and fly modules are no more 

similar to each other than by chance (P > 0.6), and revealing a complete lack of 

evolutionary conservation in PPI modules between the two species.   

Because modular structures are often hierarchically organized (Ravasz et al. 

2002), it is possible that a low level of structure is evolutionary conserved despite the 

lack of conservation at the whole-module level.  Pairwise relationships between proteins 

represent the lowest possible structure in the PPI network.  We invented a conservation 

index for pairs of proteins (CIP).  Between species X and Y, CIP is defined as the 

probability that the Y orthologs of two X proteins belonging to the same module in X 

also belong to the same module in Y.  CIP is 0.048 between the yeast and fly, which is 

not significantly different from the expectation derived by comparison of the fly network 

to a random separation of the yeast network (P > 0.6; 10,000 simulations; Figure 2.5B).  

Thus, even at the lowest structural level, yeast and fly modules are not evolutionarily 

conserved.  Note that CIP measures the conservation of co-membership in a module 

between two proteins, regardless of whether these two proteins interact with each other.  

CIP does not measure the conservation of PPIs.  If two yeast proteins engage in a PPI and 

their respective fly orthologs also engage in a PPI, these two PPIs are referred to as 

orthologous PPIs (Matthews et al. 2001).  Between the yeast PEC and fly PPI networks, 

there are 45 orthologous PPIs.  In comparison, between the fly network and 1,000 

randomly rewired yeast networks (with the degree of each node unchanged), there are 

only 0.58 orthologous PPIs on average (standard deviation = 0.75).  Thus, orthologous 

PPIs are evolutionary conserved between the two species. 

We also examined the evolutionary conservation of structural modules between 

yeast and the nematode Caenorhabditis elegans.  Although the PPI data for C. elegans 

are highly incomplete, with only 2387 proteins and 3825 interactions in the giant 

component, the results we obtained (Figure C.2) are similar to those from the comparison 

between yeast and fruit fly networks.   
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2.3.4 Does participation in different modules affect the evolutionary rate of a 

protein? 
If structural modules represent functional units, proteins with links to many 

modules should be evolutionarily more conserved than those with links largely within a 

module, because multifunctional or pleiotropic proteins tend to be conserved (He and 

Zhang 2006a; Salathe, Ackermann, and Bonhoeffer 2006).  Guimera and Amaral 

(Guimera and Amaral 2005) defined the participation coefficient of a node by 

, where k is the degree of the node, ki is the number of links from the 

node to any nodes in module i and N is the total number of modules.  A high PC indicates 

that a node participates in the functioning of many modules.  These authors found that the 

propensity of an enzyme gene to be lost during evolution is negatively correlated with the 

PC of the enzyme in the metabolic network (Guimera and Amaral 2005).  Such an 

observation strongly suggests that the modular structure in the metabolic network has 

biological significance.  It is therefore useful to examine PC for the proteins in the PPI 

network.  It has previously been debated whether the degree of a protein in the PPI 

network influences its evolutionary rate (Fraser et al. 2002; Fraser, Wall, and Hirsh 2003; 

Jordan, Wolf, and Koonin 2003; Bloom and Adami 2004; Fraser and Hirsh 2004; Batada, 

Hurst, and Tyers 2006).  Because past studies did not exclude PPIs inferred from protein 

complexes, it is possible that some of previous results were due to artifacts of such 

inferences.  Separate analyses of the PIC and PEC networks may help answer this 

question.   

We first measured the rate of protein evolution by the number of nonsynonymous 

nucleotide substitutions per nonsynonymous site (dN) between orthologous genes of yeast 

species S. cerevisiae and S. bayanus.  We chose this species pair because their divergence 

level is appropriate for obtaining informative and reliable dN estimates (Zhang and He 

2005).  We found that the dN of a protein is significantly negatively correlated with its 

total degree in the yeast PIC network (P < 0.001; Table 2.2), but not with its degree in the 

PEC network (P > 0.4).  Thus, when protein complexes are not considered, there is no 

significant correlation between dN and degree.  When we separated the links of a node 

into within-module links and between-module links, we found a significant correlation 



 16 

between dN and the within-module degree (i.e., the number of within-module links) in the 

PIC network.  This correlation is again absent in the PEC network, suggesting that the 

correlation between dN and within-module degree is largely attributable to protein 

complexes.  In neither the PIC nor the PEC network did we find a significant correlation 

between dN and the between-module degree (i.e., the number of links across modules).  

Similar results were found between dN and PC of a protein (Table 2.2).  Furthermore, 

even when we divided the proteins into different topological roles by their PCs and 

degrees, as was done by Guimera and Amaral for the metabolic network, no significant 

correlation between these roles and dN was observed (bottom two rows in Table 2.2). 

We also measured the rate of protein evolution by the propensity of gene loss 

(PL) across 12 fungal species whose draft genome sequences are available.  The results 

obtained for PL are qualitatively similar to those for dN (Table 2.2).  Taken together, 

there is no observable impact of the within-module, between-module, or total PPI degree 

of a protein on its evolutionary rate when protein complexes are excluded.  Furthermore, 

if structural modules correspond to functional units, a protein with higher participation in 

various modules should be more  pleiotropic (or multifunctional) and thus should be 

more conserved in evolution (He and Zhang 2006a; Salathe, Ackermann, and Bonhoeffer 

2006).  However, we found no impact of the extent of participation in various modules on 

the evolutionary rate of a protein.  This negative result is consistent with the idea that 

structural modules do not correspond to functional units. 

 The growth rate of a yeast strain with a gene deleted can measure the importance 

of the gene under the tested condition.  Growth rate is known to be negatively correlated 

with the PPI degree of a gene (Jeong et al. 2001; Hahn and Kern 2005; Batada, Hurst, and 

Tyers 2006; He and Zhang 2006b).  We confirmed this result in both PIC and PEC 

networks, although the significance is only marginal in the latter (Table 2.2).  

Interestingly, for both networks, this significance is also found for within-module 

degrees, but not for between-module degrees.  This phenomenon may arise because the 

between-module degree is often much smaller (mean = 1.04 for PIC and 0.98 for PEC) 

than the within-module degree (mean = 2.70 for PIC and 2.48 for PEC) and thus 

contributes less to the total degree of a node.  Growth rate also contains the information 

of gene essentiality, as essential genes have zero growth rates whereas nonessential genes 
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have positive growth rates.  Thus, similar results are obtained when we analyze the genes 

by gene essentiality rather than growth rate.    

 

2.3.5 Can modularity originate as an evolutionary byproduct? 
 Because both PIC and PEC networks have significantly higher modularity than 

that of their randomly rewired networks but the identified modules exhibit little 

biological significance, it is puzzling as to how the modular structure could have arisen in 

evolution.  Earlier studies suggested that modularity can originate by gene duplication 

(Sole and Fernandez 2003; Hallinan 2004).  However, in these studies modularity is 

defined by hierarchical clustering or clustering coefficient, which lacks an objective 

function to identify the best module separation and to compute network modularity.  We 

thus conducted computer simulations to examine whether the network modularity as 

defined in this paper can arise from evolution by gene duplication.  Because duplication-

divergence models can generate many network features similar to real PPI networks (Sole 

and Fernandez 2003; Vazquez et al. 2003) and have clear biological bases (Wagner 2002; 

Wagner 2003; He and Zhang 2005), we simulated network growth by a duplication-

divergence model starting from a pair of connected nodes.  Briefly, at each step, a node 

(A) is randomly picked and duplicated along with all its edges to generate its paralogous 

node (A’).  We refer to two edges, one from A and the other from A’, as a pair of edges if 

they both end at the same third node.  To simulate functional divergence after gene 

duplication, we randomly remove one edge from each pair of edges, until A and A’ share 

90% of edges.  This duplication-divergence process was repeated 300 times to generate a 

network of 302 nodes.  The resulting network has 212 nodes in its giant component (first 

row in Table C.1).  We found the modularity and scaled modularity of this simulated 

network to be 0.6717 and 29, respectively (Figure 2.6; Table C.1).  We conducted 10 

simulation replications and all cases show similarly high modularity and scaled 

modularity that are comparable to those of the yeast and fly PPI networks (Table C.1).  In 

fact, we found that many different combinations of simulation parameters can give rise to 

modular networks and the specific model of evolution by gene duplication (e.g., the 

subneofunctionalization model (He and Zhang 2005)) does not appear to matter much to 

the result of high modularity (data not shown).  Although self-interactions can be 
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biologically important, they are not considered in our simulation because such 

interactions are disregarded in the module separation algorithm of Guimera and Amaral 

(Guimera and Amaral 2005). 

 

 

2.4 DISCUSSION 
In this work, we conducted a comprehensive analysis of modular structures in 

yeast protein interaction networks.  Rather than lumping binary PPIs directly observed in 

experiments with those indirectly inferred from protein complexes, we separately 

analyzed the PIC network, which includes inferred binary PPIs, and the PEC network, 

which excludes inferred binary PPIs.  This distinction is necessary because inferences of 

binary interactions from protein complexes introduce errors to the network structure, 

which hamper accurate measurement of network modularity.  Given that protein 

complexes likely represent true (functional) modules in the network, the unanswered 

question is whether the network structure is still modular when the PPIs inferred from 

protein complexes (~10% in our PIC network) are removed.  We found that both PIC and 

PEC networks are significantly more modular than expected by chance, the scaled 

modularity of the PIC network is substantively greater than that of the PEC network, and 

the module compositions of the two networks are significantly different.  The latter two 

results are expected, because the current models for inferring binary PPIs from protein 

complexes tend to increase modularity.  Consistent with these results, we found that the 

fruit fly PPI network, which is entirely based on experimentally determined binary PPIs, 

has a comparable scaled modularity to that of the yeast PEC network. 

In spite of the presence of significant modularity in the yeast PEC network, the 

identified structural modules do not appear to correspond to functional units.  This is 

reflected in three analyses.  First, for some functional categories, their member genes are 

distributed randomly among structural modules.  Second, for most structural modules, 

there are no enriched functional categories.  Third, for protein pairs, the correlation (r2) 

between co-membership in a module and co-functionality, although significantly greater 

than 0, is lower than 0.1%.  Our results contradict several previous studies which claimed 

that PPI modules correspond well to functional units (Spirin and Mirny 2003; Tornow 
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and Mewes 2003; Pereira-Leal, Enright, and Ouzounis 2004; Poyatos and Hurst 2004; 

Chen and Yuan 2006; Farutin et al. 2006; Lu et al. 2006; Valente and Cusick 2006; 

Zhang, Liu, and Zhou 2006).  This difference is in part owing to the inclusion of protein 

complexes in these early studies.  Furthermore, some studies utilized more than the PPI 

network topology in separating modules.  For example, Tornow and Mewes considered 

gene co-expression patterns (Tornow and Mewes 2003).  Although such practices may 

help identify functional modules, they do not objectively evaluate whether the PPI 

network itself has a biologically meaningful modular structure.  Many studies also 

suffered from the lack of an efficient algorithm to identify the maximum modularity, 

resulting in suboptimal modular separations with many small modules.  For example, 

Pereira-Leal and colleagues (Pereira-Leal, Enright, and Ouzounis 2004) separated the 

yeast PPI network into 1046 modules, with an average size of 8 proteins per module.  A 

small module may appear to have a better functional correspondence than a large module, 

because the chance probability of functional similarity among a few proteins is 

considerably greater than that among a large number of proteins.  Because the module 

separation algorithm we used here is superior to the earlier algorithms (Danon et al. 

2005), under the same definition of modularity our results are expected to be more 

reliable than those based on inferior algorithms. 

Although many authors have claimed that PPI networks are modular with 

significant functional correspondence, none have examined the evolutionary conservation 

of PPI modules.  By comparing the yeast PEC network and fly PPI network, we found 

that PPI modules are not more conserved than the chance expectation at the whole-

module level.  Furthermore, even at the protein-pair level, the PPI modules are not more 

conserved than by chance.  These findings are consistent with our observation of minimal 

correspondence between yeast PEC modules and functional units.  Interestingly, PPIs are 

found to be conserved between the yeast and fly, suggesting that the lack of conservation 

of modules cannot be trivially explained by the lack of conservation of individual 

interactions in the network.  

The participation coefficient of a node measures the extent of the distribution of 

links from the node to all modules.  If PPI modules correspond to functional units, 

proteins with high participation coefficients should have higher degrees of pleiotropy (or 



 20 

multifunctionality) and be more conserved than those with low participation coefficients, 

because pleiotropic or multifunctional proteins are known to be evolutionary conserved 

(He and Zhang 2006a; Salathe, Ackermann, and Bonhoeffer 2006).  This correlation was 

not observed in either the PIC or PEC network when either dN or propensity for gene loss 

was used as a measure of a protein’s evolutionary rate.  Thus, the results again point to 

the lack of correspondence between PPI modules and functional units. 

Taken together, our analyses strongly suggest that the yeast PEC network has a 

modular structure, which, nevertheless, lacks detectable biological significance.  One 

may argue that the PEC network actually contains biologically important structural 

modules, but such modules are difficult to identify due to the incompleteness and 

inaccuracy of current PPI data.  While this possibility cannot be entirely ruled out, we 

note that the PPI data we used here are generally regarded as of relatively high quality 

(Guldener et al. 2006).  Furthermore, according to recent estimates, our PPI data should 

cover 25% to 50% of all PPIs in the yeast interactome (von Mering et al. 2002; Grigoriev 

2003).  Several observations, such as the negative correlation between the growth rate of 

a single-gene deletion yeast strain and the PPI degree of the gene (Table 2.2), suggest that 

the current PPI data contain biologically meaningful signals.  An alternative explanation 

of the PPI modularity that lacks biological significance is that modularity may be an 

evolutionary byproduct.  Inspired by earlier studies (Sole and Fernandez 2003; Hallinan 

2004), we demonstrate by computer simulation that a simple model of gene duplication-

divergence can generate networks with a scaled modularity comparable to that observed 

in the yeast and fly PPI networks.  This result suggests that the modularity in the PPI 

networks may indeed have no biological significance and has not been under selection.  

Because gene duplication is the primary source of new genes and new gene functions 

(Zhang 2003), our simulation is biologically relevant.  It is possible that evolutionary 

processes other than gene duplication also contributed to the origin of network 

modularity.  For example, if assortative links (i.e., links between nodes of similar 

degrees) are disfavored, as has been observed in PPI networks (Maslov and Sneppen 

2002; Newman 2002), modularity may arise.  PPI networks also have clustering 

coefficients higher than the chance expectation, meaning that two proteins that both 

interact with the third one also tend to interact with each other (Barabasi and Oltvai 
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2004).  Natural selection for higher clustering coefficients for some nodes of the network 

may also raise modularity. 

It has been intensely debated as to whether there is a negative correlation between 

the PPI degree of a protein and the evolutionary rate (dN) of the protein (Fraser et al. 

2002; Fraser, Wall, and Hirsh 2003; Jordan, Wolf, and Koonin 2003; Bloom and Adami 

2004; Fraser and Hirsh 2004; Batada, Hurst, and Tyers 2006).  We found this correlation 

to be statistically significant for the PIC network, but not significant for the PEC network.  

These observations suggest that the significant correlation is simply due to lower 

evolutionary rates for proteins involved in protein complexes than those not involved in 

complexes.  Our result is consistent with a recent study reporting the lack of a significant 

correlation when PPIs were curated from literature (Batada, Hurst, and Tyers 2006).  

Because proteins involved in complexes tend to have exceptionally high degrees as a 

result of indirect inference of PPIs by the matrix or spoke model, our result is also 

consistent with the finding that only the most prolific interactors tend to evolve slowly 

(Jordan, Wolf, and Koonin 2003).  Recently, Han and colleagues (Han et al. 2004) 

classified hubs (i.e., high-degree nodes) in the PPI network into party hubs and date hubs.  

The former are those proteins whose interaction partners have similar expression profiles 

across various conditions, whereas the latter are those whose partners have different 

expression profiles.  Party hubs have been interpreted as proteins that function within a 

biological process (or a functional module), whereas date hubs are thought to link 

different functional modules.  Fraser reported that party hubs are evolutionarily more 

conserved than date hubs, and suggested that this pattern may reflect a tendency for 

evolutionary innovations to occur by altering the proteins and interactions between rather 

than within modules (Fraser 2005).  A closer examination of the party hubs and their 

partners reveals that the majority of them form protein complexes, whereas date hubs and 

their partners do not form complexes.  Thus, Fraser’s observation is explainable by a 

lower evolutionary rate of proteins involved in complexes than those not in complexes, 

without invoking additional evolutionary forces.  

PPI networks have been subject to many structural, functional, and evolutionary 

analyses in the past few years.  Our results show that removing a small fraction (~10%) 

of PPIs that are inferred from protein complexes can have a substantial effect on the 
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analysis.  This observation raises a warning about many results regarding PPI networks, 

because they have usually been based on the PIC network that contains many potentially 

false PPIs inferred for members of protein complexes.  As such false interactions are not 

randomly distributed in the network, their potential detrimental effect is particularly 

alarming.  The PIC data we used do not contain high-throughput protein complex data 

such as those in (Gavin et al. 2002; Ho et al. 2002).  In many PPI databases, such as 

BIND (Bader, Betel, and Hogue 2003), DIP (Salwinski et al. 2004), and the new 

literature-curated dataset (Reguly et al. 2006), about half or more of the PPIs are inferred 

from protein complexes.  The recent genome-wide surveys of all protein complexes in the 

yeast added even more complexes to the PPI data.  Inclusion of inferred PPIs from these 

complexes would affect the network structure even more.  We caution that use of such 

PPI data may produce misleading results. 

 Systems biology is a nascent field with many hopes as well as much hype (Kitano 

2002).  It has been of great interest to identify nonrandom topological structures such as 

motifs and modules in molecular networks (Ihmels et al. 2002; Milo et al. 2002; Guimera 

and Amaral 2005).  Such nonrandom patterns are often interpreted as having functional 

significance and having been particularly favored by natural selection (Alon 2003; 

Wuchty, Oltvai, and Barabasi 2003; Guimera and Amaral 2005).  While this may be true 

in many cases, a nonrandom network structure can also originate as a byproduct of other 

processes without having its own function.  Recent studies suggested that motifs in 

transcriptional regulatory networks do not represent functional units and are not subject 

to natural selection (Mazurie, Bottani, and Vergassola 2005).  Rather, random gene 

duplication and mutation could give arise to motifs (Dwight Kuo, Banzhaf, and Leier 

2006).  A recent study even suggested that the high abundance of feed forward loops in 

regulatory networks could be an evolutionary byproduct (Cordero and Hogeweg 2006).  

Our results add yet another network structure that is widely believed to be of great 

biological importance to this growing list of potential evolutionary byproducts.  That 

being said, the modular organization of cellular functions is real, and whether this 

organization is also an evolutionary byproduct or has been actively selected for remains 

to be scrutinized. 
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2.5 MATERIALS AND METHODS 
2.5.1 The yeast, fly, and nematode PPI networks 

The budding yeast (Saccharomyces cerevisiae) PPI data were from the MPact 

dataset (Guldener et al. 2006) of MIPS 

(ftp://ftpmips.gsf.de/yeast/PPI/PPI_18052006.tab), which contains human-curated high-

throughput and small-scale binary interactions directly observed in experiments, as well 

as binary interactions inferred from high-confidence protein complex data.  Only non-self 

physical interactions were considered.  After excluding PPIs involving mitochondrial 

genes, we built the PPI network named PIC (PPI including protein complexes).  The 

giant component of the PIC network is composed of 3886 proteins linked by 7260 

nonredundant interactions.  To build the PEC (PPI excluding protein complexes) 

network, we retained only those binary interactions in the PIC network that had direct 

experimental evidence.  The giant component of the PEC network contains 3696 proteins 

linked by 6403 interactions.   

The fruit fly (Drosophila melanogaster) PPI data came from (Giot et al. 2003) 

(http://www.bme.jhu.edu/labs/bader/publications/giot_science_2003/flyconf.txt).  A 

moderate confidence level (0.25) was chosen to generate the fly PPI network with a 

comparable average degree to the yeast PEC network.  In total, the giant component of 

the fly PPI network contains 6280 proteins linked by 10210 interactions, all generated by 

Y2H experiments. 

The nematode (Caenorhabditis elegans) PPI data were from (Li et al. 2004) 

(http://vidal.dfci.harvard.edu/interactomedb/WI5.txt).  Only the PPIs identified by Y2H 

experiments are used.  In total, the nematode PPI network contains 2624 proteins and 

3967 interactions, of which 2387 proteins and 3825 interactions are in the giant 

component. 

 

2.5.2 Functional categories of yeast proteins 
We used the yeast functional annotations in the CYGD database (Guldener et al. 

2005) (ftp://ftpmips.gsf.de/yeast/catalogues/funcat/funcat-2.0_data_18052006), 

considering only the highest level of annotation.  Functional categories containing < 15 

proteins and the category of unknown functions were removed.  The cellular localization 
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data for yeast proteins were from (Huh et al. 2003) 

(http://yeastgfp.ucsf.edu/allOrfData.txt).  Similarly, ambiguous localizations and 

localizations with < 15 proteins were not used. 

  

2.5.3 Evolutionary conservation of modules and proteins 
The list of orthologous genes between the yeast and fly was provided by He and 

Zhang (He and Zhang 2006b), who used reciprocal best-hits in BLASTP searches to 

define gene orthology (E-value cutoff = 10-10).  The same method was used to identify the 

yeast and nematode orthologous genes.  The dN values between S. cerevisiae and S. 

bayanus orthologous genes were computed by a likelihood method and obtained from 

Zhang and He (Zhang and He 2005).  We used the parsimony principle to infer the 

propensity of gene loss (i.e., the number of gene loss events) for each of the S. cerevisiae 

genes throughout the known phylogeny of 12 fungi.  The protein sequences predicted 

from the complete genome sequences of the 12 species were downloaded from 

ftp://genome-ftp.stanford.edu/pub/yeast/data_download/sequences (S. cerevisiae, S. 

bayanus, S. paradoxus, and S. mikatae),  ftp://ftp.ncbi.nih.gov/genomes/Fungi (Candida 

glabrata, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, and 

Yarrowia lipolytica), 

http://www.broad.mit.edu/annotation/genome/neurospora/Home.html (Neurospora 

crassa), http://www.broad.mit.edu/seq/YeastDuplication (Kluyveromyces waltii), and 

http://www.sanger.ac.uk/Projects/S_pombe/ (Schizosaccharomyces pombe).  A S. 

cerevisiae gene is considered to be lost in species X if it does not hit any genes in X 

(Evalue cutoff = 10-1) but has a hit in at least one species that is more distantly related to 

S. cerevisiae than is X related to S. cerevisiae.  Here X refers to one of the 10 fungi that 

are neither S. cerevisiae nor S. pombe, the latter being the most distantly related species 

to S. cerevisiae in our study.   

The growth rates of the yeast single-gene deletion strains were originally 

generated by Stanford Genome Technological Center (Steinmetz et al. 2002), and we 

here used the dataset curated and provided by Zhang and He (Zhang and He 2005). 
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2.5.4 Normalized mutual information (NMI)  
NMI was described in detail in (Danon et al. 2005).  Briefly, let us define the 

matrix N, where each row corresponds to a module in separation X and each column 

corresponds to a module in separation Y.  Each member Nij in the matrix represents the 

number of nodes in the ith module of X that appear in the jth module of Y.  The 

calculation of NMI is given by 

 

where nX and nY are the number of modules in module separation X and Y, respectively.  

The sum over row i of matrix Nij is denoted Ni. and the sum over column j is denoted N.j.  

If two module separations are identical, the NMI between them reaches the maximum 

value of 1. 

 

2.5.5 Data and program availability 
Datasets used in this work and computer programs made for the analyses can be 

downloaded from http://www.umich.edu/~zhanglab/download.htm.  

 

 

2.6 ACKNOWLEDGMENTS 
 We thank Roger Guimera and Luis Nunes Amaral for providing the module 

separation program and Margret Bakewell, Wendy Grus, Xionglei He, Ben-Yang Liao, 

Zhihua Zhang, and three anonymous reviewers for valuable comments.  This work was 

supported in part by research grants from the National Institutes of Health and University 

of Michigan to JZ.  



 26 

Figure 2.1  An example of network modular structure.  (A) A small network with 
modular structure.  (B) A randomly rewired network of (A).  Different colors show 
different modules separated by Guimera and Amaral’s algorithm (Guimera and Amaral 
2005).  The modularity is 0.5444 for the network in (A) and 0.2838 in (B), and the scaled 
modularity is 15 for the network in (A) and 0 in (B). 
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Figure 2.2  PPI network representations of protein complexes.  (A) A hypothetical 
protein complex.  Binary protein-protein interactions are depicted by direct contacts 
between proteins.  Although five proteins (A, B, C, D and E) are identified through the 
use of a bait protein (red), only A and D directly bind to the bait.  (B) The true PPI 
network topology of the protein complex.  (C) The PPI network topology of the protein 
complex inferred by the “matrix” model, where all proteins in a complex are assumed to 
interact with each other.  (D) The PPI network topology of the protein complex inferred 
by the “spoke” model, where all proteins in a complex are assumed to interact with the 
bait; no other interactions are allowed. 
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Figure 2.3  Modularity of yeast PIC and PEC networks.  The modularity of yeast (A) 
PIC and (B) PEC networks compared to that of their randomly rewired networks, and (C) 
the similarity of module compositions between PIC and PEC networks compared to the 
random expectation.  In (A) and (B), the observed modularity is indicated by the vertical 
arrow.  The bars show the frequency distribution of the modularity from 500 randomly 
rewired networks.  Scaled modularity, or the difference between the modularity of a real 
network and the expected modularity of a randomly rewired network in terms of the 
number of standard deviations, is indicated at the top area of the panel.  In (C), the 
observed similarity between PIC and PEC networks, measured by NMI (normalized 
mutual information), is indicated by the vertical arrow.  The bars show the frequency 
distribution of the NMI between PIC and 200 reduced networks (by random removal of 
10% edges from the PIC network).  The result shows that the difference between PEC 
and PIC is not simply because the PEC network is 10% smaller than the PIC network. 
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Figure 2.4  Lack of obvious correspondence between structural modules and 
functional units.  In (A) and (B), each functional category is indicated by a letter (A to 
Q).  In parentheses next to the letter is the percentage of proteins in the network that 
belong to that functional category.  Note that one protein may belong to more than one 
category.  The circles next to the grid show the statistical significance of nonrandom 
distributions of genes of the same functional categories across modules.  Each small 
square in the grid shows the statistical significance of enrichment of a particular function 
in a module.  For the circles and squares, significance levels are indicated by different 
colors.  Panels (C) and (D) show the correlation between co-membership in structural 
modules and co-functionality for all pairs of proteins in the PIC and PEC networks, 
respectively.  The circle size is proportional to the number of protein pairs.  The line 
shows the linear regression and r is the correlation coefficient. 
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Figure 2.5  Lack of evolutionary conservation between the yeast and fruit fly PPI 
modules.  (A) The observed NMI (normalized mutual information) between yeast and 
fruit fly modules is not significantly different from the chance expectation.  The bars 
show the distribution of NMI between the yeast and fly modules when the yeast modules 
are randomly separated.  (B) The observed CIP (conservation index for pairs of proteins) 
between yeast and fruit fly modules is not significantly different from the chance 
expectation.  The bars show the distribution of CIP between the yeast and fly modules 
when the yeast modules are randomly separated. 
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Figure 2.6  A random network generated by gene duplication followed by 
subfunctionalization shows high modularity.  Modularity = 0.6717,  and scaled 
modularity = 29.  Different colors represent different modules identified by Guimera and 
Amaral’s algorithm (Guimera and Amaral 2005). 
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Table 2.1  Summary statistics of the giant component of the protein interaction networks. 
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Table 2.2  Relationship between the degree of a protein and its importance to growth or 
evolutionary rate. 
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CHAPTER 3 
 

Abundant Indispensable Redundancies in Cellular Metabolic Networks 
 

 

3.1 ABSTRACT 
Cellular life is a highly redundant complex system, yet the evolutionary 

maintenance of the redundancy remains unexplained.  Using a systems biology approach, 

we infer that 37-47% of metabolic reactions in E. coli and yeast can be individually 

removed without blocking the production of any biomass component under any 

nutritional condition.  However, the majority of these redundant reactions are preserved, 

because they have differential maximal efficiencies at different conditions or their loss 

causes an immediate fitness reduction that can only be regained via mutation, drift, and 

selection in evolution.  The remaining redundancies are attributable to pleiotropic effects 

or recent horizontal gene transfers.  We find that E. coli and yeast exhibit opposite 

relationships between the functional importance and redundancy level of a reaction, 

which is inconsistent with the conjecture that redundancies are preserved as an adaptation 

to backup important parts in the system.  Interestingly, the opposite relationships can both 

be recapitulated by a simple model in which the natural environments of the organisms 

change frequently.  Thus, adaptive backup is neither necessary nor sufficient to explain 

the high redundancy of cellular metabolic networks.  Taken together, our results strongly 

suggest that redundant reactions are not kept as backups and that the genetic robustness 

of metabolic networks is an evolutionary byproduct. 

 

 

3.2 INTRODUCTION 
Functional redundancy refers to the situation where one part in a system can 

completely or partially compensate the loss of another (Hartman, Garvik, and Hartwell 
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2001; Wagner 2005a).  Due to the existence of functionally redundant parts, a system 

may exhibit no or only mild phenotypic changes upon malfunction of a part.  In 

biological systems, functional redundancy may occur at the component level (Wagner 

2005a), exemplified by isoenzymes, which are generated by gene duplication and differ 

in protein sequence but catalyze the same biochemical reactions in an organism (Gu et al. 

2003; Conant and Wagner 2004; DeLuna et al. 2008).  Functional redundancy may also 

occur at the systems level, due to distributed properties of networks (Hartman, Garvik, 

and Hartwell 2001; Wagner 2005a).  For example, glucose-6-phosphate dehydrogenase 

and D-ribulose-5-phosphate 3-epimerase catalyze distinct reactions and are located in 

alternative pentose phosphate pathways in yeast; simultaneous removal of the two 

enzymes is lethal, although individual removal of either enzyme is not (Harrison et al. 

2007).  While functional redundancy at the component level has been extensively studied 

in model organisms (Gu et al. 2003; Conant and Wagner 2004; Liang and Li 2007; Liao 

and Zhang 2007; Dean et al. 2008; DeLuna et al. 2008; Musso et al. 2008), redundancy at 

the systems level is poorly understood and thus is the focus of the present study. 

An important consequence of functional redundancy is robustness against genetic 

perturbations such as deleterious mutations.  Genetic robustness is a characteristic of 

cellular life, observed in all domains of life and at many levels of biological 

organizations, from DNA replication, transcription, and translation, to metabolism, cell 

cycle, and embryonic development (de Visser et al. 2003; Wagner 2005c; Lenski, 

Barrick, and Ofria 2006).  Despite the apparent importance of functional redundancy and 

genetic robustness to development and health, their evolutionary preservation remains 

enigmatic (de Visser et al. 2003).  This is because mutations that destroy redundancies 

occur repeatedly and are normally invisible to natural selection, such that redundancies 

are evolutionarily unstable and are destined to be lost (Clark 1994) except under special 

circumstances (Nowak et al. 1997).  One hypothesis asserts that redundancies are favored 

by natural selection to ensure optimal performance through backing up important parts of 

a biological system when the system is attacked by mutations (de Visser et al. 2003), 

which we refer to as the adaptive backup hypothesis.  But, this hypothesis requires a very 

high rate of deleterious mutation that is not commonly observed in cellular organisms (de 

Visser et al. 2003; Wagner 2005c).   
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To identify the evolutionary forces that preserve systems-level redundancies and 

to understand the origin of genetic robustness, we here take advantage of recent genomic 

reconstructions of metabolic networks of model organisms and analyze metabolic 

redundancies using rigorous systems-level flux balance analysis (FBA) (Price, Reed, and 

Palsson 2004) and its derivatives (Segre, Vitkup, and Church 2002).  The metabolic 

networks are collections of biochemical reactions used to synthesize biomass, which is 

made up of multiple components such as amino acids and nucleotides.  Based on the 

stoichiometric associations among metabolites, the computational methods provide 

reliable quantitative predictions of metabolic function and Darwinian fitness under 

genetic and environmental perturbations (Edwards, Ibarra, and Palsson 2001; Ibarra, 

Edwards, and Palsson 2002; Segre, Vitkup, and Church 2002; Famili et al. 2003; Papp, 

Pal, and Hurst 2004), thus allowing a systematic investigation of the amount of functional 

redundancy as well as the mechanisms of its maintenance in cellular metabolic networks.  

 

 

3.3 MATERIALS AND METHODS 
3.3.1 E. coli and yeast metabolic networks 

Metabolic network models of E. coli (iJR904 GSM/GPR) (Reed et al. 2003) and 

yeast S. cerevisiae (iND 750) (Duarte, Herrgard, and Palsson 2004) were used in this 

study.  The models were downloaded from the BiGG database (http://bigg.ucsd.edu) and 

parsed by the COBRA toolbox (Becker et al. 2007).  The E. coli metabolic network 

contains 931 unique biochemical reactions, associated with 904 known genes.  The yeast 

metabolic network is composed of 1149 reactions, associated with 750 known genes.  

Some reactions do not have associated genes because the genes whose protein products 

catalyze these reactions have yet to be identified.  The metabolic network models also 

provide information of stoichiometry, direction of reaction, isoenzyme, and enzymatic 

protein complex.  Classification of reactions by functional category as presented in 

Figure C.3 follows previous authors (Reed et al. 2003; Duarte, Herrgard, and Palsson 

2004).   
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3.3.2 Flux balance analysis (FBA) 
Details of FBA have been described in the literature (Edwards, Covert, and 

Palsson 2002; Price, Reed, and Palsson 2004).  Briefly, FBA can be used to analyze a 

metabolic network at the steady state under the constraint of stoichiometry.  The FBA 

equation is , where S is the stoichiometric matrix and v is the metabolic flux 

vector.  The biomass reaction describes the relative contribution of metabolites to the 

cellular biomass.  The steady state flux distribution is determined by maximizing the rate 

of biomass production.  The formulated linear programming problem is shown below: 

  Maximize object:   

Subject to:    and . 

Here, the vector c is the biomass reaction function, and vectors and represent the 

lower- and upper-bound constraints of metabolic fluxes, respectively.  We used the 

optimization package CLPEX (www.ilog.com) to solve the linear programming problem.  

To delete a reaction, we constrain the flux of the reaction to zero and obtain the maximal 

biomass production under the constraint.  The relative fitness of the deletion strain to the 

wild-type strain is the maximal biomass production rate of the deletion strain divided by 

that of the wild-type (Segre et al. 2005). 

 

3.3.3 Minimization of metabolic adjustment (MOMA) 
 MOMA has been previously described in detail (Segre, Vitkup, and Church 

2002).  Briefly, MOMA predicts the maximal biomass production rate upon deletion of a 

reaction by minimizing the differences in all metabolic fluxes between the deletion strain 

and the wild-type strain.  All the constraints used in FBA are still enforced in MOMA.  

The formulated quadratic programming problem is 

  Minimize object:   

  Subject to:    and . 

Here, is the wild-type flux vector calculated by FBA.  When there are multiple flux 

values for a reaction in the wild-type, we randomly choose one of them, as in the original 

MOMA analysis (Segre, Vitkup, and Church 2002).  MOMA results are not sensitive to 

the use of different wild-type values (Mahadevan and Schilling 2003).  The quadratic 
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programming problem is also solved by CPLEX.  As in FBA, deletion of a reaction is 

realized by constraining the flux of the reaction to zero. 

 

3.3.4 Identification of dead-end reactions 
We followed a published protocol (Burgard et al. 2004) to identify dead-end 

reactions.  Dead-end reactions are defined as reactions that must have zero flux under a 

steady state.  These reactions are involved in the generation of metabolites that are 

neither included in biomass nor transported outside the cell, and may reflect the 

incompleteness of the metabolic network models.  They were identified by maximizing 

and minimizing in turn each flux under the condition that all nutrients are provided.  If 

both the maximization and minimization result in zero flux, this reaction is considered a 

dead-end reaction.  Because neither active transportation that requires ATP nor ionic 

transportation is modeled in FBA, these reactions are also not considered in our analysis.  

After removing all these reactions, the E. coli and S. cerevisiae metabolic networks used 

in our analysis contain 737 and 632 reactions, respectively.  S. cerevisiae has much more 

dead-end reactions than E. coli, probably because the reconstructed metabolic network is 

less complete for the former than for the latter. 

 

3.3.5 Simulation of nutritional conditions 
The simulation of single-usable-carbon-source conditions follows a previous 

study (Pal, Papp, and Lercher 2005).  Briefly, the medium contains one major carbon 

metabolite as the organic carbon source and the required inorganic metabolites (nitrogen, 

phosphate, metal ions, etc).  In nature, the environments of microorganisms such as E. 

coli and S. cerevisiae often change frequently.  These organisms usually face nutritionally 

poor conditions but occasionally encounter rich conditions.  To mimic their natural 

environments, we simulate random nutritional conditions following a recent study (Wang 

and Zhang 2009).  For each condition, we generate a random number g from an 

exponential distribution with a mean of m = 0.1.  Here, g is the probability that a carbon-

source nutrient is available.  The actual presence or absence of each nutrient is then 

determined stochastically using g.  We then add all required inorganic metabolites.  Use 

of other m values (0.05 or 0.5) did not change our results.  For each available nutrient, we 
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fix the uptake rate at a random value between 0 and 20.  A condition is considered to be a 

valid condition only if FBA shows that it supports the growth of wild-type organisms. 

 

3.3.6 Level of redundancy 
 We define the level of redundancy by the total number of redundant reactions 

divided by the average number of these reactions that need to be present in zero-

redundancy networks.  If there are n compensating pathways for a particular function and 

each of these pathways contains m reactions, the level of redundancy is (mn)/m = n.  

Thus, a redundancy of n is equivalent to the presence of n compensating pathways of 

equal length for each function. 

   

3.3.7 Identification of reactions catalyzed by pleiotropic enzymes 
We used the gene-reaction association annotated in the reconstructed metabolic 

networks (Reed et al. 2003; Duarte, Herrgard, and Palsson 2004).  If an enzyme is 

annotated to catalyze more than one reaction, the enzyme is considered to be pleiotropic.  

An otherwise dispensable reaction appears to be indispensable if the enzyme that 

catalyzes this reaction is required to be present in the network, owing to its pleiotropic 

function in catalyzing an indispensable reaction. 

 

3.3.8 Recent horizontal gene transfer (HGT) 
We used the HGT dataset compiled in a recent study (Lercher and Pal 2008).  In 

this dataset, HGTs were identified by the parsimony method across 31 proteobacterial 

species with the available phylogenetic tree.  Because we concentrated on the metabolic 

genes of the E. coli K-12 strain, only genes within the dataset that are horizontally 

transferred into E. coli K-12 or its ancestors are used for the calculation.  Genes that are 

horizontally transferred into the common ancestor of E. coli K-12 and E. coli CFT073 

(within 4 steps away from E. coli K-12 in the phylogeny of Figure 1 in (Lercher and Pal 

2008)) or a more recent ancestor of E. coli K-12 are considered as recent HGTs.   
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3.3.9 Comparison between experimentally determined and computationally 

predicted fitness values of single-gene-deletion yeast strains 
The growth rates of S. cerevisiae single-gene-deletion strains in the YPD medium 

were previously measured (Steinmetz et al. 2002) and were obtained from http://www-

deletion.stanford.edu/YDPM/YDPM_index.html.  In the original dataset, the relative 

growth rate of every gene-deletion strain is normalized such that the average growth rate 

of all viable deletion strains is 1.  In order to obtain the fitness of the deletion strains 

relative to the wild-type, we scaled the relative growth rate to another dataset (Sliwa and 

Korona 2005) which accurately measured the fitness of 12 gene-deletion strains by 

competing them individually with the wild-type strain.  Specifically, we averaged the 

growth rate of the 12 gene deletion strains using the data from (Steinmetz et al. 2002) 

(fg=1.026) and averaged their fitness relative to the wild-type using the data from (Sliwa 

and Korona 2005) (fm=1.010).  Then, for every deletion strain in the large dataset 

(Steinmetz et al. 2002), its fitness is calculated by multiplying the growth rate by fm/fg.  In 

our analysis, fm/fg is 0.984.  Our results are virtually unaffected even when we use fm/fg=1. 

The parameters used in FBA and MOMA to mimic the YPD medium that is used 

in the experimental determination of the growth rates of yeast gene deletion strains 

follow previous authors (Forster et al. 2003).  Comparison between the FBA predicted 

and experimentally determined fitness values shows that only in 8% (39/486) of cases, 

essential genes are misidentified as nonessential by FBA.  However, a reaction is 

considered redundant only when it is nonessential in all 105 examined conditions.  The 

probability of misclassifying a non-redundant reaction as redundant is the probability that 

FBA misclassifies it as nonessential in every condition where it is essential, which should 

be low.  Thus, it is improbable for a non-redundant reaction to be misclassified as 

redundant.  We regarded a redundant reaction as indispensable if its deletion strain has an 

FBA or MOMA predicted fitness of f<0.99.  In fewer than 2% (8/486) of cases, FBA 

predicted fitness is <0.99 while the experimentally determined fitness is >0.99.  The 

corresponding error rate for MOMA is slighter higher (24/486=5%).  A dispensable 

redundant reaction is misclassified by FBA or MOMA as indispensable when the true 

fitness of the deletion strain is >0.99 in all 105 conditions but the predicted fitness is 

<0.99 in at least one condition, which is expected to be low.   
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3.3.10 Preservation of rarely used genes 
A rarely used gene can be preserved in the genome during evolution as long as the 

null mutation rate is sufficiently low, compared to the product of the probability that the 

gene is used at any given time and the fitness contribution of the gene when it is used.  

This is demonstrated below, first in haploid organisms and then in diploids.  Let us use A 

to collectively denote all functional alleles of the gene under study and a to collectively 

denote all null alleles of the gene, and use p and q to denote the frequency of A and a 

alleles, respectively.  Let the null mutation rate, or the rate of mutation from A to a, be u 

per gene per generation.  We assume that the mutation rate from a to A is zero because it 

is extremely unlikely for a null allele to mutate back to a functional allele.  Random 

mutations increase the frequency of a, while occasional natural selection reduces it.  Let 

us first consider the possibility of a mutation-selection balance.  At the balance, new a 

alleles generated by mutations are completely removed by selection.  In haploids, let us 

assume that the relative fitness of A and a individuals be 1 and 1-s, respectively, and that 

selection occurs once every n generations.  For simplicity, let us assume that in every 

cycle of n generations, selection occurs at the end of the nth generation in the form of a 

viability difference.  Thus, when the balance is reached, in n generations, the allele 

frequency of a increases from q0 to qn by mutation, and then decreases to q0 by natural 

selection.  The mutational process is described by the difference equation 

.       (3.1) 

Solving Equation 3.1, we obtained 

 .      (3.2) 

In the case of haploid organisms such as E. coli, the selection process is described by 

    ,    (3.3) 

where  is the frequency of a after selection.  At the mutation-selection balance, we 

have  

.        (3.4) 
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Using Equations 3.2, 3.3, and 3.4, we can obtain  

.        (3.5) 

For diploid organisms, the fitness of AA, Aa, and aa individuals are assumed to be 1, 1, 

and 1-s, respectively, because enzyme genes are largely haplosufficient (Kondrashov and 

Koonin 2004; Deutschbauer et al. 2005).  Then, Eqation 3.3 can be rewritten as 

.     (3.3’) 

Using Euqations 3.2, 3.3’, and 3.4, we obtain 

.        (3.5’) 

Thus, for both haploids and diploids, when un/s <1, null alleles cannot be fixed through 

the mutation-selection process.  In other words, functional alleles can be preserved in the 

population.  Note that the above mutation-selection equilibrium is a stable equilibrium, 

because if q is by chance slightly larger than its equilibrium value, the effect of selection 

in removing null alleles (qs for haploids and q2s for diploids) becomes larger and the 

mutation rate per generation in generating null alleles ((1-q)u) becomes lower.  

Consequently, q will return to its equilibrium value.  The same argument can be made if q 

is by chance slightly smaller than its equilibrium value.  Thus, random genetic drift 

cannot push q much away from its equilibrium value.  This is particularly so, given the 

large population size of E. coli and S. cerevisiae.   

Although un/s <1 can ensure that functional alleles at a locus will not be lost in 

evolution, in practice, one may consider a more stringent criterion of qn<0.5 so that a 

randomly sampled allele of the gene from the population is more likely to be functional 

than null.  Thus, we consider that the gene can be retained by selection if n <0.5s/u for 

haploids or n <0.25s/u for diploids.  The mean mutation rate u for E. coli metabolic 

enzyme genes is 7.7"10-8 per gene per generation (see the next section).  If we use s = 

0.01, n has to be smaller than 6.5"104.  If we use s = 0.1, n has to be smaller than 

6.5"105.  The mean u for S. cerevisiae metabolic enzyme genes is 4.0"10-8 per gene per 
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generation (see the next section).  When s = 0.01, n has to be smaller than 6.3"104.  

When s = 0.1, n has to be smaller than 6.3"105.  Because the vast majority of metabolic 

enzyme genes have u values not exceeding twice the mean u (Figure C.4), the above 

results are also largely correct for virtually every individual gene.  In our study, although 

a redundant reaction is considered indispensable when it is used in at least one of the 105 

examined nutritional conditions, the vast majority of redundant reactions were found to 

be used in the first 104 conditions examined (Figure 3.1).  In addition, although our main 

analysis used a fitness differential of s = 0.01 to define indispensability, additional 

analysis showed that the results are virtually unchanged even when we require s = 0.1.  

Taken together, these considerations and the population genetic analysis in this section 

demonstrate that the criteria we used in determining indispensability of redundant 

reactions are appropriate.   

Note that the above population genetic formulation ignores occasional back 

mutations from a to A.  When the frequency of a increases, back mutations may become 

more common.  Because back mutations effectively reduce u, the above results are 

conservative.  In other words, the power of selection in preserving rarely used reactions 

should be slightly higher than calculated above. 

 

3.3.11 Null mutation rate in E. coli and S. cerevisiae 
  If we know the point mutation rate and indel mutation rate, we can estimate the 

null mutation rate for any given gene (Zhang and Webb 2003).  This is based on the idea 

that nonsense mutations and frame-shifting mutations usually generate null alleles.  Note 

that some nonsense and frame-shifting mutations may not generate null alleles if they 

only disrupt a short C-terminal region of the encoded protein, while some missense 

mutations can generate null alleles.  Our estimates are thus approximate, but they are not 

expected to differ from the true values by more than one fold, because the above three 

types of mutations are rare and their opposite influences on our estimates tend to cancel 

out.  We consider an indel as frame-shifting if its size is not multiples of three 

nucleotides.  The point mutation rates used here are 5.4"10-10 and 2.2"10-10 per 

nucleotide site per generation for E. coli and S. cerevisiae, respectively (Drake et al. 

1998).  We assume that the indel mutation rate is 10% of the point mutation rate and that 
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83% of indel mutations are frame-shifting, based on previous comparative genomic 

analysis (Podlaha and Zhang 2003; Zhang and Webb 2003).  We then use the coding 

sequences of the genes associated with E. coli and S. cerevisiae metabolic reactions 

studied in this work to estimate the null mutation rates per gene per generation, by a 

modified version of the program PSEUDOGENE (Zhang and Webb 2003).  The 

frequency distributions of u for E. coli and S. cerevisiae metabolic enzyme genes are 

shown in Figure C.4.  Given the null mutation rate u, it is easy to see that it takes on the 

order of 1/u (or 107) generations for a functional allele to be replaced with null alleles.  

  

 

3.4 RESULTS 
3.4.1 Abundance of redundant metabolic reactions  

Here we study the bacterium Escherichia coli (Reed et al. 2003) and yeast 

Saccharomyces cerevisiae (Duarte, Herrgard, and Palsson 2004) because their 

reconstructed metabolic networks are of high quality and have been empirically verified 

and because they represent prokaryotes and eukaryotes, respectively.  The metabolic 

networks of E. coli and S. cerevisiae contain 737 and 632 biochemical reactions, 

respectively, after the removal of dead-end reactions (see Materials and Methods).  For 

three reasons, we focus on biochemical reactions rather than genes encoding the enzymes 

that catalyze these reactions.  First, we are interested in the functional redundancy at the 

systems level of a metabolic network, which is composed of reactions.  Second, there is 

no one-to-one relationship between genes and reactions.  Third, annotations of enzyme 

genes are incomplete, making it impossible to conduct a gene-based analysis that is as 

comprehensive and accurate as a reaction-based analysis.   

Assuming a steady state in metabolism, flux balance analysis (FBA) maximizes 

the rate of biomass production under the stoichiometric matrix of all metabolic reactions 

and a set of flux constraints (see Materials and Methods).  The FBA-optimized rate of 

biomass production can be regarded as the Darwinian fitness of the cell under the 

condition specified.  If removing a reaction blocks the production of one or more biomass 

components, biomass production becomes zero or undefined due to imbalanced 

compositional stoichiometry of the biomass.  In order to estimate the number (m) of 
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metabolically redundant reactions, we need to identify the reactions whose single 

removal does not block the production of any biomass component under any nutritional 

condition.  Because it is infeasible to enumerate all possible conditions, we investigate 

how the estimate of m changes when the number (c) of examined conditions increases.  In 

E. coli, m reduces from 737 to 320 after we examine all single-usable-carbon-source 

conditions (see Materials and Methods) (Figure 3.1A).  We then create random 

nutritional conditions in which wide-type organisms can grow (see Materials and 

Methods).  As expected, m decreases at a much reduced pace as c increases (Figure 

3.1A).  When c is doubled from 5"104 to 105, m decreases by only 6 (or 2%).  Thus, 105 

conditions appear sufficient for providing a reasonably accurate estimate of m.  Using this 

method, we identified 276 (37% of the network) and 295 (47% of the network) redundant 

reactions from E. coli and S. cerevisiae, respectively (Figure 3.1 and Figure 3.2).   

Non-redundant metabolic reactions can be divided into two groups: always-

essential and sometimes-essential.  Deletion of an always-essential reaction blocks 

biomass production under all conditions, whereas deletion of a sometimes-essential 

reaction blocks biomass production under some but not all conditions.  Always-essential 

reactions can be identified unambiguously, because the metabolic network models allow 

us to know all nutrients that can be used by the cells under the metabolic models.  If a 

reaction is essential when all these usable nutrients are available, it must be essential 

when one or more of these nutrients are absent and hence must be an always-essential 

reaction.  The rest of the non-redundant reactions are then classified as sometimes-

essential reactions.  Using this strategy, we identified 95 (13%) always-essential and 366 

(50%) sometimes-essential reactions in E. coli (Figure 3.2A), and 24 (4%) always-

essential and 313 (49%) sometimes-essential reactions in S. cerevisiae (Figure 3.2B).  

Not unexpectedly, sometimes-essential reactions considerably outnumber always-

essential reactions (Almaas, Oltvai, and Barabasi 2005).  We also observe that (i) 

different functional subgraphs of the metabolic network contain different fractions of 

always-essential, sometimes-essential, and redundant reactions and (ii) E. coli and S. 

cerevisiae show different distributions of the three types of reactions among subgraphs 

(Figure C.3). 
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3.4.2 Zero-redundancy metabolic networks 
While redundant reactions can be individually removed from a metabolic network 

without blocking biomass production, they may not be simultaneously removed.  To 

estimate the number of redundant reactions that can be simultaneously removed, we build 

a functional metabolic network with zero redundancy under all conditions.  To achieve 

this goal, we randomly pick a redundant reaction and examine if its deletion still permits 

biomass production in all conditions examined.  If so, this reaction is permanently deleted 

from the network; otherwise, it is restored.  We then pick another redundant reaction 

from the remaining network and repeat the procedure until no more reactions can be 

deleted from the network.  We generate 250 such networks by using variable random 

orders in deleting reactions, and find that the zero-redundancy networks have on average 

534 (72% of the original network) and 418 (64%) reactions in E. coli and S. cerevisiae, 

respectively (Figure C.5).  Because on average 203 of the 276 redundant reactions can be 

simultaneously deleted in E. coli, the level of redundancy is 276/(276-203) = 3.8.  Simply 

put, this level of redundancy among the redundant reactions of E. coli is equivalent to the 

presence of 3.8 compensating pathways of equal length for each function (see Materials 

and Methods).  The corresponding number is 3.7 in S. cerevisiae.  Due to high demands 

of computational time and memory, our main analysis of zero-redundancy networks 

examines only 103 nutritional conditions.  Nevertheless, our subsequent analysis with 104 

conditions shows that the result is largely unchanged (Figure C.5).  In sum, the zero-

redundancy network analysis further demonstrates the high redundancy of the E. coli and 

S. cerevisiae metabolic networks, because as many as 28%-36% of reactions can be 

simultaneously removed from the metabolic networks without blocking the biomass 

production under any condition.  

 

3.4.3 Preservation of redundant reactions: Efficient reactions 
How can redundant reactions be preserved in a metabolic network during 

evolution?  One possibility is that these functionally redundant reactions have differential 

metabolic efficiencies under different conditions, allowing the cell to use different 

reactions to achieve maximal growth in many different environments.  Under this 

hypothesis, deleting a redundant reaction at a given condition may reduce (but not block) 
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biomass production when the deleted reaction is more efficient than other reactions of the 

same function at this condition.  Population genetic theories predict that mutations 

causing a fitness reduction of >1/N will be subject to substantial purifying selection, 

where N is the effective population size, on the order of 109 for E. coli (Ochman and 

Wilson 1987) and 107 for S. cerevisiae (Wagner 2005b).  Thus, natural selection can keep 

a redundant reaction in the network if its deletion renders even a tiny decrease in biomass 

production.  Furthermore, because the null mutation rate in E. coli and S. cerevisiae is on 

the order of 10-7 to 10-8 per gene per generation, a gene can be selectively kept in a 

population even if it is used only once every 104 to 105 generations (see Materials and 

Methods).  Given these theoretical considerations and potential errors associated with 

FBA-predicted fitness, we regard a redundant reaction to be indispensable if its removal 

reduces biomass production by more than 1% in one or more of the 105 conditions 

examined.  Such indispensable redundant reactions are referred to as efficient reactions, 

as they are more efficient than other reactions of the same functions under at least one 

condition.  Our analysis identifies 64 and 89 efficient reactions in E. coli and S. 

cerevisiae, respectively, accounting for 23-30% of all redundant reactions (Figure 3.1 and 

Figure 3.2).  The remaining 70-77% of redundant reactions are as efficient as or less 

efficient than other reactions of the same functions under all conditions and are referred 

to as non-efficient reactions (Figure 3.1 and Figure 3.2).  

 

3.4.4 Preservation of redundant reactions: Non-efficient, active reactions 
In the above analysis, we assumed that when a redundant reaction is deleted, its 

compensating reaction is immediately activated to its optimal flux to produce the 

maximal biomass predicted by FBA.  This assumption requires that the cell has a 

regulatory emergency plan for every possible reaction deletion, which seems unrealistic.  

In general, the growth performance of a perturbed metabolic network is suboptimal and 

the FBA-predicted maximal growth can only be achieved through evolution by mutation, 

drift, and selection (Ibarra, Edwards, and Palsson 2002; Fong et al. 2005).  In other 

words, when a reaction is deleted from a cell, the cell may be outcompeted by wild-type 

cells and has no chance to evolve to its FBA-predicted maximal fitness.  To consider this 

possibility, we employ the method of minimization of metabolic adjustment (MOMA), a 
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derivative of FBA that has also been empirically verified (Segre, Vitkup, and Church 

2002).  Under all the assumptions and constraints used by FBA, MOMA calculates the 

rate of biomass production after the deletion of a reaction by minimizing flux changes 

(see Materials and Methods).  Because MOMA minimizes flux changes while FBA does 

not, the biomass production predicted by MOMA is always lower than or equal to that 

predicted by FBA.  A non-efficient reaction is considered to be indispensable if its 

removal reduces the MOMA-predicted biomass production by more than 1% in one or 

more of the 105 examined conditions.  Such reactions are referred to as active reactions 

because they must have non-zero fluxes; otherwise their removal will not cause biomass 

reductions.  We identify 158 and 166 active reactions in E. coli and S. cerevisiae, 

respectively, accounting for more than half of all redundant reactions or 75-80% of non-

efficient redundant reactions (Figure 3.2).  The rest of non-efficient reactions are referred 

to as non-active reactions because their removal does not affect MOMA-predicted 

biomass appreciably.  Unlike the numbers of redundant and non-efficient reactions, the 

number of non-active reactions may have been overestimated, as the number continues to 

drop even when c reaches 105 conditions (Figure 3.1).  This means that the above 

numbers of active reactions are conservative estimates.   

Although we showed how a non-efficient redundant reaction can be indispensable 

and kept in the network by natural selection, it is puzzling as why such reactions were 

incorporated into the metabolic network in the first place, as non-efficient reactions are 

never more efficient than other reactions of the same functions.  We suggest that non-

efficient reactions were incorporated by neutral processes.  They became active reactions 

if they were equally efficient as their redundant reactions under some conditions.  When 

multiple equally efficient redundant reactions exist, (regulatory or structural) degenerate 

mutations may be fixed so that the total activity of the enzymes catalyzing the redundant 

reactions is optimized while the activity of each enzyme becomes insufficient for the 

maximal growth should the other redundant enzymes be removed.  
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3.4.5 Preservation of redundant reactions: Non-efficient, non-active 

reactions 
Our analysis identified 54 (7% of the total network) and 40 (7%) non-active 

redundant reactions in E. coli and S. cerevisiae, respectively (Figure 3.2).  Among them, 

38 E. coli and 20 S. cerevisiae reactions are less efficient than other reactions of the same 

functions and have zero fluxes under all conditions.  The rest may be as efficient as their 

redundant reactions and have non-zero fluxes, but their removal does not reduce MOMA-

predicted biomass production by more than 1%.   

How are the non-active reactions maintained in the metabolic network?  Some 

enzymes can catalyze multiple reactions, a phenomenon known as pleiotropy (He and 

Zhang 2006).  In E. coli, 266 reactions (36% of the total network), including 27 non-

active reactions, are catalyzed by pleiotropic enzymes.  In S. cerevisiae, 171 reactions 

(27% of the total network), including 13 non-active reactions, are catalyzed by 

pleiotropic enzymes.  A non-active reaction can be stably retained in the network if the 

enzyme that catalyzes it also catalyzes one or more indispensable reactions.  Indeed, we 

find that every non-active reaction catalyzed by pleiotropic enzymes can be retained by 

this “guilt-by-association” mechanism.  In both E. coli and S. cerevisiae, there are only 

27 redundant reactions whose retentions are unexplained (Figure 3.2).  Further 

examinations show that they are unexplained by FBA and MOMA simply because of the 

incompleteness of the reconstructed metabolic networks, limitations of the metabolic 

models (e.g., lack of connection to regulatory and signal transduction networks), and 

existence of environments difficult to simulate (e.g. temperature changes).  For instance, 

E. coli gene otsB encodes trehalose-6-phosphate phosphatase, which is required for cell 

viability at 4°C (Kandror, DeLeon, and Goldberg 2002) and thus may be maintained by 

selection if E. coli sometimes experiences this low temperature in nature.  We also 

observed 6 E. coli non-active reactions that are catalyzed by enzymes encoded by genes 

that were recently horizontally transferred into E. coli (see Materials and Methods).  

Horizontal gene transfers occur so frequently among prokaryotes (Gogarten, Doolittle, 

and Lawrence 2002) that the presence of some redundant genes may be attributable to 

this mechanism rather than preservation under purifying selection.  Indeed, analyzing an 

E. coli horizontal-gene-transfer dataset (Lercher and Pal 2008), we find that the fraction 
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of recently horizontally acquired genes is significantly greater among non-active 

reactions (43%) than among other reactions (19%) (P < 0.05, Fisher’s exact test; see 

Materials and Methods).  We did not analyze recent horizontal gene transfers into S. 

cerevisiae, because such information is not readily available and because horizontal gene 

transfers are thought to be much less frequent in eukaryotes than in prokaryotes.  After 

considering all these additional mechanisms, there are only 14 (8 with associated genes) 

E. coli and 13 (4 with associated genes) S. cerevisiae redundant reactions whose 

preservation in the metabolic networks remain unexplained (Figure 3.2). 

 

3.4.6 A direct test of the adaptive backup hypothesis  
Our analysis showed that the vast majority of the functionally redundant reactions 

in E. coli and S. cerevisiae are selectively maintained because they cause fitness 

reductions when singly removed from the cell.  This explanation is different from the 

adaptive backup hypothesis, in which only simultaneous removal of compensating 

redundant reactions is deleterious.  Hence, the adaptive backup hypothesis is not needed 

to explain the maintenance of metabolic redundancy.  The adaptive backup hypothesis 

also has a key prediction of higher redundancy for more important functions, because the 

fitness gain from backing up more important functions is greater than that from backing 

up less important ones (e.g., (Kafri et al. 2008) on redundant duplicate genes).  To test 

this prediction, we measure the importance of reactions using zero-redundancy networks, 

because they are free from the confounding influence of redundant reactions.  We 

calculate the average biomass reduction upon removal of a reaction from a zero-

redundancy network across 103 conditions and repeat this calculation in 125 random 

zero-redundancy networks to obtain the mean.  For E. coli, contrary to the prediction of 

the backup hypothesis, reactions that are redundant in the original metabolic network 

tend to perform less important jobs than reactions that are non-redundant (P = 0.056, 

Mann-Whitney U test; Figure 3.3).  But for S. cerevisiae, the observation appears to be 

consistent with the backup prediction (P = 3.5"10-5, Mann-Whitney U test; Figure 3.3).  

These opposite patterns in E. coli and S. cerevisiae show that the adaptive backup 

hypothesis is either inadequate or wrong.  Our subsequent computer simulation shows 

that the observations in both species are explainable without invoking adaptive backup. 
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Let us assume that a population rotates among many different environments so 

frequently that a metabolic reaction needed for a particular environment does not have 

chance to be lost from the population before the population switches back to this 

environment after moving through other environments.  This scenario is quite likely 

because even without selective constraint it takes on average 107 generations for a 

functional allele of a gene to be replaced by a nonfunctional allele in E. coli and S. 

cerevisiae (see Materials and Methods).  We ask whether this scenario would result in a 

metabolic network whose redundancy mimics that observed in E. coli and S. cerevisiae.  

We first generate a random nutritional condition (see Materials and Methods).  A zero-

redundancy metabolic network for this condition is then generated by removing 

redundant reactions from the original network, as described earlier.  We repeat this 

process 103 times, each under a different condition.  We then merge the 103 resultant 

zero-redundancy networks to form the final simulated metabolic network.  We measure 

the relative importance of redundant and non-redundant reactions of this simulated 

network as was done for the real network.  Interestingly, for both E. coli and S. 

cerevisiae, the results are similar between the simulated networks and their respective 

real networks (Figure 3.3).  Because we did not invoke adaptive backup in the simulation, 

our result strongly suggests that the observation of higher redundancy for more important 

functions in S. cerevisiae is a byproduct of its evolutionary history.  This simulation was 

repeated 10 more times and the above finding always holds (Table C.2). 

 

 

3.5 DISCUSSION 
In this work, we used FBA and MOMA to study the level of redundancy as well 

as the mechanisms of its preservation in metabolic networks.  It is important to 

emphasize that in our definition, a reaction is functionally redundant only when its 

removal does not block the biomass production in any condition.  This definition is 

fundamentally different from that used in all earlier studies of metabolic redundancy.  In 

these studies, a reaction is considered redundant when it is dispensable in only one or a 

few conditions.  It is clear that many redundant reactions such defined are actually 

sometimes-essential reactions by our definition and thus are not truly redundant in all 
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conditions, as has been demonstrated in numerous studies (Papp, Pal, and Hurst 2004; 

Blank, Kuepfer, and Sauer 2005; Dudley et al. 2005; Harrison et al. 2007).  It is the 

number and preservation of those truly functionally redundant reactions that are of 

particular interest and are the subject of our study.  However, to our surprise, the 

percentage of reactions that are redundant under our strict definition substantially exceeds 

earlier FBA-based and experiment-based estimates that were based on the looser 

definitions of redundancy (Papp, Pal, and Hurst 2004; Blank, Kuepfer, and Sauer 2005).  

A careful comparison reveals that these earlier studies only considered reactions with 

non-zero fluxes under rich or minimal media, which tend to be non-redundant (Table 

C.3), while our study considers all reactions in a metabolic network.  Our finding of large 

numbers of redundant reactions in E. coli and S. cerevisiae confirms the prediction of 

high metabolic redundancy from extreme pathway analysis of subnetworks, which cannot 

deal with an entire cellular metabolic network due to computational difficulties (Papin et 

al. 2002; Price, Papin, and Palsson 2002). 

Because FBA and MOMA predictions are not without errors, it is important to 

evaluate how such errors affect our results.  Previous studies demonstrated that FBA and 

MOMA make good qualitative predictions of gene essentiality (Segre, Vitkup, and 

Church 2002; Papp, Pal, and Hurst 2004).  Here we plot the experimentally determined 

fitness values of single-gene-deletion S. cerevisiae strains in rich media and their 

corresponding values predicted by FBA and MOMA (Figure 3.4).  Only in 8% (39/486) 

of cases did we observe misidentification of essential genes as nonessential by FBA 

(yellow bars in Figure 3.4A).  The accuracy of FBA should be similarly high in other 

conditions, because the models and assumptions used in FBA are not specific to the rich 

media.  Because a reaction is regarded as redundant only when it is nonessential in all 105 

examined conditions, it is improbable for a non-redundant reaction to be misclassified as 

redundant (see Materials and Methods).  In other words, the number of redundant 

reactions is unlikely to have been grossly overestimated in our study.  We regarded a 

redundant reaction as indispensable if its deletion strain has an FBA or MOMA predicted 

fitness of f<0.99.  In fewer than 2% (8/486; red bars in Figure 3.4A) of cases, the FBA 

predicted fitness is <0.99 while the experimentally determined fitness is >0.99.  The 

corresponding error rate for MOMA is slighter higher (24/486=5%; red bars in Figure 
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3.4B).  These observations suggest that the estimation of the number of indispensable 

redundant reactions is relatively accurate (see Materials and Methods).  To be 

conservative, we also used a more stringent cutoff of f<0.9 in defining indispensable 

reactions, for which the error rate is expected to be 0.6% (3/486) for FBA and 1.2% 

(6/486) for MOMA, respectively.  We found that the number of unexplained redundant 

reactions is not much increased (Table C.4), suggesting that our conclusion remains valid 

even when the few errors made by FBA and MOMA are considered.  To explore a wider 

range of f, we further carried out an analysis with a cutoff of f<0.999, which is closer to 

the fitness boundary between deleterious and neutral mutations (1/N), and found that the 

results are consistent with those under other cutoffs (Table C.4).  An even larger f is 

theoretically preferred but it may generate less accurate results due to the limited 

precisions of FBA and MOMA.  Use of a larger f should result in more redundant 

reactions to be indispensable and thus provide stronger support to our conclusion.  

Therefore, our conclusion of indispensability of redundant reactions is robust to the 

choice of f.   

In this study, we examined 105 different nutritional conditions to identify 

redundant reactions and to determine the mechanisms of evolutionary preservation of the 

redundant reactions.  Although we could have examined more combinations of nutrients 

(e.g., additional nitrogen and phosphate sources), our results showed that even with the 

limited number and type of nutritional conditions considered, the preservation of virtually 

every redundant reaction can be explained without invoking backup.  Furthermore, some 

redundant enzymes may perform non-catalytic functions that are not considered in FBA 

(He and Zhang 2006).  Thus, our results are conservative.  It is worth mentioning that the 

above conclusion is strongly supported by a recent experimental study by Hillenmeyer 

and colleagues, who showed that most yeast genes have fitness effects in at least one of 

many conditions examined (Hillenmeyer et al. 2008).  However, Hillenmeyer et al. did 

not study functional redundancy and their results may be misinterpreted as a complete 

lack of functional redundancy in yeast.  More importantly, the majority of the conditions 

they used are artificial drug treatments that are likely to be substantially different from 

the natural environments of yeast (with the exception of some clinical strains of yeast).  
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The conditions we computationally examined are combinations of existing nutritional 

metabolites and thus are more realistic. 

The adaptive backup hypothesis makes the key prediction of higher redundancy 

of more important function.  Using zero-redundancy networks, we showed that E. coli 

and S. cerevisiae exhibit different relationships between the importance of a reaction and 

its redundancy level.  Thus, the adaptive backup hypothesis is inadequate in explaining 

the actual observations.  By contrast, our simulation showed that a simple scenario where 

a population frequently alternates among many environments can explain both the E. coli 

and S. cerevisiae results and thus provides a better explanation of the observations.  One 

caveat of the simulation and other analysis in the present study is that it is unknown how 

close our simulated conditions match and how well they represent the wide range of 

natural nutritional environments in the evolution of E. coli and S. cerevisiae.  

Nevertheless, identification of conditions where some redundant reactions directly 

contribute to the organismal fitness suggests that these reactions can be maintained 

without invoking the adaptive backup hypothesis.  Furthermore, these identified 

nutritional conditions may provide information about the natural environments where the 

organisms live or have recently lived, which are potentially useful for the study of 

organismal evolution as well as environmental changes. 

In summary, our systems analysis of E .coli and S. cerevisiae metabolic networks 

revealed the presence of 37-47% redundant reactions.  The vast majority of these 

redundancies are stably preserved in the network owing to their direct contribution to 

fitness or pleiotropic effect of some enzymes.  In the case of E. coli, a few redundant 

reactions were recently acquired via horizontal gene transfers and thus may not be stably 

maintained in the genome.  It is likely that even the small fraction of redundant reactions 

that are unexplained by our analysis can be explained when more information about them 

become available.  Furthermore, we invalided a key prediction of the adaptive backup 

hypothesis about the relationship between the functional importance and redundancy 

level of a reaction.  Taken together, adaptive backup is neither necessary nor sufficient to 

explain the high redundancy of cellular metabolic networks.  Thus, the genetic robustness 

of metabolism is likely an evolutionary byproduct.  In this context, genetic robustness 

does not constrain evolvability (Lenski, Barrick, and Ofria 2006), but rather enhances it, 
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because genetic robustness reflects the ability of an organism to survive in different 

environments.  Note that although our analysis is limited to the metabolic network, the 

obtained biological principles and insights may be applicable to redundancies in other 

biological systems, because all biological systems can be treated as complex networks.   
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Figure 3.1  Estimates of the numbers of various redundant reactions in E. coli and 
S. cerevisiae stabilize as the number of examined nutritional conditions increases.  
The first 158 conditions examined in (A) E. coli and first 60 conditions examined in (B) 
S. cerevisiae are single-usable-carbon-source conditions, whereas the remaining 
conditions are randomly generated following a specific sampling scheme.  Note that the 
number of non-active reactions might be overestimated, because the estimate continues to 
decline as the number of examined conditions increases.  This leads to a conservative 
estimate of the number of active reactions. 
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Figure 3.2  Numbers and fractions of redundant and non-redundant reactions in E. 
coli and S. cerevisiae metabolic networks.  (A) E. coli and (B) S. cerevisiae.  The total 
number of reactions after the removal of dead-end reactions is given in the parentheses 
after the species name.  Because the enzyme genes associated with some reactions have 
yet to be identified, the number of genes known to be associated with the unexplained 
redundant reactions is given in brackets.  For each species, the middle and right circles 
show various explanations for the existence of redundant reactions.  Explanations in the 
middle circle are considered before those in the right circle; within each circle, 
explanations depicted with darker colors are considered before those depicted with lighter 
colors.  For each redundant reaction, only the first applicable explanation considered is 
counted. 
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Figure 3.3  Relationships between the importance and redundancy of metabolic 
reactions.  Error bars show one standard error.  P-values are from Mann-Whitney U test.  
The redundancy of a reaction is determined from the complete network, whereas the 
importance of a reaction is determined from zero-redundancy networks.  Redundant 
reactions perform less important functions than non-redundant functions in E. coli, 
whereas the opposite is true in S. cerevisiae.  The same patterns are recapitulated in 
simulated metabolic networks that are formed by merging 103 zero-redundancy networks 
that each functions in a different condition. 
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Figure 3.4  Accuracy of flux balance analysis (FBA) and minimization of metabolic 
adjustment (MOMA).   The predicted the fitness values of single-gene-deletion yeast 
strains in rich medium by (A) FBA and (B) MOMA were compared to the previously 
experimentally determined fitness values (see Materials and Methods).  A total of 485 
genes encoding metabolic enzymes are examined here.  Yellow bars are genes that are 
essential by experimental determination, but nonessential by FBA prediction.  Red bars 
are single-gene-deletion strains that have fitness of >0.99 in experiments, but <0.99 by 
either FBA or MOMA prediction. 
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CHAPTER 4 
 

Genomic Patterns of Pleiotropy and the Evolution of Complexity 
 

 

4.1 ABSTRACT 
Pleiotropy refers to the phenomenon of a single mutation or gene affecting 

multiple distinct phenotypic traits and has broad implications in many areas of biology.  

Due to its central importance, pleiotropy has also been extensively modeled, albeit with 

virtually no empirical basis.  Analyzing phenotypes of large numbers of yeast, nematode, 

and mouse mutants, we here describe the genomic patterns of pleiotropy.  We show that 

the fraction of traits altered appreciably by the deletion of a gene is minute for most genes 

and the gene-trait relationship is highly modular.  The standardized size of the phenotypic 

effect of a gene on a trait is approximately normally distributed with variable standard 

deviations for different genes, which gives rise to the surprising observation of a larger 

per-trait effect for genes affecting more traits.  This scaling property counteracts the 

pleiotropy-associated reduction in adaptation rate (i.e., the “cost of complexity”) in a 

nonlinear fashion, resulting in the highest adaptation rate for organisms of intermediate 

complexity rather than low complexity.  Intriguingly, the observed scaling exponent falls 

in a narrow range that maximizes the optimal complexity.  Together, the genome-wide 

observations of overall low pleiotropy, high modularity, and larger pre-trait effects from 

genes of higher pleiotropy necessitate major revisions of theoretical models of pleiotropy 

and suggest that pleiotropy not only allowed but may have also promoted the origin of 

complexity.  
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4.2 INTRODUCTION 
Pleiotropy occurs when a single mutation or gene affects multiple distinct 

phenotypic traits (Tyler et al. 2009).  Pleiotropy has broad implications in genetics 

(Wright 1968; Barton 1990; Tyler et al. 2009), development (Hodgkin 1998; Carroll 

2008), senescence (Williams 1957), disease (Albin 1993; Brunner and van Driel 2004), 

and many evolutionary processes such as adaptation (Fisher 1930; Wright 1968; Waxman 

and Peck 1998; Orr 2000; Otto 2004; Carroll 2005), maintenance of sex (Hill and Otto 

2007), preservation of redundancy (Wang and Zhang 2009), and stabilization of 

cooperation (Foster et al. 2004).  For example, the antagonistic pleiotropy theory of 

senescence asserts that alleles beneficial to development and reproduction are deleterious 

after the reproductive age and cause senescence, which may explain why all species have 

a limited life span (Williams 1957).  Pleiotropy is the main theoretical reason behind the 

hypothesis that morphological evolution occurs more frequently through cis-regulatory 

changes than through protein sequence changes (Carroll 2005), as the former are less 

pleiotropic than the latter.  Pleiotropy also has important implications in human disease, 

because many genetic defects each affect multiple phenotypic traits.  For instance, 

mutations in the homeobox gene ARX cause ambiguous genitalia and lissencephaly 

(whole or parts of the surface of the brain appear smooth) (OMIM #300215).  

Due to pleiotropy’s central importance in biology, several mathematical models 

of pleiotropy have been developed and important theoretical results have been derived 

from the analyses of these models (Fisher 1930; Turelli 1985; Wagner 1988; Waxman 

and Peck 1998).  For example, Fisher proposed that every mutation affects every trait and 

the effect size of a mutation on a trait is uniformly distributed (Fisher 1930).  Based on 

this model and the assumption that the total effect size of a mutation is constant in 

different organisms, Orr derived that the rate of adaptation of a population to an 

environment quickly declines with the increase of the organismal complexity defined by 

the total number of traits (Orr 2000).  This “cost of complexity” would likely prohibit the 

origins of complex organisms and hence is puzzling to evolutionary biologists (Welch 

and Waxman 2003; Haygood 2006).   

Although pleiotropy has been examined in detail in a few genes (Brown, Barlow, 

and Wynshaw-Boris 1999; Hekerman et al. 2005), its genomic pattern is largely 
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unknown, which seriously limits us from evaluating the mathematical models of 

pleiotropy, verifying the theoretical inferences from these models, and testing various 

pleiotropy-related hypotheses in many fields of biology.  In this work, we compile from 

existing literature and databases phenotypes of large numbers of yeast, nematode, and 

mouse mutants.  We describe the genomic patterns of pleiotropy in these organisms and 

show that these patterns drastically differ from any mathematical model of pleiotropy.  

We further demonstrate that the “cost of complexity” is substantially alleviated when the 

empirical patterns of pleiotropy are taken into consideration and that the observed value 

of a key parameter of pleiotropy falls in a narrow range that maximizes the optimal 

complexity. 

 

 

4.3 RESULTS AND DISCUSSION 
4.3.1 Most genes affect only a small fraction of traits 

To uncover the genomic patterns of pleiotropy, we complied three large datasets 

of gene pleiotropy for the baker’s yeast Saccharomyces cerevisiae, one for the nematode 

worm Caenorhabditis elegans, and one for the house mouse Mus musculus.  The first 

dataset, yeast morphological pleiotropy, is based on the measures of 279 morphological 

traits in haploid wild-type cells and 4,718 haploid mutant strains that each lack a different 

nonessential gene (Ohya et al. 2005).  The second dataset, yeast environmental 

pleiotropy, is based on the growth rates of the same collection of yeast mutants relative to 

the wild-type in 22 different environments (Dudley et al. 2005).  The third dataset, yeast 

physiological pleiotropy, is based on 120 literature-curated physiological functions of 

genes recorded in Comprehensive Yeast Genome Database (CYGD).  The fourth dataset, 

nematode pleiotropy, is based on the phenotypes of 44 early embryogenesis traits in C. 

elegans treated with genome-wide RNA-mediated interference (Sonnichsen et al. 2005).  

The fifth dataset, mouse pleiotropy, is based on the phenotypes of 308 morphological and 

physiological traits in gene-knockout mice recorded in Mouse Genome Informatics 

(MGI).  These five datasets provide qualitative information about the traits that are 

affected appreciably by each gene.  In addition, the first dataset also includes the 

quantitative information of the effect size of each gene on each trait.  Even after the 
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removal of genes that do not affect any trait and traits that are not affected by any gene, 

these five datasets each include hundreds to thousands of genes and tens to hundreds of 

traits (Figure 4.1).  They are thus suitable for examining genome-wide patterns of 

pleiotropy.  

In all five datasets, we observed that most genes affect only a small fraction of 

traits and only a minority of genes affect many traits (Figure 4.1).  The median degree of 

pleiotropy varies from 1 to 7 traits (or 1-9% of the traits considered) in these datasets.  

The degree of pleiotropy measured by the percentage of examined traits is expected to be 

more accurate for the three datasets in which the same set of traits were examined in all 

mutants (Figure 4.1A, 4.1B, and 4.1D).  By bootstrapping traits, we found that the 

standard deviations of our estimated median and mean degrees of pleiotropy are generally 

small, indicating that these estimates are precise (Figure 4.1).  To examine the impact of 

the number of examined traits on the estimated pleiotropy, we randomly removed 50% 

and 90% of the traits from each dataset, respectively.  We found that the mean and 

median degrees of pleiotropy, measured by the percentage of traits examined, remain 

largely unchanged (Table C.5), suggesting that further additions of traits to our data 

would not substantially alter our results.  We thus predict that the median number of traits 

affected by a gene is no greater than a few percent of the total number of traits in an 

organism.  Furthermore, because gene pleiotropy is largely owing to the involvement of 

the same molecular function in multiple different biological processes rather than the 

presence of multiple molecular functions per gene (He and Zhang 2006), random 

mutations in a gene will likely affect the same traits as the deletion of the gene does, 

although the magnitude of the phenotypic effects should be much smaller.  Consequently, 

the observable degree of pleiotropy is expected to be even lower for random mutations 

than for gene deletions.  Our genome-wide results echo recent small-scale observations 

from fish and mouse quantitative trait locus (QTL) studies (Albert et al. 2008; Wagner et 

al. 2008) and an inference from protein sequence evolution (Su, Zeng, and Gu 2009), and 

reveal a general pattern of low pleiotropy in eukaryotes, which is in sharp contrast to 

some commonly used theoretically models (Fisher 1930; Turelli 1985) that assume 

universal pleiotropy (i.e., every gene affects every trait) (Table C.6). 

 



 71 

4.3.2 Gene-trait relationships are highly modular      
The genome-wide data also allow us to test the modular pleiotropy hypothesis, 

which is important for a number of theories of development and evolution (Wagner, 

Pavlicev, and Cheverud 2007).  Gene-trait relationships can be represented by a bipartite 

network of genes and traits, in which a link between a gene node and a trait node 

indicates that the gene affects the trait (Figure 4.2A).  Modular pleiotropy refers to the 

phenomenon that links within modules are significantly more frequent than those across 

modules (Figure 4.2B).  Given that cellular functions are modularly and hierarchically 

organized (Wagner, Pavlicev, and Cheverud 2007), modular pleiotropy likely exists, 

although it is not considered in commonly used models of pleiotropy (Fisher 1930; 

Turelli 1985; Orr 2000) (Table C.6).  Employing a bipartite-network-specific algorithm 

(Barber 2007), we identified modules and estimated the modularity of each gene-trait 

network.  Because random networks of certain structures also have non-zero modularity 

(Wang and Zhang 2007), we compared the modularity of an observed network with that 

of its randomly rewired networks, which have randomized links but an unchanged 

number of links per node (Wang and Zhang 2007) (Figure 4.2C).  We then calculated the 

scaled modularity of a network, which is the difference between the observed modularity 

of a network and the mean modularity of its randomly rewired networks in terms of the 

number of standard deviations (Wang and Zhang 2007).  Our results show large scaled 

modularity (34 to 238) in each of the five gene-trait networks examined (Figure 4.2D-

4.2H), providing definitive evidence for the modular pleiotropy hypothesis.  Our results 

remain qualitatively unchanged even when 50% of the traits in each dataset are removed 

(Table C.7).  The modularity would be overestimated if the genetic correlations among 

traits are biased upward in our datasets compared to the complete datasets that include all 

possible traits.  Although we do not know if this bias exists, to be conservative, we 

merged traits whose genetic correlation coefficients are greater than 0.7 (see Methods).  

We found that highly significant modularity is still present in each of the five gene-trait 

networks (Table C.7).   
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4.3.3 Genes affecting more traits have larger per-trait effects   
The yeast morphological pleiotropy data contain quantitative information about 

the phenotypic effect size of mutations, which is another important parameter in genetics 

that has never been available at the genomic scale.  Using a standardized measure of 

effect size for all traits (Z-score, defined by the phenotypic difference between a mutant 

and the mean of the wild-type for a trait in terms of the number of standard deviations; 

see Methods), we obtained, for each yeast gene, the frequency distribution of the effect 

sizes on the 279 morphological traits.  As exemplified in Figure 4.3A, this distribution is 

approximately normal for most genes; the actual distribution is not significantly different 

from a normal distribution for 85% of the genes examined (5% false discovery rate in the 

goodness-of-fit test).  This is consistent with a commonly used model (Turelli 1985), but 

is in contrast to another where the distribution is assumed to be uniform (Fisher 1930; Orr 

2000) (Table C.6).  In fact, the uniform distribution can be rejected for every gene at the 

significance level of P = 5"10-7 (goodness-of-fit test).  It is notable that the standard 

deviation of the effect size distribution varies greatly among genes (Figure 4.3B), in 

contrast to models that assume a constant standard deviation among genes (Fisher 1930; 

Turelli 1985; Orr 2000) (Table C.6).  It is also notable that the typical effect size 

distribution has a nearly zero mean, although a minority of genes exhibit positive or 

negative means (Figure C.6).   

If one considers only those traits that are significantly affected by a gene, the total 

size of the phenotypic effects of the gene can be calculated by the Euclidean distance 

, where n is the gene’s degree of pleiotropy defined by the number of 

significantly affected traits and Zi is the gene’s effect on trait i measured by the Z-score 

(Wagner et al. 2008).  We estimated from the yeast morphological pleiotropy data that 

the exponent b in the scaling relationship of  equals 0.601, with its 95% 

confidence interval of (0.590, 0.612) (Figure 4.3C).  This exponent is significantly 

greater than that assumed in any theoretical model (Table C.6).  For example, the 

invariant total effect model (Orr 2000) assumes a constant total effect size (b = 0), 

whereas the Euclidian superposition model (Turelli 1985; Wagner 1988; Waxman and 
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Peck 1998) assumes a constant effect size per affected trait (b = 0.5).  Our results indicate 

that the per-trait effect of a gene is larger when the gene affects more traits.  One can also 

measure the total effect size by the Manhattan distance (Hermisson and McGregor 2008) 

.  We found the exponent d in the scaling relationship of  to be 

1.095, with its 95% confidence interval of (1.083, 1.107) (Figure 4.3D).  Again, the 

observed d significantly exceeds that assumed in all current models (0.5 in the invariant 

total effect model and 1 in the Euclidian superposition model; Table C.6) and indicates 

larger per-trait effects for genes affecting more traits.  To examine the robustness of the 

above results, we randomly removed 50% and 90% of the traits from the data, 

respectively.  Our results that b and d are slightly smaller when the number of traits used 

is smaller (Figure C.7A-C.7D) suggest that, when more traits are examined in the future, 

b and d would become slightly greater than the current estimates.  Our results are also 

robust to merging traits with genetic correlations (Figure C.7E-C.7F).  Because 279 

morphological traits were measured in each yeast mutant, in the above analyses, a 5% 

false discovery rate was used as a cutoff to control for multiple testing in determining 

whether a trait is affected by a gene.  Our results remain qualitatively unchanged when 

the more conservative P = 5% after Bonferroni correction is used to correct for multiple 

testing (Figure C.8). 

We observed that the phenomenon of larger per-trait effects for genes affecting 

more traits disappeared when the effect sizes of all genes on all traits are randomly 

shuffled (Figure C.9).  Thus, the phenomenon is a property of the actual data rather than 

an artifact of our analysis.  It turns out that this phenomenon results from two genome-

wide features of pleiotropy described above: (i) a normal distribution of effect sizes of a 

gene on different traits and (ii) variable standard deviations of the normal distributions 

among different genes.  Comparing two genes both having normal distributions of effect 

sizes but with different standard deviations, we proved mathematically that the gene with 

the larger standard deviation affects more traits (when a fixed effect-size cutoff is 

applied) and has on average a larger per-trait effect (Appendix A).  In fact, the scaling 

relationships with the observed b and d values can be largely recapitulated by using 

randomly generated effect size data, provided that a normal distribution with the actual 
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standard deviation is used in generating such data for each gene (Figure 4.3E and 4.3F).  

By contrast, when the same standard deviation is used in generating the random effect 

size data for all the genes, we no longer observe larger per-trait effects for genes affecting 

more traits (b < 0.5 in Figure 4.3G and d < 1 in Figure 4.3H).  

It is interesting to note that a recent mouse QTL study (Wagner et al. 2008) also 

reported b > 0.5, but a subsequent analysis (Hermisson and McGregor 2008) showed that, 

owing to the likelihood of the inclusion of multiple genes per QTL, the data can only 

establish b > 0, but not b > 0.5.  Because our yeast morphological pleiotropy data were 

collected from strains that each lack only one gene, they are immune from the above 

multiple-gene problem.  Furthermore, because our data were generated by examining all 

yeast nonessential genes and a large number of traits, they are more likely to reveal the 

general patterns of pleiotropy.  It is important to recognize that our results are based on 

pleiotropic effects of genes (i.e., null mutations) rather than random mutations.  However, 

our results likely apply to random mutations because the effect sizes of random mutations 

in a gene are expected to be proportional to the effect sizes of the gene (see Methods).   

 

4.3.4 The “cost of complexity” is diminished with the actual patterns of 

pleiotropy  
One of the most puzzling results from theoretical analysis of pleiotropy is the 

“cost of complexity” conundrum (Orr 2000).  Using Fisher’s geometric model (Fisher 

1930), Orr (Orr 2000) showed that the rate of adaptation of an organism in which every 

mutation potentially affects all of the organism’s n traits is , 

where k is the product of the effective population size and the mutation rate per 

generation per genome (in the functional part), TE is the total effect size of a mutation 

defined earlier, w is the current mean fitness of the population relative to the optimal, and 

M is a function of TE and n (see Methods).  Empirical evidence suggests that k may 

increase slightly with the level of organismal complexity, but the exact relationship 

between them is unclear (Haygood 2006).  To be conservative, we here assume k to be 

independent of n.  Note that although we are using the original formula (Orr 2000) for U 

which was based on a fixed mutation size TE for a given n, this formula is known to be 
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robust to variable mutation sizes (Welch and Waxman 2003).  If TE is independent of n, 

as assumed in the invariant total effect model (Orr 2000), or if TE is proportional to n0.5, 

as assumed in the Euclidian superposition model (Turelli 1985; Wagner 1988; Waxman 

and Peck 1998) (Table C.6), adaptation rate U decreases with the degree of pleiotropy (or 

level of organismal complexity) n (Figure 4.4A), creating the “cost of complexity”.  

Interestingly, the relationship between U and n changes when the scaling exponent b 

exceeds 0.5.  It can be shown mathematically that, when b >0.5, an intermediate level of 

complexity yields the highest adaptation rate (Appendix A) (Figure 4.4A).  The n value 

that corresponds to the highest adaptation rate (noptimal) depends on several parameters, 

including a (referred to as the mutation size), b, and w.  Smaller a and w values lead to 

larger noptimal (Figure 4.4B).  The null mutations in the yeast morphological pleiotropy 

data yield a =2.9, but we expect natural random mutations to have a much smaller a, 

because they have on average much smaller phenotypic effects than gene deletions do 

(see Methods).  For example, if a =0.01 for natural random mutations, b =0.6 as we have 

shown, and w =0.9, noptimal becomes 9 (Figure 4.4A).  Numerically, we found that, when a 

and w are given, noptimal reaches its maximum at an intermediate b value (Figure 4.4C).  

By examining a large parameter space (10-8 # a # 10-2; 0.3 # w # 0.99), we observed that 

the b value that offers the maximal noptimal occurs in a narrow range between 0.56 and 

0.79 (Figure 4.4D), although b potentially can vary from negative infinity to positive 

infinity.   

 

4.4 CONCLUSION 
In summary, our genome-wide analysis of pleiotropy in yeast, nematode, and 

mouse revealed a generally low level of pleiotropy for most genes in a eukaryotic 

genome and a highly modular structure in the gene-trait relationship.  Furthermore, the 

quantitative morphological data from yeast showed that genes affecting more traits tend 

to have larger per-trait phenotypic effects.  Although an organism potentially contains 

many more traits than our data currently include, several analyses indicated that our 

results are robust and therefore our conclusions are expected to be largely unchanged 

even when most or all traits of an organism are considered.  These findings necessitate a 

major revision of the current theoretical models that lack the above three empirical 
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features of pleiotropy (Table C.6) and require reevaluation of biological inferences 

derived from these models.  For example, these three features substantially alleviate the 

cost of complexity in adaptive evolution.  First, the generally low pleiotropy means that 

even mutations in organisms as complex as mammals do not normally affect many traits 

simultaneously.  Second, high modularity reduces the probability that a random mutation 

is deleterious, because the mutation is likely to affect a set of related traits in the same 

direction rather than a set of unrelated traits in random directions (Welch and Waxman 

2003; Martin and Lenormand 2006).  Third, the greater per-trait effect size for more 

pleiotropic mutations (i.e., b > 0.5) causes a greater probability of fixation and a larger 

amount of fitness gain when a beneficial mutation occurs in a more complex organism 

than in a less complex organism.  These effects, counteracting lower frequencies of 

beneficial mutations in more complex organisms (Fisher 1930), result in intermediate 

levels of complexity having the highest rate of adaptation.  Together, they explain why 

complex organisms could have evolved in despite the cost of complexity.  Whether the 

intriguing finding that the empirically observed scaling exponent b falls in a narrow range 

that offers the maximal optimal complexity is the result of natural selection for 

evolvability or a by-product of other evolutionary processes (Pigliucci 2008) requires 

further exploration.     

 

 

4.5 METHODS 
4.5.1 Pleiotropy datasets 
 The yeast morphological pleiotropy dataset (Ohya et al. 2005) includes the 

phenotypic information acquired by fluorescent imaging of 4,718 yeast nonessential gene 

deletion haploid strains as well as the wild-type haploid strain.  The phenotypes include 

501 quantitative traits of yeast cellular morphology such as cell shape, actin cytoskeleton, 

and nuclear morphology.  These traits were first measured in 126 independent wild-type 

cells to estimate the wild-type variation and were then measured in one cell per deletion 

strain.  The raw data were obtained from http://scmd.gi.k.u-tokyo.ac.jp/datamine/.  

Following the suggestion of the authors of the dataset (Ohya et al. 2005), we transformed 

the raw data of the 501 traits by power transformation (Yeo and Johnson 2000) and then 
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checked for normality in distribution among wild-type cells using the Shapiro-Wilk test.  

For 222 traits, the phenotypes of the wild-type cells either are not power-transformable or 

do not follow normal distributions.  These traits were thus excluded from subsequent 

analysis and the remaining 279 traits were considered in our morphological pleiotropy 

data. 

 The size of the phenotypic effect of a gene on a trait is measured by the statistical 

Z-score, which is defined by Z = (md - mwt)/SD, where mwt and SD are the mean and 

standard deviation of the transformed measures of the trait from wild-type cells, 

respectively, and md is the transformed measure of the trait from a cell in which the gene 

is deleted.  Note that because md can be larger or smaller than mwt, Z can be positive or 

negative.  A given md -mwt value indicates a greater fitness effect when it occurs in a more 

important trait than in a less important trait.  Because the SD of a trait is expected to be 

negatively correlated with the strength of stabling selection on the trait (i.e., the 

importance of a trait to organismal fitness), Z-scores effectively standardize phenotypic 

effects in terms of fitness effects and thus are comparable among traits.  In order to 

determine the number of traits a gene affects, we calculated the statistical P-values 

according to the Z-scores using the standard normal distribution.  Because we 

simultaneously tested 279 traits for each gene, we corrected for multiple testing using a 

5% false discovery rate (FDR).  In other words, if a trait shows a Q-value < 5% in a gene-

deletion strain, we consider that this trait is affected by this gene.  By this cutoff, a gene 

affects on average 22 traits.  Thus, the number of false positives is lower than 1 trait per 

gene.  We also used the more conservative Bonferroni correction of multiple testing, and 

the results are shown in Figure C.9.  After the removal of genes that do not affect any 

trait and traits that are not affected by any gene, the yeast morphological dataset contains 

2,449 genes and 253 traits. 

 The same collection of yeast gene deletion strains were also screened under 22 

different environmental conditions for growth defects (Dudley et al. 2005).  A gene is 

considered to affect growth under a condition when the deletion strain shows 

significantly slower growth than the wild-type strain.  Because the data did not contain 

quantitative measures of growth rates, the gene-trait relationship is qualitative.  That is, a 

gene either affects or does not affect a trait.  In total, 774 genes affect growth in at least 
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one of the 22 environmental conditions.  This dataset is referred to as the yeast 

environmental pleiotropy dataset. 

  We also obtained yeast knockout phenotype information from Comprehensive 

Yeast Genome Database (CYGD) (Guldener et al. 2005), which catalogs literature-

curated physiological defects of yeast gene deletion strains from small-scale experiments.  

After removing phenotypes that are annotated as “unclassified”, we obtained our yeast 

physiological pleiotropy data containing 1,256 genes that affect one or more of 120 traits.  

As in the yeast environmental pleiotropy dataset, this dataset only has qualitative 

information about gene-trait relationships.  

 In order to identify genes required for early embryogenesis in nematodes, a recent 

study used genome-wide RNA-mediated interference (RNAi) to silence gene expression 

in early C. elegans embryos (Sonnichsen et al. 2005).  The targeted RNAi experiment for 

each gene was repeated in 6 embryos, and 45 phenotypic traits were screened for 

developmental defects.  We consider that a gene affects a trait if at least 2 of the 6 

embryos showed phenotypic defects.  After the removal of one trait named “complex 

phenotype”, we obtained our nematode pleiotropy dataset including 661 genes that affect 

one or more of 44 traits.  This dataset only provides qualitative information about gene-

trait relationships. 

 The mouse pleiotropy data were derived from annotations of MGI version 4.2 

(http://www.informatics.jax.org/) (Bult et al. 2008).  At the time of this study, 5,586 

mouse genes were annotated with one or more Mammalian Phenotype (MP) IDs 

indicating the phenotypes when the genes were knocked out, knocked down, mutated by 

transgenic insertions, or occasionally mutated by point mutations.  MP IDs are 

hierarchically structured.  That is, one parent MP ID (e.g., MP:0002102, abnormal ear 

morphology) represents a phenotype lineage which may include several child MP IDs to 

describe a more detailed phenotype (e.g., MP:0000026, abnormal inner ear morphology; 

MP:0002177, abnormal outer ear morphology).  Here, we used 308 parent MP IDs to 

define the pleiotropy of mouse genes.  These 308 MP IDs were manually selected using 

the criterion that each MP ID should be phenotypically distinct, if not independent, from 

the other MP IDs.  If a mouse gene is annotated for a child MP, the parent MP ID that 

this child MP ID belongs to is used.  Consequently, pleiotropy of 4,915 mouse genes 
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associated with at least one of the 308 MP IDs were obtained.  This dataset only provides 

qualitative information of the gene-trait relationships. 

 

4.5.2 Modularity of gene-trait bipartite networks 
 Gene-trait relationships can be represented by a bipartite network where the genes 

form one type of nodes and traits form the second type of nodes.  A link between a gene 

node and a trait node indicates that the gene affects the trait.  To separate modules, we 

used BRIM (Barber 2007), which is modified from the widely used Newman definition 

of modularity (Newman 2004) for bipartite networks.  For a given module partition, this 

algorithm calculates the difference between the density of within-module links and its 

random expectation.  It then attempts to find the module partition that yields the highest 

difference, which is called the modularity of the network.  Because even a random 

network may have a non-zero modularity (Guimera, Sales-Pardo, and Amaral 2004; 

Wang and Zhang 2007), we used scaled modularity (Wang and Zhang 2007) to measure 

the level of modularity of a network.  We also calculated scaled modularity after merging 

traits whose genetic correlation coefficient is greater than 0.7.  We chose this cutoff 

because, after the merge, no trait can genetically explain more than one half of the 

variance of another trait (0.72=0.49).   

 

4.5.3 The scaling relationships between the degree of pleiotropy and the total 

effect size 
 Using the yeast morphological pleiotropy data, we calculated the number (n) of 

traits that are significantly affected by each gene.  We then measured a gene’s total 

phenotypic effect on these n traits, using either the Euclidian distance (TE) or the 

Manhattan distance (TM).  We expect the scaling relationships of  and .  

We estimated a, b, c, and d using the curve fitting toolbox in MATLAB, which employs a 

non-linear least-squares method to fit the observations and calculates the confidence 

intervals of the estimated parameters. 

Because gene pleiotropy is largely owing to the involvement of the same 

molecular function in multiple different biological processes rather than the presence of 

multiple molecular functions per gene (He and Zhang 2006), random mutations in a gene 
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will likely affect the same traits as the deletion of the gene does, although the magnitude 

of the phenotypic effects should be much smaller.  For simplicity, let us assume that the 

effect on a trait from a random mutation in a gene is on average h times the effect on the 

same trait from a null mutation in the gene, where the effect is again measured by Z-score 

and 0 < h << 1.  Let  be the total effect size of the random mutation in Euclidean 

distance.  It can be shown that .  Thus, the scaling relationship 

between the total effect size of a random mutation and pleiotropy is the same as that 

between the total effect size of a null mutation and pleiotropy, except that the mutation 

size parameter for random mutations is h times that for null mutations. 

 

4.5.4 Simulating normally distributed phenotypic effects of genes 

 For a given gene i, we first calculated the standard deviation ($i) of its phenotypic 

effect size distribution from the yeast morphological pleiotropy data.  Note that, in this 

calculation, we used the phenotypic effects of the gene on all 279 traits, regardless of 

whether these effects are statistically significant or not.  We then randomly generated this 

gene’s phenotypic effects on each of the 279 traits using a normal distribution with mean 

equal to 0 and standard deviation equal to $i.  We did this for all 4,718 genes to produce a 

4718 " 279 random effect-size matrix.  We then analyzed this simulated dataset 

following the analysis of the real data. 

 To examine the impact of different standard deviations of different genes on our 

results, we conducted the second simulation.  The procedure is the same as the above 

simulation, except that, instead of using different standard deviations for different genes, 

we used the same standard deviation for all genes.  This standard deviation used was the 

mean standard deviation for all genes in the actual data. 

 

4.5.5 Calculating the rate of adaptation 
Assuming Fisher’s geometric model, Orr (Orr 2000) derived the formula for the 

rate of fitness increase during an adaptive walk to the optimal to be 

 where n is the degree of pleiotropy, which also measures 
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organismal complexity, k is the product of the effective population size and the mutation 

rate per generation per genome (in the functional part), TE is the total effect size of a 

mutation measured by the Euclidean distance, and w is the current mean fitness of the 

population relative to the optimal, , and .  In 

Orr’s calculation (Orr 2000), TE was assumed to be independent of n.  In our model, TE 

scales with the degree of pleiotropy by , where a is the mutation size parameter 

that corresponds to the mutation size when the degree of pleiotropy is 1 and b is the 

scaling exponent.  We implemented numerical calculations of the above formulas in 

MATLAB.  
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Figure 4.1  Frequency distributions of degree of gene pleiotropy in different species.  
(A) Yeast morphological, (B) yeast environmental, (C) yeast physiological, (D) 
nematode, and (E) mouse pleiotropy data.  Mean and median degrees of pleiotropy and 
their standard deviations are indicated in each panel.  The numbers in the parentheses are 
the mean and media degrees of pleiotropy divided by the total number of traits.  After the 
removal of genes that do not affect any trait and traits that are not affected by any gene, 
the total number of genes and traits in these datasets are (A) 2449 genes and 253 traits, 
(B) 774 genes and 22 traits, (C) 1256 genes and 120 traits, (D) 661 genes and 44 traits, 
and (E) 4915 genes and 308 traits.  
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Figure 4.2  High modularity of gene-trait bipartite networks.  (A) A hypothetical 
gene-trait bipartite network.  A link between a gene and a trait indicates that the gene 
affects the trait, while the thickness of the link indicates the effect size.  (B) Two modules 
are identified in the hypothetical gene-trait network after the quantitative links are 
transformed to qualitative links (i.e., presence/absence) based on whether an effect size is 
significantly different from 0.  (C) A randomly rewired network that has the same degree 
distribution as the original hypothetical network shows no detectable modular structure.  
The modularity and scaled modularity of the hypothetical bipartite network are 0.41 and 
3.9, respectively.  Panels (D)-(H) show the observed modularity (blue arrows) and 
distribution of modularity for 250 randomly rewired networks (red histograms) for the 
gene-trait networks of the (D) yeast morphological, (E) yeast environmental, (F) yeast 
physiological, (G) nematode, and (H) mouse pleiotropy datasets. 
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Figure 4.3  Scaling relationships between the total phenotypic effect size of a gene 
and the degree of pleiotropy in the yeast morphological pleiotropy data.  (A) 
Examples showing the normal distribution of effect size over 279 traits.  Two genes are 
chosen to show variable standard deviations of the normal distributions.  (B) Distribution 
of the standard deviation (S.D.) of the effect size for all 4718 genes.  Observed scaling 
relationships between the degree of pleiotropy n and the total phenotypic effect of a gene 
measured by (C) Euclidean distance or (D) Manhattan distance.  The orange curve is the 
best fit to the power function whose estimated parameters are shown inside the panel.  
The numbers after ± show the 95% confidence interval for the estimated scaling 
exponent.  R2 indicates the square of the correlation coefficient.  Panels (E) and (F) are 
similar to panels (C) and (D) except that the effect sizes of each gene are randomly 
generated from a normal distribution with zero mean and observed standard deviation.  
Panels (G) and (H) are similar to panels (C) and (D) except that the effect sizes of each 
gene are randomly generated from a normal distribution with zero mean and a constant 
standard deviation, which is the average of all standard deviations of all genes. 
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Figure 4.4  The “cost of complexity” is alleviated when the scaling exponent b 
exceeds 0.5. (A) The relative adaptation rate as a function of the degree of pleiotropy (n) 
changes with the scaling exponent b.  The relative adaptation rate is calculated using 
Orr’s formula.  The initial fitness w is set at 0.9 and the mutation size a is set at 0.01.  (B) 
The optimal degree of pleiotropy noptimal, defined as the degree of pleiotropy that 
corresponds to the highest adaptation rate, changes with the mutation size a.  Different 
curves are generated using different initial fitness (w) values but the same b = 0.6.  (C) 
The optimal degree of pleiotropy noptimal changes with different b.  Different curves are 
generated using different a but the same w = 0.9.  (D) A heat map showing the b value 
that provides the maximal noptimal, given a and w.  
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CHAPTER 5 
 

Why is the Correlation between Gene Importance and Gene 
Evolutionary Rate So Weak? 

 

 

5.1 ABSTRACT 
One of the few commonly believed principles of molecular evolution is that 

functionally more important genes (or DNA sequences) evolve more slowly than less 

important ones.  This principle is widely used by molecular biologists in daily practice.  

However, recent genomic analysis of a diverse array of organisms found only weak 

negative correlations between the evolutionary rate of a gene and its functional 

importance typically measured under a single benign lab condition.  A frequently 

suggested cause of the above finding is that gene importance determined in lab differs 

from that in an organism’s natural environment.  Here we test this hypothesis in yeast 

using gene importance values experimentally determined in 418 lab conditions or 

computationally predicted for 10,000 nutritional conditions.  In no single condition or 

combination of conditions did we find a much stronger negative correlation, which is 

explainable by our subsequent finding that always-essential (enzyme) genes do not 

evolve significantly slower than sometimes-essential or always-nonessential ones.  

Furthermore, we verified that functional density, approximated by the fraction of amino 

acid sites within protein domains, is uncorrelated with gene importance.  Thus, neither 

the lab-nature mismatch nor a potentially biased among-gene distribution of functional 

density explains the observed weakness of the correlation between gene importance and 

evolutionary rate.  We conclude that the weakness is factual rather than artifactual.  In 

addition to population genetic reasons, the correlation is likely to have been further 

weakened by the presence of multiple nontrivial rate determinants that are independent 

from gene importance.  These findings notwithstanding, we show that the principle of 
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slower evolution of more important genes does have some predictive power when genes 

with vastly different evolutionary rates are compared, explaining why the principle can 

be practically useful despite the weakness of the correlation. 

 

 

5.2 INTRODUCTION 
When referring to any DNA sequence, a popular textbook of cell and molecular 

biology (Karp 2008) states that “if it’s conserved, it must be important” and calls this 

“one of the foremost principles of molecular evolution” (p. 416).  Here, the word 

“conserved” means that the sequence has a low rate of evolution such that its orthologs 

from distantly related species are detectable and alignable.  The word “important” means 

that the sequence has relevance to the wellbeing and fitness of the organism bearing the 

sequence.  The above principle is often used in a comparative context, asserting that 

functionally more important DNA sequences evolve more slowly.  Despite the fact that 

thousands of biologists accept this principle and use it daily in identifying functionally 

important DNA sequences, its validity had not been systematically examined until a few 

years ago when gene importance could be measured at the genomic scale (Hurst and 

Smith 1999; Hirsh and Fraser 2001; Jordan et al. 2002; Yang, Gu, and Li 2003; Rocha 

and Danchin 2004; Wall et al. 2005; Zhang and He 2005; Liao, Scott, and Zhang 2006; 

Wolf, Carmel, and Koonin 2006).  Unexpectedly, however, genomic studies of bacteria, 

fungi, and mammals showed that although the evolutionary rate of a gene is significantly 

negatively correlated with its importance, the latter only explains a few percent of the 

total variance of the former (Krylov et al. 2003; Wall et al. 2005; Zhang and He 2005; 

Liao, Scott, and Zhang 2006).  The striking contrast between the wide acceptance and 

apparent utility of the principle and the weakness of the correlation revealed from 

genomic analysis of a diverse array of organisms is perplexing.   

The perceived theoretical basis of this simple principle is the neutral theory of 

molecular evolution, which asserts that most nucleotide substitutions during the evolution 

of a gene are due to random fixations of neutral mutations (Kimura 1968; King and Jukes 

1969; Kimura 1983).  Based on this theory, Kimura and Ohta first predicted that 

functionally more important genes should evolve slower than less important ones because 
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the former have a lower rate of neutral mutation than the latter (Kimura and Ohta 1974), 

although their use of “functional importance” appears to mean “functional constraint on 

the gene” rather than “importance to the fitness of the organism”.  A few years later, 

Wilson et al. separated the two meanings and decomposed the substitution rate of a gene 

(k) into two factors: the probability (P) that a random mutation will be compatible with 

the function of the gene and the probability (Q) that an organism can survive and 

reproduce normally without the gene (i.e., gene dispensability) (Wilson, Carlson, and 

White 1977).  Under the simple assumption that a mutation either completely abolishes 

the function of a gene (with a probability of ! = 1-P) or does not affect it at all (with a 

probability of 1-!), we can write the substitution rate of a gene as the sum of the rate of 

fixation of neutral mutations and that of null mutations.  Here, ! can also be interpreted 

as functional density, the effective fraction of sites in a gene (or protein) that are required 

for its function.  Let u be the total mutation rate, " = 1-Q be the probability that an 

organism cannot survive or reproduce without the gene (i.e., gene importance or the 

coefficient of selection against null mutations), N be the organism’s population size, and 

Ne be the effective population size.  For diploid organisms, we have  

   ,  (5.1) 

where  is the probability of fixation of a new null mutation with fitness 

0<Q<1, under genic selection (i.e, the selection against the null allele is ! in homozygotes 

and !/2 in heterozygotes) (Kimura 1983).  Because f < 1/(2N), k is a monotonically 

decreasing function of !.  It is obvious that k is also a monotonically decreasing function 

of ", because the stronger the selection against null mutations, the lower f and k are.  

However, note that the above formula also indicates that in large populations, f and hence 

k should be relatively insensitive to " except when " is extremely small (i.e., on the order 

of 1/Ne).  In other words, under the simplistic model assumed here, a strong negative 

correlation between gene importance and evolutionary rate is not expected (Hurst and 

Smith 1999) (see also Appendix B and Figure C.10).  However, under a more realistic 

model with the presence of slightly and moderately deleterious mutations, a much 

stronger correlation between gene importance and evolutionary rate becomes 
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theoretically possible (Hirsh and Fraser 2001).  The strength of the correlation depends 

on the distribution of the deleterious functional effects of random mutations (Appendix B 

and Figure C.10).  Because the true distribution is currently unknown, theories cannot 

predict precisely the strength of the correlation between gene importance and 

evolutionary rate.  These considerations notwithstanding, the apparent utility of the 

principle in daily practice and its lack of empirical support from genomewide studies 

require an explanation. 

There are two simple, yet untested, hypotheses that potentially explain the 

weakness of the observed correlation between gene importance and evolutionary rate.  

First, the importance of a gene to an organism is now commonly measured by the fitness 

reduction caused by the deletion of the gene from the genome in a benign lab condition; 

deleting an important gene reduces the fitness of the organism more than deleting a less 

important one.  But, because lab conditions differ significantly from the natural 

environments of organisms, gene importance determined in lab may be quite different 

from that in nature (Hurst and Smith 1999; Wolf 2006).  For example, in rich media, 

~80% of yeast genes are not essential for growth (Papp, Pal, and Hurst 2004).  However, 

metabolic network analysis and experimental studies showed that most of these 

dispensable genes are important for growth under other conditions (Papp, Pal, and Hurst 

2004; Hillenmeyer et al. 2008), some of which may resemble the natural environments of 

the species better than rich media.  Hence, it is plausible that the weakness of the 

correlation between gene importance and evolutionary rate is due to inaccuracy in 

measuring genes’ natural importance, which we refer to as the lab-nature mismatch 

hypothesis.  But, measuring gene importance in a species’ natural environment is difficult 

because many species such as the yeast Saccharomyces cerevisiae are found in diverse 

environments that are poorly characterized (Fay and Benavides 2005).  Moreover, even if 

we know the present-day natural environments of a species, they may not reflect the 

environments where the species lived in the past.  These historical environments are 

crucial because the gene evolutionary rate that is being correlated to gene importance is 

determined by comparison between species.  Nonetheless, if gene importance is 

measured in many different conditions, we can examine whether the correlation between 

gene importance and evolutionary rate is much stronger in some conditions than in the 
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benign lab condition, which could at least demonstrate the plausibility of the lab-nature 

mismatch hypothesis.  Here we test this hypothesis in yeast using gene importance 

measures from both experimental data and computational predictions.  The experimental 

data came from a set of recently published fitness measurements of yeast single-gene-

deletion strains under 418 lab stress conditions (Hillenmeyer et al. 2008).  We 

complemented this dataset with in silico predictions of importance for metabolic enzyme 

genes under 104 nutritional conditions, achieved by flux balance analysis (FBA) of 

reconstructed metabolic networks (Edwards, Covert, and Palsson 2002; Price, Reed, and 

Palsson 2004).   

Another potential factor influencing the correlation between gene importance (") 

and evolutionary rate (k) is functional density (!) in Equation 5.1.  If ! and " are 

negatively correlated (i.e., more important genes have lower functional density), the 

correlation between k and " will be weakened.  Although there is no reason to believe 

that ! and " are negatively correlated, it is worth verifying using actual data.  For a given 

protein, ! may be approximately measured by the fraction of sites in functional domains, 

which can be computationally predicted. 

In this work, we show that neither of the above two hypotheses is correct in yeast.  

Rather, the weakness of the correlation between gene importance and evolutionary rate is 

likely to be factual rather than artifactual.  We show, however, that the principle of 

slower evolution of more important genes does have some predictive power when genes 

with vastly different evolutionary rates are compared, explaining why the principle can 

be practically useful despite the weakness of the correlation. 

 

 

5.3 RESULTS AND DISCUSSION 
5.3.1 Testing the lab-nature mismatch hypothesis with experimental 

measures of gene importance  
The most frequently used yeast gene importance data came from the measures of 

relative growth rates of 5936 single-gene-deletion yeast strains in the nutritionally rich 

YPD medium (Steinmetz et al. 2002).  Recently, the same type of measure was taken for 
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all YPD-viable single-gene-deletion yeast strains under 418 diverse laboratory 

conditions, of which ~75% are chemical drug treatments and the rest are environmental 

stress conditions such as different pHs and temperatures (Hillenmeyer et al. 2008).  These 

two datasets of gene importance are used in our analysis.   

 Evolutionary rates of S. cerevisiae genes are estimated by comparing these genes 

to their orthologs in related species.  Because the functional importance of a gene may 

change during evolution (Zhang and He 2005; Liao and Zhang 2008), it is better to use a 

closely related species for rate estimation.  However, when the species are too close, the 

number of nucleotide substitutions per gene may be insufficient for precise estimation of 

evolutionary rates.  A previous study found the strongest correlation between gene 

importance and evolutionary rate when S. cerevisiae is compared with S. bayanus (Zhang 

and He 2005).  We thus use this species pair and obtain 3999 genes with identifiable 

orthologs.  Our results remain qualitatively unchanged when several other yeast species 

were compared with S. cerevisiae (data not shown).  We use the number of 

nonsynonymous substitutions per nonsynonymous site (dN) between orthologs to measure 

the rate of gene evolution (k in Equation 5.1).  Because the mutation rate (u in Equation 

5.1) may vary among genes, we also use the ratio between dN and the number of 

synonymous substitutions per synonymous site (dS) as a measure of k/u in Equation 5.1.  

 When gene importance is measured under the nutritionally rich YPD medium, the 

Spearman’s rank correlation coefficient between gene importance (i.e., amount of fitness 

reduction caused by gene deletion) and dN is ! = -0.2189 (P < 10-43; Figure 5.1A).  Our 

examination of 418 other lab conditions found the strongest correlation to be ! = -0.2379 

(P < 10-51; Figure 5.1A).  Thus, none of the 418 conditions provides a substantially 

stronger correlation than what is observed with YPD.  Similar results were obtained for 

the correlation between gene importance and dN/dS (Figure 5.1B). 

Krylov et al. suggested another measure of gene evolutionary rate known as the 

propensity for gene loss (PGL), which is the number of times that a gene is lost during 

the evolution of a group of species (Krylov et al. 2003).  Although PGL and dN are 

correlated with each other (Krylov et al. 2003), they measure the rate of gene evolution 

from different angles.  The correlation between PGL and gene importance is expected to 

be weaker than that between dN and gene importance, because mutations that impair gene 
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function only slightly do not matter to gene loss.  We estimated PGL for each S. 

cerevisiae gene by counting the number of gene loss events on the known phylogeny of 

12 fungal species (see Materials and Methods).  Consistent with our expectation, the 

correlation between gene importance and PGL is weaker than that between gene 

importance and dN (or dN/dS) for both YPD and the other 418 lab conditions (Figure 

5.1C).  Regardless, the examination of the 418 lab conditions does not substantially 

improve the strength of the correlation between gene importance and PGL. 

 

5.3.2 Testing the lab-nature mismatch hypothesis with computationally 

predicted gene importance values 
Because the 418 experimentally examined conditions contain mostly artificial 

chemical treatments and hence may not cover the diverse natural environments of the 

yeast, we decide to complement the experimental data with computationally predicted 

gene importance values for 546 metabolic enzyme genes under 104 conditions generated 

by random combinations of different nutrients following a sampling strategy that mimics 

the potential nutritional environments of the wild yeast (see Materials and Methods).  We 

then used two different experimentally validated computational methods to predict the 

fitness reduction caused by the deletion of each enzyme gene.  These methods rely on the 

reconstructed high-quality yeast metabolic network (Duarte, Herrgard, and Palsson 

2004), which contains 632 biochemical reactions associated with 546 enzyme genes after 

the removal of dead-end reactions (Burgard et al. 2004).  The first method we used is flux 

balance analysis (FBA).  Under the assumption of steady state of every cellular 

metabolite, FBA maximizes the rate of biomass production under the stoichiometric 

constraints of all metabolic reactions (Edwards, Covert, and Palsson 2002).  Simulation 

of different nutritional conditions is achieved by setting the boundaries of uptake reaction 

fluxes and simulation of gene deletion is achieved by constraining the flux of 

corresponding enzymatic reaction to zero (see Materials and Methods).  In our analysis, 

we consider the FBA-optimized rate of biomass production as the wild-type Darwinian 

fitness of the cell under the condition specified.  The relative fitness of a cell lacking a 

gene is the FBA-optimized rate of biomass production of the cell, divided by that of the 

wild-type cell.  Previous studies demonstrated that FBA makes excellent qualitative 
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predictions of yeast gene essentiality under typical experimental conditions (Duarte, 

Herrgard, and Palsson 2004; Papp, Pal, and Hurst 2004).  A recent study further showed 

consistent performances of FBA across many different conditions (Snitkin et al. 2008).  

Following a previous study (Forster et al. 2003), we approximated the YPD condition in 

the FBA model and predicted the fitness values of single-gene-deletion yeast strains.  We 

found that the FBA-predicted fitness values correlate well with the experimentally 

determined fitness values under YPD (Pearson’s r = 0.562, P < 10-41).  We were not able 

to verify FBA for the other 418 lab conditions because these conditions are difficult to 

specify in FBA. 

Our extensive analysis of 104 simulated conditions identified the strongest 

correlation between FBA-predicted gene importance and dN to be ! = -0.2186 (P = 10-6; 

Figure 5.1D) for 546 enzyme genes.  Although this correlation is 34% stronger than that 

estimated using experimentally determined gene importance under YPD (! = -0.1636, P 

= 6"10-4; Figure 5.1D) for the same set of genes, the fraction of variance in dN that is 

explainable by gene importance is still as low as (-0.2186)2 = 4.8%.  Similar results are 

obtained when either dN/dS (Figure 5.1E) or PGL (Figure 5.1F) is used as a measure of 

gene evolutionary rate.  One interesting observation is that the standard deviation of ! 

from the 104 simulated conditions (0.042, 0.037, and 0.037 in Figure 5.1D, 5.1E, and 

5.1F, respectively) is much greater than that for the 418 experimental conditions (0.013, 

0.009, and 0.008 in Figure 5.1A, 5.1B, and 5.1C, respectively).  Part of this difference is 

due to the use of essentially all genes in Figure 5.1A-5.1C but only enzyme genes in 

Figure 5.1D-5.1F.  However, even when only enzyme genes are considered, the standard 

deviation of ! is still smaller for lab conditions (dN: 0.024; dN/dS: 0.021; PGL: 0.020) than 

for the 104 simulated conditions, suggesting that the simulated conditions represent a 

more diverse set of conditions than the experimental conditions.  

FBA assumes that a cell can readjust its metabolic fluxes to achieve the highest 

possible biomass production immediately after the deletion of any gene, which is 

probably unrealistic.  Segre and colleagues proposed a modified method known as the 

minimization of metabolic adjustment (MOMA) (Segre, Vitkup, and Church 2002).  

Instead of maximizing biomass production upon gene deletion, MOMA minimizes the 

changes of fluxes from those of the wild-type cell.  Empirical examples suggested that 
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MOMA outperforms FBA in predicting gene essentiality and metabolic fluxes (Segre, 

Vitkup, and Church 2002).  We found that MOMA-predicted fitness values of single-

gene-deletion strains are slightly better than FBA-predicted values in correlating with the 

experimentally determined fitness values in YPD (Pearson’s r = 0.571, P < 10-43).  

However, none of the 104 simulated conditions provide a better correlation between 

MOMA-predicted gene importance and evolutionary rate than the correlation found using 

experimentally measured gene importance in YPD (Figure 5.1G-5.1H).  

Although we examined 104 simulated conditions, it is possible that they still do 

not cover the natural conditions of yeast.  We simulated 105 additional conditions and 

found that the distribution of the correlation coefficient % (Figure C.11) is virtually 

identical with that from the initial 104 conditions.  Because the distribution of % is 

approximately normal, statistically speaking, it is extremely unlikely to obtain a much 

stronger correlation by examining even 106 conditions.  Due to the large amount of 

computational time required for examining large numbers of conditions and the similarity 

of the results from 104 and 105 conditions, we used the gene importance values predicted 

from the 104 conditions in subsequent analysis. 

 

5.3.3 Testing the lab-nature mismatch hypothesis using combinations of 

individual conditions  
 Because under no single condition, either experimentally examined or 

computationally simulated, did we find a strong correlation between gene importance and 

evolutionary rate, and because yeast may have had experienced diverse natural conditions 

during its evolution, we ask whether we can find combinations of single conditions for 

which the correlation between gene importance and evolutionary rate is much stronger 

than that under any single condition.  We consider a simple scenario in which gene 

importance values under different conditions are weighted and linearly combined to form 

an average gene importance value across all the conditions considered.  These weighting 

coefficients potentially represent the (unknown) relative durations of the conditions 

where the yeast has lived.  We identify these coefficients by mathematically maximizing 

the correlation between the weighted average gene importance and evolutionary rate.  We 

further constrain the weighting coefficients to be non-negative because negative 
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coefficients are biologically meaningless.  Employing the least squared method in 

statistics, we can transform this maximization task into a quadratic programming 

problem.  The mathematical representation of the problem is 

  minimizing object: , where , 

  subject to:  for any j,       (5.2) 

where ki is the evolutionary rate of gene i and fi is the weighted average importance of 

gene i in all conditions, calculated by averaging gene importance under each condition 

(fij) using non-negative weighting coefficients of the condition (cj).  We solved the 

quadratic programming problem using the commercial optimization package CPLEX and 

then calculated the correlation between the weighted average importance of a gene and its 

evolutionary rate.  Note, however, that the above estimation of c guarantees the 

identification of the strongest Pearson’s linear correlation between fi and ki, but not 

Spearman’s rank correlation.  We know of no method that guarantees the identification of 

the strongest rank correlation between fi and ki. 

 Our results showed that the improvement of the correlation by combining 

individual conditions is trivial (Table 5.1).  For example, for the 418 experimental 

conditions, the strongest Pearson’s correlation between the weighted average gene 

importance and dN is r = -0.2187 (P < 10-43), only 5% stronger than the strongest 

correlation found among all single conditions (r = -0.2082, P < 10-39).  Similar results 

were observed for the other measures of gene evolutionary rate and for combinations of 

the 104 simulated conditions (Table 5.1).  These results indicate that even weighted 

average of gene importance across multiple conditions is not strongly correlated with 

gene evolutionary rate. 

 Why doesn’t the consideration of so many experimental and simulated conditions 

and combinations of conditions improve the correlation between gene importance and 

evolutionary rate?  Using FBA, one can classify enzyme genes into three categories 

according to their importance across multiple conditions: always-essential, sometimes-

essential, and always-nonessential.  Deleting an always-essential gene causes lethality in 

all conditions; deleting a sometimes-essential gene causes lethality in some but not all 

conditions; deleting an always-nonessential gene does not cause lethality in any 
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condition, although it may reduce the fitness of the organism to a non-zero level.  

Because always-essential genes are as important as or more important than the other two 

classes of genes in any condition, it is clear that in order to achieve a strong correlation 

between gene importance and evolutionary rate in any condition or combination of 

conditions, the evolutionary rate of always-essential genes must be lower than those of 

the other two classes of genes.  Here the enzyme genes are classified into the above three 

groups based on the essentiality predicted in the 104 simulated conditions.  Although the 

average dN of always-essential genes is lower than that of sometimes-essential genes and 

that of always-nonessential genes, the differences are small and not statistically 

significant (Figure 5.2A).  The same is true for dN/dS (Figure 5.2B) and PGL (Figure 

5.2C).  These results strongly suggest that no single condition or combination of 

conditions will show a strong correlation between gene importance and evolutionary rate 

even when more conditions are examined.  Thus, if the conditions under which yeast 

evolved belong to the 418 experimentally examined conditions or are amenable to the 

current FBA, the lab-nature mismatch hypothesis must be rejected. 

  

5.3.4 Examining the correlation between functional density and gene 

importance 

Equation 5.1 shows that if functional density (!) and gene importance (") are 

independent from each other, evolutionary rate of a gene (k) should decrease with the 

increase of ".  The observed weakness of the correlation between gene importance and 

evolutionary rate prompts us to examine the presumption of independence between ! and 

", because the correlation between gene importance and evolutionary rate could have 

been weakened if there is a negative correlation between ! and ".  By definition, ! is the 

proportion of mutations that destroy the function of a gene, which may be experimentally 

determined by large-scale site-directed mutagenesis coupled with gene functional assay, a 

formidable task even for a few genes.  In theory, one can use the average number of 

allowable alternative states across all amino acid sites of a protein to estimate 1-!.  But 

such a measure is currently difficult to acquire at the genomic scale, because it requires 

the alignments of orthologs from many (i.e., >> 20) divergent species to assure that all 



 99 

potentially allowed amino acids have had chance to appear at any given site.  Use of 

many divergent species greatly increases misidentification of paralogs as orthologs and 

the risk of comparing functionally-different orthologous proteins, leading to potential 

overestimation of 1-!.  A further complication is that the evolution of a site is often 

dependent on other sites, meaning that an amino acid is allowed at a site only when 

another site has a particular amino acid (Kondrashov, Sunyaev, and Kondrashov 2002; 

Gao and Zhang 2003).  Thus, the number of allowed amino acids at a site is not a unique 

number, but rather depends on the genetic background of the same gene or even other 

genes.  Given these difficulties, we decide to use the proportion of amino acid sites 

within computationally predicted functional domains of a protein to estimate ! 

approximately, because ! is expected to be much greater within functional domains than 

outside domains.  This estimation of ! is based on the assumption that all sites within 

functional domains are important to the function of the protein whereas all sites outside 

domains are unimportant.  Although this assumption does not hold in reality, it should not 

affect our results as long as it does not systematically bias our estimation of ! among 

genes of different ".   

Computational algorithms for predicting protein functional domains are based on 

proteins of known structures and/or amino acid sequences with high evolutionary 

conservation (Copley et al. 2002).  There are many available algorithms for protein 

domain prediction and they are based on different assumptions.  Here we employ two 

widely used methods.  The first is the ProSite prediction algorithm (Hulo et al. 2006), 

which is based on known conserved functional motif sequences.  ProSite predictions are 

relatively conservative and should contain few false positives, as on average only 10% of 

amino acid sites in a protein are predicted by ProSite to be within functional domains.  

The second method we used is InterProScan (Mulder and Apweiler 2008), which 

integrates 13 well known domain prediction algorithms and databases to look for 

domains.  Because InterProScan uses multiple algorithms, its predictions are more 

comprehensive.  To avoid false positive predictions, we consider only those sites that are 

identified by at least two algorithms of InterProScan as functional domain sites.  Under 

this criterion, on average 47% of protein sites are identified as functional domain sites.   
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To examine whether the proportion of sites within predicted domains indeed 

provide information about functional density, we conducted three tests.  First, based on 

the domains predicted by ProSite, we found that sites within domains evolve more slowly 

than those outside domains in 89% of the yeast genes.  The corresponding number is 77% 

when the domains are predicted by InterProScan.  These percentages are significantly 

greater than the random expectation of 50 percent (P < 10-100, #2 test).  Second, the mean 

dN within domains is 40% and 54% that outside domains in ProSite and InterProScan 

analysis, respectively, both being significantly different from the random expectation of 

100% (P < 10-50, paired t-test).  Finally, we examined if there is a negative correlation 

between the proportion of sites within domains and the evolutionary rate of the gene, and 

found the correlation to be ! = -0.24 (P < 10-50) and -0.56 (P < 10-50), respectively, in 

ProSite and InterProScan analysis.  Taken together, the proportion of sites within 

predicted domains indeed provide information about functional density and thus may be 

used as a proxy for !. 

Because our results do not support the lab-nature mismatch hypothesis, we here 

consider only experimentally measured gene importance under YPD (").  We found very 

weak positive correlation between ! estimated by ProSite and " (% = 0.049, P = 0.0002) 

(Figure 5.3A).  If InterProScan predictions are used, there is a stronger positive 

correlation between ! and " (% = 0.15, P < 10-30), suggesting that important genes tend to 

have a higher fraction of functional sites (Figure 5.3B).  We also repeated the analysis 

under more stringent criteria of InterProScan where a site is considered as a functional 

domain site only when it is recognized by at least 3 to 6 algorithms.  The observed 

correlation between ! and " remains significant (% = 0.08-0.12, P < 0.0001).   

However, the above analysis has a confounding factor.  Because sequence 

conservation information is used in predicting functional domains and because important 

genes tend to be more conserved in sequence (though the correlation is weak), the above 

observed level of positive correlation between a and b may in part or in total due to the 

artifact of the analysis.  Indeed, we found that after the control of dN, the partial 

correlation between a and b becomes % = 0.0190 (P = 0.240) for the ProSite analysis and 

% = -0.0110 (P = 0.497) for InterProScan analysis ($ two algorithms).  This result 
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suggests no genuine correlation between ! and ".  Thus, the weakness of the correlation 

between gene importance and evolutionary rate is unlikely the result of a potential 

negative correlation between gene importance and functional density. 

  

5.3.5 Why is the correlation between gene importance and evolutionary rate 

so weak? 
Our analysis rejected two frequently proposed explanations of the weakness of the 

observed correlation between gene importance and evolutionary rate, raising the question 

of why the correlation is so weak.  As mentioned in Introduction, depending on the 

distribution of the fitness effect of deleterious mutations, the expected correlation may 

not be strong (Figure C.10 and Appendix B).  In addition, there may be other reasons.  

Bivariate analysis of yeast data revealed a strong negative correlation between gene 

expression level and evolutionary rate (Pal, Papp, and Hurst 2001), which led to the 

recent proposal of the translational robustness hypothesis, asserting that selection against 

toxicity of misfolded proteins generated by translational errors is the single most 

important factor governing the rate of protein sequence evolution (Drummond, Raval, 

and Wilke 2006; Drummond and Wilke 2008).  This hypothesis explains several factors 

known to correlate with the rate of protein sequence evolution (e.g., gene expression level 

and codon usage bias).  However, many other rate determinants are known in yeast, 

including the number of protein interaction partners and gene length, although their 

impacts on the evolutionary rate are generally much smaller than that of gene expression 

level (Pal, Papp, and Lercher 2006).  Principal component regression analysis and partial 

correlation analysis have suggested independent and significant contributions of all these 

factors (Kim and Yi 2007; Plotkin and Fraser 2007), although it is not always clear how 

these factors determine the rate of gene evolution independently from the influence of 

gene importance (Drummond et al. 2005).  In bacteria and mammals, independent 

contributions from multiple factors to gene evolutionary rate are also known (Rocha and 

Danchin 2004; Liao, Scott, and Zhang 2006).  Theoretically speaking, the single most 

important rate determinant is the fraction of mutations that are unacceptable to the gene 

(!), but this fraction is affected by many biological factors.  The fact that the rate of gene 

evolution is jointly determined by multiple independent factors, some of which are 
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stronger determinants than gene importance, is likely an additional reason why the rate is 

only weakly correlated with gene importance.  To simplify the explanation, let us assume 

that the rate of gene evolution (k) is determined linearly by n independent factors (A1 to 

An) as , where # represents the statistical error that cannot 

be explained by the n factors and ai’s are coefficients.  Pearson’s correlation coefficient 

between k and factor Ai is 

,           (5.3) 

where Var stands for variance and Cov stands for covariance.  Because one rate 

determinant, gene expression, already accounts for >25% of the variance of k 

(Drummond, Raval, and Wilke 2006; Drummond and Wilke 2008) and several other 

factors also make independent and nontrivial contributions (Kim and Yi 2007; Plotkin 

and Fraser 2007), the correlation between gene importance and evolutionary rate is much 

weakened, compared to that when gene importance is the sole contributor..    

 

5.3.6 Implications for predicting functional importance 
Taken together, we showed empirically that the correlation between gene 

importance and gene evolutionary rate is weak and showed that this weakness may not be 

inconsistent with theoretical predictions.  In fact, if we randomly pick two yeast genes, 

the probability that the slower evolving of the two is the more important one is only 54% 

(based on 100,000 pairs of randomly sampled genes under YPD) (Figure 5.4A).  That is, 

the prediction based on one of the foremost principles of molecular evolution has a 

success rate of only 54%, not much greater than that of a pure guess (50%).  When the 

two genes being compared have a larger difference in evolutionary rate, the prediction 

about their relative importance becomes more accurate, as expected (Figure 5.4A).  For 

example, we ranked all yeast genes by their evolutionary rates and found that when two 
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genes are separated in rank by over 95% of all genes, the probability that the slower 

evolving one is more important than the other is 81% (Figure 5.4A).  Essential genes are 

functionally most important.  When the gene importance data from YPD is considered, 

we found that 55% of the top 5% most conserved genes are essential, whereas only 20% 

of the remaining 95% of yeast genes are essential (Figure 5.4B).  Similar results are 

found using the gene importance data from the other 418 lab conditions (Figure 5.4B).  

Note that the above demonstrated predictability may not be entirely due to the causal 

relationship between gene importance and evolutionary rate, because other confounding 

factors such as gene expression level have not been controlled for.  Regardless, our 

results show that although the correlation between gene importance and evolutionary rate 

is weak, the principle does have some predictive power when genes of extreme sequence 

conservation are considered. 

 

5.3.7 Caveats 
There are several caveats in our analysis that warrant discussion.  First, 

experimental measures of gene importance are not without errors.  Repeated measures of 

gene importance under the same conditions showed a correlation as high as 0.92 for the 

YPD data (Steinmetz et al. 2002) but a reduced mean correlation of 0.72 for the other 418 

lab conditions (Hillenmeyer et al. 2008), possibly due to less well controlled 

experimental procedures in the latter.  Thus, the gene importance data we used could 

potentially explain a maximum of 0.722 = 52% of the variance of the evolutionary rate.  

But the strongest correlation actually observed was only r2 = 4.3% among the 418 

individual conditions and 4.8% among combinations of the 418 conditions, both being 

substantially lower than the theoretical maximum.  Similar arguments can be made for 

the analysis based on computationally predicted gene importance values. 

Second, a limitation in using dN and dN/dS to measure the rate of gene evolution is 

that they can be used only for those S. cerevisiae genes that have orthologs in the species 

being compared with (i.e., S. bayanus).  Our results would not represent a full picture if 

genes with and without orthologs have drastically different levels of gene importance.  To 

examine this possibility, we compared their importance levels.  Because we used 

reciprocal best hits in BLAST searches to define orthologs, a S. cerevisiae gene would 
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not have its operational S. bayanus ortholog, if (i) the gene evolved extremely fast, (ii) 

the gene has been lost in S. bayanus, or (iii) the gene has been duplicated in S. cerevisiae 

such that its S. bayanus best hit happens to find its paralog to be the best hit.  Thus, we 

separated S. cerevisiae genes into singletons and duplicates.  We found no significant 

difference in gene importance between S. cerevisiae genes with and without S. bayanus 

orthologs, for either singletons (P = 0.11, Mann-Whitney U test; Table C.8) or duplicates 

(P = 0.63, Table C.8).  Hence, the potential bias of studying only S. cerevisiae genes that 

have S. bayanus orthologs is negligible.  

Third, we used three different measures of gene evolutionary rate: dN, dN/dS, and 

PGL.  They all have pros and cons, aside from the above consideration.  In principle, 

dN/dS would be the best measure, because it best measures k/u, which is determined by ! 

and " only, according to Equation 5.1.  Estimates of dN/dS, however, suffer from two 

problems.  First, dS values may have been saturated because the average dS between S. 

cerevisiae and S. bayanus is as high as 1.24.  Although using more closely related species 

could improve the estimation of dS, it would increase the estimation error of dN and that 

of dN/dS, due to a reduced number of nonsynonymous substitutions per gene.  Second, 

codon usage bias, prevalent in highly expressed genes of yeast, could lead to 

underestimation of neutral substitution rates and thus overestimation of k/u.  Because of 

the positive correlation between the importance of a gene and its expression level (Zhang 

and He 2005), codon usage bias causes greater overestimation of k/u for more important 

genes, weakening the negative correlation between k/u and gene importance.  If there is 

little variation in mutation rate among genes, dN would be a better index of evolutionary 

rate for our purpose than dN/dS, because estimates of dN have smaller sampling errors 

than those of dN/dS.  Our results show stronger correlations between gene importance and 

dN, compared to that between gene importance and dN/dS, suggesting that the 

disadvantages of using dN/dS outweigh its advantages.  Propensity for gene loss (PGL) 

treats each gene as a unit and does not consider the number of substitutions per 

nucleotide or amino acid site.  It is thus conceptually different from the evolutionary rate 

that Kimura and Ohta (Kimura and Ohta 1974) and Wilson et al. (Wilson, Carlson, and 

White 1977) referred to.  There are three reasons underlying our observation that gene 

importance correlates more poorly with PGL than with dN and dN/dS.  First, because PGL 



 105 

is determined by the fixation of null mutations but not slightly deleterious mutations, it 

should be less influenced by gene importance, as explained in Introduction and Figure 

C.10.  Second, estimation of PGL requires genome sequences from a number of species 

related to the focal species of interest (S. cerevisiae).  In the present case, PGL is 

estimated from 12 diverse fungi and thus may not accurately reflect the propensity of 

gene loss in S. cerevisiae, because the importance of a gene can change in evolution 

(Zhang and He 2005; Liao and Zhang 2008).  Third, estimates of PGL potentially have 

large sampling errors, because the estimated number of losses per gene is quite small.   

Fourth, to understand why no single condition or combination of single conditions 

provides gene importance values that correlate strongly with evolutionary rates, we 

classified enzyme genes into three groups (always-essential, sometimes-essential, and 

always-nonessential) and compared their respective evolutionary rates.  Due to 

computational intensity, our classification was based on the FBA analysis of 104 

simulated conditions, while in theory it should have been based on all possible 

conditions.  This limitation potentially caused misclassification of some truly sometimes-

essential genes as always-essential genes or always-nonessential genes and hence blurred 

the differences among the three groups.  To rectify this problem, we used a strategy that 

guarantees the identification of all always-essential genes.  The metabolic model of yeast 

allows us to know all nutrients that can be used by this metabolic model.  If a gene is 

essential when all these nutrients are present, it must be essential when one or more of 

these nutrients are absent.  We find that in fact the always-essential genes thus identified 

are identical to those identified from the 104 simulated conditions.  There is, however, no 

systematic way to guarantee the exact separation of sometimes-essential and always-

nonessential genes.  We thus merged them and compared this combined group with 

always-essential genes.  Again, we do not find the combined group to have significantly 

greater dN, dN/dS, or PGL than always-essential genes (Figure 5.2).  Thus, our result is 

true not only for the 104 simulated conditions, but also for all possible combinations of 

nutrients usable by the yeast metabolic model.  Our result differs from that of Papp et al. 

(Papp, Pal, and Hurst 2004) where they found that enzyme genes active in more 

conditions have lower probabilities of presence in the genomes of 133 diverse species.  

At least five reasons may account for this difference.  First, we counted PGL on a known 
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phylogeny of related species using the parsimony method whereas these authors simply 

calculated the percentage of species that do not have the gene without considering the 

species phylogeny (Papp, Pal, and Hurst 2004).  Second, most of the species they used 

are distantly related to yeast and their result is expected to be highly dependent on the 

choice of species.  Third, we considered gene essentiality, a more relevant measure of 

gene importance than gene activity, because deleting an active gene may or may not have 

any fitness consequence, depending on alternative pathways in the metabolic network.  

Fourth, we used a more recent reconstruction of the yeast metabolic network, which is 

more complete and accurate than the one they used.  Fifth and most importantly, because 

only nine conditions were examined, their result could simply be due to small sample 

size. 

 Fifth, Hirsh and Fraser suggested that the correlation between gene importance 

and evolutionary rate should exist only among genes with relatively low importance 

(Hirsh and Fraser 2001).  This is because, in Equation 5.1, f quickly declines to virtually 

0 when ! increases from 0 to 0.1 and any further increase in % has negligible effects on f 

and k, although Hirsh and Fraser came to this conclusion using a more complex model 

(Hirsh and Fraser 2001).  However, we found that the correlation for genes with ! < 0.1 is 

extremely weak (! = -0.05 for YPD and the strongest ! = -0.04 among the 418 

experimental conditions).  We cannot test genes with even smaller ! because the accuracy 

of the estimated ! decreases and the number of useable genes decreases.  The 

contradiction between Hirsh and Fraser’s prediction and our empirical observation can be 

understood using Figure C.10.  Apparently, when there are many slightly and moderately 

deleterious mutations, use of all genes provides a stronger correlation than using only 

unimportant genes, because the expected evolutionary rates can still be different between 

a gene with ! = 0.2 and a gene with ! = 0.3 (Figure C.10K).  For example, in Figure 

C.10L, using only genes with ! < 0.1 gives ! = -0.36, whereas using all genes gives ! = -

0.83. 

Sixth, the correlation between gene importance and evolutionary rate reported 

here may be in part caused by other co-varying factors.  For three reasons, we did not 

control for confounding factors in our analysis.  First, previous authors already 

determined that the correlation is statistically significant even after the control of 
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confounding factors (Wall et al. 2005; Zhang and He 2005).  Second, our goal here is to 

discern why the correlation is so weak even when part of it may come from confounding 

factors.  Third, we study the difference in the magnitude of the correlation when various 

gene importance measures are used; confounding factors such as gene expression level 

would not affect this difference. 

 

 

5.4 CONCLUSIONS AND IMPLICATIONS 
Despite the general belief and wide application of the principle that important 

genes evolve more slowly than less important ones, genomic analysis showed that the 

correlation between gene importance and evolutionary rate is quite weak.  Our analysis 

does not support the hypothesis that the weakness of the observed correlation is due to 

the difference between gene importance in the lab and in nature.  Furthermore, we found 

no evidence for the possibility that the correlation is weakened by the potential presence 

of a smaller fraction of functional sites in more important genes.  We conclude that the 

weakness of the correlation is factual, rather than artifactual.  This conclusion is not 

inconsistent with population genetic predictions, because the predictions vary depending 

on the prevalence and distribution of the fitness effect of deleterious mutations.  

Our result cautions molecular biologists from predicting relative functional 

importance of genes directly from their relative levels of evolutionary conservation.  

Nevertheless, our finding that extremely conserved genes are highly likely to be 

functionally very important may explain the universal perception that the principle of 

slower evolution of more important genes (or DNA sequences) works well.  For example, 

substantial amount of comparative genomic work aims at using the principle to identify 

functional non-coding sequences based on their extremely low rates of nucleotide 

substitution (Boffelli et al. 2003; Kellis et al. 2003; Xie et al. 2005; Pennacchio et al. 

2006).  An ultra-conserved non-coding sequence is a segment of DNA of over 200 

nucleotides with no variation among human, mouse, and rat.  Pennacchio et al. found that 

such ultra-conserved sequences, when they are also conserved between mouse and fish, 

have a probability of 62% to be actual enhancers during mouse embryonic development 

(Pennacchio et al. 2006).  Compared to the virtually zero probability with which a 
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random segment of DNA in the mouse genome is an enhancer, the principle appears to 

work well.  This success is not surprising, because only extremely conserved non-coding 

sequences are considered.  Nevertheless, it should be noted that although a large fraction 

of extremely conserved non-coding sequences are functional, many functional sequences 

are not extremely conserved.  In other words, the current application of the principle in 

detecting functional non-coding sequences has a high false-negative rate.  Thus far, there 

has been no evidence that the correlation between sequence importance and evolutionary 

rate is stronger for non-coding regions than for coding regions.  One reason for a 

potentially stronger correlation for non-coding regions is that several rate determinants in 

coding sequence evolution simply do not exist in non-coding sequence evolution (e.g., 

codon usage bias, amount of translation, gene length, and number of protein-interacting 

partners).  In addition, the fraction of mutations that are slightly deleterious may be 

greater for non-coding regions than for coding regions, given the high modularity of 

regulatory sequences.  In the future when relative importance of many functional non-

coding sequences is measured, it will be interesting to examine whether non-coding 

sequences exhibit a greater correlation between importance and evolutionary rate. 

 

 

5.5 MATERIALS AND METHODS 
5.5.1 Yeast gene importance values under YPD and other 418 lab conditions 
 The fitness values of homozygous-single-gene-deletion yeast strains in the YPD 

medium (Steinmetz et al. 2002) were downloaded from http://www-

deletion.stanford.edu/YDPM/YDPM_index.html.  The corresponding data from the other 

418 lab conditions (Hillenmeyer et al. 2008) were obtained from 

http://chemogenomics.stanford.edu:16080/supplements/global/download.html.  The 

microarray raw data were processed by the author-provided Perl scripts and were then 

normalized to the central mean to yield the relative fitness values of the deletion strains 

under each condition. 
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5.5.2 Yeast metabolic network 
The metabolic network model of S. cerevisiae (iND 750) (Duarte, Herrgard, and 

Palsson 2004) used in this study was downloaded from the BiGG database 

(http://bigg.ucsd.edu) and parsed by the COBRA toolbox (Becker et al. 2007).  The 

network is composed of 1149 reactions, associated with 750 known genes.  Some 

reactions do not have associated genes because the genes whose protein products catalyze 

these reactions have yet to be identified.  The network model also provides information 

about stoichiometry, direction of reaction, and gene-reaction association.  We followed 

an established protocol (Burgard et al. 2004) to identify dead-end reactions, which are 

reactions that must have zero flux under a steady state.  These reactions are involved in 

the generation of metabolites that are neither included in biomass nor transported outside 

the cell, and may reflect the incompleteness of the metabolic network model.  After the 

removal of dead-end reactions, the yeast metabolic network used in our analysis contains 

632 biochemical reactions with 546 associated enzyme genes. 

 

5.5.3 Flux balance analysis (FBA) and minimization of metabolic adjustment 

(MOMA) 
Details of FBA have been described in the literature (Edwards, Covert, and 

Palsson 2002; Price, Reed, and Palsson 2004).  Briefly, the flux of each reaction is 

determined by maximizing the rate of biomass production under the assumption of steady 

state and the constraints of stoichiometry.  We used the optimization package CPLEX 

(www.ilog.com) to solve the linear programming problem.  Gene deletion is modeled by 

constraining the flux of the corresponding reaction to zero.  

 MOMA has been previously described in detail (Segre, Vitkup, and Church 

2002).  Briefly, MOMA predicts the maximal biomass production rate upon deletion of a 

reaction by minimizing the differences in all metabolic fluxes between the deletion strain 

and the wild-type strain.  All the constraints used in FBA are still enforced in MOMA.  

The quadratic programming problem is also solved by CPLEX.  As in FBA, deletion of a 

gene is realized by constraining the flux of the corresponding reaction to zero. 
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5.5.4 Simulation of nutritional conditions 
The natural environments of yeast may change frequently.  It is also likely that 

yeast usually faces nutritionally poor conditions but occasionally encounter rich 

conditions.  To mimic their natural environments, we simulate random nutritional 

conditions in the following manner.  For each condition, we generate a random number g 

from an exponential distribution with a mean of m = 0.1 for each of the 103 usable 

carbon-source nutrients.  Here, g is the probability that the carbon-source nutrient is 

available.  The actual presence or absence of each nutrient is then determined 

stochastically using g.  We then add all required inorganic metabolites.  Use of other m 

values (0.05 or 0.5) does not change our results.  For each available nutrient, we fix the 

uptake rate at a random value between 0 and D = 20.  The actual D value used is 

unimportant and does not alter our result.  Only conditions that support the growth of the 

wild-type cell, as shown by FBA, are considered. 

 

5.5.5 Separation of singleton from duplicate genes 
 Singleton and duplicate genes of yeast S. cerevisiae are identified by BlastP 

searches of each gene against all other genes in the genome.  A gene is considered as a 

duplicate if it hits at least one other gene in the genome with the criteria of an E-value = 

10-10 and an alignable region > 50% of the longer sequence.  Otherwise, it is treated as a 

singleton. 

 

5.5.6 Gene evolutionary rates 
 Following (Zhang and He 2005), we used the maximum likelihood method to 

estimate synonymous (dS) and nonsynonymous (dN) substitution rates of yeast genes by 

comparing the orthologous genes of S. cerevisiae and S. bayanus, which were identified 

by reciprocal best BLAST hits.  The PGL information was obtained from a previous 

study (Wang and Zhang 2007), which used the parsimony principle to estimate the 

number of gene losses on the phylogeny of 12 fungi (S. cerevisiae, S. bayanus, S. 

paradoxus, S. mikatae, Candida glabrata, Kluyveromyces lactis, Eremothecium gossypii, 

Debaryomyces hansenii, Yarrowia lipolytica, Neurospora crassa, Kluyveromyces waltii, 

and Schizosaccharomyces pombe). 
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5.5.7 Protein domain identification 
 We downloaded the latest release (Release 20.27) of protein domain scan 

algorithm ProSite (Hulo et al. 2006) from ftp://ca.expasy.org/databases/prosite/, where an 

executable program and a compiled domain motif database were available.  InterProScan 

(Mulder and Apweiler 2008) was downloaded from 

http://www.ebi.ac.uk/Tools/InterProScan/ with the current-release database, and was set 

up to run locally to identify protein domains. 
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Figure 5.1  Frequency distributions of Spearman’s rank correlation coefficient ! 
between gene importance (i.e., fitness reduction upon gene deletion) and 
evolutionary rate across many conditions.  Gene importance is measured by 
experiments in 418 lab conditions (panels A-C), predicted by FBA for enzyme genes in 
104 simulated nutritional conditions (D-F), or predicted by MOMA for enzyme genes in 
the same 104 conditions (G-I).  Gene evolutionary rate is measured by nonsynonymous 
substitution rate dN (A, D, G), nonsynonymous/synonymous rate ratio dN/dS (B, E, H), or 
propensity for gene loss PGL (C, F, I).  The yellow arrow in each panel indicates the 
observed correlation using gene importance values experimentally determined in the 
YPD medium and the red arrow indicates the strongest correlation across the conditions 
examined.  The numbers of genes used are 3999 for panels A-C, 478 for panels D, E, G, 
and H, and 546 for panels F and I.  The gene number is lower than 546 for panels D, E, 
G, and H, because some S. cerevisiae genes do not have orthologs in S. bayanus.  The 
yellow arrow is on the left-hand side of the red arrow in panels G, H, and I, because, 
under all simulated conditions, MOMA-predicted fitness values have weaker correlations 
with the evolutionary rates than that observed under YPD. 
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Figure 5.2  Always-essential enzyme genes do not evolve significantly slower than 
sometimes-essential and always-nonessential ones, regardless of the measure of the 
evolutionary rate.  Error bars show one standard error.  P-values are from Mann-
Whitney U test between groups of genes.  The numbers of genes used are 478 for panels 
A and B and 546 for panel C. 
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Figure 5.3  Relationship between the importance (!) and functional density (") of 
genes. Gene importance is measured by the experimentally determined fitness reduction 
upon gene deletion in YPD.  Functional density is measured by the proportion of amino 
acid sites within functional domains predicted by (A) the ProSite algorithm or (B) 
InterProScan.  In InterProScan, a site is considered a domain site when predicted by at 
least two algorithms.  A total of 5936 yeast genes are used in this analysis.  
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Figure 5.4  Predictability of the principle of slower evolution of more important 
genes.  (A)  Predictions of relative gene importance are more likely to be correct when 
the difference in evolutionary rate between the two genes under comparison increases.  
Rank difference shows the minimal fraction of genes in the genome whose ranks in dN 
are between the two genes under comparison.  Gene importance is measured by the 
amount of fitness reduction caused by the deletion of the gene under YPD.  For each rank 
difference criterion, 100,000 random pairs of genes satisfying the criterion are used to 
estimate the prediction accuracy.  (B) Extremely conserved genes (measured by dN) are 
more likely to be essential.  For the 418 lab conditions, the average proportion of 
essential genes among the 418 lab conditions and its standard error are shown.       
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 Table 5.1  Strongest correlations between gene evolutionary rate and importance 
measured at different conditions. 
 
 

                                  Measures of evolutionary rate  

Conditions (methods) dN dN/dS PGL 

418 individual lab conditions 
(experimental) -0.2082a (1E-39b) -0.1520 (1E-21) -0.1122 (1E-12) 

Combined lab conditions 
(experimental) -0.2187 (1E-43) -0.1580 (1E-23) -0.1185 (1E-13) 

10,000 individual simulated 
conditions (FBA) -0.1193 (0.009) -0.0747 (0.14) -0.0868 (0.04) 

Combined simulated conditions 
(FBA) -0.1252 (0.006) -0.0767 (0.12) -0.0937 (0.03) 

10,000 individual simulated 
conditions (MOMA) -0.1354 (0.003) -0.0748 (0.13) -0.0941 (0.03) 

Combined simulated conditions 
(MOMA) -0.1442 (0.002) -0.0786 (0.12) -0.1021 (0.02) 

a Pearson's correlation coefficient    
b P-value    
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CHAPTER 6 
 

Conclusions 
 

 

6.1 CONCLUDING REMARKS 
In this dissertation, I addressed several complex genetic and evolutionary 

phenomena by systems biology approaches.  Using large-scale functional genomic data 

and network analysis methods, I uncovered the genome-wide patterns and genetic 

mechanisms of modularity, redundancy, and pleiotropy.  Additionally, this systemic 

approach allows me to investigate the rate determinants of protein evolution from a new 

angle.  Partly because of the use of new approaches, the conclusions from my studies 

challenge many common believes and deepen our understandings of the organization and 

evolution of some complex genetic systems. 

In Chapter 2, I studied the modular organization of the protein interaction 

network.  I showed that although the protein interaction network shows a much higher 

modularity than a random network with a similar network topology, the identified 

structural modules do not correspond to known functional units.  In addition, I found that 

these structural modules are unconserved across species.  These results contradict the 

common belief that modularity in cellular function may have arisen from the modularity 

in the underlying molecular interaction networks (Hartman, Garvik, and Hartwell 2001; 

Wagner, Pavlicev, and Cheverud 2007).   Using computer simulation, I further 

demonstrated that the network modules can originate simply as a byproduct of the 

process of gene duplication.  My results echo some recent studies of motifs in 

transcriptional regulatory networks showing that the structural motifs do not represent 

functional units, are not subject to natural selection, and might be the result of random 

gene duplication and mutation (Mazurie, Bottani, and Vergassola 2005; Cordero and 

Hogeweg 2006; Dwight Kuo, Banzhaf, and Leier 2006).  
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Biological systems are also known to be redundant, but the level of redundancy 

has never been quantitatively assessed at the systems level (Wagner 2005a; Wagner 

2005b).  In Chapter 3, I examined redundancies in the yeast and E. coli metabolic 

networks using flux balance analysis (FBA) (Price, Reed, and Palsson 2004).  Although 

my definition of functional redundancy is stringent, the results showed that the amount of 

redundancy is surprisingly high.  A more interesting and challenging question is how the 

redundancies are maintained in the system during evolution.  Many biologists believe that 

redundancies are favored by natural selection (de Visser et al. 2003; Wagner 2005b).  

However, my direct test of the key prediction of the adaptive backup hypothesis of higher 

redundancy for more important functions did not produce positive results.  My theoretical 

population genetic analysis and empirical metabolic network analysis demonstrated that 

the majority of the redundant reactions can be maintained if the species alternates among 

different nutritional environments, which is plausible for both E. coli and yeast.  The 

remaining redundant reactions are largely explained by the pleiotropic effect.  Together, 

these and a few other minor mechanisms explain the evolutionary preservation of 95% of 

the identified redundant reactions.  Thus, I gave an answer to the long-standing puzzle of 

how redundant reactions are evolutionarily maintained.  Although my analyses are 

limited to the metabolic network, the obtained biological principles and insights are likely 

to be applicable to redundancies in other biological systems, because all biological 

systems can be treated as complex networks.  

In Chapter 4, I studied the genomic patterns of gene pleiotropy.  In spite of its 

broad implications in genetics and evolutionary biology, the genomic patterns of 

pleiotropy are unclear (Carroll 2008; Tyler et al. 2009).  I found that most genes have 

only low degree of pleiotropy and that the gene-trait relationship is highly modular.  

Furthermore, the quantitative pleiotropy data showed that genes affecting more traits tend 

to have larger per-trait phenotypic effects.  Because of its central importance, pleiotropy 

has been extensively modeled, albeit with virtually no empirical basis (Waxman and Peck 

1998; Orr 2000).  My results from the analysis of five large datasets of three species with 

varying degrees of complexity indicate that general patterns of pleiotropy exist and that 

the observations are likely to be true for all eukaryotes.  The “cost of complexity” 

conundrum, which is based on a previous model of pleiotropy, has long puzzled 
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evolutionary biologists (Orr 2000).  Now I show that the conundrum disappears when 

correct parameters of pleiotropy are used.  More interestingly, I found that the observed 

value of a key parameter of pleiotropy is in a narrow range that maximizes the optimal 

complexity, which suggests that pleiotropy not only allowed but may have also promoted 

the origin of complexity.   Whether these pleiotropy patterns are the results of natural 

selection for evolvability or byproducts of other processes will likely become a 

stimulating question for future exploration. 

In the past few years, it has been of great interest to identify nonrandom patterns 

in biological systems, because such nonrandomness is often interpreted as having 

functional significance and having been favored by natural selection (Alon 2003).  While 

this may be true in some cases, a nonrandom pattern can also originate as a byproduct of 

other processes without having its own function or advantage.  In the first section of my 

dissertation, modularity and redundancy, two genetic properties widely believed to be 

biologically important and adaptively selected, are added to this growing list of 

byproducts of other evolutionary processes.  The three genomic features I studied, 

modularity, redundancy, and pleiotropy, are also inter-related in their contribution to 

genetic robustness and evolvability (Wagner 2005b; Lenski, Barrick, and Ofria 2006).  

Robustness measures the persistency of a genetic system when facing environmental 

perturbations and mutations.  Redundancy is one of the most important mechanisms 

contributing to genetic robustness, as high redundancy ensures high robustness against 

mutations.  My results suggest that the genetic robustness of metabolism is an 

evolutionary byproduct rather than something that has been enhanced directly by natural 

selection.  On the other hand, evolvability measures the tendency of a genetic system to 

adapt to a new environment.  My results from the pleiotropy study suggest that pleiotropy 

can increase the evolvability of an organism, because pleiotropy promotes the evolution 

of complexity to some degree.  The prevailing view is that genetic robustness constrains 

evolvability, because robust systems are resistant to changes and thus are less likely to 

evolve new traits (Lenski, Barrick, and Ofria 2006).  By contrast, my studies imply that 

genetic robustness actually enhances evolvability.  First, the genetic robustness of 

metabolic networks directly resulted from the requirement of the organisms to survive in 

multiple different environments.  Second, it is interesting to note that functional 
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redundancy in metabolic networks can also result from gene pleiotropy, which is 

positively associated with evolvability.  Third, although I found that modularity in protein 

interaction networks lacks biological significance, modularity in metabolic networks and 

gene pleiotropic networks can enhance both the robustness and evolvability of the 

system. 

In the second section and my last major chapter, Chapter 5, I applied the systems 

biology approach to the study of protein evolution.  It is commonly believed that 

functionally more important genes evolve more slowly than less important ones (Karp 

2008).  However, empirical data revealed only weak negative correlations between gene 

importance and evolutionary rate (Wall et al. 2005; Zhang and He 2005).  After 

surveying 10,000 different nutritional conditions using FBA, I showed that neither the 

lab-nature mismatch nor a potentially biased among-gene distribution of functional 

density explains the observed weakness of the correlation between gene importance and 

evolutionary rate.  I thus conclude that the weakness is factual rather than artifactual and 

suggest that it is likely due to the presence of many rate-determinants that are 

independent from gene importance.  My results caution molecular biologists from 

predicting relative functional importance of genes directly from their relative levels of 

evolutionary conservation.  Nevertheless, the demonstration that the principle of slower 

evolution of more important genes does have some predictive power when genes with 

vastly different evolutionary rates are compared may explain why the principle can be 

practically useful despite the weakness of the correlation.  In particular, substantial 

amount of comparative genomic work has successfully identified functional non-coding 

sequences based on their extremely low rates of nucleotide substitution (Boffelli et al. 

2003; Pennacchio et al. 2006).  However, it remains to be seen whether non-coding 

sequences exhibit a stronger correlation between importance and evolutionary rate. 

On the other hand, for all of my studies, I acknowledge that the results and 

interpretations are dependent on the quality of the datasets.  Because high throughput 

functional genomics techniques are still at the early stage of development, and in 

particular, the protein-protein interaction data are highly incomplete and contain large 

number of false positives, my conclusions will need to be further verified when more and 

better quality datasets are available. 
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In summary, systems biology is a relatively new field.  However, I was able to 

apply the systems concepts and approaches to address some of the most fundamental yet 

difficult questions in evolutionary biology.  I believe that my results provide deepened 

understandings and fresh perspectives on these and other fundamental characteristics of 

life.  More importantly, they offer brightened prospects for systems approaches to these 

questions.  The continuing generation of large-scale biological data and development of 

new high-throughput techniques are going to provide more comprehensive measures of 

biological systems.  Therefore, I believe that systems approaches will become more 

powerful in explaining the genetic and evolutionary mechanisms of life. 
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APPENDIX A 
 

Mathematical Analysis of Pleiotropic Scaling 
 

 

A.1 GENES AFFECTING MORE TRAITS HAVE LARGER PER-

TRAIT EFFECT 
 Comparing two genes both with normal distributions of effect sizes but with 

different standard deviations, here we prove mathematically that the gene with the larger 

standard deviation affects more traits (when an effect-size cutoff is applied) and has on 

average a larger per-trait effect.   

For a given gene, let f(x) be the probability density function of the distribution of 

effect size, where effect size is measured by Z-scores.  Based on empirical observations, 

we assume that f(x) is a normal distribution with mean equal to 0 and standard deviation 

equal to t, or  

 .      (A.1) 

Let g > 0 be the cutoff used to determine whether a trait is regarded as being affected 

significantly by the gene.  The mean effect size per trait F(t) can be expressed as 

 ,     (A.2) 

where 
 
Below, we prove that F(t) is a 

monotonically increasing function of t, or F’(t) > 0.   

We have
 

.
  (A.3) 
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where   We can derive that 

    

(A.4) 

Therefore,
  

(A.5)
 

Because it can be shown that 

    (A.6) 

A is positive.  Because B is also positive, F’(t) is positive.  In other words, F(t) is a 

monotonically increasing function of t. 

Let N be the total number of traits considered.  Then the number of traits affected 

by a gene is .  Because  is positive, n is a monotonically increasing 
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function of t.  Thus, both F(t) and n(t) increase with t.  In other words, when t is larger, 

both the number of affected traits and the mean effect size increase, which creates the 

phenomenon of larger per-trait effect sizes for genes affecting more traits.  Although in 

the above proof only traits with Z-scores larger than a positive cutoff g are considered to 

be affected by a gene, the result is the same when traits with Z-scores smaller than a 

negative cutoff g are considered to be affected, because f(x) is symmetrical to 0.  Thus, 

when all traits with absolute Z-scores larger than a cutoff g > 0 are considered to be 

affected, which is what we did in actual data analysis, the above proof is also valid.   

 Note that our proof assumes that we use a constant cutoff g > 0 for all genes.  In 

the actual data analysis, the cutoff may vary for different genes when the same false 

discovery rate is used to determine the cutoff.  However, the small variation in cutoff 

apparently did not affect the general trend of larger per-trait effect sizes for genes 

affecting more traits.     

 

 

A.2 EXISTENCE OF NON-ZERO OPTIMAL PLEIOTROPY 
Let TE be the total phenotypic effect size of a mutation measured by the Euclidian 

distance and n be the degree of pleiotropy (or organismal complexity).  Here we prove 

that when the exponent b > 0.5 in the scaling relationship of , the highest 

adaptation rate occurs at an intermediate n.  Based on Orr (Orr 2000), the adaptation rate 

of a population is 

   

(A.7) 

where k is a positive constant dependent on population size and mutation rate, 0 < w < 1 

is the current mean fitness of the population, , and 

.  We can show that  
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   (A.8) 

It can be shown by Maxima (http://maxima.sourceforge.net/), a computer algebra system, 

that  

 ,   (A.9) 

where Erfc(x) is the complimentary error function:

 

 .    (A.10) 

Combining (8) and (9), we have   

     (A.11) 

where 

.   (A.12) 

When b = 0, .  Thus, U’(n) < 0.  This means that U(n) 

decreases with n.  Let noptimal be the n with the largest U.  Our results indicate that noptimal 

= 0. 

When b = 0.5, we can show that  
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    (A.13) 

The last step is true because x is biologically meaningful only when it is positive.  This 

means that U’(n) <0 and U(n) decreases with n.  In other words, noptimal = 0. 

When b >0.5, we have 

 and

    (A.15) 

Because m(x) is a continuous function, there exists 0 < xoptimal < 2 for which m(x) = 0 and 

U’(n) = 0.  As x moves from 0 to 2, U’ changes from positive to negative, indicating that 

xoptimal corresponds to a peak of U.  The n value determined by xoptimal thus corresponds to 

a peak of U and is positive.  Thus, we proved that, when b > 0.5, there exists a positive 

noptimal. 

 

 

A.3 REFERENCES 
Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54:13-20. 
 
 



 132 

APPENDIX B 
 

Theoretical Analysis of Protein Evolutionary Rate 
 

 

B.1 THEORETICAL EXPECTATIONS OF THE CORRELATION 

BETWEEN GENE IMPORTANCE AND EVOLUTIONARY RATE 
In the simplest model of neutral evolution, a mutation is either completely neutral 

or null (Kimura 1983).  Equation 5.1 in the main text describes the relationship between 

substitution rate and gene importance under this model.  Figure A10A shows the 

cumulative probability distribution of the deleterious effect of random mutations on gene 

function, when 80% of mutations are null (! = 0.8) and 20% are neutral.  This 

distribution predicts an L-shape curve with a square angle for the relationship between 

dN/dS (i.e., k/u in Equation 5.1) and gene importance (Figure C.10B), under the 

assumption of Ne = 107 for yeast.  We can then estimate the correlation between gene 

importance and evolutionary rate that can be observed under this model for a large set of 

genes (e.g., 1000), by considering the distribution of gene importance in yeast, errors in 

the estimation of gene importance, and errors in the estimation of dN/dS.  We first classify 

yeast genes into 10 uniform bins according to their experimentally determined fitness 

upon deletion (i.e., fitness = 0.0-0.1, 0.1-0.2, 0.2-0.3, …>0.9).  We then randomly sample 

1000 genes from these bins to represent the genome.  For each gene, a uniform random 

number in the fitness range of the bin to which the gene belongs is assigned to the gene as 

its true fitness.  The true importance value of the gene is one minus the fitness.  We 

assume that the measurement error for gene importance follows a normal distribution 

with the mean equal to 0 and standard deviation equal to 0.05.  To generate an 

“observed” gene importance value, we randomly generate an error variable following the 

above distribution and add it to the true gene importance value assigned to the gene.  The 

expected evolutionary rate for every gene can be calculated by Equation 5.1 using the 
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true importance value.  We assume that the measurement error of dN/dS follows a normal 

distribution with the mean equal to 0 and standard deviation equal to 10% of the expected 

value.  We similarly generated an “observed” dN/dS value for the gene.  After generating 

these values for 1000 genes, we measure Spearman’s rank correlation between 

“observed” dN/dS and “observed” gene importance.  Our result shows that a significant 

correlation between “observed” gene importance and “observed” evolutionary rate is not 

expected under this simple neutral model (Figure C.10C). 

However, the situation could be different when there is a large fraction of 

mutations that only slightly or moderately impair the function of a gene (Ohta 1973; Ohta 

1992).  Let the selection coefficient against a slightly/moderately deleterious mutation be 

e!, where e is the deleterious effect of the mutation on gene function and ! is the 

importance of the gene as defined in the main text.  Following a previous study (Hirsh 

and Fraser 2001), we assume that e follows a beta distribution.  A beta distribution has 

two parameters, a and b.  The mean of the distribution is a/(a+b) and the variance is 

ab/[(a+b)2(a+b+1)].  We here examine three sets of parameters for the beta distribution 

because the mean functional effect of slightly/moderately deleterious mutations in real 

genes is unknown.  As in the previous section, we still assume that 20% of the mutations 

are completely neutral.  We further assume that 20% of the mutations are null.  The 

remaining 60% of the mutations follow the beta distribution (Figure C.10D, C.10G, and 

C.10J).  As the functional effects of most non-null deleterious mutations get smaller, the 

L-shape curve for the relationship between dN/dS and gene importance starts to have a 

round angle.  Following the same simulation strategy described above, we sample 1000 

genes under this model for each parameter set.  We found that for all three parameter sets 

examined, the correlation between gene importance and evolutionary rate is statistically 

significant (Figure C.10F, C.10I, and C.10L).  In particular, when the beta distribution 

has the parameters of a = 106 and b = 1, this correlation can reach ! = -0.83, suggesting 

that a strong correlation is theoretically possible under a more realistic model of 

evolution.  Note that under the above parameter set, the deleterious functional effects of 

non-neutral, non-null mutations are concentrated between 10-7 and 10-5 (Figure C.10J).  

Because the mean gene importance is 0.3 in yeast, these mutations have a deleterious 

fitness effect between Nes = 0.3 and 30 for an average gene, where s is the selection 
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coefficient against the mutation.  This range of Nes fits the classic definition of slightly to 

moderately deleterious mutations.  The model with the other two parameter sets has little 

slightly deleterious mutations but much more moderately deleterious mutations.  

Because the proportion (x) of slightly/moderately deleterious mutations in yeast 

genes is unknown, we further examine the effect of x on the correlation between gene 

importance and evolutionary rate.  To achieve this goal, we still assume that 20% of the 

mutations are neutral, but x varies between 0 and 0.8, whereas the proportion of null 

mutations equals 0.8-x.  Similar to the above analysis, we simulate 1,000 genes and 

calculate their “observed” gene importance and “observed” evolutionary rate with 

different fractions of slightly/moderately deleterious mutations.  Here, the parameter set 

of a = 106 and b = 1 is used for the beta distribution because this parameter set best 

reflects slightly and moderately deleterious mutations for yeast, as aforementioned.  Our 

result shows that as long as there are at least 5-10% mutations that are 

slightly/moderately deleterious, the correlation between gene importance and 

evolutionary rate is substantial (Fig. C.10M). 

 

 

B.2 REFERENCES 
Hirsh AE, Fraser HB. 2001. Protein dispensability and rate of evolution. Nature 

411:1046-1049. 
Kimura M. 1983. The neutral theory of molecular evolution. Cambridge: Cambridge 

University Press. 
Ohta T. 1973. Slightly deleterious mutant substitutions in evolution. Nature 246:96-98. 
Ohta T. 1992. The nearly neutral theory of molecular evolution. Ann Rev Ecol Evol 

23:263-286. 
 
 



 135 

APPENDIX C 
 

Supplimentary Figures and Tables 
 

 

Figure C.1  Lack of obvious correspondence between structural modules and 
protein cellular locations.  In (A) and (B), each cellular location is indicated by a letter 
(A to U).  In parentheses next to the letter is the percentage of proteins in the network that 
belong to that cellular location.  Note that one protein may belong to more than one 
location.  The circles next to the grid show the statistical significance of nonrandom 
distributions of genes of the same cellular locations across modules.  Each small square 
in the grid shows the statistical significance of enrichment of a particular location in a 
module.  For the circles and squares, significance levels are indicated by different colors.  
Panels (C) and (D) show the correlation between co-membership in structural modules 
and co-localization in cellular components for all pairs of proteins in the PIC and PEC 
networks, respectively.  The circle size is proportional to the number of protein pairs.  
The line shows the linear regression and r is the correlation coefficient. 
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Figure C.2  Lack of evolutionary conservation between the yeast and nematode PPI 
modules.  (A) The observed NMI (normalized mutual information) between yeast and 
nematode modules is not significantly different from the chance expectation.  The bars 
show the distribution of NMI between the yeast and nematode modules when the yeast 
modules are randomly separated.  (B) The observed CIP (conservation index for pairs of 
proteins) between yeast and nematode modules is not significantly different from the 
chance expectation.  The bars show the distribution of CIP between the yeast and 
nematode modules when the yeast modules are randomly separated.  
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Figure C.3  Fractions of redundant, sometimes-essential, and always-essential reactions 
in different metabolic functional categories.  Error bars show one standard error. In the 
parentheses following each function are the total numbers of E. coli and S. cerevisiae 
reactions belonging to this category, respectively.  The vertical lines show the average 
fractions of the three types of reactions among all metabolic reactions.  The distributions of 
the three types of reactions are not random among the functional categories, which to some 
degree can be intuitively explained.  For instance, always-essential reactions are 
overrepresented in cell lipid membrane synthesis for both organisms.  Lipids are important 
components of the biomass and essential for cell growth.  However, cells lack transporters for 
most lipids.  Consequently, most lipid synthesis reactions are always-essential.   Always- 
essential reactions are also overrepresented in vitamin and cofactor metabolism in E. coli, but 
not in S. cerevisiae.  This is because for E. coli, vitamin and cofactors are essential biomass 
components that can only be synthesized from intermediate metabolites, while for S. 
cerevisiae, vitamin and cofactors are not considered as biomass components, potentially due 
to the limitation of the current yeast metabolic model.  Carbon and amino acid metabolites 
are important biomass constituents.  However, most carbon metabolites and all amino acids 
can be transported from outside the cell.  So, depending on the medium, reactions in carbon 
and amino acid metabolisms may or may not be essential.  Therefore, we expect enrichment 
of sometimes-essential react ions in these functional categories, as is observed here.  The 
reactions of cellular respiration are also highly redundant for both species, which is probably 
because both species can produce all biomass constituents under anaerobic conditions and 
cellular respiration reactions are only used when there is oxygen in the environment. 
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Figure C.4  Frequency distribution of the null mutation rate.  The null mutation rate u is 
measured per gene per generation for the genes associated with (A) E. coli and (B) S. 
cerevisiae metabolic reactions concerned in this work. A total of 704 genes in E. coli and 542 
genes in S. cerevisiae were used. 
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Figure C.5  Frequency distribution of the number of reactions in zero-redundancy 
metabolic networks.   (A) E. coli and (B) S. cerevisiae.  For each species, the main figure is 
obtained from examining 250 random zero-redundancy networks each in 103

 conditions, 
while the inset is obtained from examining 10 random zero-redundancy networks each in 104

 

conditions. 
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Figure C.6  Frequency distribution of the mean effect size (measured by Z-score) of 
a gene on the 279 morphological traits for all 4718 yeast genes.  Note that the effect of 
a gene on a trait can be either positive or negative. 
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Figure C.7  The phenomenon of larger per-trait effects from genes affecting more 
traits is robust.  Observed scaling relationships between the degree of pleiotropy and (A) 
Euclidean distance or (B) Manhattan distance, based on the yeast morphological 
pleiotropy data from which a random 50% of the traits are removed.  The orange curve is 
the best fit to the power function whose estimated parameters are shown inside the panel.  
The numbers after ± show the 95% confidence interval for the estimated scaling 
exponent.  Panels (C) and (D) are similar to panels (A) and (B) except that the dataset 
used is generated after the random removal of 90% of the traits.  Panels (E) and (F) are 
similar to panels (A) and (B) except that the dataset used is generated by merging traits 
with a Pearson’s correlation coefficient in gene effects greater than 0.7. 
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Figure C.8  Yeast morphological pleiotropy data analyzed using the conservative 
Bonferroni method to correct for multiple testing.  (A) Genome-wide frequency 
distribution of the degree of gene pleiotropy.  The numbers in the parentheses are the 
mean and media degrees of pleiotropy divided by the total number of traits.  After the 
removal of genes that do not affect any trait and traits that are not affected by any gene, 
there are 2091 genes and 264 traits.  (B) Observed modularity (blue arrow) and the 
distribution of modularity for 250 randomly rewired networks (red histograms).  
Observed scaling relationships between the degree of pleiotropy and the total effect size 
measured by (C) Euclidean distance or (D) Manhattan distance.  The orange curve is the 
best fit to the power function whose estimated parameters are shown inside the panel.  
The numbers after ± show the 95% confidence interval for the estimated scaling 
exponent.  R2 indicates the square of the correlation coefficient.    
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Figure C.9  Observed scaling relationships between the degree of pleiotropy and the 
total effect size.  The total effect size is measured by (A) Euclidean distance or (B) 
Manhattan distance, when the effect sizes of all genes on all traits in the actual data are 
randomly shuffled.  The orange curve is the best fit to the power function whose 
estimated parameters are shown inside the panel.  The numbers after ± show the 95% 
confidence interval for the estimated scaling exponent. 
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Figure C.10  Theoretical expectations of the correlation between gene importance 
and evolutionary rate under neutral and nearly neutral models.  The cumulative 
probability functions of deleterious effects of random mutations on gene function are 
shown for the neutral model (A) and the nearly neutral model with three sets of 
parameters (D), (G), and (J).  The expected relationships between dN/dS and gene 
importance under the four situations are shown in panels (B), (E), (H), and (K), 
respectively.  When 1000 genes are simulated with measurement errors, the observed 
relationships between dN/dS and gene importance under the four situations are shown in 
panels (C), (F), (I), and (L), respectively, with the blue lines showing the linear 
regressions.  The beta distribution that describes the deleterious functional effect of 
mutations used in panels (D), (G), and (J) all have the parameter b = 1.  The parameter a 
=104, 105, and 106, respectively, for (D), (G), and (J).  Panel (M) shows Spearman’s rank 
correlation coefficient under different fractions of slightly deleterious mutations.  
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Figure C.11  Frequency distributions of Spearman’s rank correlation coefficient ! 
between gene importance and evolutionary rate across 105 simulated nutrient 
conditions.  Gene importance is predicted by FBA.  Gene evolutionary rate is measured 
by (A) nonsynonymous substitution rate dN, (B) nonsynonymous/synonymous rate ratio 
dN/dS, or (C) propensity for gene loss PGL.  The yellow arrow in each panel indicates the 
observed correlation using gene importance values experimentally determined in the 
YPD medium and the red arrow indicates the strongest correlation across the conditions 
examined. 
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Table C.1  Summary statistics of the giant component in the random networks 
generated by gene duplication followed by subfunctionalization. 
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Table C.2  Relative importance of redundant and non-redundant reactions in 10 
simulated metabolic networks of E. coli and S. cerevisiae. 
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Table C.3  Numbers (and percentages) of reactions that are always-essential, sometimes-essential, or redundant in 105 
conditions examined. 
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Table C.4  Numbers of various types of redundant reactions in E. coli and S. 
cerevisiae. 
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Table C.5  Robustness of pleiotropy estimates. 
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Table C.6  Comparison between the observed genomic patterns of pleiotropy and 
assumptions made in the existing theoretical models of pleiotropy. 
 

Features Invariant total 
effect model1 

Euclidean 
superposition model2 

Observed 
genomic patterns  

Proportion of traits 
affected by a gene 100% 100% 1% to 9% 

Modularity of the 
gene-trait network None None High 

Distribution of effect 
size on a trait Uniform  Normal Normal 

Among-gene variation in 
standard deviation of the 
effect-size distribution   

Absent  Absent Present  

Total effect size Constant Increase with 
pleiotropy 

Increase with 
pleiotropy 

Per-trait effect size Decrease with 
pleiotropy Constant Increase with 

pleiotropy 

Scaling exponent b 0 0.5 0.6 

Scaling exponent d 0.5 1 1.1 

Degree of pleiotropy 
(complexity) that offers the 

highest adaptation rate  
1 1 Intermediate level 

of pleiotropy 

1 Fisher (1930) and Orr (2000). 
2 Turelli (1985), Wagner (1988), Wagner (1989), and Waxman & Peck (1998). 
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Table C.7  High modularity of gene-trait networks. 
 

Gene pleiotropy datasets No. of traits No. of genes Modularity Scaled 
modularity 

Yeast morphological pleiotropy 
(all traits) 279 2449 0.204 36.8 

Yeast morphological pleiotropy 
(random half of the traits) 140 1902 0.221 37.7 

Yeast morphological pleiotropy 
(after the merge of related traits*) 197 2272 0.209 45.0 

     
Yeast environmetnal pleiotropy 

(all traits) 22 774 0.440 35.1 

Yeast environmetnal pleiotropy 
(random half of the traits) 11 448 0.579 13.6 

Yeast environmetnal pleiotropy 
(after the merge of related traits*) 22 774 0.440 35.1 

     
Yeast physiological pleiotropy 

(all traits) 120 1256 0.580 34.2 

Yeast physiological pleiotropy 
(random half of the traits) 60 712 0.673 62.6 

Yeast physiological pleiotropy 
(after the merge of related traits*) 118 1256 0.575 27.0 

     
Nematode pleiotropy 

(all traits) 44 661 0.544 50.4 

Nematode pleiotropy 
(random half of the traits) 22 579 0.473 48.2 

Nematode pleiotropy 
(after the merge of related traits*) 44 661 0.544 50.4 

     
Mouse pleiotropy 

(all traits) 308 4915 0.384 237.5 

Mouse pleiotropy 
(random half of the traits) 154 4901 0.449 197.4 

Mouse pleiotropy 
(after the merge of related traits*) 307 4915 0.376 202.8 

*Traits with Pearson's correlation coefficient >0.7 are merged.  Some datasets do not contain such 
correlated traits. 

 
 
 



 153 

Table C.8  No significant difference in importance between S. cerevisiae genes with 
and without S. bayanus orthologs. 
 

  
Mean fitness reduction upon gene deletion in 

YPD condition   

Genes  With orthologs Without orthologs  P-values 

Singletons  0.288 (2668a) 0.275 (883)  0.114b 

Duplicates  0.171 (1331) 0.158 (1104)  0.625 

a Number of genes in this category    
b Mann-Whitney U test    
 

 

 
 


