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ABSTRACT

Non-Canonical Scalar Fields and Their Applications in Cosmology and Astrophysics

by
Christopher S. Gauthier

Chair: Professor Ratindranath Akhoury

In this thesis we will discuss several issues concerning cosmological applications

of non-canonical scalar fields, which are generically referred to as k-essence. First,

we consider two examples of k-essence. These are the rolling tachyon and static

spherically symmetric solutions of non-canonical scalar fields in flat space. We find

constraints on the form of the allowed interactions in the first case and on the choice

of boundary conditions in the latter. For the rolling tachyon we find that at late times

the tachyon matter behaves like a non-relativistic dust, thus making it a dark matter

candidate. For the static spherically symmetric solutions we show that solutions

which are finite at the origin must have negative energy density there.

Next, we consider static spherically symmetric solutions of non-canonical scalar

fields coupled to gravity as a way to explain dark matter halos as a coherent state

of the scalar field. Consistent solutions are found with a smooth scalar profile which

can describe observed rotation curves. The non-trivial solutions have negative energy

density near the origin, though the total energy is positive. We also reconsider

the no scalar hair theorems for black holes with emphasis on asymptotic boundary

conditions and superluminal propagation.
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After this we show that, for general scalar fields, stationary configurations are

possible for shift symmetric theories only. This symmetry with respect to constant

translations in field space should either be manifest in the original field variables or

reveal itself after an appropriate field redefinition. In particular this result implies

that neither k-essence nor quintessence can have exact steady state/Bondi accretion

onto black holes. Finally, we find that stationary field configurations are necessarily

linear in Killing time, provided that shift symmetry is realized in terms of these field

variables.

The next discussion outlines a general program for reconstructing the action of

non-canonical single field inflation models from CMBR power spectrum data. This

method assumes that an action depends on a set of undetermined functions, each

of which is a function of either the inflaton field or its time derivative. The scalar,

tensor and non-gaussianity of the curvature perturbation spectrum are used to derive

a set of reconstruction equations whose solution set can specify up to three of the

undetermined functions. This method is used to find the undetermined functions in

various types of actions assuming power law type scalar and tensor spectra.

Finally, we study a novel means of coupling neutrinos to a Lorentz violating k-

essence background. We first look into the effect k-essence has on the neutrino

dispersion relation, and derive the neutrino velocity in a k-essence background. Next,

we look at the effect on neutrino oscillations. It is found that if k-essence couples

non-diagonally to the neutrino flavor eigenstates, this leads to an oscillation length

that varies with the neutrino energy like λ ∼ E−1. This is to be compared with the

λ ∼ E dependence seen in mass-induced neutrino oscillations. While such a scenario

is not favored experimentally, it places tight constraints on the possible interaction

that a k-essence background can have with neutrinos.

viii



CHAPTER I

Introduction

The past two decades have been an exciting time for cosmologists and astrophysi-

cists. This period has seen the beginning of true, precision cosmology. What was

once a field that relied almost exclusively on qualitative predictions, was now able

to test theories with definitive numerical accuracy. In this era we have seen two

satellite missions: the Cosmic Background Explorer (COBE) and the Wilkinson Mi-

crowave Anisotropy Probe (WMAP), measure the spectrum of fluctuations in the

comic microwave background radiation (CMBR). The first of these missions, COBE,

confirmed that the CMBR has a black body spectrum [6], which was the final nail

in the coffin for all competitors to the Big Bang Theory at that time. Both COBE

and WMAP have also measured the minute temperature variations in the CMBR,

leading to widespread support for cosmological inflation [7, 8].

During the period between COBE and WMAP, astrophysicists were able to mea-

sure the rate of the universe’s expansion. Two teams of astrophysicists [9] used type

IA supernovae as “standard candles”, whose absolute brightness are remarkably con-

sistent, and thus their distance away from us can be determined independently of

their red-shift. This in turn allowed them to measure the rate of the expansion,

which to the surprise of many, turned out to be increasing with time.
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As exciting and important as these discoveries were for cosmology, they raised

more questions than answers. Although COBE and WMAP confirmed many of

the predictions of cosmological inflation, they could not tell us conclusively what

mechanism was responsible for inflation. Similarly, while we have determined that

the expansion rate of the universe has (at least recently) been accelerating, we still

have no idea why it is accelerating.

1. Inflation

Up until the early 1990’s, the status of the Big Bang model was still in doubt.

Although it was the favored model by that time, there were still problems with the

theory that gave some physicists reason to object. In particular, there were three

outstanding problems with the Big Bang. The first of these was called the horizon

problem. In the classical model of the Big Bang, the comoving causal horizon at

the time of photon decoupling was approximately 180Ω
−1/2
0 h−1 Mpc. However, the

present comoving horizon of the universe is considerably larger; 5820h−1 Mpc1. This

means that our observable universe today consists of approximately 105 regions that

were causally disconnected from each other at the time when the CMBR settled into

its present state. However, despite this, the CMBR is remarkably smooth across the

entire sky. Such homogeneity over causally disconnected regions is something the

classical Big Bang can not explain satisfactorily.

The second problem for the classical Big Bang model is the flatness of the uni-

verse’s geometry. If one does a simple study of the Friedmann equations, they would

quickly raise the issue that a flat universe is not a stable solution. If we write the

1This assumes that the universe is flat
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Friedmann equations in terms of the density parameter Ω what we find is that

K

a2H2
= Ω− 1,(1.1)

where Ω = ρ
3M2

plH
2

2, and H = ȧ
a

is the Hubble parameter. Here, K is a constant

that represents the intrinsic spatial curvature of the universe, and the scale factor a

can always be defined such that K = 0,±1. If K vanishes then it follows that the

density parameter Ω is a constant and equal to the critical density Ω = 1. When

this happens the universe has a flat, Euclidean spatial geometry. On the other hand,

if K is nonzero then Ω is not at the critical value. If the expansion of the universe

is decelerating, then the factor a2H2 = ȧ2 is getting smaller, which means that the

deviation of Ω from the critical density will continue to get larger as time goes on.

This was a troubling notion for supporters of the Big Bang at that time because

all evidence seemed to indicate that we live in an extremely flat universe. Current

estimates place the present day value of |Ω − 1| at less than 0.01. This means that

our universe is so flat that in order to end up within the presently observed range

of Ω, then at the time of the Planck era the deviation of Ω from the critical density

would have to be smaller than one part in 1060.

Finally, the third big problem with the Big Bang is the paradoxically low density

(if not the absence) of monopoles. If our theory of gauge fields is correct, which

all Earth based experiments suggest, then a copious number of monopoles should

have been produced at the beginning of the Big Bang [10]. This absence (so far) of

monopoles in the universe is another puzzle that the classical Big Bang is unable to

account for.

As luck would have it, Alan Guth suggested a simple solution to these problems

[11], a solution that would later be known as cosmological inflation (or simply in-

2M2
pl denotes the reduced Planck mass: M2

pl = 3
8πG

.
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flation). Guth’s model involved giving the universe a short period of accelerated

expansion. This rapid expansion is powered by a positive vacuum energy density

that is sourced by a scalar field, called the inflaton, that lies in a metastable vacuum.

Since this state is unstable due to quantum fluctuations, the inflaton will eventually

tunnel out of the metastable vacuum and into a stable one, creating bubbles of true

vacuum in the bulk of false vacuum. If these bubbles are produced at a large enough

rate, they will collide with one another, releasing the energy stored in the walls of

the bubbles as radiation, thereby reheating the universe and ending inflation.

Guth’s initial motivation for this idea was to solve the monopole problem. In the

inflationary universe, monopoles created just before the inflationary expansion are

diluted away by the rapidly increasing volume of our observable universe. Guth’s

model, however, turned out to solve more than just this problem. As it turns out an

initial rapid expansion also solved the horizon and flatness problems. In regards to

the horizon problem, inflation reconciled this paradox by allowing for the observable

universe to occupy a casual patch before inflation started, during which the universe

could achieve thermal equilibrium. Inflation also gave an explanation for the flatness

problem since during an accelerated expansion ȧ is getting larger, and thus as (1.1)

implies, Ω will be driven towards the critical density.

Unfortunately, Guth’s original inflation model had a serious problem that made

it unworkable; a fact he acknowledged when he first introduced his model. In Guth’s

model of inflation, the decay rate of the metastable vacuum has to be small enough

to provided for a sufficient amount of inflation, but has to be large enough for the

bubbles of true vacuum to be produced at a fast enough rate for them to collide

and reheat the universe. These requirements were found to be incompatible, leaving

Guth’s model dead on arrival. However, the idea that an early exponential expansion
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could solve three of the biggest objections to the Big Bang was too tantalizing to

give up. Fortunately, soon after Guth published his findings, Andrei Linde [12] and

independently Andreas Albrecht and Paul Steinhardt [13], came up with a new model

of inflation that was soon called slow roll inflation. In this realization of inflation the

inflaton is a scalar field with a potential that has a zero energy vacuum state. When

the inflaton is displaced from the vacuum, the inflaton potential will be nonzero,

providing the vacuum energy needed to drive inflation. When the inflaton reaches

the vacuum, inflation ends and the energy in the inflaton field is converted into

radiation that reheats the universe. Today most models of inflation are based on the

paradigm set by Albrecht and Steinhardt, and Linde .

If all inflation did was explain away problems with the Big Bang, then inflation

would be regarded by critics of the Big Bang as nothing more than an ad hoc fix.

However, as it turns out inflation makes a testable prediction. Due to quantum fluc-

tuations in the behavior of the inflaton, the value of the vacuum energy density will

vary at different points in space. Through a careful analysis [14] it was shown that

this variation, although slight, would eventually leave its mark as spatial fluctuations

in the CMBR. Specifically, nearly all inflation models make the generic prediction

that at large distance scales the magnitude of the fluctuations in the CMBR temper-

ature, should be relatively independent of the size of the region of the fluctuation.

The possibility of confirming this prediction was one of the reasons that the COBE

satellite was created. COBE’s observation of nearly scale invariant temperature fluc-

tuations solidified the support for cosmic inflation and put to rest any serious doubts

about the Big Bang.
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2. Dark Energy

After Edwin Hubble made his landmark observation that the universe was ex-

panding, many physicists assumed that due to the universal gravitational attraction

of matter, this expansion rate should be getting smaller as time goes on. However,

in 1998 this view was quickly thrown out of the window [9]. As it turns out not

only is the expansion of the universe not decreasing, but it is actually accelerating.

At present, the best answer we can give for this accelerating expansion rate is the

existence of a positive vacuum energy density pervading the universe. This vacuum

energy can be modeled in general relativity as a cosmological constant term. The

cosmological constant (c.c.) was originally proposed by Einstein as a means to cre-

ate a model of a static universe. After Einstein heard about Hubble’s discovery, he

recanted his belief in a static universe, and declared his inclusion of the c.c. “his

biggest blunder”. However, with these recent insights it seems that Einstein’s blun-

der may not have been a blunder after all. Although the accelerated expansion can

be modeled by the inclusion of a c.c., this does not explain why a c.c. exists.

For particle physicists, the question was not so much why there is a c.c., but why

is it so small? In the calculation of loop corrections to the effective action of the

standard model, the correction to the c.c. term Λ is of the order of the Planck scale

Λ ∼M4
pl ∼ 10109 eV4. This is staggeringly higher than the currently estimated value

of the c.c, which is Λ ∼ 10−11 eV4; off from the expected value by a factor of 10120!

This gigantic discrepancy has been dubbed the “the worst prediction in physics”.

While the value of the corrections to the c.c. can be eliminated by counter terms

during renormalization, it is troubling that such large numbers must be contrived

in such a way as to result in a number that is smaller by a factor of 10−120 of the
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original numbers.

Unfortunately, there has been little success in trying to explain the nature of dark

energy. Some of the ideas that have been proposed include: quintessence [15, 16],

anthropic selection [17], extremely large cosmic voids [18]. One proposed explanation,

which uses a scalar field with a non-canonical action as the source of the c.c., is called

k-essence [19, 20, 21]. This model has several novel features and will be a primary

focus of this thesis.

3. K-essence and K-inflation

Dynamical scalar fields have held a special place in modern physics. When physi-

cists encounter new phenomena, often times a phenomenological model based on

scalar fields is used in order to gain some initial understanding. Examples of these

include: the Yukawa model of the strong force [22], the Landau-Ginzburg model

of superconductivity [23], the Higgs model [24], the axion [25], and most recently

cosmological inflation [11, 12, 13]. Scalar fields enjoy the advantage of having the

simplest behavior under general space-time coordinate reparametrizations, making

them natural tools for building toys models. The action of a real relativistic scalar

field φ, in a general N -dimensional space-time background is given by

Sscalar =

∫
dNx
√
−g
[

1

2
gµν∂µφ∂νφ− V (φ)

]
,(1.2)

where gµν is the background space-time metric, g = det(gµν), and V (φ) is the po-

tential energy function of φ. Of all field theory actions, this is by far the simplest.

In addition to their simplicity, scalar fields also have the unique and useful property

of being able to have a constant nonzero vacuum expectation value (i.e., 〈φ〉 6= 0)

while still maintaining Lorentz invariance. This property is a prized feature of scalar

fields, and it is the reason that models like the Higgs mechanism and inflation are
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possible.

Although (1.2) is the most widely used theory of scalar fields, it would break

no known fundamental physical principles if more general scalar field actions were

considered, such as

S =

∫
dNx
√
−gL(X,φ),

where X = 1
2
gµν∂µφ∂νφ. Here the function L is the Lagrangian of the scalar field

and can be almost any function of two variables. While there are no theoretical

objections to such general scalar field actions, many physicists paid little attention

to such possibilities, as there didn’t seem to be any good reason to consider them.

Since there are an infinite number of possible functions L to consider, without some

motivation from theory or experiment, little can be done in the way of studying

them.

Recently, however, this class of theories has started to attract attention due to

new discoveries in both theory and experiment. On the theory side, advances in our

understanding of string theory have led to a deeper appreciation of the importance

of D-branes [26]. The effective action of the D-brane degrees of freedom can be cast

into the form of the Dirac-Born-Infeld (DBI) action, an action that was previously

proposed as an alternative to the standard electrodynamical action. The simplest

DBI action describes the motion of a D3-brane along a single direction:

SDBI = −
∫
d4x
√
−g
[
f−1(φ)

√
1− 2f(φ)X − f−1(φ) + V (φ)

]
.

The features of this action will be discussed in depth in chapter §V. For now we

should note that this is an example of a non-canonical scalar field action, and has

found possible applications in cosmology [27, 28].

8



In the realm of phenomenology, some have considered the possibility of using

non-canonical scalars to explain the coincidence problem [15, 29]. Put simply, the

coincidence problem refers to the fact that the dark energy, which is now the main

driver of cosmic expansion, has only recently been the dominant component of the

total energy density of the universe. If this were not true, and dark energy had

become dominant earlier on, it is inconceivable that matter would be able to form

clusters large enough to create galaxies. In order to get galaxies there must have been

a period of matter domination, between the periods of radiation and dark energy

domination. Attempts have been made to explain this coincidence as a consequence

of the behavior of dark energy. These proposals have concentrated on models that

exhibit the so called tracker solution. In these kinds of models, a scalar field is the

source of the dark energy, and its action is setup so that the equation of state of

the scalar field only starts to behave like vacuum energy after matter has come to

dominate over radiation.

One model that has tracking solutions is quintessence [15, 16]. Quintessence uses

a canonical scalar field with a suitably chosen potential to get the correct tracking

solution needed to solve the coincidence problem. While it is possible to solve the co-

incidence problem with quintessence, it was quickly realized that to do so requires an

incredibly high level of fine tuning; defeating the entire purpose behind quintessence

in first place.

An alternative to quintessence, dubbed k-essence (the “k” standing for kinetic),

works the same way, but uses non-canonical scalar fields as the source of the vacuum

energy [19, 20, 21]. The advantage k-essence has over quintessence is that tracker

solutions are the general solutions of k-essence. Thus, k-essence does not require the

high level of fine tuning that quintessence does if one wishes to solve the coincidence
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problem. However, the naturalness of k-essence does come at a price. It was discov-

ered [30] that any k-essence model created to solve the coincidence problem would

have a brief period when fluctuations in the k-essence field propagate at superlumi-

nal speeds. At first this may seem like a deal breaker for k-essence; however, it was

later shown by the authors in [31] that despite the superluminal speeds, causality is

preserved in k-essence.

An interesting feature of k-essence is that, unlike quintessence, the kinetic energy

of k-essence can source the cosmological constant. Vacuum energy has the critical

property that it is constant with respect to the scale factor a of the universe. The

kinetic energy of a canonical scalar field leads to an energy density that goes like

∝ a−6, which means that it dissipates too quickly, even more quickly than matter

(∝ a−3) and radiation (∝ a−4). However, because of the non-trivial dependence of the

k-essence Lagrangian on X, it is possible to get a vacuum energy entirely through the

kinetic energy. Therefore, it is possible to have so called “kinetic” k-essence theories;

actions that only depend on X.

This ability to create vacuum energy has also made k-essence a possible candidate

for the inflaton. Theories that attempt to explain inflation in the context of k-essence

have been dubbed k-inflation [32]. K-inflation models have a number of interesting

features that set them apart from the typical slow roll inflation models. One such

feature of k-inflation is that fluctuations in the inflaton field can propagate at speeds

different than the speed of light. When viewed as a continuous classical medium, the

speed of fluctuations cs in a general scalar field is

c2
s =

∂p/∂X

∂ρ/∂X
=

LX
LX + 2XLXX

.(1.3)

Here p and ρ denote the pressure and energy density of the scalar field. The speed

cs is typically referred to as the sound speed. Clearly, from (1.3) we can see that
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cs will be equal to one for a canonical scalar field3. However, for k-essence cs will

in general be different from, and can even exceed, the speed of light [31, 33]. This

can lead to some interesting consequences in the case of k-inflation models since the

spectrum of primordial curvature perturbations depends on the sound speed of the

k-essence perturbations [34].

Finally, another reason k-inflation has been under consideration is because they

often predict large non-gaussianities [35, 36]. In canonical inflation models, non-

gaussianities can only be produced through interactions that are cubic or higher

order in the inflaton field variable, or indirectly through the inflaton’s interaction

with gravity. However, the non-gaussianity produced in these ways is on the same

order as the slow roll parameters [37, 38], and is therefore small. Non-gaussianities

in k-inflation on the other hand can be quite substantial due to the possible non-

linear dependence of the action on X. Thus, non-gaussianities are an important

discriminator between canonical and non-canonical inflation models. The application

of non-gaussianities to finding the form of the k-inflation action is discussed in chapter

§V of this thesis.

Therefore, non-canonical scalars have the ability to explain the late-time accel-

erated expansion of the universe, and the related coincidence problem through k-

essence; and they can also provide an alternative explanation for the primordial

accelerated expansion of the universe through k-inflation.

4. Dark Matter

The idea that the universe contains particles that we have yet to observe is an

old idea in physics. Several times when physicists were faced with an unexpected

observation or a difficultly with theoretical models, a new, as yet unseen particle

3Throughout this thesis we will take the natural units so that c = 1.
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turned out to be the solution. This has happened in the case of the neutrino [39],

the π meson [22], and the charm quark [40]. In light of this trend, it’s no surprise that

when galactic rotation curves were found to be in conflict with the naive expectation

of Newtonian mechanics [41], physicists immediately began to propose all kinds of

new particles to explain the discrepancy. According to the results from the surveys of

galactic rotation curves, the distribution of observable matter in all galaxies studied

so far indicate that there is not enough observable matter on the edges of these

galaxies to explain the high rotational velocity there. In light of these observations,

it is reasonable to suggest that there is additional matter that, although invisible to

our telescopes, nevertheless comprises the majority of the mass content of galaxies,

and by extension our universe.

The history of dark matter (so named because it is required by definition to be

decoupled from electromagnetic interactions) has a long history in astrophysics, and

yet in all this time, its true nature has so far eluded our understanding. At first it

was suggested that dark matter may have a much more mundane original; perhaps

composed of the remnants of stars, or the puny sized gas giants that weren’t able

to become stars. For a time, neutrinos were considered a possible candidate for

dark matter [42]. However, as we have learned more about the required properties

of dark matter, it has become apparent that these run of mill solutions are not

enough to explain the observations. Clearly more unconventional options have to be

considered. Many of the current explanations for dark matter rely on the existence

of some exotic, as yet unseen, particle. The proposed identity of the dark matter

candidate has been primarily motivated by theories that go beyond the standard

model, such as supersymmetry [43]. Computer simulations of structure formation in

the early universe have also helped in determining the required properties of dark
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matter.

As popular as this approach is among physicists, there are other, albeit more

radical alternatives to dark matter. One of these is Modified Newtonian Dynamics

(MOND), which attempts to explain the observed discrepancies as a modification of

gravity at weak gravitational fields [44]. These models, however, have met with lim-

ited success. Another proposal for explaining dark matter, that we will be studying

in chapters §II-IV, is the idea that dark matter is really a k-essence condensate. In

these chapters we will discuss the conditions needed to have stable k-essence halos

around galaxies.

5. Neutrino Oscillations

If there is a k-essence field pervading the universe, then it is natural to ask what

effects it might have on the standard model family of particles. From the perspective

of effective field theory, it is almost a given that if a k-essence background exists,

it will directly couple to all other matter that is present. Due to its importance in

cosmology and astrophysics, the neutrino presents the most interesting case in which

to study possible k-essence/matter interactions.

In 1930 Wolfgang Pauli [39] proposed the existence of a (at that time undetected)

particle, later called the neutrino, that was responsible for carrying away the energy

and momentum that was missing in the decay products of beta decay. Observations

of the energy spectra of the beta decay products led to the initial conclusion that

the neutrino was massless. However, the notion that neutrinos may have a small

but nonzero mass has been a persistent idea in modern particle physics. For some

time the data did not imply any need for a nonzero neutrino mass, until neutrino

observatories measured a deficit in the expected number of neutrinos being produced
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by our sun [45]. Even before this anomaly was found physicists had considered the

possibility of mass causing just this kind of result [46]. In order to understand how

neutrino mass can explain the solar neutrino problem we first have to note that

neutrinos come in three different varieties: the electron neutrino, the muon neutrino,

and the tau neutrino. Early solar neutrino detectors were only sensitive to the

electron neutrino species, since this is the only neutrino flavor that is produced in

the kinds of reactions that take place in the sun.

It was found that if the various neutrino flavors have different masses, then this

can lead to the phenomenon of neutrino oscillations. This means that if a neutrino

of the electron variety is created at the source (in this case the sun) then as it

travels to an Earth based detector, the probability of observing this neutrino in

the electron neutrino state will oscillate with respect to the distance traveled. A

simplified analysis of neutrino oscillations when there are N different flavors, shows

that the probability of observing an f ′ flavored neutrino some distance L away from

the source of the neutrino where it was f flavored is

P (νf → νf ′) = δff ′ − 4
∑
i>j

Re(U∗fiUf ′iUfjU
∗
f ′j) sin2

(
∆m2

ijL

4E

)

+2
∑
i>j

Im(U∗fiUf ′iUfjU
∗
f ′j) sin

(
∆m2

ijL

2E

)
.(1.4)

Here, E is the energy of the neutrino and ∆m2
ij = m2

i − m2
j , where the mi’s are

the masses of the neutrino mass eigenstates. The indices i and j enumerate the

neutrino mass eigenstates and assume the values i, j ∈ {1, 2, ..., N}. Here the Ufi’s

are the matrix elements of the so called neutrino mass mixing matrix. Essentially,

the matrix U is an SU(N)4 matrix that transforms the neutrino mass eigenstates

into the neutrino flavor eigenstates. As long as U is non-diagonal, then the last two
4This assumes that the neutrinos are Dirac fermions. If they are Majorana fermions then the mixing matrix must

be an U(N) matrix.
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terms of (1.4) will be nonzero and neutrinos will undergo flavor oscillations.

Thus, even if only electron neutrinos are being produced in the sun, as long

as there is a mass difference between the neutrino mass eigenstates, some of those

electron neutrinos will “flip” into mu or tau neutrinos when they arrive on Earth.

Since the early neutrino observatories could not detect the mu and tau neutrinos,

those electron neutrinos that flipped could not be detected. Therefore, the solar

neutrino flux would have been lower than expected [47]. Today, these “lost” neutrinos

have been detected, and are enough to account for the missing solar neutrino flux [48],

confirming that neutrinos do indeed undergo flavor oscillations. This has been widely

interpreted as evidence that neutrinos have mass5. However, other mechanisms that

can also induce neutrino oscillations [49, 50, 51, 52, 53] are often ignored. Thus, it

is not a given that neutrino oscillations confirm the existence of neutrino masses.

The critical feature needed to induce neutrino oscillations is a spatially varying

phase difference between the energy eigenstates of the neutrino. Although mass can

create this phase difference, there are many other ways in which to create flavor

oscillations. Any coupling term in the neutrino Lagrangian that is non-diagonal in

the neutrino flavor space is capable of inducing neutrino oscillations. In chapter §VI,

we will study the possibility of k-essence induced neutrino oscillations (KINO) [5].

In this new mechanism, the neutrinos couple to k-essence by replacing the space-

time metric in the neutrino action with a k-essence induced metric. In addition to

modifying the dispersion relation of the neutrinos, we will show that if this coupling

is non-diagonal in the neutrino flavor basis, neutrino oscillations occur even in the

absence of neutrino masses.
5To be more accurate, observation of the missing neutrino flux is evidence that the neutrino mass eigenstates

have different masses. It is still possible for at least one of the neutrinos to be massless.
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5. Outline of Thesis

This thesis is organized as follows. Chapters §II and §III discuss the possibility of

dark matter halos as k-essence condensates. In chapter §II we investigate k-essence

halos in flat space and in the FRW metric. In particular, we study the specific cases

of the rolling tachyon, and static spherically symmetric solutions of general k-essence

Lagrangians. In chapter §III we extend the analysis of static spherically symmetric

solutions in chapter §II to include the effects of gravitational back-reaction. Chapter

§IV is an outgrowth of the work done in the previous two chapters, and here the

question of when stationary solutions are possible in k-essence is addressed. The

existence of stationary k-essence solutions is addressed in the context of black hole

accretion, where one typically uses such solutions in order to simplify the analysis.

In chapter §V we change the subject from k-essence to k-inflation, and discuss a

procedure for reconstructing the k-inflation action from cosmological observables.

Next, in chapter §VI we explore the possibility of k-essence/neutrino interactions. In

that chapter we will study the effects that a hypothetical k-essence/neutrino coupling

has on the motion and flavor oscillations of neutrinos. Finally, in chapter §VII we

review our major findings in the conclusion.

16



CHAPTER II

Classical Solutions of K-essence Theories

2.1 Introduction

Scalar field theories with higher derivatives play an essential role in the effective

field theory approach (for reviews see [54]). An example is provided by the chiral

Lagrangian which provides a good description of the strong dynamics at low energies.

Applications of higher derivative theories to cosmology have also become popular in

the last few years: examples here are effective field theories of the rolling tachyon

[55, 56], DBI inflation [27, 28, 57], and k-essence [19], which attempts to provide

a dynamical explanation of the so called coincidence problem and the accelerated

expansion of the universe. Recently [35], such higher derivative actions have been

shown to enhance the non-gaussian fluctuations in the cosmic microwave background.

Theories with higher derivatives have the possibility of modifying the dispersion re-

lations and hence may potentially lead to superluminal propagation. This aspect

has been studied in detail in [58] where it was shown that causality and the absence

of superluminal propagation require certain coefficients of the effective Lagrangian

to be positive definite, which in turn has consequences for phenomenology [58, 59].

Thus, the constraints of causality and hyperbolicity of the equations of motion play

a particularly important role in such theories. Another recent striking example is
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the no-go theorem proved in [30]. It was shown there that in the context of the

original k-essence theories [19], it is impossible to simultaneously resolve the coinci-

dence problem and the accelerated expansion of the universe without encountering

problems with superluminal propagation.

In this chapter we apply the constraints [60, 61, 62, 63] that the equation of motion

of the scalar field has a well defined initial value problem and there is no superluminal

propagation of the small fluctuations around classical solutions in higher derivative

theories. In particular we discuss in sections §2.3 and §2.4, respectively, the case of

the rolling tachyon and the static solutions to the equations of motion of a general

scalar theory with higher derivatives. For the case of the tachyon we consider a

general Lagrangian of the form L = V (φ)K(X), with V the potential of the tachyon

and X = 1
2
gµν∂µφ∂νφ, and find the constraints on K(X) and the potential such that

the the energy density is finite but the equation of state parameter goes to zero at late

times up to small corrections. We find that in order achieve this it is not necessary

for K(X) to vanish as φ̇→ 1, but only that it be bounded. Other constraints on K

are obtained which allows for a more general framework for the rolling tachyon than

was previously considered. The only constraint on the potential is that a3V → 0 at

late times, where a is the scale factor. The physical motivation is that the tachyon

could then be considered as a possible candidate for dark matter [64]. In section

§2.4 we discuss the static spherically symmetric solutions to the equations of motion

for the most general scalar field Lagrangian with higher derivatives in flat space

which are consistent with hyperbolicity and causality. We find the interesting result

that for scalar field solutions that are finite at the origin, causality requires its first

derivative to vanish there. Furthermore, even though the total energy is positive, the

energy density for such solutions is negative at the origin. A physical motivation for
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this study arises from the possibility that such scalar fields could describe the dark

matter halos around galaxies [63]. In section §2.2 we set up the problem and review

some results concerning the criteria for superluminal propagation and hyperbolicity

of the scalar field equations. In the concluding section we discuss the results.

2.2 Preliminaries

In this chapter we will be interested in scalar field theories with a Lagrangian of

the general form L = L(X,φ). Here, X = 1
2
∂µφ∂µφ. The equations of motion for

the scalar field are given by

G̃µν∇µ∇νφ = Lφ − 2XLXφ, where G̃µν = LXη
µν + LXX∂

µφ∂νφ.(2.1)

Throughout this chapter we will be using the notation

LX =
∂L

∂X
, Lφ =

∂L

∂φ

and so on. In (2.1), Gµν plays the role of an effective metric in which the scalar

field propagates. For an equation of this type to have a well defined initial value (or

Cauchy) problem and to satisfy global hyperbolicity, the following conditions must

hold1 [60, 61, 62]

LX > 0, LX + 2XLXX > 0.

If u = 0 is the characteristic surface and nµ = ∂µu, then the speed of propagation of

the small disturbances is given by solving

LXn
2 + LXX(nµ∂µφ)2 = 0.

From this, one deduces the maximum speed to be

n0

|~n|
=
W0

(
~n· ~W
|~n|

)
+

√
1 +W 2

0 −
(
~n· ~W
|~n|

)2

1 +W 2
0

,

1See appendix §A for further discussion of the Cauchy problem and causality in k-essence
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where, Wµ =
√

LXX
LX

∂µφ. The two cases discussed in this chapter are the time-like

spatially homogenous and static spherically symmetric ones. The expressions for the

propagation speeds in the two cases are respectively,

n0

|~n|
=

√
LX

LX + 2XLXX
, X =

φ̇2

2

n0

|~n|
=

√
LX + 2XLXX

LX
, X = −φ

′2

2
.

Here, a dot denotes differentiation with respect to t, and a prime denotes differen-

tiation with respect to r. From these it is easy to see that there is superluminal

propagation when LXX < 0. In summary, the conditions of hyperbolicity and no

superluminal propagation may be stated as

LX > 0, LX + 2XLXX > 0, LXX ≥ 0.(2.2)

For future reference we note that in the static spherically symmetric case when there

is no superluminal propagation,√
LX

LX + 2XLXX
≥ 1.(2.3)

When gravity is included, the effective scalar metric now becomes

Gµν = LXg
µν + LXX∂

µφ∂νφ.(2.4)

We require this metric to be Lorentzian. In particular in order to have a consistent

definition of temporal and spatial directions the largest eigenvalue of (2.4) must be

positive while the other three must be negative. This can be shown to be true [61, 62]

only if the first two conditions in (2.2) are satisfied (with X = 1
2
gµν∂µφ∂νφ now) while

the last one once again avoids [58, 60] superluminal propagation.
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2.3 The Rolling Tachyon

Sen [55] has discussed the qualitative dynamics of a tachyon field in the back-

ground of an unstable D-brane system and conjectured that the simplest description

within an effective field theory framework can be provided by the following La-

grangian: L = V (φ)K(X), with φ the scalar field, and

K(X) = −
√

1− φ̇2, V (φ) = V0 exp(−φ).(2.5)

The cosmology of this model in the FRW background has been studied in [55, 56, 64],

and a particularly surprising result is the existence of solutions with exponentially

vanishing pressure at late times, but a nonzero energy density. Since there is no

compelling reason for the precise forms in equation (2.5), in this section we keep

K and V arbitrary (apart from the mild assumptions below) and determine from

the constraints (2.2), the conditions under which the equation of state for tachyonic

matter becomes ω = 0 at late times up to small corrections. The tachyon could then

be considered a dark matter candidate in a wider class of models than originally

envisioned.

Consistent with the fact that we are dealing with the case of a rolling tachyon,

we will make the following assumptions about the potential V and the kinetic term

K: first is that K ≤ 0; second, the range of φ̇ is bounded; third, K is bounded as

φ̇ → 12; and fourth, the potential V (φ) is positive, has a maximum at φ = 0 and

monotonically decreases to zero at φ =∞ where it is a minimum.

The equations of motion for the scalar field and the scale factor a(t) are3

φ̈ = −3H
LX

LX + 2XLXX
φ̇−

∂ρt
∂φ

LX + 2XLXX
, H2 = ρ = ρt + ρm.

2We will take the upper limit of φ̇ to be 1 in the appropriate units.
3We work in units where 8πG

3
= 1
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For the homogenous FRW background 2X = φ̇2 > 0. ρt = 2XLX −L is the tachyon

energy density and ρm is that of the rest of matter and ρ is the total energy density.

H = ȧ
a

is the Hubble factor. Note that from the first inequality in equation (2.2) and

L < 0, it is easy to see that ρt > 0. Thus, the non-vanishing of the energy density

at all times including late times is strictly a consequence of LX > 0. The equation

of state parameter for the tachyon is,

ωt =
L

2XLX − L
=

K

2XKX −K
.(2.6)

Using the φ field equation of motion it is straightforward to show that

ρ̇t =
d

dt
(2XLX − L) = −6HXLX = −3H(1 + ωt)ρt.(2.7)

The inequality in equation (2.2) then implies that the tachyon energy density is a

monotonically decreasing function of time and ωt > −1. The Hubble factor itself is

monotonically decreasing in time as can be seen from

Ḣ = −3

2
((1 + ωm)ρm + (1 + ωt)ρt) ,

Defining y =
√

2X, and using the factorized form for the tachyon Lagrangian, the

tachyon equation of motion may be written as,

dy

dt
= −yKy −K

Kyy

(
3H

[
Ky

yKy −K

]
+

∂V
∂φ

V

)
.(2.8)

The constraints given in equation (2.2) for the initial value problem to be well defined

and the absence of superluminal propagation are expressed in terms of the new

variable as:

Ky > 0, Kyy > 0, Kyy >
Ky

y
.(2.9)

Note that whenever V → 0, then Ky →∞ such that LX > 0. As we will see below,

it is this simple fact that guarantees that the tachyon energy density is nonzero and
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positive in the limit t → ∞, while ωt vanishes; indicating that the tachyon field

acts like a non-relativistic dust at late times. Let us consider equation (2.8) at late

times. We first discuss the conditions on the potential under which the second term

in the brackets is dominant. Let us define the term inside the square brackets in this

equation as g, then

dg

dy
=

−KKyy

(yKy −K)2
.

Since K < 0, we see from (2.9) that dg
dy
> 0. The maximum value of g is thus at

y = 1, which is gmax ≤ 1. Moreover, H is monotonically decreasing. Let us now

write for late times φ = t + θ(t), with θ(t) � t. It is easy to check from the above

results that the second term inside the brackets in equation (2.8) dominates over the

first for late times as long as V → 0 faster than 1
a3

when t → ∞. This condition

on the potential will reappear below. Since the overall factor outside the brackets in

(2.8) is negative, and since ∂V
∂φ

< 0 from our assumptions, the above discussion shows

that y is monotonically increasing as it goes to 1 at late times. In addition, since y

is bounded at y = 1, then ẏ = 0 at y = 1. Therefore we conclude that as y → 1,

Ky

Kyy

= 0,
K

Kyy

= 0.(2.10)

As mentioned earlier, Ky →∞ for late times while K is bounded. Thus, the second

of the above conditions is not a new requirement since the first implies that as y → 1,

Kyy > Ky. It should be noted that the condition for the absence of superluminal

propagation only implies that

Ky

Kyy

< y,

Thus the condition (2.10) is much stronger.
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Let us now expand equation (2.8) about the point y = 1 by writing, φ = t+ θ(t)

with θ̇ < 0 and θ � t. Using (2.10), it is straightforward to get,

θ̈ = −θ̇λ

[
3H +

∂V
∂φ

V

]
,

λ =

(
1− KyyyKy

K2
yy

)
(y = 1).(2.11)

Integrating this we get (taking φ̇ ≈ 1 to leading order)

θ̇ = −αa−3λV −λ,

where α is a constant. Consistency with the boundary conditions require λ < 0.

Since θ � t, we see that with a negative λ, θ̇ vanishes like a3V → 0 as t → ∞,

which is exactly the condition derived earlier for the term involving the potential

V to dominate over the first one in equation (2.8). Thus, λ < 0, or equivalently,

Kyyy > Kyy at y = 1, which is a new constraint on the allowed forms of K.

We are now in a position to prove that the equation of state parameter vanishes

at y = 1 up to small corrections. From equation (2.6) we can obtain,

dωt
dy

=
yK2

y −KKy − yKKyy

(yKy −K)2
.

Since K ≤ 0, and Ky and Kyy are both positive, we see that ωt is a monotonically

increasing function of y. Its maximum is therefore at y = 1. Near y = 1 we can write

ωt ≈
K(1) + θ̇Ky(1)

Ky(1)
.

However, we have argued above that Ky(1) is infinite, thus ωt = 0 apart from cor-

rections which vanish like a3V at late times.

2.4 Background Static Solutions Consistent With Causality

We next consider the static spherically symmetric solutions to the equations of

motion of the scalar field in flat space-time. The equation of motion for a static
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scalar field φ(r) is

φ′′ +
2

r

(
LX

LX + 2XLXX

)
φ′ +

Lφ − 2XLXφ
LX + 2XLXX

= 0.(2.12)

In the above, X = −φ′2

2
. From section §2.2, the combined constraints of hyperbol-

icity and absence of superluminal propagation now give the following bound for the

coefficient of the φ′ term for all r (see equation (2.3)):

δ =
LX

LX + 2XLXX
≥ 1.(2.13)

Here we consider only solutions to (2.12) which are finite at the origin. We first want

to determine the appropriate boundary condition for φ′ at r = 0. We will use a series

expansion method for φ near r = 0 to guide us to the correct choice. Even though

the coefficient δ is not a constant but dependent on φ, we know that independent of

r, δ ≥ 1. Therefore, since we are interested in finding the indicial equation in order

to determine the boundary condition for φ′, we may treat δ as a constant. The same

applies for the last term in (2.12) as long as we restrict ourselves to solutions which

are finite at the origin. These two complications do not affect the indicial equation.

With this in mind, let us look for a series solution of the form

φ = rs(c0 + c1r + c2r
2 + c3r

3 + · · · ).(2.14)

From this we get the indicial equation, s(s − 1 + 2δ) = 0. Since δ ≥ 1 for all r,

we see from (2.14) that in order for φ to be finite at the origin only the solution

with s = 0 is allowed. Substituting this expansion into (2.12) we see by matching

equal powers of r that c1 = 0. Thus, the boundary condition for this problem that

is consistent with (2.13), and the finiteness of φ at the origin is φ′ = 0 at r = 0. We

now consider the analog of equation (2.7). Let us define γ = −2XLX + L. Then
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using the equation of motion we obtain

dγ

dr
= −2

r
φ′2LX .(2.15)

Since LX > 0, we see that γ is a monotonically decreasing function of r. Therefore,

the minimum of γ is at infinity. As r →∞, the solutions to the equations of motion

must be such that γ → 0 faster than 1
r3

in order to keep the total energy content

finite. This implies that γ > 0 as r → 0. From the boundary condition on φ′ at

r = 0, we see that γ = L > 0. On the other hand, in the static limit the Hamiltonian

density H becomes H = −L. Thus, we conclude that at r = 0, the energy density

H is negative. It is easy to see that the total energy in the static limit is, however,

always positive:

E = −4π

∫
r2Ldr = −4π

∫
(γ − φ′2LX)r2dr.

Consider the integral over γ. Integrating by parts and using the fact that γ vanishes

faster than 1
r3

as r approaches infinity, we get∫
γr2dr = −1

3

∫
dγ

dr
r3dr =

2

3

∫
φ′2LXr

2dr,

where the last equality follows from (2.15). Combining everything, we find that

E =
4π

3

∫
φ′2LXr

2dr,

which is manifestly positive definite.

When such a theory is coupled to the Schwarzschild metric, we can look for

solutions to the combined equations for both gravity and scalar matter. Such a

situation could be relevant for understanding the formation of dark matter halos

around galaxies [63]. Though the above analysis has been performed in flat space-

time, our considerations indicate that at least solutions of the scalar field equations
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that are finite at the origin should not be relevant to such a scenario if one takes

the view that negative energy densities are not allowed. The detailed question of

the solutions of the scalar field in the presence of gravity is the subject of the next

chapter. Nevertheless, it is interesting that the model we have considered in this

section has solutions which violate the weak energy condition at the origin.

2.5 Conclusion

Using the requirement that the field equations are always hyperbolic (and hence

the Cauchy problem is well defined) we have obtained a set of consequences for two

different problems of physical interest.

For the case of the rolling tachyon in a homogenous FRW background, we have

obtained constraints on the forms of the potential and the kinetic terms such that

the equation of state of the tachyon vanishes at late times up to small corrections.

The tachyon could then be considered a dark matter candidate. The key observation

here was that what is required for this to happen is that K remains bounded but not

necessarily zero at late times, while Ky goes to infinity. The latter in fact guarantees

that the energy is non-vanishing in this limit. Other requirements are given by

equations (2.10), the potential V is such that a3V → 0 at late times, and that λ

defined in (2.11) be negative. It is easy to check that the choice (2.5) does in fact

satisfy all the requirements, but is not unique. The class of models is thus larger

than the original.

We have also looked quite generally at the problem of the static spherically sym-

metric solutions to the equations of motion of the scalar field described by the La-

grangian of section §2.2 and found that if we require the finiteness of the scalar field

at the origin, then the solutions consistent with causality have the property that the
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energy density becomes negative at the origin. This example brings out very clearly

the role that causality plays in the choice of boundary conditions. There have been

attempts in the literature [63] to use such scalar field models to describe dark matter

halos around galaxies. Clearly, solutions which are finite at the origin will not do

the job. However, it is interesting to speculate if this negative energy density at

the origin is indicative of an attractive force, analogous to the Casimir effect (but of

course classical), at the center of galaxies.
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CHAPTER III

K-essence Galactic Halos

3.1 Introduction

Recently there has been a lot of interest in the applications of non-canonical scalar

field theories in cosmology. This is due mainly to the fact that the energy-momentum

tensor in such field theories has the potential to describe cosmological fluids with

negative pressure, which is a necessary ingredient for accelerated expansion. Ex-

amples are: k-essence [19], which attempts to explain the accelerated expansion of

the universe as well as the coincidence problem, the DBI action [27, 28, 57, 35],

tachyonic matter [55, 56, 1], the ghost condensate model [65] and the Chaplygin gas

model [66]. They are also interesting in the context of inflationary models [32, 3].

Since these theories contain non-standard kinetic energy terms, the constraints of

global hyperbolicity and absence of superluminal propagation play an important

role [60, 61, 62, 63, 31].

In this chapter we consider static, spherically symmetric solutions of the Einstein

equations coupled to a general k-essence scalar field. The physical motivation is

to look for consistent solutions describing galactic halos [67] and black holes. The

standard assumption of galactic dark matter halos is that they consist of an inco-

herent collection of weakly interacting massive particles. There have been attempts
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[63, 68, 69] where some very special type of scalar theories were used to discuss the

possibility that the galactic halos could in fact be considered a coherent excitation

of a scalar field, much like a boson star. This scenario would have the advantage of

providing a unified treatment of dark matter and dark energy since the latter can be

described by a k-essence-like theory to begin with.

We consider the most general scalar field Lagrangian that depends on the field φ

and invariants of the kind X = 1
2
gµν∂µφ∂νφ, formed from its first derivative. We do

not assume that the kinetic terms are separable, nor that they are a quadratic form

in the first derivative. Consistent with our aim of finding solutions that describe

galactic halos, we impose the generalized “no-force” condition at the origin: i.e.,

dp
dr

= 0 at r = 0, where p is the pressure; and at large r we demand that the solutions

match on to the cosmological solution. We find that solutions do exist that can

describe galactic halos, and for certain choices of the metric function, give a good

description of the observed rotation curves.

There can be two classes of solutions: those that have negative energy density near

the origin and those that don’t. These can be phenomenologically distinguished by

the shape of the rotation curves near the origin. Strictly speaking, only one of these

solutions has a valid classical description, whereas the other will depend on new

physics at short distance scales. Thus, one of the main results of this chapter is

that all classical solutions of this theory that satisfy the above mentioned conditions

at the origin and asymptotically, must have negative energy density at the origin.

This result does not depend on a specific choice of the metric function, but only that

it satisfies the conditions for flat rotation curves discussed in [70]. Previous works,

for example, the first and last of the references in [68], have assumed a specific

form of the metric function g00 for intermediate r, and have found special cases of
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the result stated above. We would like to emphasize that our only assumptions

are the boundary conditions stated earlier and the general conditions of [70] (see

section §3.2). We do not assume anything about the form of g00. For the case

when the scalar energy density becomes negative near the origin, the total energy

or mass enclosed can still be positive. Recent evidence from string theory indicates

that there is no justification for restricting ourselves to potentials that are positive

everywhere, as long as the total energy is finite [71]. Negative energy densities are

not unphysical by themselves, as the Scharnhorst effect [72] clearly shows. Here one

has faster-than-light propagation in a Casimir vacuum. In the literature there are

studies [73, 74] associating negative energy densities with superluminal propagation

of signals. However, in [31] it was argued that superluminal propagation does not

necessarily imply the violation of causality for which one requires closed time-like

curves. All this clearly deserves further study to see if superluminal propagation

without causality violation is consistent. If so, then k-essence-like theories would

provide a larger context in which to study the formation of galactic halos.

Another question discussed in this chapter is the existence of black hole solutions

in the combined gravity/k-essence system. This problem is of physical interest since

galaxies are thought to have black holes at their center. Hence, we would like to

ascertain whether black holes can coexist with the halos. Two possibilities are usually

mentioned in connection with the issue of black hole-halo coexistence [75]. The first

is that the massive black holes were formed together with the galaxies through some

internal dynamical process, or secondly, that the black holes are primordial. In the

second possibility, they were present even before any luminous activity, and in fact

are the source driving the quasars. In both of these situations, once formed, the

black holes continue to grow in time. If there is a scalar field pervading the universe
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then it can interact with the black holes and if the scalar no-hair theorems [76, 77]

for static spherically symmetric black holes are valid it could cause their accretion.

One could study this question by considering the stability of the halo in the presence

of a background black hole solution. In this chapter, however, we do not do this.

Instead our more modest approach is to revisit the scalar no-hair theorems. These

are sometimes used to argue [75] that the black holes become heavier in time by

“eating” the scalar hair. We present new ways to understand the theorems and

suggest some avenues on how they may be circumvented in the context of k-essence

like theories. In particular, we clarify the roles played by the choice of asymptotic

boundary conditions and the signs of the energy density and the pressure in the

proofs [76, 77] of the scalar no-hair theorems.

The chapter is organized as follows. In section §3.2 we discuss the various steps

that are necessary to model a spherically symmetric scalar halo and to describe the

rotation curves. In section §3.3 we address the question of the no-hair theorems for

black holes. We conclude in section §3.4 with a discussion of our results.

3.2 Scalar Fields and Dark Matter Halos

In this section we will describe a halo assuming that it is made up only of scalar

fields. Including an exponential disc of baryonic matter should not change the essen-

tial conclusions. Thus, we are interested in a scalar field theory coupled to gravity

and described by an action of the general form

S =

∫
d4x
√
−gL(X,φ), where X =

1

2
gµν∇µφ∇νφ.

Its energy-momentum tensor is given by

Tµν =
2√
−g

δS

δgµν
= LX∇µφ∇νφ− gµνL.

32



Here and elsewhere in this chapter, LX denotes the partial derivative with respect

to X. The equation of motion for the scalar field is given by

G̃µν∇µ∇νφ = Lφ − 2XLXφ,(3.1)

G̃µν = LXg
µν + LXX∇µφ∇νφ.

The quantities satisfy several constraints which we now outline. An examination of

the characteristics of the scalar equation of motion gives the speed of propagation

of the scalar fluctuations, and demanding that this so called sound speed (cs) is

not superluminal imposes the constraint LXX
LX
≥ 0. Demanding in addition that the

initial value problem be well posed, and the scalar field equation of motion be globally

hyperbolic gives the following list of constraints for this system [60, 61, 62, 63, 31]:

LX > 0, LXX > 0, LX + 2XLXX > 0.

In addition, stability requires [31] that cs > 0. Interested readers can refer to ap-

pendix §A for further discussion about the origin of these constraints.

As discussed in the introduction, we will be interested in static spherically sym-

metric solutions of the combined Einstein/scalar system of equations. These solutions

must match on to the cosmological solution at large r. Depending on the model un-

der consideration, the cosmological solution could either be almost asymptotically

flat or not. We will mostly assume almost asymptotically flat solutions, but in the

next section we will also consider other possibilities as well. The space-time metric

will be described by

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2),

where ν and λ are functions of r alone. The (tt), (rr) and (θθ) components of the
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Einstein equations Gµ
ν = κT µν are given by

e−λ

r2
(−1 + eλ + rλ′) = −κL,(3.2)

e−λ

r2
(−1 + eλ − rν ′) = −κ(L− 2XLX),(3.3)

−e
−λ

2r
(rν ′′ +

1

2
r(ν ′)2 + ν ′ − λ′ − 1

2
rν ′λ′) = −κL.(3.4)

The equation of motion for the scalar field (3.1) in the static limit may be written

as

ψ′′ +

[
λ′

2
+

(
ν ′

2
+

2

r

)
LX

LX + 2XLXX

]
ψ′ +

Lφ − 2XLXφ
LX + 2XLXX

= 0,(3.5)

where ψ′ = e−λφ′, and the speed of sound cs is given by

δ(r) =
1

c2
s

=
LX

LX + 2XLXX
.

Note that if we require the absence of superluminal propagation of the scalar field

fluctuations, then for all r, δ(r) ≥ 1. Furthermore, stability necessitates that cs > 0.

We are now ready to discuss the question of galactic halos. In [70], it is shown

how some essential features of the metric function ν can be deduced directly from the

observed galactic rotation curves, independent of the matter content and a specific

gravitational Lagrangian. From stability considerations, [70] concludes that

0 < rν ′/2 < 1.(3.6)

Further assuming circular halos and that information travels to us along null geodesics,

one gets an additional constraint [70], which for our purposes may best be written

as

|v′c(r)| <
vc(1− v2

c )

r
,

rν ′

2
= v2

c .
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In the above, vc is essentially the tangential component of the velocity [78]; i.e.,

the rotation curve. These inequalities indicate a smooth scalar profile. It is clear

from these that it is not at all difficult to find functions vc(r), which give a realistic

representation of the rotation curves: one that grows for small r and flattens out

in an intermediate region before matching on to the cosmological solution outside.

This is precisely the kind of behavior we demand of the corresponding derivative of

the metric function ν, so that our model is able to describe the observed rotation

curves.

We now turn to the main part of this section; namely, a discussion of the halo-

like solutions of the Einstein/scalar system subject to the appropriate boundary

conditions at r = 0, and at r → ∞. Asymptotically, the solution must match on

to the cosmological solution. However, in the absence of an explicit cosmological

solution we will assume that the pressure goes (almost) to zero as r → ∞; i.e., the

condition of asymptotic flatness. We would next like to determine the appropriate

boundary conditions for small r. Since we are describing a halo as a coherent state

of a scalar field, the appropriate boundary condition at the origin is the generalized

“no-force” condition; i.e., dp
dr

= 0, where p is the pressure and dp
dr

is given by the

Oppenheimer-Volkov equation. For our model, the pressure and the energy density

are p = L−2XLX and ρ = −L, respectively. Using (3.5) or (3.8), it is straightforward

to obtain (η′ = e−
λ
2φ′)

dp

dr
= −1

r
(
rν ′

2
+ 2)η′2LX .(3.7)

Since the quantity inside the brackets is bounded between 2 and 3, we obtain the

boundary condition for the scalar field equation, which is that η′ goes to zero faster

than
√
r at the origin (keep in mind that LX > 0 everywhere).

In order to understand the type of solutions one can obtain, we will adopt the
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following strategy: we will first look for consistent solutions at the origin and follow

these to r →∞ using (3.7). We will not use any specific form for the metric functions

other than the fact that for halo-like solutions the component g00 satisfies (3.6) for all

r. Our conclusion will be that under these conditions, the only non-trivial solutions

consistent with the boundary conditions are those that have negative energy density

at the origin. Thus, our aim is not to find explicit solutions but to show this universal

feature of all halo-like solutions under a very general set of assumptions.

In accordance with this program, let us next look for consistent solutions of the

different equations of motion near the origin. First, consider the scalar field equation

(3.5). Using the variable η′ (e−λ 6= 0 near the origin), it may be rewritten without

explicit reference to the metric function λ:

η′′ +
1

r
(
rν ′

2
+ 2)δ(r)η′ + h(r) = 0,(3.8)

where h(r) =
Lη − 2XLXη
LX + 2XLXX

.

Consider a small r expansion for η and write

η = rs(c0 + c1r + c2r
2 + · · · ).(3.9)

As we will see next, a consequence of (3.8) and the condition on the vanishing of

η′ at the origin is that there are two possibilities for h(r): (1) h(r) is smooth at

the origin; or (2) it behaves as 1
rε

, where 0 < ε < 1/2. To see possibility (1), we

will first assume the opposite; i.e., suppose that h(r) goes like 1
r

to leading order at

small r. The equation of motion (3.8) implies that to leading order, η′ approaches a

nonzero constant at small r, which rules out this possibility. Similarly, if h ∼ 1/rn,

where n ≥ 2 is an integer, then η′ ∼ 1/rn−1, which would contradict our previous

finding that η′ → 0 at the origin. As we discuss below, in this case η → constant

at small r. The second possibility arises when η ∼ rb with 3/2 < b < 2 for small r.
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The condition that b > 3/2 follows from the requirement that η′ vanish at the origin

faster than
√
r. To see that b < 2, we have to use the fact that at the origin p = L,

and therefore dL
dr

= 0 there. Suppose L ∼ ηa (a > 0, since a = 0 is included in case

(1)), then the no-force condition implies that ba > 1. Since both LX and LXX are

positive definite, h(r) ∼ Lη ∼ rba−b. Now, from the equation of motion (3.8), we see

that ba− b = b− 2. We need consider only the case a < 1, since the other possibility

is included in case (1). Using a = 2b−2
b

, it is easily seen that b < 2. We will consider

each of the two cases separately starting with case (1).

For case (1), the only allowed behavior of h(r) consistent with the boundary

conditions is that it is well defined at the origin. Substituting (3.9) into (3.8), we

find for the indicial equation (c0 6= 0)

s(s− 1 + γ̄δ̄) = 0, where 2 < γ̄ < 3.

In the above, γ̄ denotes the value of γ = rν ′/2 + 2 for small r, and the inequality

above follows from (3.6). Further, if we demand the absence of superluminal prop-

agation, then δ̄ (the value of δ at small r) is greater than 1. Thus, we see that the

absence of superluminal propagation forces upon us the solution with s = 0. The

actual behavior of η′ near the origin depends on the small r behavior of h(r)1. By

substituting the expansion (3.9) with s = 0 into (3.8), we find that c1 = 0. Therefore,

the solutions at small r behave like η ∼ constant, and η′ ∼ r. We will see below how

these conditions translate into the shape of the rotation curves at small r.

We must now find a consistent solution for small r for the metric functions as well.

For these we turn to the Einstein equations (3.2) and (3.3). It is useful to rewrite

1To consider an extreme case, if the Lagrangian depends only on X, then this term is absent. It is then trivial
to verify that the only solution which is smooth at the origin is η = constant. This in turn implies the constancy of
the pressure and the energy density in this case. This is the de Sitter solution. We will not discuss this possibility
further.
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these as

λ′ = −κrL− (eλ − 1)(κrL+
1

r
),(3.10)

ν ′ = κrp+ (eλ − 1)(κrp+
1

r
).(3.11)

On the right hand side of these equations we have the energy density ρ = −L and

the pressure p = L − 2XLX . From these we see that the combination ν ′ + λ′ only

depends on p−L, which is proportional to X (see also (3.17) below). The functions

ν and λ themselves depend on p and L separately. In general, the small r behaviors

of L and (p−L) ∼ X can be different: L is a function of both X and φ, and φ goes

to a constant at small r. From a Taylor expansion of L around X = 02, it is seen

that the leading order behavior of L can therefore be either a constant, or that of

at least X. From (3.10) and (3.11) we see that in the former case, the leading order

behavior of ν ′ and λ′ are determined from that of L, and this leading order behavior

is cancelled from the sum. It is the subleading terms of ν ′ and λ′ that are now

proportional to X. For small r, we have two possibilities: (i) both L and 2XLX have

similar behavior near the origin; i.e., since LX > 0, then L ∼ 2XLX ∼ r2 at most;

or (ii) L ∼ constant, and 2XLX ∼ r2 or faster. In the case of possibility (i), the

scalar field and in particular the speed of sound plays an important role in restricting

the small r behavior. In contrast, for possibility (ii) the leading order behavior is

governed by L, and the constraints on the absence of superluminal propagation do

not play a role in determining the small r behavior of the metric functions. We will

discuss each possibility below.

For possibility (i), it is straightforward to check that consistency with the Einstein

equations gives the following behaviors at small r for the metric functions: ν, λ ∼ r4

or faster. At this point the scalar energy density and pressure go like r2 or faster.
2We assume that the Lagrangian is Taylor expandable in X.
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This behavior excludes a purely X independent potential term in the Lagrangian for

the scalar field, since that could lead to a constant behavior for ρ = −L at small r.

Let us see how the solutions we have discussed at r = 0 match on to the solutions

at r →∞. Equation (3.7) is useful for this purpose as well. The term in brackets on

the right hand side of this equation is positive, so p is monotonically decreasing as we

go from some small r to infinity, where it approaches the (almost zero) value dictated

by the near asymptotically flat cosmological solution outside the galactic halo. The

pressure at r = 0 is zero since, as discussed above, in this case p = L− 2XLX ∼ r2.

Since p is monotonically decreasing to zero for all r, one should conclude that the only

possibility is the trivial solution, p = 0 everywhere. While this would be true if the

classical theory is valid everywhere, it is possible that quantum gravity effects modify

the theory at small scales, negating this argument. The influence of the requirement

of subluminal propagation has in fact a very indirect influence on all this. The real

reason for the absence of the negative energy density is that demanding the leading

small r behavior of η′ to be relevant both for the pressure and the Lagrangian,

eliminates the pure potential terms from consideration. We will discuss this in more

detail below.

Possibility (ii) leads to a completely different conclusion. In this case it is easy to

check that the metric functions have the following behavior for small r: ν, λ ∼ r2. Let

us now see what happens as r →∞. As was the case in possibility (i), equation (3.7)

implies that the maximum positive value of p is for small r. The asymptotic value of p

is zero, therefore, p ≈ L > 0 at the origin. Thus, the energy density ρ = −L can now

be negative for small r. The Lagrangian can contain terms that depend only upon

φ and not its derivatives. Such potential terms can approach a (negative) constant

at small r. This case is analogous to the flat space situation discussed in [1]. As
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we will see below, this should not be surprising since the condition for the absence

of superluminal propagation has not played a role here. Even though the energy

density can be negative in some region, we will now see that under very reasonable

assumptions, the total mass within a large enough region is positive definite. The

metric function λ is related to the mass function m(r) by

eλ = (1− 2Gm

r
)−1.(3.12)

Consider the total mass inside a radius R. From (3.2) and (3.12), we have

m = −4π

∫ R

0

Lr2dr = −4π

∫ R

0

(p+ 2XLX)r2dr.(3.13)

For the first term in the integral we perform an integration by parts to write∫ R

0

pr2dr = −1

3

∫ R

0

dp

dr
r3dr + [

1

3
pr3]R0 .

Using (3.7), and substituting into (3.13), we obtain for the mass parameter m(R)

m =
4π

3

∫ R

0

(η′)2LX(1− rν ′

2
)r2dr − 4π

3
[pr3]R0 .

Using (3.6) the first term is manifestly positive definite, and the surface term can be

made small for large enough R if the pressure falls off faster than 1
R3 (asymptotically

near flat condition), or if the cosmological solution is such that for large r the pressure

is negative, as is the case with some k-essence models.

Let us now take up case (2); i.e., h(r) ∼ 1
rε

, where 0 < ε < 1/2. As we have

discussed earlier, in this case η ∼ rb with b > 3/2 and L ∼ ηa with 0 < a < 1. Thus,

at the origin, p = L → 0. The situation here is similar to the one discussed for

possibility (i) above. When we try to match this behavior to that of the solution at

infinity using equation (3.7), we will again conclude that the only consistent solution

is p = 0 everywhere.
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We have therefore arrived at the conclusion we had mentioned earlier. The

only non-trivial halo-like solutions using the classical equations of motion of the

Einstein/k-essence system with the stated boundary conditions are those with neg-

ative energy density at the origin.

The origin of the negative energy densities in certain regions can be clearly traced

to the pure potential terms in the Lagrangian. Indeed, as φ goes to a constant for

small r, these potentials tend to a negative constant. If the total mass parameter

is positive, then it appears to us that excluding theories where the potential can be

negative in some regions is not justified. In fact, potentials such as these have been

recently considered in a variety of situations. For example, in supersymmetric AdS

compactifications one encounters potentials with local negative maximums. Addi-

tionally, a large class of supersymmetric compactifications, including Calabi-Yau and

G2, give rise to effective four dimensional potentials with negative regions [71]. The

stability of the solutions considered in this chapter will be the subject of a future

investigation. We would like to note, however, that there are many known examples

where the potential is negative at an extremum and yet the solution is stabilized

due to gravitational effects [79] as long as the scalar field theory satisfies the positive

energy theorem [80].

Another reason to exclude negative energy densities is its association with super-

luminal propagation and causality violation. We now turn to a discussion of this

point. Consider the constraints on superluminal propagation in some more detail.

Until now the only constraint we have considered is the one arising for the speed

of the scalar fluctuations, which is obtained from an analysis of the characteristics

of the scalar field equation of motion. A simple argument shows that this has no

direct connection with the sign of the energy density. If one changes L → −L, the
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scalar equations of motion do not change, and hence neither does the analysis of the

characteristics, but the energy density changes sign. Therefore, there must be an

additional constraint on superluminal propagation, which is dependent on the sign

of the energy density. In fact, there have been quite a few papers which investi-

gate the relationship between faster-than-light travel and negative energy densities

[73]. They all differ on the precise definition of superluminal propagation. For the

purposes of this chapter we follow the discussion of [74], which is specific to static

spherically symmetric space-times for which the Killing time can be used to measure

the time required for objects or signals to propagate between two of its orbits. In

[74] a theorem was proven that if in such a space-time, the (time-like) weak energy

condition is satisfied, then the signaling time is never faster than the corresponding

signal in Minkowski space. The normalization of the Killing time is appropriate for

an observer at very large distances. More specifically, the absence of superluminal

signals in the sense defined above requires that Tµνt
µtν ≥ 0 for any time-like vec-

tor tµ. Demanding the absence of superluminal propagation based on this criterion

would eliminate possibility (ii), since it implies negative energy densities at very

small r. However, superluminal travel by itself is not threatening as long as there is

no causality violation for which closed time-like curves are required. In fact recently

[31] it was realized that, from the viewpoint of pure classical field theory, models

which allow for superluminal propagation even on dynamical backgrounds do not

necessarily possess internal contradictions. In particular, these models do not lead

to any additional causal paradoxes over and above those already present in standard

general relativity.

We will therefore take the point of view that the solutions discussed above cannot

be a priori discarded (if the total mass parameter is positive definite and well be-
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haved) and look to the data to decide if both possibilities are realized or not. In this

regard it is interesting to note that the two possibilities discussed above can predict

very different behaviors for the rotation curves at small r depending on the model:

possibility (ii) implies that vc ∼ r; and if such a possibility exists in the complete the-

ory, (i) implies that vc ∼ r2 or faster. Our discussion suggests that the shape of the

rotation curves at small r should therefore provide the phenomenological distinction

between the possibilities considered.

If the theories we consider can indeed describe halos of dark matter, then we need

to have an understanding of its interactions with a black hole, which presumably are

at the center of galaxies. With this in mind, the next section will revisit the “no

scalar hair” theorems [76, 77] for black holes.

3.3 Dressing Black Holes With Scalar Fields

In this section we study the possibility of a scalar field dressing an asymptotically

flat, static, and spherically symmetric black hole solution in the theory discussed in

the earlier sections. As discussed in the introduction, this question is of relevance

for the stability of the halos described previously.

The distinguishing feature of a black hole is the existence of an event horizon whose

position at rs is determined from the condition, grr(rs) = 0. Physical quantities,

in particular the components of the energy-momentum tensor, are regular at the

horizon, from which we deduce the regularity of the scalar field and its derivative at

r = rs, instead of regularity at the origin. With this as the boundary condition, let

us consider the scalar field equation of motion near the horizon. We want to find

the behavior of the allowed solutions consistent with the absence of superluminal

propagation. From equation (3.5) we see that we need to know the behavior of ν ′
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near the horizon. For this purpose let us consider the (tt) component of the Einstein

equation (3.2) near r = rs and write

e−λ = Aλ(r − rs) +O((r − rs)2).(3.14)

Thus,

−λ′ = 1

r − rs
+ constant+O(r − rs),(3.15)

and from (3.2) we obtain

Aλ =
1 + κr2

sL(rs)

rs
> 0.(3.16)

The last inequality follows from the fact that e−λ must be growing as we move out

from the horizon. There is the possibility that Aλ = 0, which would give the leading

order behavior in (3.14) as (r−rs)2. This would correspond to the case of an extremal

black hole solution, which we will not discuss further. We are now able determine the

leading order behavior of ν near the horizon consistent with the Einstein equations

(3.2, 3.3). From these

ν ′ + λ′ = eλrκf(r),(3.17)

f(r) = −2XLX > 0.(3.18)

Integrating this in the neighborhood of the horizon we get

ν + λ =
rs
Aλ

f(rs) ln(r − rs) +K +O(r − rs),

where K is an integration constant. Using the previously determined value of λ, we

finally obtain the leading order behavior of ν, assuming that Aλ 6= 0:

ν = B ln(r − rs) + constant+O(r − rs), where B =
1 + κr2

s(L(rs) + f(rs))

1 + κr2
sL(rs)

.
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It is easy to check from the finiteness of the Ricci scalar at the horizon that B = 1,

which tells us that f(rs) approaches zero there. Since LX > 0, we see that X → 0

as r → rs. The exact rate at which this happens will be determined below. From

this, we see that

ν ′ =
1

r − rs
+ constant+O(r − rs),(3.19)

eν = Aν(r − rs) +O((r − rs)2),

where the constants in (3.19) and (3.15) are not related and Aν > 0.

Let us now look for a series solution of the scalar field that is regular at the horizon.

In addition, we have seen from the discussion immediately preceding equation (3.19),

that the solution should be such that X = − e−λφ′2

2
must vanish there. Introducing

δr = r − rs, we have the following expansion:

ψ = δrs(a0 + a1δr + a2δr
2 + · · · ).(3.20)

Substituting this into equation (3.5) we get the following indicial equation:

s(2s+ α− 3) = 0,

where α = 1
c2s(rs)

. From the discussion on subluminal propagation in the previous

section, α ≥ 1. In this instance, both the solutions for s are not immediately

excluded, provided that α is not greater than 3. The special case of α = 3 is the

same as the s = 0 case, except the second solution has a leading log r behavior.

Let us first consider the possible solutions with near horizon behavior dictated by

s = 3/2−α/2. As a result of the smoothness of the action near the horizon, the small

δr leading order behavior of ψ′ is δr1/2−α/2. This behavior is too singular if we are

considering only subluminal propagation, and hence, this solution is ruled out. Next,

let us consider the solution with s = 0. For the same reasons discussed in the previous
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section, a1 = 0, and the leading order behavior of ψ′ near the horizon is of the form

δr. Moreover, this near horizon behavior implies that φ′ = constant, or equivalently

X ∼ e−λφ′2 ∼ δr. This is completely consistent with the Einstein equation (3.17)

(Recall that always, LX > 0). Indeed, from the combined near horizon behavior of ν ′

and λ′ we see that the leading term on the LHS of this equation is a constant, which

is the same on the RHS. We should comment that the Einstein equation (3.17) rules

out the possibility s = 3/2− α/2 when α < 1 (superluminal propagation). Thus, it

should be emphasized that consistency (at the horizon) for the s = 0 solution holds

irrespective of whether we have superluminal or subluminal propagation.

We must now check the consistency of the solution at large r. The main question

we would like to address is whether the solutions at the horizon can match on to the

ones at infinity in a manner consistent with the Einstein equations. First let us list

the behavior of the pressure p and dp
dr

at the horizon and asymptotically. We will see

how far one can go without assuming the weak energy condition. Consider

dp

dr
= −(

ν ′

2
+

2

r
)η′2LX ,(3.21)

near the horizon. Using (3.19) and (3.14), and the fact that φ′ = K (a constant), we

get

dp

dr
∼ −1

2
AλK

2LX < 0.

In order to find its behavior at infinity we need the asymptotic form of ν ′. For this

purpose, one could first find the asymptotic form of λ from the integrated version of

(3.2):

e−λ = 1− 2Gm(r, rs)

r
− rs
r
, where m(r, rs) = 4π

∫ r

rs

ρr′2dr′.
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Assuming that ρ falls off faster than 1
r3

at large r, the leading order behavior of λ′ is

−λ′ ∼ 2Gm(r, rs)

r2
+
rs
r2
.

From (3.17) and (3.18), it would follow that

ν ′

2
>

(Gm(r, rs) + rs
2

)

r2
≥ 0,

which in turn would imply from (3.21) that dp
dr
< 0 also for large r. However, we

want to get information about the large r behavior of dp
dr

without using the that ρ

falls off faster than 1
r3

at large r. For this purpose we note that since dp
dr
< 0 near

the horizon, in order for it to be positive asymptotically at large r, it would have

to vanish in between. We will now show that this is untenable on the basis of the

Einstein equations, apart from the trivial solution that φ is a constant. For this

purpose note that from (3.21), when dp
dr

= 0

ν ′

2
= −2

r
.

It is easily checked using (3.3) that this implies that

eλ = − 3

1 + κpr2
.

Since we are looking for regular black hole solutions of the combined Einstein/scalar

system, we must rule out the possibility of a change in signature of the metric, which

means that 1 + κpr2 < 0 or κpr2 < −1. From (3.17) and (3.18), however,

−2

r

2 + 3κpr2

1 + κpr2
> 0,

or κpr2 > −2
3
. The two constraints on κpr2 are incompatible, hence we conclude

that dp
dr

cannot vanish between the horizon and infinity and must therefore also

be negative asymptotically. We emphasize that our conclusion that dp
dr

is negative
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everywhere outside the horizon does not rely on either the weak energy condition or

the asymptotic flatness condition.

Let us next find how the pressure p(r) behaves near the horizon and asymptoti-

cally. To find p near the horizon, note here that η′2 ∼ (r− rs). Thus, at the horizon,

p = −ρ. This is the only place we need to worry about whether ρ is positive or

negative. If ρ is negative then p is positive at the horizon, and if instead ρ is positive

then p is negative there. Let us now consider the possibilities for p at large r. For

positive ρ, since dp
dr

cannot change sign in between, p must also be negative at large r.

Now it is easy to see that if such a solution were to exist, it cannot be asymptotically

flat. Indeed, writing η′2LX = p − L in (3.21), and integrating using the integrating

factor we get

p = −e
− ν

2

r2

∫ r

rs

(e
ν
2 r2)′ρdr.

Let us see what this implies for p(r) at asymptotic values of r. Using the asymptotic

condition that ρ falls off faster than 1
r3

at large r, we see that the integral converges

and |p| falls off at least like 1
r2

at large r. However, since we have already argued that

dp
dr

is negative, it must be that p is positive asymptotically at large r. The condition

of asymptotic flatness gives a positive value for p at large r, thus excluding this

possibility. Furthermore, asymptotic flatness is incompatible with the constraint

LX > 0. This is a result of the fact that LX > 0 implies that ρ > −p. Since

p is negative in this case and monotonically decreasing, it follows from ρ > −p

that ρ has to be positive and monotonically increasing in order for LX > 0 to

be satisfied. The only way we can have an asymptotically flat solution is if p =

0 everywhere. We therefore conclude that for positive energy density ρ, the only

allowed black hole solution has negative pressure asymptotically at large r, and does

not obey the asymptotic flatness condition. In k-essence models it is possible to
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have a cosmological solution in the matter dominated epoch with these properties.

However, it is not clear how we can match on a dynamically evolving scenario onto

a static solution.

When the energy density is negative, the pressure can be both positive or negative

for large r indicating a solution where one can get either asymptotic flatness or

not. However, if we invoke the results of [74] regarding superluminal propagation

of signals discussed in the previous section, then this possibility would be excluded.

For reasons mentioned earlier, we do not subscribe to this viewpoint as long as the

enclosed black hole mass is positive and well behaved. We should mention at this

point that solutions that can have negative energy density somewhere should be

checked for stability.

Our discussion in this section suggests that the possibility of a black hole and a

scalar halo forming at the same time is difficult. This however, does not necessarily

make the scalar halo model problematic. It is quite possible, and there are other

evidence [75] in support of a scenario where a primordial black hole was present

before the formation of the galaxy itself, triggering the quasar activity. The halo

can then be treated as a perturbation on this primordial black hole background. An

analysis of this is beyond the scope of this chapter and is the subject of an ongoing

project.

3.4 Conclusion

We have found some consistent solutions of the gravity/scalar system, which can

describe galactic halos. Solutions which have negative energy density near the origin

have rotation curves with vc ∼ r at small r. Classically these are the only allowed

solutions, however, should solutions that have vanishing pressure at the origin be
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allowed in a complete theory, the rotation curves should show much steeper behavior

for small r. Solutions with negative energy density are associated with superluminal

propagation as discussed in section §3.2, however, that does not necessarily imply

causality violation. The total energy of these configurations can be positive definite

even if the energy density is negative somewhere. On the basis of this, and con-

sistent with similar phenomenon in other physical situations [71], we have argued

against excluding such configurations a priori. Our analysis in section §3.2 is based

on spherical halos. However, under reasonable assumptions, we expect similar con-

clusions in general. This is because we can parametrize the departure from sphericity

by a parameter which should have a smooth limit to zero unless there are topological

obstructions.

We have also reconsidered the question of static spherically symmetric black hole

solutions in a theory of gravity coupled to scalar fields with non-standard kinetic

energy terms. We have considered situations where the scalar energy density can be

negative in some regions, but the total mass is still positive, as well as the almost

asymptotically flat and other boundary conditions. In the case when the (time-like)

weak energy condition is satisfied and the asymptotically flat boundary conditions

are enforced, we recover the scalar no-hair theorems [76, 77]. Our analysis is based on

the minimum of assumptions and different from previous ones. We find loopholes not

only for the case of negative energy densities, but also when the boundary conditions

are not asymptotically flat. For reasons mentioned earlier, we do not think it is

justified to, a priori, discard solutions where the scalar energy density is negative

somewhere but where the total black hole mass is positive and well behaved. In this

context it should be mentioned that in [33] consistent black hole solutions have been

found in the kind of theories considered here which are stationary and do contain
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regions where the energy density can be negative. We have not discussed the stability

of any possible solutions. This, and the construction of explicit solutions is also an

ongoing project.
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CHAPTER IV

Stationary Solutions

4.1 Introduction

The discovery of the late time acceleration of the universe using Supernova Ia [9]

confirmed by other observations ([81] and references therein), opened a window of

opportunity for the existence of novel cosmological scalar fields not only during the

early inflationary stage but also in the current universe. Indeed, scalar fields are

the most natural candidates for the realization of inflation, and for the dynamical

explanation of dark energy (DE) that is responsible for the late time acceleration.

Arguably, the main difficulty in the modeling and understanding of the possible dy-

namics of dark energy arises because of the fine tuning issues. In particular, there

is the so-called coincidence problem [15, 29]: why is DE only now comparable with

the energy density in the dust-like dark matter? This coincidence would be espe-

cially remarkable, if one assumes that both these dark constituents are independent

of each other and evolve very differently in time. Partially because of the fine tuning

problems it is not surprising that the candidates for DE often have not only rather

exotic names: quintessence/cosmon [15, 16], k-essence [19, 82], phantom [83, 84],

ghost condensate [65], quintom [85], etc, but also very unusual properties. In par-

ticular, these scalar fields can possess: extremely small effective mass (quintessence,
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quintom), sound speed which can be much smaller and even larger than the speed

of light (k-essence, ghost condensate), negative kinetic energies (phantom, quintom),

Lorentz symmetry breaking and gravity modifications even around the Minkowski

space-time background (ghost condensate). The most successful paradigm to solve

the coincidence problem is currently k-essence, where the highly nonlinear dynamics

triggers the equation of state of DE from radiation-like to quasi de Sitter around the

transition to the matter domination stage. In the late matter domination epoch the

k-essence has a speed of sound which is much smaller than one. However, it was

showed [30, 86] that to explain the coincidence problem k-essence models must nec-

essarily have at least a short phase where the fluctuations in the k-essence travel at

superluminal speeds. For our purposes it is important that the nonlinear dynamics

responsible for the attractor behavior addressing the coincidence problem requires

an explicit dependence of the Lagrangian on the field strength [86]. This field de-

pendence cannot be eliminated by any field redefinitions. Thus, successful k-essence

models as well as quintessence/cosmon models cannot be shift symmetric.

On the other hand it is known that the current universe is highly inhomogeneous

on small scales and in particular that there are plenty of black holes (BHs) of different

mass and origin. Thus an interesting and natural question arises, how do black holes

surrounded by cosmological scalar fields evolve? In addition, from the theoretical

viewpoint it is interesting to consider BHs “dressed” with different field backgrounds.

This could have a valuable impact on our understanding of the physics of horizons

(see e.g [33, 87, 88]). Owing to the no-hair theorems [77, 89] we know that BHs

cannot support static configurations of scalar fields1. Therefore, any scalar hair will

1BHs can not support scalar hair at least for theories that respect some of the standard energy conditions. Having
in mind the exotic properties of DE models mentioned above, it would be interesting to find examples of stable scalar
hair in theories violating the usual energy conditions. For a model of hairy scalar BHs with ghost like quantum
instabilities see Ref. [90].

53



be continuously swallowed by the BH. In particular one could analyze the growth (and

may be even formation) of black holes due to the accretion (collapse) of DE. Then

one can try to use powerful and rather universal laws of black hole thermodynamics,

combined with astrophysical observations to restrict the allowed properties of DE

candidates and rule out some of them as contradicting either BH thermodynamics

or astrophysical data. Recent studies along these lines were, for example, done in

[75, 33, 87, 88, 91, 92, 93, 94, 95].

Finally, for k-essence, a typically very small sound speed during the late matter

domination era allows for rather significant large-scale inhomogeneities around BHs

and other massive objects. This long-range clumping would be one of the character-

istic, potentially observable consequences of k-essence. Moreover, due to this ability

to realize small sound speeds along with the dust-like equation of state, the k-essence

fields can be used to model dark matter [63, 69, 2]. In this setup, the presence of su-

permassive BHs at the center of galaxies makes understanding the accretion process

even more necessary.

On the other hand the presence of backgrounds with the superluminal sound speed

mentioned above opens an exciting possibility to look beyond the BH horizon [33]2.

Note that the current bounds [97, 98] on DE sound speed are not restrictive at all.

The classical and most simple setup for accretion problems is a steady state or

Bondi accretion [99]. Remarkably, a lot of astrophysical phenomena can be described

by a steady state accretion. For a review see e.g. [100]. For scalar fields, the Bondi

accretion was recently studied in [33, 93, 94, 95, 101]. It is fair to say that almost all

known analytical solutions3 for accreting scalars either belong to the Bondi case or

2Despite of the presence of superluminal propagation, the accretion backgrounds constructed in these works are
free of any causal pathologies [31]. However, it is interesting to study whether, similar to Ref [96], two boosted BH
could create causal paradoxes in this setup.

3See however Ref [75]
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represent the dust-like free fall. The dust-like time dependent accretion of a massive

canonical scalar field was considered in [95], while dust-like solutions for the ghost

condensate scalars were found in [92, 88]. It seems that scalar fields with canonical

kinetic terms would not leave any important impact on the astrophysical BHs in the

current universe [95]. Nevertheless, accreting scalar fields could play an important

role in the formation of primordial BHs (see e.g. [75]).

In this chapter we investigate stationary configurations for general k-essence scalar

field theories. We show that the necessary condition for the existence of exact sta-

tionary configurations is the symmetry of the theory with respect to constant shifts

in the field space: φ → φ + c. This symmetry has to be realized either in terms of

the original field strength or after a field redefinition. On the way, we also analyze

properties of general k-essence scalar field theories covariant with respect to field

redefinitions. The proof is valid for general theories with nonlinear kinetic terms in

both the test-field approximation and the self-consistent case where the background

metric is governed by the field φ itself. It is interesting to note that shift symmetric

scalar field theories are exactly equivalent to perfect fluid hydrodynamics provided

that only such field configurations which have time-like derivatives are considered.

In particular this result implies that the most interesting scalar field models of dark

energy cannot realize a steady state/Bondi accretion. Thus, in general, the solution

to the problem of accretion of these fields onto black holes requires a knowledge of

their initial configuration. In this chapter we are discussing stationary configurations

that are exact. Of course, in the real world the stationarity should be considered

an approximation. It may well happen that the solutions would only asymptotically

approach the stationary regime. For some canonical scalar fields this behavior was

demonstrated in [95].
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4.2 Derivation of the stationary configurations

Let us consider a general scalar field theory with the action

S =

∫
d4x
√
−gL(X,φ), where X =

1

2
gµν∇µφ∇νφ.

Here, gµν is the gravitational metric and as usual g ≡ detgµν . Throughout the chap-

ter, ∇µ denotes the covariant derivative associated with the gravitational metric gµν .

We assume that the Lagrangian L(X,φ) is a general function satisfying the following

conditions: LX ≥ 0 (Null Energy Condition) and 2XLXX/LX > −1 (Hyperbolic-

ity condition)4. The first condition guaranties that the perturbations carry positive

kinetic energy while the second one implies the stability with respect to high fre-

quency perturbations, and is necessary for the Cauchy problem to be well posed5

(see e.g. [60, 62, 63, 31, 20, 102]). These conditions restrict the variety of the al-

lowed Lagrangians along with the corresponding solutions, and are unavoidable for

any physically meaningful model6. The energy-momentum tensor of the theory is

Tµν = LX∇µφ∇νφ− gµνL.(4.1)

It is well known (see e.g., [32]), that for time-like derivatives (i.e., X > 0), the models

under consideration can be described in a hydrodynamical language by introducing

an effective four velocity7

uµ =
∇µφ√

2X
,(4.2)

along with the pressure

p = L(X,φ),(4.3)

4We use the notation (...)X ≡ ∂ (...) /∂X and the signature (+−−−).
5For further discussion of these topics please refer to appendix §A.
6For a different opinion see [103].
7Note that even for X > 0 the effective four velocity introduced in (4.2) is not necessarily future directed. However,

the analogy with the perfect fluid can be made exact by multiplying this expression (4.2) with ±1 so that u0 > 0.
Furthermore, it is convenient to use the analytic definition of the square root so that every time when φ̇ changes its
sign the square root will change the sign as well preserving the future direction of uµ.
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the energy density

ρ(X,φ) = 2XLX − L,(4.4)

and the sound speed8

c2
s(X,φ) =

(
1 +

2XLXX
LX

)−1

=

(
∂p

∂ρ

)
φ

.(4.5)

In these variables the energy-momentum tensor has the form corresponding to the

one of a perfect fluid:

Tµν = (ρ+ p)uµuν − pgµν .

It is convenient to use the hydrodynamical notation for these functions of φ and X

also for X ≤ 0 when they do not have their usual physical meaning of velocity etc.

4.2.1 Field redefinitions and conditions for stationarity

If the field φ does not have any direct interactions except with gravity, then ob-

viously a field redefinition φ = φ(φ̃) cannot affect any observables besides the field

itself. This is a particular case of a stronger statement (see e.g., [104]). Obviously the

solutions φ (x) and φ̃ (x) result through Einstein equations in the same gravitational

metric gµν (x), and describe in that sense the same physical process. Thus, it is inter-

esting to investigate the properties of k-essence under field redefinitions. Under the

field redefinition φ = φ(φ̃), we have ∇µφ =
(
dφ/dφ̃

)
∇µφ̃; whereas the expressions

for the energy-momentum tensor Tµν , and all hydrodynamical quantities ρ, p, cs and

uµ remain unchanged or covariant9. Here we should distinguish between covariance

and invariance. Covariance means that the way how the quantities/equations are

constructed from other objects remains unchanged whereas invariance implies ex-

actly the same functional dependence on these objects. For example, the formula
8This formula for the sound speed was introduced for the cosmological perturbations in [34]. One can show [31]

that the same expression is valid in the general case of backgrounds with time-like field derivatives: X > 0.
9Note that the four velocity (4.2) is invariant up to the sign only.
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(4.4) defining the energy density ρ through Lagrangian L, X and the derivative LX

looks the same after a field redefinition (covariant); however, the dependence of the

Lagrangian on the field does change (not invariant). It is obvious that, for example,

the value of physical energy density at every point should not change under field re-

definitions, but here these quantities reveal in addition such covariance with respect

to the field redefinitions as it is the case, for example, the Euler-Lagrange equations.

However, this covariance is not guarantied for all interesting objects. It is worthwhile

mentioning that, for example, the metric [31]

Gµν [φ0] =
LX
cs

(
gµν −

c2
sLXX
LX

∇µφ0∇νφ0

)
,

describing the propagation of small perturbations π around a given background

φ0 (x), transforms conformally under field redefinitions φ = φ(φ̃):

Gµν [φ0] =

(
dφ̃

dφ

)2

0

Gµν [φ̃0].

Thus, as expected, the causal structure does not change under field redefinitions.

The conformal factor
(
dφ̃/dφ

)2

0
compensates for the redefinition of perturbations

π =
(
dφ/dφ̃

)
0
π̃.

Let us further consider a stationary space-time with metric gµν and a time-like

Killing vector tα. Thus, £tgµν = 0, where £t is the Lie derivative. The configuration

is stationary if by definition

£tTµν = 0.

Using Leibniz’s rule we have

£tTµν = (£tLX)∇µφ∇νφ− gµν£tL

+LX [(£t∇µφ)∇νφ+ (£t∇νφ)∇µφ] = 0.(4.6)
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By multiplying this expression with gµν we obtain

0 = £tT
µ
µ = £t (2XLX − 4L) = £t (ρ− 3p) .(4.7)

Suppose the configuration φ (xµ) is such that ∇µφ is a null vector: i.e., X = 0. In

that case we can multiply the right hand side of the equation (4.6) with gµν to obtain

£tL = 0. Further, we have 0 = £tL = Lφ∂tφ. As we are looking for stationary but

not static solutions, we have Lφ = 0. Thus, the Lagrangian should be symmetric

with respect to field shifts φ→ φ+ c, where c is an arbitrary constant.

For X 6= 0 it is convenient to introduce the projector

Pµν = gµν −
∇µφ∇νφ

2X
,(4.8)

with the properties

Pµν∇νφ = 0, PµλPλν = P ν
µ , and Pµµ = 3.(4.9)

Moreover, this projector is both invariant and covariant under field reparametriza-

tions: Pµν [φ] = Pµν [φ̃]. By acting with the projector Pµν on the left hand side of

equation (4.6), we have 0 = Pµν£tTµν = −3£tL. Therefore, if the configuration is

stationary then in particular

£tL = 0,(4.10)

which for the hydrodynamical case reduces to the constancy of the pressure p. Com-

bining this with (4.7) we obtain the time independence of the energy density ρ or

£t (XLX) = 0.(4.11)

Further, we can act on the left hand side of equation (4.6) with Pαν so that

0 = Pαν£tTµν = LXPαν (£t∇νφ)∇µφ.
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Thus, stationarity implies

Pαβ (£t∇βφ) = 0.

Using the properties of the projector (4.9), Leibniz’s rule and that tα is a Killing

vector, one obtains

0 = Pαβ (£t∇βφ) = −∇βφ£tPαβ = −£t∇αφ+
∇αφ

2X
£tX.

The last expression in turn can be written in the following form

−£t∇αφ+
∇αφ

2X
£tX =

√
2X£t

(
∇αφ√

2X

)
.

Therefore, stationarity implies

£t

(
∇αφ√

2X

)
= 0,(4.12)

or in the hydrodynamical notation £tu
µ = 010. Thus, we have proved that for any

stationary configuration the following conditions

£tu
µ = 0, £tρ = 0, and £tp = 0,(4.13)

should be satisfied. Note that these conditions are covariant under field redefinitions

and, for the hydrodynamical case (X > 0), are intuitively clear requirements. Some-

times (see e.g., [94]) one claims that the stationarity implies a stronger requirement:

£t∇µφ = 0,(4.14)

instead of the condition (4.12). However, the equation above is not covariant under

field redefinitions, and does not follow from the stationarity of the energy-momentum

tensor.
10The vector uµ is formally imaginary for X < 0. However, without any change of the results one could redefine

uµ in this case: uµ = ∇µφ/
√
−2X.
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Now let us find what type of theories L(X,φ) and field configurations φ (xµ) can,

in principle, satisfy conditions (4.13). It is convenient to chose a coordinate system

(t, xi) such that the time coordinate corresponds to the integral curves of tα. In that

case the Lie derivative reduces to the partial derivative £t = ∂t.

4.2.2 Which field configurations can have constant effective four velocity uµ ?

Now let us find the configurations φ (xµ) satisfying the condition on the effective

four velocity (4.12). For the time component of the four velocity we have

∂t

(
φ̇√
2X

)
=

φ̈√
2X

+ φ̇∂t

(
1√
2X

)
= 0,(4.15)

where φ̇ = ∂tφ, while for the spatial components

∂t

(
∂iφ√
2X

)
=

∂iφ̇√
2X

+ ∂iφ∂t

(
1√
2X

)
= 0.(4.16)

Obviously these equations have a trivial static solution φ = φ (xi). To find a nontriv-

ial solution we combine these two equations to obtain following system of equations:

φ̇∂iφ̇− φ̈∂iφ = 0,

which is equivalent to

∂t

(
∂iφ

φ̇

)
= 0.(4.17)

This is a system of second order partial differential equations. Integrating equation

(4.17) we obtain the following linear homogeneous system

∂iφ = Vi
(
xj
)
φ̇,(4.18)

where Vi (x
j) are unknown time independent functions. This is a first order system of

three partial differential equations for only one function φ. Let us find the consistency
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conditions under which the system can have solutions. Differentiating the i−equation

with respect to xj, and using the time differentiation of the j−equation we obtain

∂j∂iφ = ∂jViφ̇+ Vi∂jφ̇ = ∂jViφ̇+ ViVjφ̈.

Now we can compare this result with the result of the same procedure performed for

the j−equation. We obtain

∂iVj − ∂jVi = 0.

For a simply connected manifold, the last equation implies the existence of a function

(potential) Ψ (xi) such that Vi = ∂iΨ. Otherwise, there are no solutions for (4.18).

For the i−equation we can assume that all xk with k 6= i are frozen parameters,

and for the characteristics (for the method of characteristics see, for example, the

excellent book [105]) we obtain

dt

dτ
= −∂iΨ

(
xj
)
,

dxi

dτ
= 1.

The first integral I of this system is given by the constant of integration for the

equation

dt

dxi
= −∂iΨ

(
xj
)
.

By integrating this we obtain

t = I −Ψ
(
xi
)
.

Therefore, the general solution φ (t, xi) is given as an arbitrary function of the first

integral I:

φ
(
t, xi

)
= Φ

(
t+ Ψ

(
xi
))
.(4.19)
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Thus, the general solution for equations (4.15) and (4.16) contains two arbitrary

functions. Note that the system (4.17) does not have any other general solutions

besides (4.19). It is easy to prove that this solution satisfies the equations (4.15) and

(4.16). Indeed, we have

φ̇ =
dΦ

dI
, and ∂iφ =

dΦ

dI
∂iΨ.

Therefore,

X =
1

2

(
dΦ

dI

)2 (
g00 + 2g0i∂iΨ + gik∂i∂kΨ

)
,(4.20)

and the time component

φ̇√
2X

=
1√

g00 + 2g0i∂iΨ + gik∂i∂kΨ
,

along with the spatial components

∂iφ√
2X

=
∂iΨ√

g00 + 2g0i∂iΨ + gik∂i∂kΨ
,

are obviously time independent because the metric is stationary. It is worth men-

tioning that by using the condition (4.14) we would arrive at the general solution

φ (t, xi) = t + Ψ (xi); missing the arbitrary functional dependence Φ. Note that

arbitrary field redefinitions correspond to the freedom in choosing Φ.

4.2.3 Which Lagrangians Allow for Stationary Configurations?

Now let us consider the restrictions on L(X,φ) arising from the requirement that

the pressure and energy density should be time independent for the general solution

(4.19). From equation (4.10), we have

∂tL = Lφφ̇+ LXẊ = 0,(4.21)
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while from equation (4.11)

∂t (XLX) = ẊLX +XLXφφ̇+XLXXẊ = 0.

Eliminating Ẋ from these equations results in

XLXφ − (XLXX + LX)
Lφ
LX

= 0.(4.22)

This equation is a second order partial differential equation for L(X,φ). A trivial

solution of this equation is a shift symmetric Lagrangian L(X). It is well known

that shift symmetric theories are exactly equivalent to hydrodynamics for X > 0.

Obviously hydrodynamics allows for steady flows. Let us find a general solution of

the equation (4.22). This general solution should depend on two arbitrary functions.

It is convenient to rewrite equation (4.22) in the following form:

∂ ln (Lφ/LX)

∂ lnX
= 1.

Integrating this equation we obtain

Lφ = σ (φ)XLX ,(4.23)

where σ (φ) is an arbitrary function. The last equation (4.24) is a first order linear

partial differential equation. Similar to our previous calculations, we use the method

of characteristics to find the general solution. For the characteristics we have

dφ

dτ
= 1, and

dX

dτ
= −σ (φ)X.(4.24)

Thus, the integral curves are given by the equation

dX

dφ
= −σ (φ)X.

The general solution of the last equation is

X = I exp

(
−
∫
σ (φ) dφ

)
,
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where I is a constant of integration. Thus, the general solution to the equations

(4.23) and (4.22) is an arbitrary function of the first integral I of the dynamical

system (4.24):

L(X,φ) = F (Xef(φ)),(4.25)

where F and f (φ) =
∫
σ (φ) dφ are arbitrary functions. Note that all solutions of

(4.22) are described by (4.25). It is obvious that the Lagrangian (4.25) has a hidden

shift symmetry. Namely, we can always perform the field redefinition

φ̃ (φ) =

∫
dφ ef(φ)/2,(4.26)

so that the new Lagrangian is shift symmetric: L(X,φ) = F (X̃), where X̃ =

1
2
gµν∇µφ̃∇νφ̃ = Xef(φ). Thus, all scalar field theories that allow for stationary

configurations are necessarily shift symmetric (explicitly or after a field redefinition).

Further, we will use the notation φ̃ always for such field variables in which the system

is invariant under shift transformations: φ̃→ φ̃+ c, where c is an arbitrary constant.

Finally, we can specify the profiles Φ of stationary configurations. Equations

(4.21) and (4.20) yield

Lφ + LX

(
d2Φ

dI2

)(
g00 + 2g0i∂iΨ + gik∂i∂kΨ

)
= 0,

and using equations (4.23) and (4.20) we obtain

d2Φ

dI2
+

1

2

(
dΦ

dI

)2

σ (Φ) = 0.(4.27)

We know that in terms of the new field φ̃, the Lagrangian is shift symmetric. Thus,

for this parametrization σ(φ̃) = 0. Therefore, Φ̃ (I) = αI + β = t + Ψ (xi) where

we have absorbed the constants into Ψ and t. Thus, in terms of the field variable

φ̃, in which the theory is shift symmetric, the possible stationary configurations are
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always given by

φ̃ = t+ Ψ
(
xi
)
,(4.28)

and we are back to the usual ansatz (4.14). The stationary configurations in terms of

the field variable φ can be obtained by solving equation (4.26) or (4.27) with respect

to φ. This procedure determines the function Φ, while the function Ψ (xi) has to be

fixed from the equations of motion and boundary/initial conditions.

It is worth noting that if the metric gµν possesses another Killing vector corre-

sponding to, e.g., axial symmetry: £θgµν = 0, then we can apply the result (4.28) to

the angular variable θ. Thus, the solution is

φ̃ = t+ Ωθ + Ψ
(
xi⊥
)
,

where Ω is a constant and xi⊥ denotes the rest of the coordinates.

4.3 Conclusion

In this chapter we have proved that the existence of stationary configurations

requires shift symmetry. Namely (may be after a field redefinition) the system has

to be invariant with respect to the transformation φ̃ → φ̃ + c, for all constants c.

The result is valid in the self-consistent case where the geometry is produced by

the scalar field, as well as in the test field approximation where the stationary field

configuration appears on the gravitational background governed by other sources.

The shift symmetry implies the conservation of the Noether current

Jµ = LX̃∇µφ̃.

Interestingly, the equation of motion implies ∇µJ
µ = 0, which is a statement of the

conservation of the current Jµ. In the case when ∇µφ̃ is time-like, the current Jµ
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can be written in the form of an effective particle density current Jµ = ñuµ, where

the particle density11 is

ñ =
√

2X̃LX̃ .

Note that this current is not covariant under field redefinitions. The conservation of

the particle density current usually holds in standard hydrodynamics. However, the

most interesting models of cosmological scalar fields do not posses this additional

conservation law associated with shift symmetry. Thus, the result obtained in this

chapter implies that there is no exact Bondi (steady flow) accretion for popular classes

of models of dynamical dark energy like quintessence and k-essence. This result may

not have a very strong qualitative impact on the growth of black holes or on the

evolution of the cosmological fields around them. Indeed, one should expect that the

accretion rate should be in any case rather small (for the case of canonical scalars

see [95]). Especially in the late/current universe, one can almost always neglect the

growth of the black hole along with the corresponding back-reaction. Nevertheless,

this result changes the setup for the investigation of the problem. Now in order

to study how these fields could accrete onto black holes, one is forced to solve the

Cauchy problem for nonlinear partial differential equations, instead of solving the

boundary problem for nonlinear ordinary differential equations. In particular, to

approach this problem one has to choose some initial configuration for the field and

its time derivative. At this stage, it is not clear what are reasonable, physically

motivated initial conditions, and at what time they should be posed. This is very

different from the case of Bondi accretion where the boundary conditions are fixed

by cosmological evolution, and the membrane property of the BH horizon. However,

it may happen that there are some special attractor or self-similar regimes to which
11Note that this number density is none other than the canonical momenta for the field φ̃ in the comoving reference

frame.
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the solutions would approach at late time. Nevertheless, one cannot guarantee either

the existence of these attractors, nor their uniqueness for a general model. Moreover,

even if a unique attractor exists, then it is not a priori known how wide the basin

of attraction is in the phase space consisting of initial configurations of the field and

its time derivative. Thus, the procedure for finding these attractor solutions is not

only a predominantly numerical exercise, but also generically not very promising and

predictive. Nevertheless, it is very interesting to find examples of scalar field systems

possessing solutions of this type. In [95] it was demonstrated that for canonical

scalars and many potentials the solutions indeed approach a steady flow.

In addition, one has to mention that having a shift symmetric theory is a necessary,

but insufficient condition for the existence of stationary configurations. For exam-

ple, in hydrodynamics there can be either exceptional theories or even exceptional

boundary conditions for which there are no stationary configurations. In particular

the simple accretion of dust onto a black hole occurs along geodesics and therefore is

not steady. A similar situation happens in the case of the ghost condensate for which

the accretion rate blows up when the field configuration at spatial infinity approaches

the condensation point (compare [94] and [92]). Moreover, in the DBI model consid-

ered in [33], it was found that a physically meaningful steady state accretion is not

possible when the sound speed at spatial infinity is c2
s > 4/3.

In this chapter we have considered only a single self interacting scalar field. It

would be interesting to study other types of fields, in particular one could think of

scalars with internal degrees of freedom, e.g., charged scalars accreting onto a charged

black hole. We expect that the appearance of new external forces and internal degrees

of freedom can change the picture. Another interesting problem is to find possible

attractor or self-similar asymptotic solutions, and develop a perturbation theory
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around them. As we have shown, stationary configurations are possible only for

theories that are equivalent to perfect fluids. This result reveals once again that the

relation between hydrodynamics and field theory is rather deep. Therefore, we think

this connection deserves a further study. We found that investigation of possible

dynamical backgrounds around black holes is interesting not only from the point of

view of mathematical physics, but may be relevant for a better understanding of

both black holes physics and may be even the nature of dark energy.
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CHAPTER V

Reconstruction of Non-Canonical Inflationary Actions

5.1 Introduction

Since the landmark COBE experiment, the study of the cosmos has entered a new

age of precision cosmology. For the first time in the history of modern cosmology,

direct quantitative measurements of early cosmological observables are available. The

data taken by COBE was critical in establishing inflation as the central paradigm in

our theories of the origin of the universe [7]. Thanks to experiments that measured

the spectrum of CMBR fluctuations, we have now confirmed that the near-scale

invariance of large scale fluctuations that is a prediction of inflation are in fact borne

out in the data. Although observation supports the general theory of inflation, as

of now the data is unable to conclusively determine the mechanism responsible for

inflation.

The difficultly in discriminating between different inflation models lies in the fact

that all current models of inflation predict the same near-scale invariant spectrum

of scalar fluctuations. To further narrow down the number of observationally con-

sistent inflation models, observables independent of the scalar perturbation need

to be measured and compared to model predictions. Two additional inflationary

observables are the spectrum of tensor perturbations Ph [106, 107] and the non-
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gaussianity fNL [35, 37, 38] of the CMBR temperature perturbation spectrum. In

recent years greater progress has been made in measuring these quantities directly.

Upper bounds on the amplitude of the tensor perturbation spectrum, which is the

spectrum of relic gravitational waves, have been determined directly through analy-

sis of the CMBR polarization [108, 109]. The non-gaussianity, which represents the

deviation of the curvature perturbation from gaussian statistics, is also being bet-

ter understood. Analysis of WMAP3 data [110] has found evidence of non-gaussian

statistics in the CMBR temperature spectrum. With a better knowledge of these

extra observables it becomes possible to better determine which model of inflation is

most likely to have taken place. For example, a large fNL would tend to rule out a

single field inflation model with minimal kinetic terms, while favoring those models

that predict a large non-gaussianity.

Ultimately, one would like to use the features of the CMBR temperature anisotropy

to reconstruct the inflaton action directly. It is customary to write the general scalar

field action as [34]

S =

∫
d4x
√
−g L(X,φ), X =

1

2
gµν∂µφ∂νφ.(5.1)

In our analysis we will limit ourselves to actions that contain no third or higher

derivatives of the inflaton. Throughout this chapter we will assume that the curvature

of the three non-compact space dimensions will be zero. Following the cosmological

principle, we use the FRW metric: gµν = diag(1,−a2,−a2,−a2), where a is a time

dependent scale factor. Using (5.1), the Friedmann equations for the scale factor are

3M2
plH

2 = ρ,(5.2)

−2M2
plḢ = ρ+ p,(5.3)

where H = d log a
dt

is the Hubble parameter. The quantities p and ρ are the pressure
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and energy density, respectively, of the scalar field, which in terms of the Lagrangian

are

p = L, ρ = 2XLX − L.(5.4)

In single field inflation models with a minimal kinetic term the action is

S =

∫
d4x
√
−g [X − V (φ)] .(5.5)

If we assume (5.5), the only function that needs to be determined from the data is

the potential V (φ). Reconstruction of the inflationary potential for models of the

form (5.5) has been studied extensively [111]. However, by assuming that the action

has a minimal kinetic term we neglect a rich class of models such as DBI inflation

[28, 57], k-inflation [32] and ghost inflation [112]. In contrast, only a hand full of

articles have been written that deal with the reconstruction of inflationary actions

with general kinetic terms [36, 113, 114].

In non-minimal kinetic models the speed at which scalar fluctuations propagate

can be different than the speed of light. This can affect the temperature anisotropy

in two ways. First, if cs < c = 1, scalar fluctuations have a sound horizon that

is smaller than the cosmological horizon, causing curvature perturbations to freeze

in earlier than normal. Depending on how the Hubble parameter and sound speed

change during the course of inflation, the temperature anisotropy can develop no-

ticeable signatures of non-minimal kinetic terms. Second, models with non-minimal

kinetic terms will in general produce a non-gaussian spectrum. Traditionally, the

non-gaussianity is measured by the nonlinearity parameter fNL defined by the fol-

lowing ansatz for the curvature perturbation:

ζ = ζL −
3

5
fNLζ

2
L.(5.6)
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Here, ζ is the general curvature perturbation and ζL is a curvature perturbation with

gaussian statistics. Within the standard canonical action (5.5), non-gaussianities

can be produced by cubic or higher order terms in the inflaton potential, or by

secondary interactions with gravity [38]. However, non-gaussianities produced by

these mechanisms are on the order of the slow roll parameters, and thus small. In

contrast, models with non-minimal kinetic terms can have large non-gaussianities,

providing a clear distinction from canonical inflation.

The goal of this chapter will be to reconstruct an inflationary action from ob-

servables starting with as few initial assumptions as possible. In this chapter we

take the experimental inputs to be the scalar curvature perturbation Ps, the tensor

curvature perturbation Ph, and the non-gaussianity (nonlinearity) parameter fNL.

Unfortunately, completely reconstructing the off-shell action is not possible since the

observables only carry on-shell information. To understand why the off-shell ac-

tion is inaccessible to us, consider the interpretation of the Lagrangian L(X,φ) as a

surface in the three dimensional space (φ,X, L) [114]. Because the observables are

insensitive to the off-shell behavior of the Lagrangian, we can only determine the

one-dimensional trajectory L = L(X(φ), φ) of the on-shell Lagrangian, embedded in

the two-dimensional surface defined by L = L(X,φ). A one-dimensional trajectory

has an infinite number of surfaces that contain it, each related to one another by

a canonical transformation [114]. Therefore we have to be more specific about the

form of the Lagrangian that we are trying to find. In this chapter we will reconstruct

inflationary Lagrangians that have the form

L(X,φ) = P (g1(X), ..., gm(X), f1(φ), ..., fn(φ)).(5.7)

Here it is assumed that P (x1, ..., xm, y1, ..., yn), which we will refer to as the partition

of the action, is a known function of the {xi} and {yα}, and the functions {gi} and
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{fα} are not all known. Once the on-shell trajectory φ = φ(k) is determined, the

Lagrangian (5.7) defines a surface in the (φ,X, L)-space up to a field redefinition.

Before non-canonical inflation models were first considered, reconstructions of the

inflationary action always assumed that the Lagrangian had the form

L(X,φ) = X − V (φ).

Here the dependence of the action on X is known, and the problem of reconstructing

the inflaton action is reduced to finding the inflaton potential V (φ) from the data.

In our language, the partition of the action that was assumed was

P (g(X), f(φ)) = g(X)− f(φ).(5.8)

Since the scalar field action is assumed to be canonical, then the function g(X) is

taken as a known and is simply g(X) = X. The function f(φ) is the unknown

and represents the potential of the canonical scalar field that previous inflationary

action reconstructions were concerned with. The procedure that we develop here is a

generalization of procedures used to determine the potential in canonical scalar field

models of inflation. For example, in the case of the partition (5.8), our procedure

does not require that any assumptions be made about the form of g(X). Instead,

g(X) and f(φ) are treated on an equal footing, and our procedure can determine

both using CMBR data.

The idea will be to use data on the CMBR perturbation spectrum to find the

functions {gi(X)} and {fα(φ)}. In a naive comparison with algebraic linear equa-

tions, we expect that if there are n unknown functions, finding the action requires

n experimental inputs. Since we are assuming that there are only three observables:

Ps, Ph and fNL, we can derive three reconstruction equations, which can determine

an action with three or fewer unknown functions. In the case where the number of
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unknown functions is less than the number of experimental inputs, the reconstruction

equations not used to find the action become constraint equations.

Since we are interested in solving for functions {gi} and {fα} and not just numbers,

we will need to know at least a portion of Ps, Ph and fNL
1 as functions of the scale

k. While the scale dependence of Ps is known to be at least approximately power-

law dependent on k, the scale dependence of the other two observables Ph and fNL

is unclear at this point. Although future experiments will be able to clarify some

aspects of the tensor and non-gaussianity signals, their exact functional forms will

probably not be available for quite some time if at all. Regardless, the method we

develop here does have utility outside of reconstruction. This method is well suited

to testing how the form of an action depends on the observables. For instance if the

scalar perturbation is of the near-scale invariant variety:

Ps ∝ kns−1,(5.9)

we can use Ps to help derive an action and study its dependence on the index ns.

That way if we wish to connect the action derived from (5.9) to an action derived

from theory, we can see if the theoretical action leads to reasonable results for the

observables. Furthermore, as we mentioned earlier when there are only one or two

unknown functions in (5.7), the remaining reconstruction equations determine new

consistency relations. In this chapter most of the examples we deal with have only

two unknown functions, which we solve for using the scalar and tensor spectrum

data. The reconstruction equation derived from the non-gaussianity will then be a

constraint; relating the non-gaussianity to the sound speed, the Hubble parameter

and/or their derivatives. Outside of deriving the action, we also find a method for

quickly obtaining the sound speed as a function of time from the scalar and tensor
1Here, fNL represents the equilateral bispectrum, and is therefore a function of a single scale.
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perturbation spectra. Finding a sound speed different from the speed of light even

over a small range of scales would be a powerful indication of non-canonical inflation.

This chapter is organized as follows. In section §5.2 we present the method for

reconstructing the action from the scalar, tensor and non-gaussianity spectra. We

explain how cosmological data can find the Hubble parameter H, and the sound

speed cs, and how these in turn can be used to find three unknown functions of

the action (5.7). Once the method has been explained in section §5.2.1 we carry

out a derivation of the action for different functions P (z1, z2, z3), assuming that the

scalar and tensor power spectra both scale like k to some power. In section §5.3 we

apply our method to find the warp factor and potential in a generalized DBI inflation

model. We find the warp factor and potential as functions of the spectral indices and

the initial value of the Hubble parameter. The results for these are compared to the

theoretically motivated warp factor and potential used in D3 brane DBI inflation.

Finally, in section §5.4 we review our main results.

5.2 The Reconstruction Equations

We start our derivation of the reconstruction procedure by explaining how the

observables are used to find the Hubble parameter H and sound speed cs
2. Once

we have these, the action can be obtained using a set of reconstruction equations

that will be shown later. Let us begin by recalling the definition of the slow roll

parameter3 ε in terms of the Hubble parameter. The definition of ε implies that

dH

dt
= −εH2.(5.10)

Since the perturbation spectra and non-gaussianity are functions of k and not time,

we wish to rewrite this equation for dH
dt

into an equation for
◦
H= dH

d log k
. However,

2The method described here was inspired by the technique used in [115]
3The term “slow roll parameter” is taken from chaotic inflation where inflation occurs only when the inflaton

“velocity” φ̇ is small. However, DBI inflation can still occur for large φ̇.
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because we are assuming a general sound speed, we must be careful to differentiate

between the horizons of scalar and tensor fluctuations. If the sound speed differs from

unity (in particular cs < 1), then the horizon size of scalar fluctuations: (aH/cs)
−1

is smaller than that of the tensor fluctuations: (aH)−1. This implies that at any

given time, the scales ks and kt at which the scalar and tensor fluctuations leave

their respective horizons, will in general be different. For our purposes, we choose to

study the dependence of H on the scalar wave number ks. Therefore, the condition

for horizon exit is now kcs = aH instead of the more familiar relation: k = aH.

Having made clear our choice of wave number, we now set out to express d log k
dt

in

terms of familiar quantities:

d log k

dt
= H(1− ε+

κ

H

d log k

dt
),

where we have defined κ = −
◦
cs
cs

. Solving for d log k
dt

above:

d log k

dt
=
H(1− ε)

1− κ
.(5.11)

With equation (5.11) in hand, the equation for
◦
H can now be found from (5.10):

◦
H= −Hε(1− κ)

1− ε
.(5.12)

We will use this equation to find cs once we have found H and ε in terms of the

observables. Since ε depends on the time derivative of the Hubble parameter, H(k)

and ε(k) are independent parameters. Since we have two independent parameters,

we will likely need two independent observables. The two observables we will use

here are the scalar and tensor perturbation spectra. Recall that to first order in the

slow roll parameters the perturbation spectra are given by

Ps(ks) =
H2

8π2M2
plεcs

∣∣∣∣∣
kscs=aH

,(5.13)
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Ph(kt) =
2

π2

H2

M2
pl

∣∣∣∣∣
kt=aH

.(5.14)

The extra source of information can also be garnered from the non-gaussianity param-

eter fNL. However, going in this route would result in a more complicated solution.

The parameter ε can be found as a function of wave number using (5.13). Solving

for ε we obtain

ε|kscs=aH =
1

8π2M2
plPs(ks)

H2

cs

∣∣∣∣
kscs=aH

.(5.15)

As a matter of convenience define Ps = APs, where A is the value of the scalar

perturbation at some fiducial scale k = k0. If k0 ' 0.002Mpc−1 then present data

suggests that A ' 10−9. Here, Ps is the normalized scalar perturbation defined such

that Ps(k0) = 1. Furthermore, let H = AH where A2 = 8π2M2
plA. Substituting

(5.15) in for ε in equation (5.12) we have

◦
H |kscs=aH = − H3

csPs −H2

(
1 +

◦
cs
cs

)∣∣∣∣∣
kscs=aH

.(5.16)

We have eliminated ε from (5.12), but two independent variables remain. To get an

equation for cs we need to findH in terms of the observables. Since the expression for

Ph (5.14) only depends on H, it can be used to find the Hubble parameter directly.

In doing so, one find that

H2
∣∣
kt=aH

=
Ph(kt)

16
,(5.17)

where Ph = A−1Ph. This gives the Hubble parameter as a function of the tensor

mode wave number kt. In order to find H2 as a function of the scalar mode wave

number ks, note that the relation between the wave number of tensor and scalar

modes that exit the horizon at the same time is kt = kscs. Therefore, we can obtain

H|kscs=aH by performing the substitution kt → kscs:

H2
∣∣
kscs=aH

=
Ph(kscs)

16
.(5.18)
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Plugging this in for H into equation (5.16) we get

dPh(kt)
d log kt

= − 2Ph(kt)2

16cs(ks)Ps(ks)− Ph(kt)
.(5.19)

Rearranging (5.19) we find the equation for cs:

cs(ks) =
1

16

Ph(kscs)
Ps(ks)

(
1− 2Ph(kscs)

•
Ph (kscs)

)
.(5.20)

Here, a solid circle over Ph will denote differentiation with respect to log kt, not

log ks. Once we specify what Ps(ks) and Ph(kt) are, we can use the above to solve

for cs. Even if we can only show that cs 6= 1, this will be a signal for non-minimal

kinetic terms. Once we use equations (5.18) and (5.20) to get H(k) and cs(k) we can

use (5.11) to find the relation between the wave number and time and ultimately

find H(t) and cs(t).

Having successfully found H and cs, the next step will be to use this information

to find the action. The most general single scalar field Lagrangian is a multivariable

function of φ and X. However, since we only have H and cs as functions of a single

independent variable (in this case k) the Lagrangian can only be determined as a

function of k: L(k). To turn L(k) into L(X,φ), we need to find φ and X as functions

of k, invert them to get k(φ) and k(X), and substitute into L(k). However, there

is an ambiguity in how we substitute k for φ and X. Whenever k appears in the

expression for L(k), we do not know whether to substitute it with k(φ), k(X) or

some combination of the two. The ambiguity can be partially resolved if at the onset

we specify a partition of the Lagrangian into functions that depend either entirely

on φ or entirely on X. In light of this fact we make an ansatz:

L(X,φ) = A2M2
pl%(x, ϕ) = A2M2

plP (g1(x), ..., gm(x), f1(ϕ), ..., fn(ϕ)),(5.21)

where ϕ = M−1
pl φ and x = (AMpl)

−2X. We have also defined a dimensionless

Lagrangian % in order to keep the exposition neat and clear. Here it is assumed that
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P (y1, ..., ym, z1, ..., zn) is a known function of the {yi} and {zα}, and the functions

{gi} and {fα} are not all known. We say that a Lagrangian is partitioned if it is

written in the form given by (5.21), and the function P is referred to as the partition

of the Lagrangian.

Whether a Lagrangian has a partition depends on what function P the user as-

sumes. The user defined function P is usually chosen according to some theoretical

motivation. For example, before non-canonical kinetic terms were considered, single

field inflation models were almost exclusively assumed to have the form

%(x, ϕ) = x− V (ϕ).(5.22)

Here the partition is P (z1, z2) = z1 − z2. If one assumes canonical terms, then the

potential V (ϕ) can be reconstructed from the inflationary observables using methods

that have been developed previously [111]. As we have learned in recent years, other

types of kinetic terms are possible. For instance, in brane inflation models the

Lagrangian has the form

%(xϕ) = −f−1(ϕ)
√

1− 2f(ϕ)x+ f−1(ϕ)− V (ϕ).(5.23)

In this case the partition is P (z1, z2, z3) = −z−1
2

√
1− 2z2z1 + z−1

2 − z3. A reconstruc-

tion of this action would involve finding the warp factor f(ϕ) and potential V (ϕ),

which we will do in section §5.3. In each of these cases the Lagrangian’s dependence

on x is assumed to be known, however, we may have a model where the dependence

on x is uncertain. For example, we might have a theoretical motivation for replacing

x in the Lagrangian (5.22) with x2. Thus, we could generalize (5.22) by replacing x

with an unknown function: g(x), and reconstruct g from the observables to see if the

result more closely matches g(x) = x or g(x) = x2 or something else. Therefore, our

procedure can be seen as a generalization of inflationary potential reconstructions.
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We say that (5.21) only partially resolves the ambiguity, because it is possible in

certain circumstances that a field redefinition can leave the form of (5.21) unaltered.

For an example consider the Lagrangian

%(x, ϕ) = f(ϕ)g(x).(5.24)

Under a general field redefinition ϕ = h(ϕ̃) the Lagrangian becomes

%(x, ϕ) = f(h(ϕ̃))g((h′(ϕ̃))2x̃).

If the function g is such that g(x · y) = g(x) · g(y) then

%(x, ϕ) = f(h(ϕ̃))g((h′(ϕ̃))2)g(x̃) = f̃(ϕ̃)g(x̃),

where f̃(ϕ̃) = f(h(ϕ̃))g((h′(ϕ̃))2). Thus, not all choices for the function P lead to a

unique partition between the functions of x and ϕ. However, while the partition is

not alway unique, its uniqueness can not be determined until the functions g and f

have been found. Case in point, in order to maintain the partition in our example

(5.24), we needed to assume that g had the property that g(x · y) = g(x) · g(y).

However, this assumes that we know something about the function g, which would

defeat the purpose of using the observables to derive g in the first place.

The first equation for the reconstructed action will be obtained from the definition

of the sound speed, which is given by

c2
s =

LX
LX + 2XLXX

.(5.25)

Assuming that the Lagrangian has the form (5.21), equation (5.25) can now be used

to find a differential equation for the gi’s as a function of time. After some work,

this equation is given by

〈g̈P 〉 =
〈ġP 〉

2

ẋ

x

(
2xẍ

ẋ2
+

1

c2
s

− 1

)
− 〈ġP ġ〉 ,(5.26)
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where a dot denotes differentiation with respect to the dimensionless time τ = At.

Here, we have used the following short hand notation:

〈g̈P 〉 =
m∑
i=1

g̈iPi, 〈ġP 〉 =
m∑
i=1

ġiPi, 〈ġP ġ〉 =
m∑

i,j=1

ġiġjPij,

where Pi and Pij are Pi = ∂P
∂gi

and Pij = ∂2P
∂gi∂gj

. Equation (5.26), however, is incom-

plete since x is not known explicitly. To turn (5.26) into a more usable form, we

need to obtain an equation for x and its derivatives in terms of the known quantities

ε and H. To find such a formula let’s write out the expression for the energy density

of a general single scalar field action (5.1):

ρ = 2xLx − L.(5.27)

As a consequence of the Friedmann equations, ρ+ p is proportional to dH
dt

:

−dH
dt

=
ρ+ p

2M2
pl

.(5.28)

Solving for ρ+ p in (5.27), and substituting the result into (5.28) we find that

x = −
M2

pl

Lx

dH

dt
=
εM2

plH
2

Lx
,(5.29)

where in the last step we have used the definition of the slow roll parameter. With

(5.21) as our assumed form of the Lagrangian, this algebraic equation for x becomes

a first order differential equation:

x

ẋ
=

εH2

〈ġP 〉
.(5.30)

Differentiating this equation, one can find an expression for ẍ. After substituting

the results of these relations, equation (5.26) becomes

〈ġP 〉 =
2εc2

sH2

(1 + c2
s)

(
η̃H− 2εH− 1

〈ġP 〉

n∑
α=1

ḟα 〈ġP 〉,α

)
,(5.31)
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where η̃ = ε̇
Hε and 〈ġP 〉,α denotes partial differentiation of the quantity 〈ġP 〉 with

respect to fα. We refer to (5.31) as the sound speed reconstruction equation.

The non-gaussianity parameter fNL can also be used to find an equation for the

functions gi and fα. Following from the ansatz of the curvature perturbation (5.6),

fNL is determined by the behavior of the curvature three point function:

〈ζ(k1)ζ(k2)ζ(k3)〉 = −(2π)7δ(3)(k1 + k2 + k3)P 2
s (K)

3fNL(K)

10

∑
i k

3
i∏

i k
3
i

,(5.32)

where ki = |ki| and K = k1 + k2 + k3. As we can see from (5.32), the fNL will

depend on the size and shape of the triangle formed by the three scales of the three

point function. In [35] the authors found an expression for fNL for general single

field actions (5.1) when the three scales form an equilateral triangle:

fNL =
35

108

(
1

c2
s

− 1

)
− 5
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(
1

c2
s

− 1− 2Λ

)
,(5.33)

where

Λ =
X2LXX + 2

3
X3LXXX

XLX + 2X2LXX
.(5.34)

To get fNL as a function of K, we have to evaluate (5.33) at the time when the

scale K passes outside of the sound horizon: Kcs = aH. The scalar power spectrum

depends on a single scale k, which has a one-to-one mapping with the time through

the relation kcs = aH. However, since fNL really depends on three different scales,

the mapping between time and scale is not as straight forward. When the delta

function in (5.32) is taken into account, the non-gaussianity still depends on three

degrees of freedom: the magnitude of two of the scales and the angle between them

[116]. To simplify matters, two of these three degrees of freedom will be fixed, so as

to make fNL a univariate function. Since the equilateral configuration: k1 = k2 = k3,

has been very widely studied [35, 116], we will take fNL to be the non-gaussianity of

83



the equilateral bispectrum. The equilateral non-gaussianity will be a function of kNL,

which is the length of the sides of the equilateral triangle. Since the non-gaussianity

freezes in when the scale K leaves the sound horizon, the scales at which the non-

gaussianity and the scalar perturbation freeze in are not the same but instead related

by 3kNL = ks. After some work, one can use (5.33) and (5.30) to show that the g’s

and f ’s satisfy the equation

〈ġP 〉 =
16εH3c2

s

55

1

1− c2
s − 972

275
c2
sfNL

×

(
κ̃+

εc2
sH

〈ġP 〉3
n∑

α=1

ḟα

[
〈ġP 〉

(
〈g̈P 〉,α + 〈ġP ġ〉,α

)
− 〈ġP 〉,α

(
〈g̈P 〉+ 〈ġP ġ〉

)])
,

(5.35)

where κ̃ = ċs
Hcs = −κ(1−ε)

1−κ . This is the non-gaussianity reconstruction equation. Note

that (5.35) is only well defined if the last line is nonzero. If the last line does vanish

and the right hand side of (5.31) is nonzero then 1 − c2
s − 972

275
c2
sfNL = 0, and the

non-gaussianity (5.33) only depends on the functions gi and fα through the sound

speed cs. We will discuss such a case in the next section. Finally, another relation

between the f ’s and g’s can be derived by combining the Friedmann equations (5.2)

and (5.3):

P (g1, ..., gm, f1, ..., fn) = (2ε− 3)H2.(5.36)

The upshot is that we now have four equations: (5.30), (5.31), (5.35), and (5.36),

which when combined can be used to find x(t) (and by extension ϕ(t)) and three

of the functions fα and gi. With more observational inputs it may be possible to

determine even more f and g functions, but for now we will be content with what

we have. In what follows, we will consider different, specific scenarios for the action

and show how the action in each can be determined from the observables.
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5.2.1 Examples

In the case where the Lagrangian (5.21) has only one function of x the equations

(5.35) and (5.31) take on a much simpler form:

ġPg =
2εc2

sH2

(1 + c2
s)

(
η̃H− 2εH− 1

Pg

n∑
α=1

ḟαPgα

)
,(5.37)

ġPg =
16εH3c2

s

55

1

1− c2
s − 972

275
c2
sfNL

(
κ̃+

εc2
sH
P 3
g

n∑
α=1

ḟα [PgPggα − PgαPgg]

)
,(5.38)

where Pg = ∂P
∂g

, Pgg = ∂2P
∂g2

, Pgα = ∂2P
∂g∂fα

, and Pggα = ∂3P
∂g2∂fα

. As we mentioned earlier

not all forms of the action will yield an equation for the functions gi and fα. In

particular if the action is such that PgPggα = PgαPgg for each α, and if the sound

speed is constant, then (5.38) is not well defined. To see why, let’s assume that cs is

constant. As a result, according to the definition of the sound speed

c2
s =

%x
%x + 2x%xx

⇒ %(x, ϕ) = f1(ϕ)x
1+c2s
2c2s + f2(ϕ),(5.39)

where the f1 and f2 are integration constants and in general will be functions of ϕ

only. We already know that with this form of the action, PgPggα = PgαPgg. Thus

the term in (5.38) inside the large parentheses vanishes, however, the right hand

side of equation (5.37) does not vanish. Therefore, we expect the denominator:

1− c2
s − 972

275
c2
sfNL, in equation (5.38) to vanish. Indeed if we use the formulas (5.33)

and (5.34) for fNL we find that

fNL =
275

972

(
1

c2
s

− 1

)
.(5.40)

This relation between cs and fNL holds regardless of what the functions f1 and f2 in

(5.39) are. It might be argued that if cs is constant then the Lagrangian (5.39) can

be assumed and the remaining equations can be used to find f1 and f2. This however
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is not the case since we have already used the sound speed equation to find g(x).

This can be confirmed if one assumes the Lagrangian (5.39). With (5.39) as our

Lagrangian, equation (5.31) is equivalent to the time derivative of equation (5.30).

Thus, there are really only two equations: either (5.30) or (5.31), and equation (5.36).

Therefore, only one of the two f1 and f2 can be solved for.

There is still yet another potential complication that may arise, specifically when

the Lagrangian takes the form %(x, ϕ) = f(ϕ)g(x). Using (5.36) to find ḟ in terms

of ġ, the equations (5.37) and (5.38) become

ġf =
6εη̃H3c2

s

3(1 + c2
s)− 2ε

,(5.41)

ġf =
16εκ̃H3c2

s

55

1

1− c2
s − 972

275
c2
sfNL

.(5.42)

As with the previous case, (5.42) is not defined when κ̃ = 0. Furthermore, the first

equation (5.41) is also undefined when η̃ = 0. Since this is equivalent to ε = constant,

let’s assume that ε is constant to see which type of action this corresponds to. From

(5.29)

ε =
3xLx
ρ

⇒
(

2− 3

ε

)
x%x = % ⇒ %(x, ϕ) = f1(ϕ)x

ε
2ε−3 .(5.43)

Notice, that this Lagrangian is a special case of the cs = constant Lagrangian (5.39)

with f2 = 0. Thus, ε = constant implies that cs = constant. However, the converse

of this is not true if f2 6= 0. Since (5.37) is a well defined equation even with

the Lagrangian (5.43), we suspect that the denominator in (5.41) vanishes. After

calculating the sound speed with the Lagrangian (5.43) one finds that

c2
s =

2ε− 3

3
.

So indeed, the denominator in (5.41) does vanish. Assuming that the equations

(5.41) and (5.42) are well defined, consistency requires that the right hand sides of
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these equations be equal, leading to the relation

3η̃

3(1 + c2
s)− 2ε

=
8κ̃

55

1

1− c2
s − 972

275
c2
sfNL

.(5.44)

This is a consistency relation between fNL, cs and the slow roll parameters. Although

this consistency relation only holds for models with the Lagrangian % = f(ϕ)g(x),

analogous consistency relations can be found for any model in question. In what

follows, we will carry out the full derivation of the g and f functions for two special

cases.

Case 1: %(x, ϕ) = g(x)− V (ϕ)

Suppose the Lagrangian has the form

%(x, ϕ) = g(x)− V (ϕ).(5.45)

This type of Lagrangian corresponds to the standard scalar field action when g is

the identity map: g(x) = x. We refer to g(x) as the kinetic function. Notice that we

have replaced what should be f1 in our previous nomenclature with V (ϕ) in order

to draw a clear analogy with the potential in the canonical scalar field action. With

this type of action the equations (5.37) and (5.38) become

ġ =
2εc2

sH3 (η̃ − 2ε)

1 + c2
s

,(5.46)

ġ =
16εκ̃H3c2

s

55

1

1− c2
s − 972

275
c2
sfNL

.(5.47)

Here we have two expressions for the derivative of g(τ). Consistency demands that

the right hand sides of these equations be equal, thus we are lead to an analogue of

the relation (5.44):

η̃ − 2ε

1 + c2
s

=
8κ̃

55

1

1− c2
s − 972

275
c2
sfNL

.(5.48)
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Interestingly enough this is the same consistency relation found in [114] for general

single field inflation models. However, while the relation in [114] was only approx-

imate, in our case it is exact. This shows that the consistency relation of Bean

et al. is exact in the case when the Lagrangian is of the form (5.45). Continuing

with the derivation, the equations for V (τ) and x(τ) are given by (5.36) and (5.30),

respectively. They read

V (τ) = g(τ)− (2ε− 3)H2,(5.49)

ẋ

Hx
=

ġ

εH3
=

2c2
s(η̃ − 2ε)

1 + c2
s

.

With our equations in hand we are almost ready to solve them and find the action.

However, we still lack knowledge about the H and cs. In order to go further we need

to look back to section §5.2 and in particular equations (5.18) and (5.20). In order

for these equations to be of any use we need two observables as inputs. For these

we will assume that the two inputs are the scalar and tensor contributions to the

CMBR. Presently, it is believed that these spectra are near-scale invariant, and over

a limited range of scales possess the forms

Ps(k) = e(ns−1) log k/k0 ,(5.50)

Ph(k) = Bent log kcs(k)/k0cs0 .(5.51)

Here cs0 = cs(k0), where k0 is the fiducial scale at which Ps = 1. Note that we

have assumed that the spectral indices have no running: i.e., ns, nt = constant.

Admittedly, (5.50) and (5.51) are likely only approximate, as recent observations

suggest [109]. In general, we expect that the spectral indices themselves have some

dependence on the scale. Therefore, the exponents in (5.50) and (5.51) can be

interpreted as a Taylor series expansion of the spectral indices around some scale

k = k0, truncated at the first order. The point k0 around which we expand can
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be any scale where the spectral indices and Hubble parameter have been measured.

By going to second order in this expansion we can account for any running in the

spectral indices. However, if we limit the range of k accordingly, we can safely

neglect any running and use (5.50) and (5.51). Just what range k has to be limited

to depends on the value of the coefficient of the second order term. Certainly, if the

running is substantial this range will be very tightly constrained. Once we solve for

ϕ(k) and x(k), the range of validly over k will translate into a range for ϕ and x

over which our results for the functions gi(x) and fα(ϕ) can be trusted. Despite our

assumption of constant spectra indices, some insight can be gained on the effects

of running if one considers what happens to the results if ns and nt vary slightly.

For example, the effect of running in the case of DBI inflation can be inferred by

studying the dependence of the warp factor on the spectral indices. As discussed

in the conclusion §5.4 running may result in a multi-throat DBI inflation scenario.

Although running spectral indices is an interesting generalization, in order to better

demonstrate the usefulness of this procedure we will stick with the simpler case of

no running.

Equation (5.18) then tells us that the Hubble parameter is simply proportional

to the square root of the tensor perturbation:

H(k) =

√
Ph(k)

4
=

√
B

4
e
nt
2

log kcs(k)/k0cs0 .(5.52)

Defining H0 as H(k0) = H0, the constant B is therefore B = 16H2
0. As it stands,

(5.52) is not complete since we still do not have an expression for cs(k). To find cs

we turn to equation (5.20), the solution of which gives us

cs = cs0

(
cs0
H2

0

nt
nt − 2

) 1
nt−1

e
−nt−ns+1

nt−1
log k/k0 .
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Since we defined cs0 as cs(k0) = cs0, consistency of our definition demands that

cs0 = H2
0

nt − 2

nt
.

Note that if 0 < nt < 2, cs0 is negative: a nonsense result. Therefore, we must

restrict nt to be either nt < 0 or nt > 2. With an expression for cs in hand, H(k)

explicitly in terms of k is

H(k) = H0e
nt
2
ns−2
nt−1

log k/k0 .

Note that ε and κ are constant in this case and are given by

ε =
H2

csPs
=

nt
nt − 2

,(5.53)

κ = −
◦
cs
cs

=
nt − ns + 1

nt − 1
.

Since ε is a constant then η̃ = 0, which will simplify matters later when we try

solve the reconstruction equations. Solving for log k in (5.11), we find that the time

dependence of log k is

log k/k0 =
ω

κ
log [1 + εH0(τ − τ0)] ,(5.54)

where ω = κ
ε

1−ε
1−κ = −2(nt−ns+1)

nt(ns−2)
. Therefore, the sound speed and Hubble parameter

as functions of time are

cs(τ) = cs0 [1 + εH0(τ − τ0)]−ω , H(τ) =
H0

1 + εH0(τ − τ0)
.(5.55)

These are the expressions for the sound speed and Hubble parameter that will be used

throughout this chapter. They are completely independent of the form of the action

that we are solving for, and are determined only by the inflationary observables Ps

and Ph.
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Before we go about solving the reconstruction equations we should point out that

not all values of the spectral indices lead to realistic inflationary scenarios. As has

been mentioned before, the sound horizon of the scalar fluctuations is not the same

as the cosmological horizon. As a consequence it is now possible for the size of the

sound horizon to increase as time progresses. Thus, the usual expectation that larger

scales freeze in at the beginning of inflation and smaller scales freeze in at the end, is

not always guaranteed to hold. Recall that the time dependence of the scale is given

by equation (5.54). It follows that the sound horizon size depends on time like

Sound Horizon Size ∝ (γaH)−1 = (k/k0)−1 = (1 + εH0(τ − τ0))−
ω
κ .(5.56)

If ω/κ > 0, the sound horizon decreases with time as is normally expected. However,

if ω/κ < 0, the size of the sound horizon increases during inflation, allowing modes

that were previously frozen-in behind the horizon to reenter while inflation is still

going on. This is a potential hazard, since if the horizon increased during inflation

then widely separated regions in the visible universe never had an opportunity to get

in thermal equilibrium with each other. This would make it difficult for inflation to

explain the horizon problem, which is one of the reasons inflation was considered in

the first place. Nevertheless, it might be possible for the horizon to increase during

a small portion of the inflationary era, so long as the horizon is smaller at the end

of inflation. Clearly, in our simple scenario with no spectral index running it is not

possible to achieve this since (5.56) is either monotonically increasing or decreasing

depending on the values of ns and nt. One might suggest that by including running in

the spectral indices the sound horizon could expand for a brief period of time. Upon

inspection of (5.11), we can see that the only way the right hand side of (5.11) can

be positive, and thus lead to a growing sound horizon, is if κ < 1 (keep in mind that

H > 0 and ε < 1 during inflation). Since the horizon has to eventually decrease, κ
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must decrease at some point, and pass through the value κ = 1. This is problematic,

since (5.11) is singular at κ = 1, which means that log k(t) is not analytic there.

Although it may not be impossible for this transition to occur, in this chapter we

are assuming no running. Thus, the horizon will either be monotonically increasing

or decreasing. Since we wish to model inflation we will assume that the horizon is

increasing. Therefore, according to equation (5.56) the spectral indices must be fixed

such that ω and κ are either both positive or both negative.

Since we are considering only those models that allow for inflation, we need to be

sure that the spectral indices are such that an inflationary phase is allowed. If we

refer to the expression for the equation of state w we see that not all values of nt are

allowed if we want to have inflation:

w =
p

ρ
=

L

2XLX − L
= − nt − 6

3(nt − 2)
.

Notice that so long as nt < 2 the equation of state is always w < −1
3
, and so inflation

will occur. Since cs ∝ ε−1, in order for cs to be interpreted as a sound speed, ε must

be positive. If we look back to equation (5.53) we find that not all values of nt will

result in a positive value for ε. Requiring that ε > 0, we find that nt must be either

nt < 0 or nt > 2. Since we have already found that nt > 2 would not lead to an

inflationary solution, we conclude that nt < 0. Recall that in the previous paragraph

we found that the sound horizon could expand during inflation only if the spectral

indices were chosen so that ω/κ > 0. If one refers back to the definitions of ω and κ

in terms of the spectral indices, we can see that if nt < 0 the scalar spectral index is

required to be ns < 2.

The sound speed (5.55) can tell us something about the expected range of validity

of the scalar (5.50) and tensor spectra (5.51). If ω < 0 then at some time τ > τ0

the sound speed will be greater than one, signaling that fluctuations propagate at
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superluminal speeds. Likewise, superluminal speeds also occur at times τ < τ0 when

ω > 0. Therefore, (5.50) and (5.51) can only be considered approximations; reliable

within a certain range of scales. Keeping in mind that the sound horizon needs to

shrink during inflation, the wave number k must respect the following bounds if the

sound speed is to be less than the speed of light4:

k/k0 > (cs0)
1
|κ| , for ω > 0,

k/k0 < (cs0)−
1
|κ| , for ω < 0.(5.57)

The only way (5.50) and (5.51) could be acceptable at all scales is if ω = 0, in

which case cs is a constant. If it turns out that the sound speed is not constant,

(5.50) and (5.51) are most likely too naive. The most recent data from WMAP [109]

suggests that the scalar spectral index may have a small but nonzero running, so

we should not be surprised that our simple expressions for the perturbation spectra

are not exactly correct. Regardless, scalar and tensor spectra with constant spectral

indices are still a good approximation to the CMBR data. Our discussion will still

be of relevance, as long as we keep in mind that the reconstructed actions are only

approximations, valid over a limited range of scales.

We will now simplify our discussion by fixing the sound speed to a constant, which

is achieved by setting ω = 0. Although we will be considering only constant sound

speeds, we will keep the value of cs arbitrary. This will allow us to find a more general

solution to the reconstruction equations, while allowing us to study the limit cs → 1

and see whether the canonical action is recovered. One might object to this choice of

ω on the grounds that if cs is constant the non-gaussianity reconstruction equation

(5.47) will be ill-defined for reasons discussed in section §5.2.1. However, we counter

4It has been recently proposed [31] that scalar field theories with non-minimal kinetic terms can allow for propa-
gation of superluminal perturbations without violating causality.

93



that this is acceptable since we are assuming that only two functions g and V are

unknown, thereby making the third reconstruction equation (5.47) unnecessary. It

should be pointed out that while the two unknown functions can still be found when

ω = 0, the consistency relation (5.48) is no longer well defined. Once we substitute

(5.55) for cs and H into (5.46) and solve for g(τ) the result is

g(τ) =
2εH2

0c
2
s0

1 + c2
s0

(
1

(1 + εH0(τ − τ0))2
− 1

)
+ g0.(5.58)

Using the Friedmann equation (5.49) we can now find V (τ):

V (τ) =
H2

0

1 + c2
s0

(
3(1 + c2

s0)− 2ε

(1 + εH0(τ − τ0))2
− 2εc2

s0

)
+ g0.(5.59)

Similarly, the equation for ẋ is given by

ẋ

x
= − 4εc2

s0

1 + c2
s0

H0

[1 + εH0(τ − τ0)]
,

and the exact solution for x is

x(τ) = x0 [1 + εH(τ − τ0)]
− 4c2s0

1+c2s0 .(5.60)

Integrating (5.60) to find ϕ(τ)

ϕ =
ϕ̇0

εH0

1 + c2
s0

1− c2
s0

[
(1 + εH0(τ − τ0))

1−c2s0
1+c2s0 − 1

]
+ ϕ0,

where ϕ̇0 =
√

2x0. Now that we have x and ϕ as functions of time, we can invert

these and substitute the results into (5.58) and (5.59) to find g(x) and V (ϕ). After

carrying this out, we can combine the g(x) and V (ϕ) to arrive at the full Lagrangian:

%(x, ϕ) =
2εH2

0c
2
s0

1 + c2
s0

(x/x0)
1+c2s0
2c2s0 − H

2
0[3(1 + c2

s0)− 2ε]

1 + c2
s0

[
1 + εH0

1− c2
s0

1 + c2
s0

ϕ− ϕ0

ϕ̇0

]− 2(1+c2s0)

1−c2s0
.

Here is the complete Lagrangian in the case when the sound speed is constant. Note

that the final result does not depend on the integration constant g0. This is a result
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of the fact that the right hand side of equation (5.36) is independent of the initial

values of the kinetic and potential functions. The only undetermined constants are

the initial values of the scalar field and its derivative, and due to the attractor nature

of inflation, their exact values are unimportant. Despite what was said earlier in

regards to the indefiniteness of the non-gaussianity reconstruction equation (5.47),

this Lagrangian does have a definite non-gaussianity given by the result in equation

(5.40). It is worth noting that in the exceptional case where cs → 1:

%(x, ϕ) = εH2
0(x/x0)−H2

0(3− ε)e−
2εH0
ϕ̇0

(ϕ−ϕ0)
,

we recover the canonical inflation Lagrangian with an exponential potential. If we

require that the wave function retain the standard normalization then x0 = εH2
0 and

the Lagrangian becomes

%(ϕ, x) = x−H2
0(3− ε)e−

√
2ε(ϕ−ϕ0),(5.61)

which is the Lagrangian of power-law inflation [117]. This is a reassuring result;

it confirms that in the appropriate limit, we can recover the standard inflationary

action.

Case 2: %(x, ϕ) = f(ϕ)g(x)− V (ϕ)

Let us now take the complexity of the action one step further and assume that

there are now three unknown functions: g, f and V . We define % as

%(x, ϕ) = f(ϕ)g(x)− V (ϕ).(5.62)

In equation (5.37) the only nonzero Pgα is the one corresponding to f . Thus (5.37)

reduces to

ġf =
2εc2

sH2

(1 + c2
s)

(
η̃H− 2εH− ḟ

f

)
.(5.63)
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Furthermore, with this Lagrangian the terms with the ḟα’s in (5.38) all vanish. The

final result is simply

ġf =
16εκ̃H3c2

s

55

1

1− c2
s − 972

275
c2
sfNL

.(5.64)

Combining equations (5.63) and (5.64), g decouples and we get an equation just for

f :

ḟ

Hf
= η̃ − 2ε− 8κ̃

55

1 + c2
s

1− c2
s − 972

275
c2
sfNL

.(5.65)

Once we have solved for f here we can substitute the solution into equation (5.64)

and solve for g. With the solutions for these two, V is found using the Friedmann

equation (5.36). The final step is to find ϕ(τ) and x(τ) by solving (5.30):

ẋ =
16κ̃Hc2

s

55

x

1− c2
s − 972

275
c2
sfNL

.(5.66)

Let’s assume that κ̃ 6= 0, so that the reconstruction equations (5.64) (5.65) and

(5.66) are well defined. We will again assume that the scalar and tensor perturbation

spectra are given by (5.50) and (5.51). Therefore, H and cs are the same as those

that we found earlier (5.55). However, now that we are using the non-gaussianity

reconstruction equation we need to specify fNL. In this example we will take fNL = 0

to simplify the analysis. With these as our inputs, the reconstruction equations

become

ḟ

Hf
= −2ε+

8εω

55

1 + c2
s

1− c2
s

, ġf = −16ε2ω

55

c2
sH3

1− c2
s

,
ẋ

Hx
= −16εω

55

c2
s

1− c2
s

.

(5.67)
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Here, we have used the fact that η̃ = 0 and κ̃ = −εω. Each of these has an analytic

solution. They are

f(τ) = f0

[
c2
s(τ)

c2
s0

] 1
ω
− 4

55
(

1− c2
s(τ)

1− c2
s0

)8/55

,(5.68)

g(τ) = g0 +
2H4

0(1− c−2
s0 )

8
55

cs0f0

[[
c2
s(τ)

c2
s0

]− 4
55

F (c−2
s (τ))− F (c−2

s0 )

]
,(5.69)

x(τ) = x0

(
1− c2

s0

1− c2
s(τ)

) 8
55

.(5.70)

Here we have defined F (x) as

F (x) = 2F1(
4

55
,
63

55
,
59

55
;x),

where 2F1 is a hypergeometric function. Note that we can find a complete expression

for g(x). We simply have to solve for cs(τ) in (5.70) to get c2
s(x), which is

c2
s(x) = 1− (1− c2

s0)

(
x

x0

)−55/8

,(5.71)

and then substitute this for cs(τ) in (5.69) to get g(x). Interestingly enough, g(x)

is independent of ω, so taking the ω → 0 limit here is trivial. Since the solution for

g(x) is in terms of hypergeometric functions, to get a better idea of what g(x) looks

like we expand around cs0 = 1, and thus obtain

g(x) = g0 +
εH2

0

f0cs0

x− x0

x0

+
εH2

0(1− cs0)

2585f0cs0

[
2145− 2209

x

x0

+ 64
(x0

x

) 47
8

]
+O((1− cs0)2).

(5.72)

Let’s take a moment to comment on the analytic behavior of g(x). In fig. 5.1 the

exact functional behavior of g(x) is shown along with the approximate expression

(5.72). As fig. 5.1 and the approximation (5.72) suggest, the behavior of g is nearly

linear with respect to x, when cs0 is close to one. However, for reasons that will be

clear shortly, the limit cs0 → 1 does not necessarily mean that the Lagrangian will be
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Figure 5.1: Plot depicting the function g(x). This plot was made with cs0 = 0.5, ε = 0.1, f0 = 1,
g0 = 0 and ϕ̇0 = 1. The exact behavior of g(x) is contrasted against the approximation
(5.72). The behavior of g(x) is very linear except for small deviations for x < x0. Note
that at x0(1 − c2s0)8/55 ≈ 0.48 the plot of the exact behavior of g(x) stops abruptly as
a result of the fact that g becomes non-real in this region.

linear in x. Another interesting feature of g(x) is that it becomes non-real for values

of x less than x0(1 − c2
s0)8/55. This implies a lower bound on the values of x, which

is a behavior that is observed in the solution (5.70). This lower bound is a result

of the fact that for x < x0(1 − c2
s0)8/55 the sound speed squared would be negative

according to (5.71).

As for the functions f(ϕ) and V (ϕ), one cannot find analytic expressions for these

like we did for g(x). Once we integrate x(τ) to find ϕ(τ), we can see why:

ϕ = ϕ0 +

√
2x0 cs0(1− c−2

s0 )4/55

H3
0(1 + 8ω

55
)

[[
c2
s(τ)

c2
s0

]− 1
2ω
− 4

55

Fω(c−2
s (τ))− Fω(c−2

s0 )

]
,(5.73)

where we have again shortened things by defining Fω as

Fω(x) = 2F1(
4

55
+

1

2ω
,

4

55
,
59

55
+

1

2ω
;x).

Since ϕ is such a complicated function there is no way to invert (5.73) to get time as

an analytic function of ϕ. Therefore, we are forced to either evaluate f(ϕ) and V (ϕ)
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numerically, or make an approximation for τ(ϕ). Since we will be interested in finding

a correspondence with the example in the previous section, we will approximate ϕ(τ)

in the ω � 1 limit. The result of this approximation is

ϕ(τ) = ϕ0 + ϕ̇0τ −
8ϕ̇0ω

55εH0

c2
s0

1− c2
s0

[(1 + εH0τ) log(1 + εH0τ)− εH0τ ] +O(ω2),

(5.74)

where we have set τ0 = 0. To get τ(ϕ) we will drop all ω dependent terms from

(5.74), so that ϕ(τ) is a linear function of τ . This approximation turns out to be

remarkably accurate even at late times, since the higher order terms in (5.74) scale

only logarithmically with τ . Now that we have at least an approximate expression

for τ(ϕ), f(ϕ) can be found by replacing cs(τ) with

cs(ϕ) = cs0

(
1 +

εH0

ϕ̇0

(ϕ− ϕ0)

)−ω
.(5.75)

The exact behavior of f(ϕ) was evaluated numerically and the results are shown

in fig. 5.2. Since we will be taking the ω → 0 limit later, we make a further

approximation of f(ϕ) by Taylor expanding around ω = 0:

f(ϕ) ≈ f0

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

+
8ωf0

55

1 + c2
s0

1− c2
s0

log[1 + εH0

ϕ̇0
(ϕ− ϕ0)]

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

.(5.76)

Notice that the second term diverges at cs0 = 1. Therefore, although the higher order

terms in (5.72) vanish when cs0 = 1, when the limit cs0 → 1 is taken the product fg

will retain the nonlinear x terms. This is why the Lagrangian may not be linear in

x even when cs0 = 1. To find the potential we use the Friedmann equation (5.36).

Doing so requires us to find g as a function of ϕ, which we find by replacing cs(τ) in

(5.69) with cs(ϕ) (5.75). The potential, Taylor expanded around ω = 0, is

V (ϕ) ≈ g0f0 − (2ε− 3)H2
0

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

+
8ω

55

g0f0(1 + c2
s0)− 2εH2

0cs0
1− c2

s0

log[1 + εH0

ϕ̇0
(ϕ− ϕ0)]

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

.

(5.77)
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Figure 5.2: Plot depicting the function f(ϕ) for different values of ω. This plot was made with
cs0 = 0.5, ε = 0.1, ϕ0 = 0, ϕ̇0 = 1.0, f0 = 1.0 and g0 = 0. We have also included a plot
of the function f(ϕ) in (5.80) for comparison.

Note that the individual functions g, f and V depend on the arbitrary integration

constants f0 and g0, even though the action that is composed of them does not.

If we are interested in just finding the action, fixing f0 and g0 would be a moot

point. However, it does raise the matter of how one separates the action into kinetic

and potential terms. For example, suppose we separate the kinetic function into a

constant and a “x-dependent” piece:

g(x) = c+G(x).(5.78)

The constant c is arbitrary and can be adjusted to any given value by absorbing

the difference into G(x). Substituting the right hand side of (5.78) for g(x), the

Lagrangian (5.62) becomes

%(x, ϕ) = f(ϕ)G(x)− V (ϕ) + cf(ϕ).

With the Lagrangian written in this way, it would make more sense to define G(x)
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as the kinetic function and define the potential as

v(ϕ) = V (ϕ)− cf(ϕ).(5.79)

In the case where f is constant (such as the example in the previous section) then

the above redefinition only amounts to a uniform shift in the potential. However, if f

is non-constant then the behavior of the potential can change drastically. Although

none of the CMBR data are sensitive to changes in c, it is possible to find a value

for c by requiring that in the appropriate limit, the action becomes equivalent to

the canonical action. We will define this as the canonical limit of the action. Before

we determine c by this method we need to confirm that the Lagrangian (5.62) is

canonically equivalent to the canonical Lagrangian (5.61) when the sound speed is

constant and equal to one.

If we turn our attention back to our approximations for f(ϕ) and V (ϕ), we notice

that taking cs0 = 1 leads to divergent results. These divergences are understandable

since the reconstruction equations (5.67) are divergent when cs = 1. However, if we

set ω = 0 in (5.76) and (5.77), it’s possible to take cs0 = 1 and still obtain a well

defined result. Doing so results in the following for the functions g, f and V :

g(x) ≈ g0 +
εH2

0

f0

x− x0

x0

, f(ϕ) ≈ f0

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

, V (ϕ) ≈ f0g0 − (2ε− 3)H2
0

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

,

(5.80)

where now H2
0 = ε since cs0 = 1. We refer the reader to fig. 5.2 for a comparison

of f(ϕ) in (5.80) and f(ϕ) for general values of ω and cs0. The Lagrangian in the

cs0 → 1 limit when ω = 0 is

%(x, ϕ) =
εH2

0

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

x

x0

− (3− ε)H2
0

(1 + εH0

ϕ̇0
(ϕ− ϕ0))2

.(5.81)
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This Lagrangian can be related to the canonical Lagrangian (5.61) through the field

redefinition defined by

1 +
εH0

ϕ̇0

(ϕ− ϕ0) = e
√

ε
2

(ϕ̃−ϕ̃0).

Under this redefinition, the new Lagrangian is

%(x̃, ϕ̃) = x̃− (3− ε)H2
0e
−
√

2ε(ϕ̃−ϕ̃0).

This is the same as the canonical Lagrangian (5.61) found in the first example. The

ability to redefine the field so as to obtain the canonical action was only possible

in the limit where the sound speed is equal to one and constant. In the case where

the sound speed is constant but not equal to one, the actions are not canonically

equivalent. To see why this is, note that a necessary condition for two actions to

be canonically equivalent is that they both lead to the same observables. Since the

non-gaussianity in the first case is given by (5.40), whereas the non-gaussianity in the

second case is assumed to vanish, we can see that the two actions are not canonically

equivalent except when cs0 = 1, which is the canonical limit.

To ensure a smooth transition to the canonical action we must separate the kinetic

function as we did in (5.78) so that G(0) = 0 in the ω → 0 and cs0 → 1 limits. Upon

inspection of g(x) in (5.80) we see that the redefined kinetic function G(x) is

G(x) = g(x)− f0g0 − εH2
0

f0

.

In doing so the potential is redefined according to (5.79) as

v(ϕ) = V (ϕ)− g0f0 − εH2
0

f0

f(ϕ).(5.82)

There is a subtlety in this analysis that should be addressed. In order to reclaim the

canonical Lagrangian we needed to take the limits ω → 0 and cs0 → 1 simultaneously.
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In our case we took that limit by setting ω = 0 and then letting cs0 approach one.

However, this is by no means the only way to take the limit. For example, we could

have approached the limit by setting ω = 1 − c2
s0 and then take the limit as cs0

goes to one. Had we taken the limit from a different direction it is possible that the

Lagrangian that resulted could have been different from the canonical Lagrangian

(5.61). After some inspection, it can be shown that under a field redefinition ϕ = h(ϕ̃)

such that f−1(ϕ) = (h′(ϕ̃))2, the potential in the canonical limit is given by

V (ϕ̃) = (3− ε)H2
0e
− 2εH0

ϕ̇0
(ϕ̃−ϕ̃0)

+
(
g0f0 − εH2

0

) f(ϕ̃)

f0

.

Here f(ϕ̃) = f(h(ϕ̃)) is the function f when the canonical limit is taken. It is simple

to show that the canonical limit of f is not unique, which means that the potential is

also not unique. However, if we redefine our potential according to (5.82) instead, the

new potential v is unique, and the Lagrangian that results is canonically equivalent

to (5.61).

Case 3: f1(ϕ) and f2(ϕ) Unknown

We now bring up a case that will be of particular interest to reconstructions of

the DBI action. We start by assuming that the Lagrangian %(x, ϕ) has the form

%(x, ϕ) = P (x, f1(ϕ), f2(ϕ)),

where f1 and f2 are unknown functions of ϕ. Unlike the previous cases, the functional

dependence of the Lagrangian with respect to x is assumed to be known exactly. In

this case it is possible to obtain a set of algebraic equations of the two unknowns f1

and f2. The first of these equations can be most easily obtained by going back to

the original definition of the sound speed (5.25):

c2
s =

Lx
Lx + 2xLxx

⇒ Pxx =
1

2x

(
1

c2
s

− 1

)
Px.(5.83)

103



This equation together with (5.30) and the Friedmann equation (5.36) are enough

to find f1(ϕ) and f2(ϕ) in terms of the observables. In the next section we will see

explicitly how the equations (5.83), (5.30) and (5.36) come together to reconstruct

the DBI action from the power spectrum data.

5.3 DBI inflation

In realistic string and M-theories, the number of space-time dimensions is 10 or 11

dimensions. The extra 6 or 7 dimensions are compactified to small sizes, leaving the

effective theory at low energies a theory of physics in four dimensions. The various

moduli that control the shape (complex structure moduli) and size (Kähler moduli)

of the internal space, also determine the nature of the four-dimensional low-energy

effective theory. Therefore, fixing these moduli is an important step in establishing

a connection between string theory and the standard model. In recent years, much

attention has been paid to flux compactifications as a potential means of stabilizing

string moduli5. In a flux compactification, various fluxes wrap around closed cycles

in the internal manifold creating a potential for the complex structure moduli. The

best known of these takes place in type IIB string theory. Here the internal space is

six-dimensional Calabi-Yau and the 3-form fluxes F3 and H3 create a superpotential

that fixes the complex structure [119]. These 3-form fluxes source a warping of the

geometry of the internal manifold. In the type IIB flux compactification, the ansatz

of the line element is taken as

ds2
10 = h−1/2(y)gµνdx

µdxν + h1/2(y)gmndy
mdyn.(5.84)

Here h is the warp factor which is sourced by the fluxes and varies only along the

dimensions of the internal manifold. In DBI inflation, which we will be considering

5For a review of flux compactifications see [118].
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in this section, the local geometry of the internal manifold is a Klebanov-Strassler

throat geometry [120], and is described by the metric

gmndy
mdyn = dr2 + r2ds2

X5
.

Here ds2
X5

is the line element of a five-dimensional manifold X5, which forms the

base of the KS throat. The coordinate r runs along the depth of the throat. For our

purposes we will only consider motion along r and integrate over the base manifold

X5
6. The warping of the internal space creates a natural realization of the Randall-

Sundrum model [123], and has also provided model builders with a new approach to

developing string theory based models of inflation [124]. The most popular inflation

model that makes use of this warping is DBI inflation [27, 28], which is the primary

focus of this section.

In the simplest DBI inflation models a D3 brane travels along the r direction,

either into or out of the KS throat. The D3 brane extends into the three non-

compact space dimensions and is point like in the internal manifold. The standard

DBI action for the D3 brane is

SDBI = −
∫
d4x
√
−g
[
f−1(φ)

√
1− 2f(φ)X − f−1(φ) + V (φ)

]
.(5.85)

Here φ =
√
T3r (where T3 is the D3 brane tension) is a rescaling of the coordinate r

and will play the role of the inflaton. The quantity f−1 = T3h
−1 is the rescaled warp

factor. The metric gµν that appears in (5.85) is the metric on the 3 + 1 dimensional

non-compact subspace which describes the geometry of our familiar 4 dimensional

space-time. We will continue to assume that the geometry of the 3 + 1 dimensional

subspace is described by the FRW metric with zero curvature. The energy density

6Fluctuations of the brane position along the transverse directions of the KS throat have been mentioned as a
possible source of entropy perturbations [121, 122]. These could serve as a further constraint on the form of the
action.
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and pressure in the non-compact subspace due to the brane are given by

ρ = f−1 (γ − 1) + V,(5.86)

p = (γf)−1 (γ − 1)− V.

Here γ is a new parameter, not found in the standard canonical inflation. In terms

of the quantities in the DBI action, γ is defined as

γ =
1√

1− 2f(φ)X
.(5.87)

The γ defined here is analogous to the Lorentz factor in special relativity, and will

hence-forth be referred to as the Lorentz factor. The Lorentz factor places an upper

limit on the speed of the brane as it travels through the KS throat. Since the speed of

the brane is limited, this allows one to get a sufficient amount of inflation even with

potentials that would be considered too steep to use in standard canonical inflation.

In our study of the DBI model we will be assuming that the scalar and tensor

spectra are approximately (5.50) and (5.51), respectively. With these as our infla-

tionary observables, we found that ε was constant (5.53). The fact that ε is a constant

indicates that inflation will not end on its own, and instead some other mechanism

such as D3-D3 annihilation [125] must be used to provide a graceful exit. Since

our study is concerned more with the physics during inflation, this topic will not be

addressed further. We will now present a generalized DBI action, and show how it

is reconstructed from the inflationary observables.

5.3.1 A Generalized DBI Model

Having sketched out the general method for reconstructing different types of infla-

tionary actions in section §5.2, it is now time to apply these methods to a DBI-type
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Lagrangian given by

%(x, ϕ) = P (x,F(ϕ),V(ϕ)),(5.88)

where the partition P is given by

P (z1, z2, z3) = −z−1
2

(√
1− 2z2z1 − 1

)
− z3.(5.89)

Here F(ϕ) = A2M2
plf(ϕ) is the (dimensionless) warp factor in the throat, and V(ϕ) =

(AMpl)
−2V (ϕ) is the (dimensionless) potential. In the KS throat geometry the warp

factor is taken to be F ∝ ϕ−4. The potential V is assumed by many to be quadratic

in ϕ. For the purposes of this study we will not assume a priori any form for the

functions F and V , and instead allow the inflationary observables to determine them.

Now that we have established the general form of the action, we can use the procedure

outlined in section §5.2.1 to find F and V . Turning to equations (5.83) and (5.30)

we find the relations

Lxx
Lx

=
F

1− 2Fx
=

1

2x

(
1

c2
s

− 1

)
, x = εH2

√
1− 2Fx.

Solving for F and x:

F(ϕ) =
1− c2

s

2εH2cs
, x = εH2cs.(5.90)

Comparing the second equation above with (5.30) and recalling the definition of

(5.87), we find that

cs =
1

γ
.(5.91)

This result is characteristic of DBI inflation and holds regardless of the warp factor

and potential used. Having found F , equation (5.36) tells us what V is:

V(ϕ) = 3H2 +
1

F

(
1

cs
− 1

)
.
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Having already found the expression for F in (5.90), we can now write down the

important reconstruction equations for V and F in terms of H, cs and ε:

V(k) = H2

(
3− 2ε

1 + cs

)
,(5.92)

F(k) =
1− c2

s

2εcsH2
.(5.93)

To turn F and V into functions of ϕ we need to integrate our solution for x (5.90) to

find ϕ. Taking equation (5.30) to find an expression for ϕ̇, we find that in the case

of DBI inflation

ϕ̇ = ±
√

2εcsH.(5.94)

The sign of the right hand side of the equation is ambiguous, due to the square root

taken to get this equation from (5.30). The sign is left arbitrary for now and will be

specified later based on the requirement that ϕ be positive. Once we solve for ϕ(τ)

in (5.94) and invert to get τ(ϕ), we can then find a solution for V(ϕ) and F(ϕ). Now

that we have laid the ground work for generating the functions of the generalized

DBI action, the next section will show how the perturbation spectra are used to

obtain explicit expressions for F(ϕ) and V(ϕ).

5.3.2 The Warp Factor and Potential in DBI Inflation

In this section we will now use the program that was laid out at the end of the

previous section to find an exact solution for the warp factor and potential in the

Lagrangian (5.88). We will again assume that the scalar and tensor spectra have

a power-law dependence with respect to the scale k. Therefore, the sound speed,

Hubble parameter and ε are the same as those found in section §5.2.1. Thus, the

potential as a function of time is

V =
H2

0

(1 + εH0(τ − τ0))2

(
3− 2ε

1 +
H2

0

ε
(1 + εH0(τ − τ0))−ω

)
,(5.95)
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and the warp factor as a function of time is

F =
(1 + εH0(τ − τ0))ω+2

2H4
0

(
1− H

4
0

ε2
(1 + εH0(τ − τ0))−2ω

)
.(5.96)

After substituting our solutions for H(τ) and cs(τ) into the equation of motion for

ϕ(τ) we get

ϕ̇ = ±
√

2H2
0(1 + εH0(τ − τ0))−

ω
2
−1.(5.97)

Once we integrate this expression we can obtain an answer for ϕ(τ). As a matter of

convenience we will set the value of the resulting integration constant to zero. Later,

once we have found F and V , we will see that this choice allows for a correspondence

between the reconstructed functions and their theoretically derived counterparts.

After integrating (5.97) we find that

ϕ(τ) =

∫ τ

ϕ̇dτ = ∓2
√

2H0

εω
(1 + εH0(τ − τ0))−ω/2.(5.98)

Since we are interested in eventually connecting the reconstructed action with the

standard DBI model we need to keep the inflaton, which is just a rescaled radial

coordinate, positive. The sign that we choose in (5.98) will therefore depend on the

sign of ω. We can write the general solution as

ϕ(τ) = ϕ0(1 + εH0(τ − τ0))−ω/2,

where

ϕ0 = 2
√

2

∣∣∣∣H0

εω

∣∣∣∣ .
In the case where ω > 0 the field ϕ decreases monotonically to zero as time passes,

which implies that the brane is falling into the throat. This corresponds to the UV

DBI scenario. If on the other ω < 0, then ϕ increases monotonically with time and
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the brane falls out of the throat, which corresponds to IR DBI inflation. Solving for

time in terms of ϕ

1 + εH0(τ − τ0) =

(
ϕ

ϕ0

)− 2
ω

.

Substituting this for 1 + εH0(τ − τ0) in the expressions we found for the potential

and warp factor we find that V as a function of ϕ is

V = H2
0

(
ϕ

ϕ0

) 4
ω

3− 2ε

1 +
H2

0

ε

(
ϕ
ϕ0

)2

 ,

and the warp factor as a function of ϕ is

F =
1

2H4
0

(
ϕ

ϕ0

)−2− 4
ω

[
1− H

4
0

ε2

(
ϕ

ϕ0

)4
]
.(5.99)

Furthermore, when γ is expressed as a function of ϕ, it takes on a very simple form:

γ = γ0

(
ϕ0

ϕ

)2

=
8

εω2

1

ϕ2
,(5.100)

where γ0 = 1
cs0

. It is interesting to note that (5.100) is the same as the approximate

results found in the theoretically inspired DBI model [27]. The potential and warp

factor derived here are the same as those found in [126]. There the authors recon-

structed the potential and warp factor by assuming that the equation of state w = p
ρ

was a constant and that ϕ ∝ τ−ω/2. In contrast, we have reconstructed the potential

and warp factor under the assumption that the scalar and tensor perturbations are

(5.50) and (5.51). The non-gaussianity in this DBI model is the same result that one

comes across in the literature [35]:

fNL =
35

108

(
1

c2
s

− 1

)
.(5.101)

This particularly simple result is a general feature of DBI inflation, and is indepen-

dent of the warp factor and potential. This result for the non-gaussianity (5.101)
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also follows from consistency of the reconstruction equations (5.31) and (5.35). Thus,

(5.101) can be viewed as a consistency relation analogous to those found in (5.44)

and (5.48). An interesting generalization to consider is

%(x, ϕ) = P (g(x),F(ϕ),V(ϕ)),

where P (z1, z2, z3) is defined by (5.89). As a consistency check, one can easily show

that if the non-gaussianity is equal to (5.101), and the potential and warp factor

are given by (5.95) and (5.96), respectively, then g(x) = x is a solution to the

reconstruction equations (5.31) and (5.35).

Having found the potential and warp factor as functions of the inflaton, we can

now say that our task is at an end. Amazingly enough, despite the complicated form

of the reconstruction equations an exact solution for V and F was available even

for semi-realistic scalar and tensor spectra. In the next section we will discuss the

properties of the reconstructed action, and its correspondence with the theoretically

derived action of DBI inflation.

5.3.3 Discussion

In section §5.2.1 we found that not all values of the spectral indices lead to in-

flationary and/or physically sensible actions. Specifically, we showed that unless

nt < 0 the matter described by the action was unable to drive an inflationary phase.

Furthermore, when this constraint on nt was considered in conjunction with the re-

quirement that the sound horizon decrease as inflation occurs, the scalar spectral

index had to be bounded like ns < 2. These results hold for any reconstructed ac-

tion that was derived assuming the observational inputs (5.50) and (5.51). However,

even if these constraints are satisfied, it is not guaranteed that the reconstructed

action is physically sensible when interpreted in the context of a given theoretical
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construction. For example, if we are to interpret the action reconstructed in this

section as a DBI action, then γ > 0. Doing so would be contrary to its definition

(5.87) within the context of DBI inflation. In this case, since γ = 1
cs

the fact that

we already have enforced the constraint cs > 0 automatically keeps γ positive. We

will see later, however, that the constraints found in §5.2.1 are not sufficient for our

reconstructed action to be interpreted as a DBI action.

First, let’s consider the warp factor (5.99) and what constraints it places on the

observables. Suppose nt < ns−1. In this case the exponent of ϕ in front of the square

brackets in (5.99) will always be negative. Therefore, for small values of ϕ the leading

order behavior of F will go like ϕ−a where a > 0. Thus, the warp factor increases as

we fall into the throat, which is what we would expect for a warped compactification

in string theory. On the other hand, if nt > ns − 1 the leading order behavior of F

will be ϕ to some positive or negative power, depending on the relative difference

between ns and nt. If the difference between nt and ns is too small, then to leading

order, F will scale like ϕ to some positive power. This indicates that the warp factor

gets smaller as we reach the bottom of the throat, which is a scenario that is difficult

to embed into a string theory compactification. However, if the difference between

ns and nt is large enough, then it is possible to get a more sensible solution where

F ∼ ϕ−a. In general, the condition that F increases as we approach the bottom of

the throat implies that

−1− 2

ω
< 0 ⇒ ω < −2 or ω > 0.(5.102)

The regions in the ns-nt parameter space where the condition (5.102) is satisfied

are shown in fig. 5.3. The region shown in light grey in fig. 5.3 is defined by

ω > 0, or equivalently nt < ns− 1. This region corresponds to the UV phase of DBI

inflation. The region in dark grey is defined by ω < −2, or equivalently nt > −ns−1
ns−3

,
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Figure 5.3: Plot depicting the regions of the ns-nt parameter space such that F diverges at the
origin. The region in the upper left hand corner is the region of IR DBI inflation while
the region at the bottom right hand corner corresponds to UV DBI. Only those values
of ns and nt with ns < 2 and nt < 0 were considered, since any point outside that
region would lead to an unphysical and/or non-inflationary action.

and corresponds to the IR phase. As fig. 5.3 illustrates, if ns is restricted to the

presently favored value ns ∼ 0.96, then the value of nt is tightly constrained in the

IR region but relatively unrestricted in the UV phase. Furthermore, since nt < 0,

only those models in the UV phase can have a blue-tilt. Recent CMBR data favors

a blue-tilted spectrum, but only if there is a running spectral index [109]. Although

running spectral indices would be an interesting extension of this analysis, we will

leave this topic to future studies.

An unpleasant feature of the warp factor (5.99) is that it becomes negative when

ϕ > ϕ0H0/
√
ε. This is particularly distasteful since the metric (5.84) depends on

f 1/2, which means that at sufficiently large ϕ the metric is imaginary. The values of

τ where the warp factor is positive are given by

τ − τ0 >
c

1
ω
s0 − 1

εH0

for ω > 0 (UV),

τ − τ0 <
c

1
ω
s0 − 1

εH0

for ω < 0 (IR).(5.103)
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One can show using equation (5.54) that this is equivalent to the bounds in (5.57).

This is no coincidence; it is a result of the fact that F is proportional to 1 − c2
s

(5.90). The absence of superluminal propagation is equivalent to requiring that the

warp factor is positive. Even though causality can still be preserved in the case of

superluminal propagation [31], if we want to interpret the action in question as a

model of DBI inflation, then cs < 1 in order for this interpretation to be consistent.

Therefore, the bounds (5.103) suggest that the perturbation spectra (5.50) and

(5.51) can only be used as approximations over a limited range of scales. The in-

equalities in (5.103) tell us that F is a valid warp factor towards the end of inflation

in the case of UV DBI, and at the beginning of inflation in IR DBI. The time τ0 at

which the initial conditions are specified should be at the beginning of inflation in

the UV scenario, and at the end in the case of IR DBI. If we choose τ0 in this manner

then the approximations for the perturbation spectra (5.50) and (5.51) will lead to

a realistic warp factor for the entire duration of the inationary episode.

It is worth asking if the F that we have derived in (5.99) can approximate the

AdS warp factor derived from theory. It is clear from (5.99) that this can be achieved

if and only if ω = 2. However, the only way we can get ω = 2 is if either i.) nt = 1

ii.) nt → ∞ or iii.) ns = 1. As we have already seen, case i.) is unphysical, and

case ii.) is difficult to imagine taking place. While case iii.) is unlikely to be true

exactly, it is nevertheless the more realistic of the three, especially when you consider

that observation suggests that ns ≈ 0.96. If we do set ns = 1, the warp factor and

potential become

F(ϕ) =
2

ε4
1

ϕ4
− 1

2ε2
,

V =
3ε2

2
ϕ2 − ε3ϕ2

1 + ε
2
ϕ2
.
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In the case where the field range is small7 these are approximately

f(φ) ≈
2M2

pl

A2ε4
1

φ4
,(5.104)

V (φ) ≈ ε2A2(3− 2ε)

2
φ2,

where we have reverted back to the standard, dimensionful f , V and φ for clarity’s

sake. It is a bit of a surprise that in the process of trying to recover the AdS warp

factor we have stumbled upon the commonly used potential in UV DBI inflation. If

we take (5.104) and demand that it is consistent with the theoretical result we can

arrive at a condition on ε in terms of the D3 brane charge. Recall that in the KS

throat f(φ) is given by

f(φ) =
2T3R

4

φ4
,

where T3 = 1
(2π)3

1
gs(α′)2

and

R4 = 4πgsN(α′)2 π3

Vol(X5)
.

Consistency with (5.104) demands that

2M2
pl

A2ε4
=

πN

Vol(X5)
⇒ ε ≈ 102

N1/4
.

In order to get an inflationary phase N ≈ 1010, putting us well within the range of

validity for the supergravity approximation. While it is interesting that the standard

D3 brane DBI model can be recovered from a near-scale invariant scalar power spec-

trum, it has been acknowledged that this inflation model is problematic. In [127]

Baumann and McAllister found that while present bounds on non-gaussianity imply

that N . 38, primordial perturbations imply that N & 108Vol(X5). These two limits

7In [127] it was shown that DBI inflation is only consistent when the magnitude of the inflaton field is sub-
planckian: ϕ� 1.
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are incompatible unless Vol(X5) . 10−7. It is not clear that such a space could be

naturally embedded into a string theory compactification. More general warp factors

and potentials have been considered in [113]. There it was found that models could

not simultaneously satisfy bounds on the field range and observational bounds on

the non-gaussianity. Therefore, even though our warp factor and potential matches

the theoretically based predictions, the problems inherent in the DBI model carry

over into its generalizations.

5.4 Conclusion

In this chapter we have presented a method for deriving the actions of single field

inflation models using CMBR data. This method allows one to derive up to three

unknown functions of the action using the scalar perturbation Ps, tensor perturbation

Pt and the non-gaussianity fNL. After stating the reconstruction equations, we

carried out the reconstruction procedure for two simple examples. For the purposes

of the reconstruction, we assumed that the scalar and tensor spectra were power-

law dependent on the scale k, with the spectral indices kept as free parameters. In

the first example we assumed that the Lagrangian had the form shown in equation

(5.45), and used the reconstruction equations to obtain the action as a function of

the spectral indices. In this example there were only two unknown functions, thus

the reconstruction equations also led to a consistency relation (5.48) between the

fNL, cs and the slow roll parameters. However, this consistency relation is only well

defined when the sound speed is not a constant.

In the second example, the action depended on three unknown functions and

therefore required all three reconstruction equations. In order to simplify the dis-

cussion we took as our input for the non-gaussianity fNL = 0. Although we were
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unable to express the action in terms of elementary functions we were able to obtain

the action numerically and approximately assuming cs0 ≈ 1 and ω ≈ 0. We showed

that in the limit where cs is constant and equal to one, the action in this example

was canonically equivalent to the canonical action derived at the end of the previous

section. In discussing this example we also pointed out possible ambiguities in the

program relating to how one defines a separation between the kinetic and potential

terms.

In section §5.3, we used the procedure to derive and study the warp factor and

potential in a generalized DBI inflation model. Again, we assumed that both of the

perturbation spectra scaled like k to some power. Exact expressions for the warp

factor and potential were then derived, each having an explicit dependence on the

spectral indices. The demand for a physically sensible DBI inflation model placed

constraints on the spectral indices. In addition we found that the derived action

approximates the original UV DBI inflation model in the case where φ � Mpl and

ns = 1. Unfortunately, the problems that have plagued UV DBI inflation are still

present in our case.

This procedure was shown to be useful in studying how the action of a general

inflation model depends on the observables. For example, we found that if the scalar

and tensor perturbation spectra went like k to an arbitrary power, the reconstruction

would lead to a realistic inflationary model only if nt < 0 and ns < 2. Furthermore, to

keep the speed of fluctuations from becoming superluminal, the range of k over which

the approximations for the spectra (5.50) and (5.51) are taken, had to be limited.

When we reconstructed a generalized DBI action in section §5.3, further constraints

were needed to keep the action compatible with an interpretation of DBI inflation.

Specifically, we found that in order to keep the warp factor positive, the field range
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had to be limited. Furthermore, in the theoretically motivated DBI model, the warp

factor increases as we reach the bottom of the warped throat. In order for this to

be true in our reconstruction, the spectral indices needed to satisfy the additional

constraints: ω < −2 or ω > 0.

In this chapter we have only considered the simplest of the DBI inflation models,

which unfortunately suffers from several inconsistencies. However, there are many

extensions of the D3 brane DBI model that can circumvent some of the problems of

the original. Some of these extensions include using wrapped D5 branes [128, 129],

multiple D3 branes [130], and multiple throats [57]. Each of these models has its

potential advantages and drawbacks. Applying our reconstruction procedure may

help to further elucidate their relative strengths and weaknesses. Furthermore, we

have limited ourselves to perturbations with simple power-law behavior. However,

this naive assumption may be incorrect. It is easy to imagine that the spectral

indices themselves are also scale dependent. Based on the results of this chapter we

can predict what kind of effect a running spectral index would have on the physics

of the underlying models. For instance, in the generalized DBI model it is possible

for the spectral indices to change during inflation in such a way as to pass from the

IR to the UV phase8. Transition between phases would correspond to a completely

different physical scenario, one where the brane falls out of one throat and back

into another. Therefore, running spectral indices would describe multi-throat DBI

inflation. A model which has so far been shown to be internally consistent [131].

This study has also raised some other questions that may be worth investigation.

In particular what is the relation between actions that yield the same observables.

It may be possible to define a group of transformations which leave the perturbation

8Fig. 5.3 implies that inflation can change between UV and IR phases only if it passes through the exactly
scale-invariant point: (ns, nt) = (1, 0).
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spectra and the non-gaussianity invariant. Such a set of transformations would allow

us to classify actions based on the observables they yield. Another interesting pos-

sibility that came out of this study is the idea of using the reconstruction equations

as a way to generate consistency relations between fNL, the sound speed cs and the

slow roll parameters. These questions will be left for future studies.
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CHAPTER VI

Neutrino Interactions with K-essence

6.1 Introduction

The observation of the accelerated expansion of the universe [9] has been one

of the most important recent discoveries in cosmology. Many possible explanations

have been put forward, which may be classified under two general classes: models

with a cosmological constant; or dynamical models of dark energy. Their common

feature is that they provide fluids with negative pressure to drive the acceleration.

Among the dynamical dark energy models, only k-essence [19] has the advantage of

explaining not only the current phase of accelerated expansion, but also the coinci-

dence problem; i.e., why the cross-over from the matter dominated era to the current

era happened so recently in the past. This explanation, however, is not without its

own problems, as was first pointed out in [30]. It was shown there that in order

to solve the coincidence problem, the universe had to go through an era where the

speed of propagation of the k-essence fluctuations must become superluminal. This

problem was addressed in [31], where it was shown that at the classical level, su-

perluminal propagation does not necessarily imply causal paradoxes. In particular,

propagation in a k-essence background does not have any additional causal difficul-

ties over general relativity, where the only problems are associated with space-times
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that admit closed time-like curves. In the course of this analysis, the authors found a

very interesting way of describing the propagation of k-essence fluctuations in terms

of an emergent metric that depends not only on the space-time metric, but also the

background cosmological k-essence scalar. Thus, one may think of this non-trivial,

Lorentz violating cosmological k-essence background as the “aether” in which matter

perturbations propagate. This emergent metric description is used in this chapter to

couple the k-essence background to neutrinos.

If there is a scalar field pervading the universe, then the effective field theory view-

point implies that it must undergo interactions with the matter that is present. The

question of the observability of dark energy directly through its couplings to ordinary

matter is an important one [132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143].

This chapter attempts to address aspects of it in the context of k-essence. On short

distance scales the universe is inhomogeneous with, in particular, plenty of black

holes. Thus, the interactions of dark energy with black holes could be one way

to study the above mentioned question. In this chapter, however, we will be con-

cerned only with the effect of the k-essence aether on the propagation of neutrinos.

The coupling of fermions to this background is in itself an interesting question from

the theoretical point of view. Most studies of the interaction of dark energy with

fermions couple them through a Yukawa-like interaction [142], which is quite reason-

able. However, in this chapter, we do this differently using the vierbeins constructed

out of the emergent metric. Throughout this chapter the k-essence field is treated

strictly as a background; however, we see no reason not to treat it as a dynamical

field. As we argue in section §6.2, within the effective field theory methodology, the

terms with higher derivatives of the fermion fields do not give rise to ghosts. The

main focus of this chapter is on looking for observable consequences of dark energy,
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so in this case the fermion in question is the neutrino, which we show undergoes

flavor oscillations when traveling through the k-essence aether. However, the way

we introduce the fermion/k-essence coupling could be used to obtain new types of

interactions between dark energy and other forms of matter including dark matter.

The emergent metric from [31], which is used throughout this chapter to couple the

dark energy to neutrinos, is covariantly constant. In a future publication we will

discuss how to consider even more generalized couplings by introducing torsion in

the emergent space-time.

It has been noticed previously [31], in the context of the propagation of k-essence

fluctuations in a classical background that defines the emergent space-time, that

Lorentz invariance is lost when the speed of propagation of the fluctuations (the

speed of sound cs), is different from the speed of light. The same is true for the

propagation of neutrinos in this background. In fact, all of the physically interest-

ing results that we obtain in this chapter are present only when cs 6= c; i.e., when

there is Lorentz violation. Non-trivial neutrino flavor oscillations require, in addi-

tion, non-diagonal flavor couplings of neutrinos to the k-essence background. In the

past, various models of neutrino oscillations have been considered that require an ex-

plicit violation of Lorentz invariance [52], or the equivalence principle [49, 50]. The

energy dependence of the oscillation length is the same in these models as the one

considered in this chapter. In this sense our model may be considered a theoreti-

cally and phenomenologically motivated manifestation of the same phenomenon. We

should emphasize that we do not have any violation of the equivalence principle; the

emergent metric which contains contributions from the k-essence background can

be different for different flavors of neutrinos. This is made possible in our model

by a flavor non-diagonal coupling in the part of the emergent metric involving the
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k-essence background only.

K-essence is a theory with non-canonical kinetic terms, and coupling it to neu-

trinos through the vierbein of the emergent metric alters the speed of propagation

of the neutrinos. The consequent dispersion relations are analyzed in section §6.2.

The data from supernova 1987a [144, 145, 146] is then used as an input to constrain

some of the parameters of our model. In section §6.3 we consider the possibility of

neutrino oscillations induced by their coupling to the k-essence background. The

more interesting and novel case is when the different neutrino flavors couple with

different strengths to the k-essence field. Oscillations are induced essentially due

to the fact that the speeds of propagation of the different neutrino species in the

background aether are consequently different. In this case neutrinos would oscillate

even if they were massless. In section §6.3.2 we discuss this case in some detail, and

obtain a general formula for the oscillation probability with massive neutrinos. Our

results are quantitatively different than the case of flavor oscillations with only mas-

sive neutrinos. In particular, the oscillation length varies with the inverse power of

the neutrino energy. Such a behavior is ruled out by the data from the Kamiokande

experiment [147]. Thus, we are able to place bounds on the allowed strengths of the

k-essence coupling to neutrinos. In particular, the data strongly favor diagonal fla-

vor couplings of k-essence to neutrinos. As a preliminary to this analysis, in section

§6.3.1 we discuss the case of neutrino oscillations with massive neutrinos, but with

equal coupling strengths of all flavors to the k-essence background. Here we find a

rather simple modification of the well known formula for the flavor oscillations of

massive neutrinos; with the only difference arising due to the fact that the neutri-

nos travel along geodesics in the emergent space-time. In section §6.4 we present

our conclusions. Certain technical details of the coupling of Dirac fermions to the
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emergent metric are relegated to an appendix.

6.2 Neutrino Coupling To a K-essence Background

Before we can talk about neutrino interactions with k-essence, we should first

review the latter [19, 31]. In general k-essence is a theory of a scalar field with

non-canonical kinetic terms. The Lagrangian of a single k-essence scalar φ is usually

denoted by a single function L(X,φ), where X = 1
2
∇µφ∇µφ. For a given solution

φ to the k-essence equations of motion, the behavior of perturbations π = δφ in

the k-essence field around the background φ can be described by a canonical scalar

field action, but with the space-time metric gµν replaced by an emergent space-time

metric Gµν given by [31]

Gµν = Ω−2

(
gµν +

δ2 − 1

2X
∇µφ∇νφ

)
,

where Ω2 = δ
LX

, and δ2 = LX
LX+2XLXX

1. In the case where X > 0, the parameter δ is

equal to the sound speed of k-essence fluctuations cs, which is defined as

c2
s =

(
∂pk
∂ρk

)
φ

.(6.1)

Here ρk and pk denote the energy density and pressure of the k-essence background,

and the subscript φ signals that (6.1) should be evaluated while holding φ constant.

In the case where ∇µφ is a time-like vector (i.e., X > 0), it can be shown that pk = L

and ρk = 2XLX − L. Therefore, it follows that

c2
s = δ2 =

LX
LX + 2XLXX

.

Since gµν is replaced by Gµν in the π field action, the characteristics of π follow the

geodesics of Gµν and not gµν . This interesting fact implies that π has a different

1Derivatives of L with respect to X are denoted by a subscript, so that LX = ∂L
∂X

and LXX = ∂2L
∂X2 .
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causal structure than all other fields. In particular, if in some frame gµν = ηµν and

the background k-essence field is uniform, then the emergent space-time metric is

given by

Gµνdx
µdxν ∝ c2

sdt
2 − dx2.(6.2)

The metric Gµν defines a different causal structure than gµν . The “light” cones of

Gµν are defined by characteristics that have velocity cs instead of the speed of light.

It was shown in [31] that even if cs exceeded the speed of light, causality in a k-

essence theory would still be preserved despite the superluminal speed of k-essence

fluctuations. This fact can be roughly understood by thinking of the k-essence metric

(6.2) as the space-time interval in special relativity but with a different value for the

speed of light. Therefore, causality is preserved in k-essence for much the same reason

that it is preserved in special relativity. However, in order for this rational to hold

the k-essence action must satisfy certain constraints. These constraints arise from

the need to make Gµν have the proper signature. This translates to the requirement

that the k-essence action satisfies

1 +
2XLXX
LX

> 0.(6.3)

Note that this condition is equivalent to the stability constraint: c2
s > 0.

In this chapter we will take inspiration from the k-essence perturbation action,

and consider the possibility of other fields coupling to Gµν . In particular, we will take

the action of a neutrino coupled to a gravitational metric gµν and replace this with

the k-essence metric Gµν . The action of our hypothetical k-essence coupled (Dirac)

neutrino ν is given by

S =

∫
d4xEν̄ [iγ̃µDµ −M ] ν,(6.4)
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where E = detEa
µ and γ̃µ = Eµ

aγ
a, and γa are the standard gamma matrices. The

vierbein field Eµ
a of the emergent space-time geometry and its inverse Ea

µ are given

by

Eµ
a = Ω

(
eµa +

gu

2X
eρa∇ρφ∇µφ

)
, Ea

µ = Ω−1
(
eaµ +

gū

2X
eρa∇ρφ∇µφ

)
.(6.5)

Here we have defined u = 1
δ
− 1, and ū = − u

1+gu
. Further note that ∇µφ = gµν∇νφ.

Also, we have included a coupling constant g, which accounts for the interaction

strength of the k-essence background to the neutrinos. The emergent metric Gµν is

still covariantly constant as in [31].

At this point we would like to emphasize two features of the action. First, we

note that when cs 6= 1 the model is not invariant under Lorentz transformations [31].

As we will see in detail in section §6.3, all the physical effects that we discuss in

this chapter are consequences of this Lorentz violation in the sense that they vanish

at cs = 1. Other features, like non-diagonal flavor couplings, are also important

to get non-trivial flavor oscillations; however, Lorentz violations must always be

present. Secondly, in this model we treat the k-essence background as a classical

field, which does not experience any appreciable back-reaction from the neutrino

field. This allows us to treat the neutrino/k-essence coupling as a contribution to

the kinetic term in the neutrino action. If the k-essence field were dynamical, this

would lead to higher order derivatives of the neutrino field in the k-essence equation

of motion, which could potentially create ghosts in the quantum theory. This is not

a problem in this chapter since we treat the k-essence scalar strictly as a classical

background. However, we would like to emphasize that within the effective field

theory methodology, treating the k-essence scalar as a dynamical field would not

give rise to such problems in any case. The terms with higher derivatives of the

fermion field would be considered as higher order in the low-energy effective action
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expansion.

The derivative operator Dµ in (6.4) represents the spinor covariant derivative with

respect to the emergent k-essence background described by Eµ
a . The proper definition

of Dµ and its specific form in the case of a general k-essence field in a flat space-time

background are given in appendix §B. From here on out we will ignore the spinor

connection term in Dµ, which we justify on the basis that higher derivatives of the

k-essence field are negligibly small at the present time in most models of k-essence.

By definition, the emergent space-time metric is given by Gµν = Ea
µE

b
νηab, which is

Gµν = Ea
µE

b
νηab = Ω−2

(
gµν +

w̄

2X
∇µφ∇νφ

)
,(6.6)

where w̄ = 2gū + g2ū2. Note that if g = 1, then w̄ = δ2 − 1, which is the standard

result for the emergent metric in k-essence theories. The inverse of Gµν is given by

Gµν = Ω2
(
gµν +

w

2X
∇µφ∇νφ

)
,

where w = 2gu+ g2u2 = − w̄
1+w̄

. The determinant of Gµν is given by

E2 = − detGµν = −(det gµν)
Ω−8

1 + w
.

In order for this modified k-essence induced metric to have the proper signature:

1 + w > 0. Note that this condition is equivalent to (6.3) in the case when g = 1.

The k-essence coupled Dirac equation reads

(iγ̃µDµ −M) ν(t, x) = 0.

If we square this equation we can obtain a Klein-Gordon equation for ν(t, x):

(Gµν∇µ∇ν +R/4 +M2)ν(t, x) = 0.(6.7)
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Here, R is the scalar curvature of the vierbein Ea
µ, and is defined in terms of the

connection form by

R = Eµ
aE

ν
b

[
∂µΩab

ν − ∂νΩab
µ + Ωa

cµΩcb
ν − Ωa

cνΩ
cb
µ

]
.

It is evident from (6.7) that the curvature scalar acts as a mass term. However, as

we discussed earlier, in most k-essence models higher derivatives of the field φ will be

negligible. Therefore, we can ignore R from here on out. By taking the plane wave

approximation for the neutrino field, the phase of ν is proportional to e−i
∫
pµdxν . If

we assume that the interaction of the neutrino field is weak and the background

geometry is flat, then the dominant space-time dependence of the neutrino field

comes from the phase factor. Thus, the Klein-Gordon equation in momentum-space

leads to the dispersion relation

Gµνpµpν −M2 = 0.

Define an effective momentum p̃µ as

p̃µ = Ω−1eaµE
ν
apν = pµ +

gu

2X
(pν∇νφ)∇µφ.

The covariant and contravariant effective momenta are defined with respect to the

space-time metric and not the emergent k-essence metric Gµν . Thus, the index on

p̃µ is raised and lowered using the space-time metric gµν . Because of this property,

it follows that

Ω2p̃µp̃
µ = Ω2gµν p̃µp̃ν = gµν(eaµE

ρ
apρ)(e

b
νE

λ
b pλ) = ηabEµ

aE
ν
b pµpν = Gµνpµpν .

For the purposes of this chapter we will assume that the background space-time is flat

so that gµν = ηµν and eµa = δµa . This is in fact a good approximation cosmologically

for the applications we have in mind. Therefore, the dispersion relation in terms of
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the effective momentum is

p̃0p̃
0 + p̃ip̃

i = m2,(6.8)

where m2 = Ω−2M2 is an effective mass that we have defined here for convenience.

We wish to use the on-shell condition above to find the particle velocity v of the

neutrinos, which is represented by the group velocity v = ∂p0
∂|p| .

Throughout this chapter we will define pµ = (E,−p), p = |p|, p = pn̂, and

φ̇ = ∇0φ. In the next few sections we will find the neutrino velocity for two special

cases: a uniform k-essence field, and a static k-essence field, after which we will

derive the velocity assuming the most general k-essence field configuration.

6.2.1 Simple Case: φ is Uniform

Before we try and find the expression for the neutrino velocity with the most

general k-essence field, let’s find the velocity when φ is uniform. This is probably the

most relevant case since most k-essence theories, in particular those that attempt

to address the cosmological constant problem, assume that the spatial derivatives of

the k-essence field are negligible compared to its time derivative [30, 19, 21, 148]. If

φ is uniform then ∇iφ = 0, and thus

p̃0p̃
0 + p̃ip̃

i = m2 ⇒ E =

√
p2 +m2

1 + guφ̇2

2X

.

By definition X = 1
2
φ̇2. Therefore,

vp =
E

p
= cν

√
1 +

m2

p2
,(6.9)

and the group velocity, which represents the neutrino particle velocity is

vg =
∂E

∂p
=

cν√
1 + m2

p2

,(6.10)
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where cν = 1
1+gu

= cs
(1−g)cs+g . The speed cν plays the same role for massless neutrinos

that the sound speed cs does for massless k-essence perturbations. Both cν and cs

represent limiting speeds that neutrinos and k-essence perturbations, respectively, are

required to not exceed as measured from the frame in which the k-essence background

is uniform. The fact that in general cν 6= cs is due to our inclusion of an arbitrary

coupling parameter g. Phenomenologically, u is small, so we easily see that if cs > 1,

then so is cν .

If m2 = 0 then the neutrino velocity (6.10) will be equal to cν . As a massless

particle coupled to the emergent background geometry, the neutrino will travel on

the null geodesics of Gµν not gµν . In the uniform case, the emergent metric (6.6)

with arbitrary g is

Gµνdx
µdxν ∝ c2

νdt
2 − dx2.

As one can see here, null lines in Gµν travel at a speed cν . In this sense the emergent

geometry of a uniform k-essence field acts just as a minkowski space-time except that

the limiting speed is now cν instead of the speed of light.

6.2.2 Slightly Less Simple Case: φ is Static

In direct contrast to the last case, let’s consider what happens to the neutrino

velocity when φ is time independent, but has nonzero spatial gradients. In this case

∇µφ is a space-like vector (i.e., X < 0) and the k-essence energy density and pressure

are instead given by ρk = −L and pk = L− 2XLX . It follows that c2
s = LX+2XLXX

LX
,

which means that the definition of the sound speed for a space-like k-essence field is

the inverse of the sound speed for a time-like k-essence field. If we assume that there

is a static, but spatially varying k-essence field, then the on-shell condition states
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that

p̃0p̃
0 + p̃ip̃

i = m2 ⇒ E2 = p2
[
1 + w cos2 θ

]
+m2,

where θ is the angle between p and ∇φ. Note that in this case X = −1
2
|∇φ|2. The

neutrino phase velocity is then given by

vp =
E

p
=

√
1 + w cos2 θ +

m2

p2
,

and the group velocity is

vg =
1 + w cos2 θ√

1 + w cos2 θ + m2

p2

.(6.11)

It is informative to evaluate (6.11) at the two extremes of cos2 θ; that is when p and

∇φ are parallel, and when they are perpendicular. If p and ∇φ are parallel, then

the angle θ between them vanishes and we find that the neutrino velocity is

v(θ = 0) =
1 + gu√

1 + 1
(1+gu)2

m2

p2

=
cν√

1 + 1
c2ν

m2

p2

,(6.12)

where now cν = 1 + gu = csg − g + 1. As in the case when φ is uniform, if g = 1

then cν = cs. We can see that the velocity of the neutrino (6.12) is almost the same

as the formula given in (6.10), except that the mass term in the denominator now

has a factor of 1
c2ν

. Here again, if the effective mass of the neutrino is zero, then the

neutrino velocity is equal to the sound speed of k-essence fluctuations. This is due

to the fact that the neutrino propagates on null geodesics in the emergent k-essence

background. On the other hand, if p and ∇φ are perpendicular then

v(θ = π/2) =
1√

1 + m2

p2

,

and the formula for the velocity of the neutrino is the same as it would be in the

absence of a k-essence field. This is because in the static field case the coupling
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between the neutrino and k-essence is proportional to p · ∇φ. This means that

the neutrino will act as a free particle propagating on a flat Lorentzian space-time

whenever it is traveling perpendicular to the direction of the field gradient. The

directional dependence of the neutrino velocity in a spatially varying k-essence field

stands in stark contrast to the neutrino velocity in uniform k-essence. If neutrinos

traveling from a distant galaxy were to travel through a region containing a spatially

varying but static k-essence field (a k-essence halo) on their way to a detector on

Earth, we should expect to see evidence of anisotropy. However, even if it were

possible to detect a sufficiently large neutrino flux, it is expected that any spatial

variation of the k-essence field will be very small compared with its variation in time.

Therefore, any anisotropy in the neutrino velocity would most likely be unobservable.

6.2.3 Neutrino Velocity In a General K-essence Background

Without making any assumptions about the nature of the k-essence field, the

on-shell condition (6.8) becomes

(1 +
wφ̇2

2X
)
E2

p2
+
w

X
φ̇(n̂ · ∇φ)

E

p
+

w

2X
(n̂ · ∇φ)2 − 1 =

m2

p2
.

The solution for the E
p

is

E

p
=
− w

2X
φ̇(n̂ · ∇φ)±

√
1 + w

2X
(φ̇2 − (n̂ · ∇φ)2) + (1 + wφ̇2

2X
)m

2

p2

1 + wφ̇2

2X

.(6.13)

The choice of either a plus or minus sign in the solution reflects the two particle/anti-

particle states of the neutrino: the plus sign corresponding to the neutrino, and

the minus sign corresponding to the anti-neutrino. According to the Feynman-

Stueckelberg interpretation of anti-particles, the anti-neutrino can be thought of

as a positive energy neutrino traveling backwards in time. Thus, the solution (6.13)

with the negative sign, representing the anti-neutrino energy, should have a overall
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negative sign removed. Furthermore, since time is reversed, this means that in order

to have the anti-neutrino traveling in the direction of n̂, we must replace n̂ → −n̂.

In the end, the energy-momentum relation for the neutrino and anti-neutrino will

be the same, and given by (6.13) with the positive sign. If we expand (6.13) to first

order in u and m2, then E
p

for the (anti-)neutrino becomes

E

p
≈ 1− gu

2X

(
φ̇+ n̂ · ∇φ

)2

+
m2

2p2
.(6.14)

From (6.13), we find that the group velocity is

vg =
1

1 + wφ̇2

2X

 1 + w
2X

(φ̇2 − (n̂ · ∇φ)2)√
1 + w

2X
(φ̇2 − (n̂ · ∇φ)2) + (1 + wφ̇2

2X
)m

2

p2

− w

2X
φ̇(n̂ · ∇φ)

 .(6.15)

It is important to note that the neutrino velocity (6.15) does not change under a

redefinition of the k-essence field variable φ unless m2 6= 0. It is easy to show that

under a redefinition from φ to another field ϕ defined by φ = g(ϕ), then (6.15) would

remain unchanged were it not for the m2 term in the denominator. Recall that m2

is not the physical neutrino mass but rather a rescaled mass, which is rescaled by

the conformal factor Ω in the emergent metric. After a field rescaling the effective

neutrino mass becomes

m2 =
M2

Ω2
= M2LX

δ
⇒ m2 =

M2

[g′(ϕ)]2
LX̃
δ

=
m̃2

[g′(ϕ)]2
.

Before any objections are raised we should point out that from the beginning we

have chosen a specific background k-essence field that the neutrino couples to. In

essence what we have done is fix the “gauge” of the k-essence field. Therefore, it

is no surprise that by changing the field variable we are changing the physics of

the neutrino field. Since a field redefinition changes the conformal factor Ω, a field

redefinition is itself a conformal transformation. That the effective mass is the only

quantity that changes under a field redefinition is a reflection of the fact that by
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adding a neutrino mass we are in essence breaking the conformal invariance of the

neutrino action.

6.2.4 Comparisons with Observation

In 1987 a supernova was observed [144, 145] in the Large Magellanic Cloud that

provided a limited, but unique opportunity for the study of neutrino physics. Dur-

ing this event an increase in the background neutrino flux was detected at several

neutrino observatories here on Earth. This signal was unambiguously identified as

having been due to the supernova. By comparing the time interval between when

the supernova was first seen and when the neutrino excess was detected, a bound

on the deviation of the neutrino speed from the speed of light can be calculated. In

[146] the authors found, using the available data from the supernova event, that the

deviation of the neutrino speed from the speed of light can not be more than 1 part

in 108. In other words if vν is the neutrino speed then∣∣∣∣ cvν − 1

∣∣∣∣ < 10−8.(6.16)

If the neutrino is massless then vν = cν , and the left hand side of (6.16) is equal to |gu|

in the physically relevant static case2. Thus, in the massless neutrino limit, (6.16)

represents an observationally required upper bound on |gu|. In the most general case

this bound becomes (setting c = 1 once again)∣∣∣∣ 1

vν
− 1

∣∣∣∣ < 10−8 ⇒
∣∣∣∣ gu2X

(φ̇+ n̂ · ∇φ)2 +
m2

2E2

∣∣∣∣ < 10−8.

The most generous upper bound that can be placed on gu is |gu| < 10−8. This can

also be translated into a restriction on the k-essence sound speed cs. If the k-essence

field has a time-like gradient (i.e., X > 0), then the range of values for cs is

1

1 + 10−8/|g|
< cs <

1

1− 10−8/|g|
.(6.17)

2Note that c = 1 in all previous sections.
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As of this moment there is an insufficient amount of data to constrain cs from cos-

mological observables. Recent studies have shown that fits of general dark energy

models to the current CMBR data are largely insensitive to the value of cs [98].

Without any other observational constraints on (or better yet, a value for) cs, it is

impossible to reliably estimate the value of the k-essence coupling g. However, with

more precise data in the future it may be possible to get a better handle on the value

of cs. Once that has been established, (6.17) can be used to put useful restrictions

on g.

6.3 Neutrino Oscillations

Experiments [147] have confirmed the phenomenon of flavor oscillations, whereby

neutrinos oscillate between the possible flavor eigenstates as they travel away from

their source. There are different ways of explaining this oscillation, but all mecha-

nisms for inducing neutrino oscillations involve some term in the neutrino Lagrangian

that is non-diagonal in the flavor eigenstates. Although the most popular way for

inducing neutrino oscillations is by introducing a mass term [46], several other mech-

anisms have been proposed over the years, such as: violation of the equivalence prin-

ciple (VEP) [49, 50], torsion induced neutrino oscillations [51], violation of Lorentz

invariance (VLI) [52], and violation of CPT symmetry [53].

If neutrinos do indeed couple to a k-essence background in the manner we de-

scribed in §6.2, then it is possible that k-essence can play a role in neutrino oscilla-

tions. There are two ways in which k-essence could affect neutrino oscillations. If

the k-essence coupling is the same for each neutrino flavor, then the energy differ-

ence between energy eigenstates will not be affected. However, neutrinos coupled

to the k-essence background will travel along geodesics in the emergent space-time.
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This will have an affect on the phase of the neutrino wavefunction, which will be

observable in the neutrino oscillation probability [149, 150, 151, 152].

Another way k-essence can influence neutrino oscillations is if the k-essence cou-

pling g is non-diagonal in the flavor eigenstate basis. Imagine now a model of two

neutrino flavors that couple non-diagonally to k-essence in the flavor eigenbasis. The

Lagrangian of this two neutrino system can be written as (α, β = 1, 2 are flavor

indices)

L = i
∑
α=1,2

Eαν̄Kαγ̃
µ
α∇µνKα −

1

2

∑
α,β=1,2

ν̄Kα (MαβEβ + EαMαβ) νKβ,

where Eα = Eαα and Eαβ = [detEa
µ(ĝ)]αβ. In this Lagrangian the k-essence coupling

g has been replaced by a matrix valued object ĝ, which is not necessarily diagonal in

the flavor and mass eigenstates. We have defined νK as the “k-essence eigenstates”,

which are the eigenstates of the k-essence coupling matrix ĝ. In general the k-essence

eigenstates will not be the same as the neutrino flavor eigenstates. Because of this

non-diagonal coupling of k-essence to the flavor eigenstates, the formula for the

oscillation probability in the case of k-essence induced neutrino oscillations (KINO)

will differ significantly from the typical mass-induced result.

In this section we will assume that the k-essence field is weakly varying, with small

second derivatives so that we may effectively treat the k-essence interaction, which

only involves the first derivatives of the scalar field, as a coupling constant. This

greatly simplifies matters, because it allows us to diagonalize the neutrino equation

of motion in the momentum space representation. This assumption is consistent with

the literature where most models of k-essence take the field and its sound speed to be

relatively constant in time and space. As a result of this assumption we can absorb

the determinants Eα into a redefinition of the neutrino wavefunction νK and mass

matrix Mαβ. Therefore, it is safe to ignore the determinant factor in our analysis.
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In the first part of this section we will consider the effect of k-essence on neutrino

oscillations when the k-essence coupling is equal for each flavor eigenstate.

6.3.1 Neutrino Oscillations with Flavor Diagonal K-essence Couplings

At first it may seem that when both neutrino flavors couple to k-essence identically,

the usual formula for mass-induced neutrino oscillations should not change. However,

even in this case the fact that neutrinos travel on geodesics in the emergent space-

time implies that there will be a deviation from the flat space result. In order to

best analyze neutrino oscillations in the presence of a k-essence background, we will

use the simple method used in [149, 153] to study neutrino oscillations in curved

space-times. In all cases, the important quantity of interest when calculating the

neutrino oscillation probability is the phase of the neutrino wavefunction:

|νf (t, x)〉 = e−iΦ̂ |νf〉 = e−i
∫
p̂µdxµ |νf〉 .(6.18)

In the expression (6.18), the hats over Φ̂ and the 4-momentum p̂µ indicate that these

are operators which act in the flavor space of neutrinos. If the operator e−iΦ̂ is non-

diagonal in the flavor eigenstate basis, the result will be neutrino oscillations. The

phase Φ̂, written in terms of the energy and three momentum, is

Φ̂ =

∫
EÎdt− p̂ · dx,(6.19)

where Î is the identity operator3. In a full and proper treatment of neutrino oscilla-

tions, the neutrinos must be modeled by spatially localized wave packets composed

of neutrino energy eigenstates. However, if one uses this approach to study neu-

trino oscillations, they would find that in the relativistic limit it is acceptable to

assume that both neutrino eigenstates propagate on the same null geodesic between
3Note, we could have assumed that the momentum operator was proportional to the identity and the energy E

was an off-diagonal operator. Both approaches are equivalent when a first order expansion in the energy is taken, as
will be done in this chapter.
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the neutrino emitter and detector in space-time [154, 155, 156]4. Therefore the phase

operator (6.19) becomes

Φ̂ =

∫ td

te

(
EÎ − p̂ ·

[
dx

dt

]
0

)
dt,(6.20)

where te and td are the values of the coordinate time at which the neutrino signal

is emitted and detected, respectively. The “0” subscript on dx
dt

denotes that this

quantity is to be evaluated along a null geodesic between the emitter and detector.

To find dx
dt

, we start from the definition of the canonical momentum of a massive

neutrino:

pµ = mGµν
dxν

ds
.

Here s is a proper time coordinate defined in the neutrino rest frame. With this, it

is clear that dx
dt

is

dx

dt
=

dx
ds
dt
ds

=
Giµpµ
G0νpν

=
p− w

2X
(φ̇E + p · ∇φ)∇φ

E + w
2X

(φ̇E + p · ∇φ)φ̇
.

Along a null geodesic the energy and momentum of a massless neutrino are denoted

by E(0) and p(0), respectively. Let us denote the unit vector in the direction of the

neutrino momentum by n̂. Thus, n̂ ·
[
dx
dt

]
0

is given by

n̂ ·
[
dx

dt

]
0

=
− w

2X
φ̇(n̂ · ∇φ) +

√
1 + w

2X
(φ̇2 − (n̂ · ∇φ)2)

1 + wφ̇2

2X

=
E(0)

p(0)
.(6.21)

To relate E and p, recall the discussion from section §6.2.3. It is easy to show from

the work done there that the momentum as a function of E expressed to leading

4In the wave packet treatment, an exponential damping is found in the final result for the oscillation probability
in the relativistic limit. This is due to the decoherence of the superposition of neutrino wavefunctions. So far there
has been no solid evidence for decoherence effects [157], and we are therefore safe in ignoring this possibility in our
analysis.
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order in m2 is

p ≈ E

w
2X
φ̇(n̂ · ∇φ) +

√
1 + w

2X
(φ̇2 − (n̂ · ∇φ)2)

1− w
2X

(n̂ · ∇φ)2
−

m2

2E√
1 + w

2X
(φ̇2 − (n̂ · ∇φ)2)

.

(6.22)

Now remember that m2 = Ω−2M2. In order for there to be neutrino oscillations the

flavor and mass eigenstates must not be the same. Therefore, we have to replace the

M2 with a matrix M̂2 that is non-diagonal in the flavor eigenstate basis. Since only

phase differences between flavor eigenstates will be important, we can ignore terms

not proportional to M̂2 in the phase operator (6.20). With (6.21) and (6.22) the

expression for the phase operator (6.20), modulo terms proportional to the identity,

becomes

Φ̂ =
M̂2L(`)

2E(0)
,(6.23)

where xe and xd are the neutrino and detector positions, respectively. We have

defined an effective distance L, which is a function of the coordinate distance ` =

|xd−xe| between the neutrino emitter and detector. The expression for L(`) is given

by

L(`) =

∫ xd

xe

Ω−2(n̂ · dx)√
1 + w

2X
(φ̇2 − (n̂ · ∇φ)2)

.

In general this distance will differ from the true emitter/detector separation due

to the neutrino coupling to the k-essence medium. There are two sets of neutrino

eigenstates in this system: the flavor eigenstates |νf〉 = {|νe〉 , |νµ〉}, which couple

diagonally to the weak current; and the mass eigenstates |νm〉 = {|νm1〉 , |νm2〉} that

define the basis in which the mass matrix is diagonal. In general these two sets will

not be equivalent. However, we can define an SU(2) matrix V such that

|νf〉 =
∑
m

Vfm |νm〉 .
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The matrix V is referred to as the mass mixing matrix. The most general SU(2)

matrix can be represented in terms of an angle and three phases:

eiχ

 e−iα 0

0 eiα


 cos θ sin θ

− sin θ cos θ


 e−iβ 0

0 eiβ

 .
In general, V is an SU(2) matrix and will therefore have three additional phase de-

grees of freedom. However, in this case we can absorb these phases into a redefinition

of the neutrino wavefunction. Thus, we can safely ignore the phases in V , and as a

result the mixing between the flavor and mass eigenstates is determined by a single

angle, which we will call θM :

V =

 cos θM sin θM

− sin θM cos θM

 .
Written in the flavor eigenstate basis, the phase operator (6.23) is

Φ̂(`) =
L(`)

2E
V

 m2
1 0

0 m2
2

V †

=
∆m2L(`)

4E

 − cos 2θM sin 2θM

sin 2θM cos 2θM

+
m̄2L(`)

2E

 1 0

0 1

 ,(6.24)

where m1 and m2 are the masses of the two neutrino mass eigenstates, and ∆m2 =

m2
2 −m2

1 and m̄2 =
m2

2+m2
1

2
. Note that in the interest of simplicity, we have dropped

the “(0)” superscript on the energy E. Since we are interested in finding probabilities,

we can subtract from the phase matrix any term proportional to the identity matrix

without changing our final result. Therefore, we will ignore the very last term in

(6.24) from here on out, and thus, the phase factor in (6.18) becomes

e−iΦ̂ = −i sin(
∆m2L(`)

4E
)

 − cos 2θM sin 2θM

sin 2θM cos 2θM

+ cos(
∆m2L(`)

4E
)

 1 0

0 1

 .
(6.25)
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The factor e−iΦ̂ plays the role of a evolution operator. Denote by |νf〉 the initial state

of a neutrino of flavor f . The time at which the neutrino is created can be defined,

without loss of generality, as occurring at t = 0. The wavefunction of this neutrino

at some later time t > 0, after it has traveled a distance ` away from its source, will

be given by the action of e−iΦ̂(`) on the neutrino wavefunction |νf〉:

|νf (`)〉 =
∑
f ′

[e−iΦ̂(`)]ff ′ |νf ′〉 .

Applying the phase operator (6.25) to the neutrino ket |νf〉, we find that the flavor

eigenstate wavefunctions at a later time t > 0, when the neutrinos have traveled a

distance `, are

|νe(`)〉 = i sin(
∆m2L(`)

4E
) (cos 2θM |νe〉 − sin 2θM |νµ〉) + cos(

∆m2L(`)

4E
) |νe〉 ,

|νµ(`)〉 = −i sin(
∆m2L(`)

4E
) (sin 2θM |νe〉+ cos 2θM |νµ〉) + cos(

∆m2L(`)

4E
) |νµ〉 .

Suppose a neutrino of flavor f is created from some source of interest (e.g., the sun,

atmosphere, nuclear reactor, etc.) at some time te. The probability of this neutrino

appearing as an f ′ flavored neutrino in a detector here on Earth, at some later time

td, after having traversed a distance `, is given by the expression

P (νf → νf ′) = | 〈νf ′| νf (`)〉 |2 = δf,f ′ + (−1)δf,f ′ sin2 2θM sin2(
∆m2L(`)

4E
).(6.26)

As we can see here the formula in (6.26) is almost exactly the same result one gets

for the oscillation probability for mass-induced neutrino oscillations in flat space.

The only difference is that the effective distance L takes the place of the coordinate

distance `.

6.3.2 Neutrino Oscillations with Flavor Non-diagonal K-essence Couplings

At the beginning of this chapter, we introduced a neutrino/k-essence coupling

parameter that we denoted by g. In the last subsection we assumed that this coupling
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was the same for each neutrino flavor. In this subsection, however, we will consider

what happens when this coupling g becomes a matrix valued object ĝ that operates

in the neutrino flavor space. In this case the equation for the energy-momentum

relation (6.14) becomes a matrix equation whose eigenvalues represent the energies

of the neutrino energy eigenstates, which in general are not the same as the flavor,

mass, and k-essence eigenstates. A formula for the momentum as a function of

energy can be derived from the information found in section §6.2.3. If we expand

this formula around g = 0 and m2 = 0 to leading order, and then replace g and

M2 = Ω2m2 with matrices that act in the neutrino flavor space, we end up with

p̂ ≈ EÎ +
EĜ

2
− M̂2Ω−2

2E
,

where Ĝ = ĝu
X

(φ̇ + n̂ · ∇φ)2. Here Ĝ and M̂2 are operators in the flavor space. In

general it will not be possible to diagonalize Ĝ and M̂2 at the same time, since there

is no reason to assume that the k-essence and mass eigenstates are the same. We can

relate the different sets of eigenstates with two SU(2) matrices. Define two SU(2)

matrices U and V such that

|νf〉 =
∑
m

Vfm |νm〉 , |νf〉 =
∑
α

Ufα |να〉 ⇒ |να〉 =
∑
f,m

U †fαVfm |νm〉 .

In the case where there are three sets of neutrino eigenstates, one can not simply

disregard the phases in the mixing matrices U and V as can be done in the standard

treatment of purely mass-induced neutrino oscillations. While we can eliminate most

of the phases through a redefinition of the neutrino eigenstates, there is not enough

freedom to get rid of them all. After any redefinition of the neutrino eigenstates,

there will still be a single overall phase left. Let’s call this residual phase α and
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define the k-essence and mass mixing matrices as

U =

 e−iα cos θK e−iα sin θK

−eiα sin θK eiα cos θK

 , V =

 cos θM sin θM

− sin θM cos θM

 .
If G1 and G2 are the eigenvalues of Ĝ, the momentum operator can be written as

p̂ ≈ E

 1 0

0 1

+
E

2
U

 G1 0

0 G2

U † − 1

2E
V

 m̃2
1 0

0 m̃2
2

V †,
where m̃2

i = Ω−2m2
i . If we substitute this for the momentum operator in the inte-

grand in (6.20) we find that, modulo terms proportional to the identity matrix, we

get

EÎ − p̂ ·
[
dx

dt

]
0

=
∆m̃2

4E

 − cos 2θM sin 2θM

sin 2θM cos 2θM

− E∆G

4

 − cos 2θK e−2iα sin 2θK

e2iα sin 2θK cos 2θK


=

∆m̃2

4E

 − cos 2θM − y cos 2θK sin 2θM + y sin 2θKe
−2iα

sin 2θM + y sin 2θKe
2iα cos 2θM + y cos 2θK

 ,(6.27)

where ∆m̃2 = m̃2
2−m̃2

1. Here we have introduced a new parameter y, which is defined

as y = −E2∆G
∆m̃2 , where ∆G = G2−G1. This operator can be written in a much more

compact form by defining new variables:

∆M2

4E
cos 2θL =

∆m̃2

4E
(cos 2θM + y cos 2θK) ,

∆M2

4E
e−iσ sin 2θL =

∆m̃2

4E

(
sin 2θM + y sin 2θKe

−2iα
)
.

Note that the phase σ, while present here, will not affect our final result. Inverting

these:

∆M2

4E
=
|∆m̃2|

4E

√
1 + 2y cos 2Θ + y2,

sin2 2θL =
sin2 2θM + 2y sin 2θM sin 2θK cos 2α + y2 sin2 2θK

1 + 2y cos 2Θ + y2
,

tanσ =
sin 2θK sin 2α

sin 2θM + y sin 2θK cos 2α
,
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where

cos 2Θ = cos 2θM cos 2θK + sin 2θM sin 2θK cos 2α.

With these, equation (6.27) can be written as

EÎ − p̂ ·
[
dx

dt

]
0

=
∆M2

4E

 − cos 2θL e−iσ sin 2θL

eiσ sin 2θL cos 2θL

 .(6.28)

The phase operator is therefore

e−iΦ̂(`) = −i sinϕ(`)

 − cos 2θL e−iσ sin 2θL

eiσ sin 2θL cos 2θL

+ cosϕ(`)

 1 0

0 1

 ,(6.29)

where ϕ(`) =
∫ xd
xe

∆M2

4E
dx and ` = xd − xe. Using (6.29) as our neutrino evolution

operator, the flavor eigenstates at a later time after the neutrino has traveled a

distance `, are given by:

|νe(`)〉 = i sinϕ(`)
(
cos 2θL |νe〉 − e−iσ sin 2θL |νµ〉

)
+ cosϕ(`) |νe〉 ,

|νµ(`)〉 = −i sinϕ(`)
(
eiσ sin 2θL |νe〉+ cos 2θL |νµ〉

)
+ cosϕ(`) |νµ〉 .

Therefore, if a neutrino of flavor f is created and travels a distance ` to a detector,

the probability that the neutrino is observed as an f ′ flavored neutrino is

P (νf → νf ′) = | 〈νf ′ | νf (`)〉 |2 = δf,f ′ + (−1)δf,f ′ sin2 2θL sin2 ϕ(`).

It is interesting to consider the case when the k-essence field does not vary rapidly in

space and time compared to terrestrial scales. In that case we can treat the integrand

as a constant, and therefore the phase becomes

ϕ(`) =
|∆m̃2|

4E
`
√

1 + 2y cos 2Θ + y2.
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Since the phase is proportional to the distance between the neutrino emitter and

detector, we can write the oscillation probability as

P (νf → νf ′) = δf,f ′ + (−1)δf,f ′ sin2 2θL sin2 πl

λ
,(6.30)

where λ is the oscillation length, which is defined as

λ =
π`

ϕ(`)
=

4πE

|∆m̃2|
1√

1 + 2y cos 2Θ + y2
.

It is interesting to compare neutrino oscillations that are either induced purely by

k-essence or by mass. In the case where neutrino oscillations are due to mass entirely,

the inverse oscillation length goes like

4πλ−1 =
|∆m̃2|
E

.(6.31)

Likewise, if the mass of neutrinos vanishes, then the inverse oscillation length goes

like

4πλ−1 = E |∆G| = E

∣∣∣∣(g2 − g1)u

X

∣∣∣∣ (φ̇2 + n̂ · ∇φ)2.(6.32)

Comparing (6.31) and (6.32) it is apparent that neutrino oscillations induced by

either a flavor non-diagonal mass term, or a flavor non-diagonal k-essence coupling

will lead to noticeably different energy dependences for the oscillation length. If

neutrino oscillations are entirely induced by k-essence then the oscillation length

goes like λ−1 ∼ E. The result (6.32) should be compared to neutrino oscillations

induced by either the VLI or VEP mechanisms. Both the VLI and VEP mechanisms

have the same λ−1 ∼ E behavior that the KINO mechanism has. This should come

as no surprise since the flavor-dependent emergent metric G
(α)
µν can be viewed as

a regular space-time metric but with a flavor-dependent, and therefore equivalence

principle violating, gravitational constant. Equations (6.30) and (6.32) immediately
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tell us that in order for there to be flavor oscillations not only must g1 6= g2, but also

u 6= 0. Since u vanishes for cs = 1, this means that there must be Lorentz violation

if k-essence is to have any effect on neutrino oscillations. K-essence, therefore, acts

as a Lorentz violating aether background, and can be the motivation behind models

of neutrino oscillation that invoke Lorentz violation.

Analysis of the available data from current and past neutrino observatories have

tended to favor mass-induced neutrino oscillations, which can produce the desired

λ ∝ E type behavior. Therefore, the KINO mechanism alone does not suffice to

explain the observations seen in the numerous neutrino experiments that have been

carried out. However, it is still possible that k-essence could be a subleading contri-

bution to neutrino oscillations, with mass being the dominant cause. Studies have

looked into the possibility of alterations to the leading order λ ∝ E dependence,

and have been able to place very tight constraints on the coefficients of subleading

contributions to the energy dependence of λ. In [158] they considered the possibility

of different mechanisms inducing oscillations in the νµ ↔ ντ channel, among which

were the VLI and VEP mechanisms. Since the VLI and VEP scenarios both lead

to the same energy dependence for the oscillation length that KINO does, the con-

straints on the VLI and VEP coefficients can be easily translated into a bound on

∆G:

|∆G| < 1.2× 10−23.

This is the most conservative bound that can be placed on |∆G|, and is independent

of the mixing angle θK . This bound would seem to cast doubt on KINO as an even

subleading effect in the νµ ↔ ντ channel. We would like to emphasize that this

is a strong indication of the nature of the coupling of neutrinos to the k-essence

scalar. Our analysis suggests that if the k-essence scalar field exists, in order to be

146



phenomenologically viable, its couplings must be flavor blind.

Although KINO would seem to be immediately discounted from consideration,

it may be possible to realistically consider this model if we are ready to include

further symmetry violating terms in our action. It has been shown in [159] that if

both Lorentz, and certain types of CPT violating terms are included in the neutrino

action, then it becomes possible to create pseudo-mass terms at high energies just

when Lorentz violating effects should be taking over. These types of models open up

the possibility of a unified explanation for all the existing neutrino data, including the

controversial LSND results [160]. Since these models have been at least qualitatively

compatible with experiment, this leaves open the possibility that k-essence could still

play a role in neutrino oscillations.

As we have just mentioned, this approach requires a specific kind of CPT violating

term in the neutrino action. Although it is always possible to put terms into the

action arbitrarily, in principle it might be possible for k-essence to be a source for

these as well. K-essence could lead to the needed CPT breaking terms in the neutrino

action by one of two ways. The first is by a possible axial vector term in the spinor

covariant derivative5. In this chapter we have assumed that space-time is flat, and

as a result the covariant derivative is proportional to γµ. However, if more general

curved space-times are considered then in general the spinor connection will have a

nonzero axial vector part. Another way in which k-essence can source the necessary

CPT violating term is by considering the possibility of torsion in the emergent space-

time. Such a treatment of k-essence would require taking into account the spin-orbit

coupling between the neutrino and the k-essence field, and treating the metric and

connection of the emergent space-time as independent variables each requiring their

5See appendix §B.
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own field equations. Torsion in k-essence backgrounds is an interesting possibility

and deserves further study in its own right.

6.4 Conclusion

In this chapter we have investigated the effects on neutrino velocity and oscilla-

tions when neutrinos couple to the emergent metric Gµν created by a background

k-essence field. Specifically, we have studied the results of replacing the vierbein eµa of

the gravitational background with the vierbein Eµ
a of the emergent k-essence geom-

etry in the neutrino action. The first implication of this coupling is a change in the

neutrino dispersion relation, which means that the neutrino velocity is dependent on

the k-essence background in which it propagates. Without k-essence, massless neutri-

nos always propagate at the speed of light with respect to local observers. However,

with k-essence, massless neutrinos will move at a new speed cν with respect to an

observer who perceives a uniform k-essence background. Therefore, if future obser-

vations show that neutrinos do travel at less than the speed of light, it can not be

determined conclusively if this is due to neutrinos being massive, or if neutrinos are

massless but coupled to k-essence. However, at present, no observations have found

a measurable difference between the speed of light and neutrinos. If neutrinos are

assumed to be massless, then past observations constrain the deviation of cν from

the speed of light to no more than 1 part in 108.

The other effect that k-essence has on neutrinos is in the phenomenon of neutrino

oscillations. We have shown that if the neutrino/k-essence coupling g is promoted to

the status of an operator ĝ that acts in the neutrino flavor space, neutrino oscillations

are produced even in the absence of a neutrino mass term. We found that if neutrino

oscillations are caused entirely by k-essence, then the oscillation length depends on

148



the neutrino energy like λ ∼ E−1. This is to be contrasted with the result from mass-

induced neutrino oscillations where λ ∼ E. Thus, while neutrino oscillations can be

induced by k-essence, it will lead to a drastically different energy dependence for the

oscillation length. Current data seems to favor a λ ∼ E behavior, which implies

an important constraint on the couplings of neutrinos to the k-essence scalar. In

order to be phenomenologically viable these couplings must be flavor diagonal. Our

analysis is a very good example of how present observations can be used to constrain

the form and magnitude of couplings between dark energy and visible matter.

Neutrino oscillations induced by k-essence have many of the same properties that

some [49, 50, 52] earlier proposed mechanisms had, and in fact k-essence can be

seen as a realization of these past phenomenologically motivated models. In VLI

models, the Lorentz violation is incorporated by introducing some preferred 4-vector

into the neutrino action. This preferred 4-vector has the interpretation in k-essence

as the 4-gradient of the k-essence field. In fact, as can be seen from the formulae

in section §6.3, the physical effects vanish at cs = 1 where our model has exact

Lorentz invariance. The VEP mechanism attempts to explain the source of neutrino

oscillations as a consequence of a flavor non-diagonal coupling to gravity. Although

perhaps correct from a theoretical point of view, this mechanism calls for a very

drastic change in our understanding of fundamental physics; namely it requires us to

give up the long held notion of the equivalence principle. The type of coupling studied

in this chapter mimics exactly the VEP mechanism, but since the flavor non-diagonal

coupling is in the k-essence sector instead of the gravitational sector, the equivalence

principle is maintained. In short, k-essence can be seen as the source of Lorentz

violation in the VLI model, and alternatively, a reinterpretation of the VEP model.

KINO is therefore a theoretically and phenomenologically motivated manifestation
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of earlier attempts at alternatives to mass-induced neutrino oscillations.

In this chapter, we have coupled neutrinos to the k-essence scalar using the emer-

gent metric which is covariantly constant. In a future work we will show how this

can be extended to more general couplings by introducing the analogue of torsion

for the emergent space-time. This generalization will allow us to analyze the role, if

any, of CPT violation in the coupling of k-essence to fermions. If CPT violation can

be naturally produced, then it would be possible to discuss more realistic models of

neutrino oscillations as discussed in [159].
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CHAPTER VII

Conclusion

The work in this thesis has primarily concerned itself with non-canonical scalar

fields and their uses in cosmology. As we have seen, such theories have a number

of potential applications in cosmology, many of these dealing with some of the most

important questions we have about our universe. In chapters §II and §III we studied

the possibility that k-essence is the source of dark matter. In these chapters we

found general conditions that must be satisfied in order for k-essence halos to be

stable. In chapter §II, we looked at k-essence halo solutions in flat space-time. The

main point of this chapter was that stable k-essence halos are possible, however, it

requires that the energy density must be negative in a small region around the center

of the halo. Despite this, the total energy of the halo is positive, which means that

the gravitational interactions between galaxies with k-essence halos are consistent

with observations. In chapter §III we extended this analysis to account for the

gravitational back-reaction that a large k-essence halo would create. In this chapter

we studied the consequences of k-essence halos both with and without a black hole

at the center of the condensate. It was found that with no central black hole, the

conditions for stable k-essence halos found in chapter §II also applied when back-

reaction effects are considered. When a black hole was placed in the center it was
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found that stable solutions were possible if there is a shell of negative energy density

at the horizon of the black hole, or if the space-time is not asymptotically flat. Again

it was shown that although there was a region of negative energy density, the total

energy of the halo was positive both when there was a black hole and when there

wasn’t. If one considers negative energy densities unacceptable, then our results

can be considered a no-go theorem for k-essence halos. However, results from string

theory suggest that negative energy densities are not necessarily unphysical [71].

Therefore, our analysis suggests that k-essence halos are at least possible from the

standpoint of classical physics. However, to say so definitively it must be shown that

such solutions are stable against quantum mechanical vacuum decay. This question

will have to be the subject of future work.

Chapter §IV is an out growth of the work done in chapter §III. The possibility of

k-essence condensates around black holes raises the question of whether such config-

urations are stable due to the tendency of black holes to “eat” any material around

them. In studying this question, one usually considers solutions that are station-

ary; i.e., solutions where the energy density, pressure, and four velocity are constant

in time. Thus, it is natural to ask, under what conditions are stationary solutions

possible in k-essence? Chapter §IV was concerned with finding these conditions,

and found that stationary solutions are not the rule, but rather the exception. In

that chapter we showed that stationary k-essence solutions around black holes are

only possible when the action of the scalar field is equivalent to the kinetic k-essence

action after a field redefinition. This implies that all actions that admit stationary

solutions are invariant under constant field shifts: φ→ φ+ const.

In chapter §V we laid out a method for using data on the scalar and tensor

perturbation spectra and the non-gaussianity to find the inflationary action, even
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if this action is non-canonical. The problem involved finding the function L(X,φ),

given the three functions Ps(k), Ph(k) and fNL(k), which represent the scalar, tensor,

and non-gaussianity spectra, respectively. However, the data are single variable

functions of the scale k; these alone are not enough to determine L(X,φ), which

is a function of two variables. Therefore, we assumed that a user of the algorithm

specifies a “partition” of the action. We defined the partition of an action L(X,φ)

as a multivariable function P such that

L(X,φ) = P (g1(X), ..., gm(X), f1(φ), ..., fn(φ)).

The form of the function P is assumed by the user, while the single variable functions

fα and gβ are unknown. The procedure we laid out in chapter §V gives the user a

system of equations that can be used to find (at most) three of the f ’s and g’s once

we are given the functional forms of Ps(k), Ph(k) and fNL(k). If there are less than

three unknown functions, the reconstruction equations that are not used establish

consistency relations between the CMBR observables. We applied this procedure

ourselves to various different partitions P . The example we concentrated the most

on was a generalized version of the DBI inflationary action. This was

LDBI(X,φ) = −f−1(φ)
√

1− 2f(φ)X + f−1(φ)− V (φ).

The functions f and V are assumed to be unknown and the objective was to find

them using the data. Since there were only two unknown functions only the scalar

and tensor data were needed to find f and V . Using our procedure we found that

physically acceptable inflationary actions did not exist for all functions of Ps and Ph.

What’s more, we showed that if Ps is nearly scale-invariant, f and V are approxi-

mately what theoretical models suggest they should be.

In the final chapter we considered the effects that a k-essence field might have
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on neutrinos. In chapter §VI we proposed that neutrinos couple to the k-essence

induced metric Gµν , rather than the space-time metric gµν . One effect that this had

on the neutrinos was it modified the energy-momentum relation. In the presence of

this coupling, the neutrino velocity was in general different from the speed of light,

even without mass. In a frame where the k-essence is spatially uniform, the motion

of neutrinos is the same as any free particle, but their speed is now related to the

k-essence sound speed. Later in the same chapter we showed that k-essence could

also induce neutrino oscillations even without a neutrino mass term. It was shown

that neutrino oscillations induced purely by k-essence led to an oscillation length

that went like λ ∼ E−1. This conflicts with the case of purely mass induced neutrino

oscillations, which result in a λ ∼ E type behavior. Thus, k-essence induced neutrino

oscillations have a very different observational signature than neutrino oscillations

created by mass. However, observations favor a leading order λ ∼ E behavior.

Therefore, our results put tight constraints on the magnitude and form of neutrino/k-

essence interactions.

The results discussed in this thesis show that non-canonical scalar fields have a

number of different applications in cosmology. Although our work has helped to

elucidate these potential uses, a number of avenues for further research remain. In

the area of k-essence dark matter, questions remain about the stability of k-essence

halos under quantum fluctuations. Since supermassive black holes are thought to be

at the center of every galaxy, it is important to understand how k-essence halos evolve

in the presence of black holes. As we found in chapter §IV, stationary solutions are

in general not possible. Studying this problem will no doubt require sophisticated

numerical simulations.

Since k-essence can be constructed to behave as either dark matter or dark energy,
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it is tempting to ask: “is there a k-essence theory that behaves like dark matter at

small scales and dark energy at large scales?” If such theories exist it would be an

exciting new way of unifying dark matter and dark energy into a single framework.

Furthermore, if k-essence and k-inflation can be unified, then we could have a single

theory that can explain inflation, dark matter and dark energy. Finally, if k-essence

does exist it is important to understand the possible interactions it can have with

matter. Such interactions could be used to detect and understand k-essence in par-

ticle accelerators here on Earth. Wherever the research leads us next, k-essence has

certainly opened up new possibilities, and it warrants our further attention.
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APPENDIX A

A

In this appendix we will discuss the issues of causality and the Cauchy problem in

k-essence theories. In k-essence theories, one is faced with the problem of solving the

equations of motion of a field that lives on some background geometry defined by

the k-essence induced metric Gµν . As we will see in this appendix, certain conditions

on the k-essence field and its action must be satisfied in order for this problem to be

well posed.

To start, let φ be a k-essence field with a Lagrangian of the general form L =

L(X,φ), where X = 1
2
gµν∇µφ∇νφ. The equation of motion for a k-essence field in a

general gravitational background gµν is given by

G̃µν [φ]∇µ∇νφ = Lφ − 2XLXφ, where G̃µν [φ] = LXg
µν + LXX∇µφ∇νφ.(A.1)

where LX = ∂L
∂X

, Lφ = ∂L
∂φ

, etc.. In (A.1), G̃µν plays the role of an effective metric in

which the k-essence field propagates. The energy-momentum tensor Tµν of a general

k-essence field is

Tµν = LX∇µφ∇νφ− gµνL.

From the energy-momentum tensor, we can define the energy density and pressure

of the k-essence field depending on whether ∇µφ is time-like (X > 0) or space-like
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(X < 0):

ρ = 2XLX − L, p = L; time-like

ρ = −L, p = L− 2XLX ; space-like

.

In either case, the null energy condition (i.e., ρ+p > 0), which we assume throughout

this thesis, demands that LX > 0.

The behavior of small perturbations π in the k-essence field φ around some back-

ground φ0 are described by the equation of motion for a canonical scalar field:

Gµν [φ0]DµDνπ +M2
eff [φ0]π = 0,

where

Gµν [φ0] =
δ

L2
X

G̃µν [φ0], M2
eff =

δ

L2
X

(
2XLXφφ − Lφφ +

∂G̃µν

∂φ
∇µ∇νφ0

)
.

Here, δ is a new parameter defined by δ2 = LX
LX+2XLXX

. The parameter δ is equal

to the sound speed of k-essence fluctuations in the case where ∇µφ0 is time-like. By

definition, the sound speed cs is given by

c2
s =

∂p/∂X

∂ρ/∂X

∣∣∣∣
φ

=


LX

LX+2XLXX
; X > 0

LX+2XLXX
LX

; X < 0

.

In either case, absence of superluminal propagation demands that LXX ≥ 0. In this

thesis we have limited our study mostly to subluminal k-essence theories. However,

it has been shown that even with superluminal sound speeds, causality can still be

maintained [31].

The question of whether or not one can solve the equations of motion for φ0 and

π is not trivial, but depends on the k-essence action and the initial conditions of

the field. The problem of finding solutions to a system of equations given the initial

conditions is known as the initial value problem, or Cauchy problem. The existence

of well behaved solutions hinges on whether or not Gµν has a well defined casual
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structure, with no closed time-like curves. In order to say more, let us define a

space-time (M, gµν) as a set consisting of a differentiable manifold M, equipped

with a metric tensor gµν , whose signature is (+,−,−,−)1. It is known [161] that a

space-time is causally stable; i.e., absent of closed time-like curves, if and only if there

exists some function f on M such that ∇µf is a future directed, time-like vector

field. The function f can be thought of as the time coordinate.

In order to say whether or not the metric Gµν is causally stable, Gµν has to be

hyperbolic; i.e., it must have a Lorentzian signature. Unless Gµν is hyperbolic, one

can not define the notion of time-like and space-like vectors. Assuming that gµν is

Lorentzian, this amounts to requiring that Gµν be such that

detGµν < 0 ⇒ 1 + 2X
LXX
LX

> 0.

Note that the hyperbolicity condition is equivalent to the condition for the stability

of k-essence perturbations: c2
s > 0. If Gµν satisfies this condition, let’s assume that

(M, gµν) is a causally stable space-time. Therefore, we can define a function t that

represents the time in the appropriate coordinate system, and is such that nµ = ∂µt

is a future directed, time-like (with respect to gµν) vector field. In order for this

vector to be time-like with respect to Gµν , then

Gµνnµnν =
δ

LX

(
n2 +

LXX
LX

(nµ∇µφ0)2

)
=

δ

LX

(
1 +

LXX
LX

φ̇2
0

)
> 0.(A.2)

Assuming the null energy condition is satisfied, the inequality above is satisfied for

any field configuration φ(xµ) as long as the k-essence sound speed is subluminal (i.e.,

LXX ≥ 0). However, even if cs is superluminal, (A.2) can still be satisfied as long as

φ̇2
0 is sufficiently small. In the case where ∇µφ0 is time-like, φ0 can serve as a global

time coordinate. If φ0 is to be the time-coordinate in the space-time (M, Gµν), then

1Throughout this thesis we’ll always take the space-time to be four dimensional.
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∇µφ0 must also be time-like with respect to Gµν :

Gµν∇µφ0∇νφ0 =
2Xδ

LX
(1 + 2X

LXX
LX

) > 0.

As we can see, the constraints on the action needed to satisfy the null energy condition

and hyperbolicity, also ensure that φ0 defines a global time coordinate. Therefore,

as long as (M, gµν) is causally stable and the inequality (A.2) is respected, (M, Gµν)

will also be causally stable.

While a well defined causal structure on (M, Gµν) is a necessary condition to

be able to solve the Cauchy problem, it is not a sufficient condition. In order to

have a well posed Cauchy problem, we still need to specify initial conditions that are

consistent with the constraints placed on Gµν , and we must have a Cauchy surface

upon which to define them. Recall that a Cauchy surface in a space-time (M, gµν) is

defined as a space-like submanifold Σ ⊂ M, of codimension one, that is intersected

by every causal curve2 exactly once. In essence, a Cauchy surface represents an

instant of time, and we can define our coordinate system such that points on our

Cauchy surface have a time coordinate t = 0. Since the k-essence interacts with the

gravitational metric gµν , in order for our Cauchy problem to work, the surface upon

which we define our initial conditions, has to be a Cauchy surface with respect to

both gµν and Gµν . Assuming that (M, gµν) has a Cauchy surface Σ, then Σ will also

be a Cauchy surface with respect to Gµν , if for any given space-like (with respect to

gµν) vector Rµ tangent to Σ, Rµ is also space-like with respect to Gµν :

GµνRµRν |Σ < 0 ⇒ 1 + [∇φ(xµ)]2
δ2LXX
LX

∣∣∣∣
xµ∈Σ

> 0.

The inequality is always obeyed in the case of subluminal cs. It is also satisfied even

if the sound speed is superluminal, provided that (∇φ)2 is small enough.

2A curve is causal if the tangent vectors at each point along the curve are time-like or null.
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APPENDIX B

B

The simplest action of a Dirac fermion ψ coupled to a metric Gµν is conventionally

written as

S =

∫
d4xEψ̄ [iγaEµ

aDµ −M ]ψ,

where Eµ
a is the vierbein corresponding to the metric Gµν , and Dµ is the spinor

covariant derivative which is given by

Dµ = ∂µ −
i

4
Ωabµσ

ab.

Here σab = i
2

[
γa, γb

]
and Ωabµ is the spinor connection form which by definition is

Ωabµ = Eaν∂µE
ν
b + EaνE

σ
b Γνσµ,

where Γνσµ is the standard Christoffel symbol. After some work, the spinor covariant

derivative can be shown to satisfy

/D = γaEµ
aDµ = γaEµ

a

[
∂µ +

1

2
Eν
b

(
∂µE

b
ν − ∂νEb

µ

)
+
i

2
γ5Aµ

]
,(B.1)

where

Aµ =
1

4
εabcdEaµ (∂σEbν − ∂νEbσ)Eν

cE
σ
d .
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The formula (B.1) is valid not just for the emergent geometry of k-essence, but for

all geometries with a vierbein. In chapter VI we will assume that the space-time

geometry is flat. In this case the axial vector part vanishes since Aµ = 0 always

if space-time is flat, and the only nonzero part of the spin connection is the vector

portion. Therefore, the spinor covariant derivative for a general k-essence field and

a flat space-time background is

/D = Ωγaδµa

[
∂µ +

gu

2X
∂µφ(∂νφ∂ν) +

gu

4X
∂µφ∂

2φ− g∂νu

2(1 + gu)

(
δνµ −

∂νφ∂µφ

2X

)

+
gu

4X
∂νX

(
δνµ −

∂νφ∂µφ

X

)
− 3

2

∂νΩ

Ω

(
δνµ +

gu

2X
∂νφ∂µφ

)]
.

In the cosmologically relevant case where φ is time dependent but ∇iφ = 0, the

covariant derivative in this case leads to

/D = Ωγaδµa

[
∂µ + δ0

µ

(
gu∂0 − (1 + gu)

3Ω̇

2Ω

)]
.

In k-essence models that attempt to explain the cosmological constant problem, the

higher order derivatives of the field become irrelevant at late times since the field

reaches a steady state by that point. Therefore, it is reasonable to ignore the spinor

connection in our analysis. However, if one is interested in the effect k-essence has

on neutrinos in the early universe, in particular around the time of matter-radiation

equality, then the spinor connection can be an important contribution to the neutrino

action.

162



BIBLIOGRAPHY

163



BIBLIOGRAPHY

[1] R. Akhoury and C. S. Gauthier, “Propagation Constraints and Classical Solutions in K-
essence Like Theories,” arXiv:0706.4137 [hep-th]

[2] R. Akhoury and C. S. Gauthier, “Galactic Halos and Black Holes in Non-Canonical Scalar
Field Theories,” arXiv:0804.3437 [hep-th]

[3] C. S. Gauthier and R. Akhoury, “Reconstructing Single Field Inflationary Actions From
CMBR Data,” JCAP 0807 (2008) 022, arXiv:0804.0420 [astro-ph]

[4] R. Akhoury, C. S. Gauthier, and A. Vikman, “Stationary Configurations Imply Shift
Symmetry: No Bondi Accretion for Quintessence/K-essence,” JHEP 03 (2009) 082,
arXiv:0811.1620 [astro-ph]

[5] C. S. Gauthier, R. Saotome, and R. Akhoury, “Interaction of Neutrinos with a Cosmological
K-essence Scalar,” arXiv:0911.3168 [hep-ph]

[6] D. J. Fixsen et al., “Cosmic Microwave Background Dipole Spectrum Measured by the
COBE FIRAS,” Astrophys. J. 420 (1994) 445

[7] G. F. Smoot et al., “Structure in the COBE Differential Microwave Radiometer First Year
Maps,” Astrophys. J. 396 (1992) L1–L5

[8] E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Cosmological Interpretation,” arXiv:1001.4538 [astro-ph.CO]

[9] Supernova Search Team Collaboration, A. G. Riess et al., “Observational Evidence from
Supernovae for an Accelerating Universe and a Cosmological Constant,” Astron. J. 116
(1998) 1009–1038, arXiv:astro-ph/9805201; Supernova Cosmology Project
Collaboration, S. Perlmutter et al., “Measurements of Omega and Lambda from 42
High-Redshift Supernovae,” Astrophys. J. 517 (1999) 565–586, arXiv:astro-ph/9812133;
Supernova Cosmology Project Collaboration, S. Perlmutter et al., “Discovery of a
Supernova Explosion at Half the Age of the Universe and its Cosmological Implications,”
Nature 391 (1998) 51–54, arXiv:astro-ph/9712212

[10] Y. B. Zeldovich and M. Y. Khlopov, “On the Concentration of Relic Magnetic Monopoles in
the Universe,” Phys. Lett. B79 (1978) 239–241; J. Preskill, “Cosmological Production of
Superheavy Magnetic Monopoles,” Phys. Rev. Lett. 43 (1979) 1365

[11] A. H. Guth, “The Inflationary Universe: A Possible Solution to the Horizon and Flatness
Problems,” Phys. Rev. D23 (1981) 347–356

[12] A. D. Linde, “A New Inflationary Universe Scenario: A Possible Solution of the Horizon,
Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,” Phys. Lett. B108
(1982) 389–393

[13] A. J. Albrecht and P. J. Steinhardt, “Cosmology for Grand Unified Theories with
Radiatively Induced Symmetry Breaking,” Phys. Rev. Lett. 48 (1982) 1220–1223

164



[14] V. F. Mukhanov and G. V. Chibisov, “Quantum Fluctuation and Nonsingular Universe. (In
Russian),” JETP Lett. 33 (1981) 532–535; V. F. Mukhanov and G. V. Chibisov, “The
Vacuum Energy and Large Scale Structure of the Universe,” Sov. Phys. JETP 56 (1982)
258–265; S. W. Hawking, “The Development of Irregularities in a Single Bubble
Inflationary Universe,” Phys. Lett. B115 (1982) 295; A. A. Starobinsky, “Dynamics of
Phase Transition in the New Inflationary Universe Scenario and Generation of
Perturbations,” Phys. Lett. B117 (1982) 175–178; A. H. Guth and S. Y. Pi, “Fluctuations
in the New Inflationary Universe,” Phys. Rev. Lett. 49 (1982) 1110–1113; J. M. Bardeen,
P. J. Steinhardt, and M. S. Turner, “Spontaneous Creation of Almost Scale-Free Density
Perturbations in an Inflationary Universe,” Phys. Rev. D28 (1983) 679

[15] I. Zlatev, L. Wang, and P. J. Steinhardt, “Quintessence, Cosmic Coincidence, and the
Cosmological Constant,” Phys. Rev. Lett. 82 (1999) 896–899, arXiv:astro-ph/9807002

[16] C. Wetterich, “Cosmology and the Fate of Dilatation Symmetry,” Nucl. Phys. B302 (1988)
668; B. Ratra and P. J. E. Peebles, “Cosmological Consequences of a Rolling Homogeneous
Scalar Field,” Phys. Rev. D37 (1988) 3406; P. J. E. Peebles and B. Ratra, “Cosmology
with a Time Variable Cosmological Constant,” Astrophys. J. 325 (1988) L17; R. R.
Caldwell, R. Dave, and P. J. Steinhardt, “Cosmological Imprint of an Energy Component
with General Equation-of-State,” Phys. Rev. Lett. 80 (1998) 1582–1585,
arXiv:astro-ph/9708069; P. J. Steinhardt, L. Wang, and I. Zlatev, “Cosmological
Tracking Solutions,” Phys. Rev. D59 (1999) 123504, arXiv:astro-ph/9812313

[17] S. Weinberg, “Anthropic Bound on the Cosmological Constant,” Phys. Rev. Lett. 59 (1987)
2607

[18] D. L. Wiltshire, “Exact Solution to the Averaging Problem in Cosmology,” Phys. Rev. Lett.
99 (2007) 251101, arXiv:0709.0732 [gr-qc]; D. L. Wiltshire, “Dark Energy without
Dark Energy,” arXiv:0712.3984 [astro-ph]; T. Mattsson, “Dark Energy as a Mirage,”
Gen. Rel. Grav. 42 (2010) 567–599, arXiv:0711.4264 [astro-ph]

[19] C. Armendariz-Picon, V. F. Mukhanov, and P. J. Steinhardt, “A Dynamical Solution to the
Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration,” Phys.
Rev. Lett. 85 (2000) 4438–4441, arXiv:astro-ph/0004134; C. Armendariz-Picon, V. F.
Mukhanov, and P. J. Steinhardt, “Essentials of K-essence,” Phys. Rev. D63 (2001) 103510,
arXiv:astro-ph/0006373

[20] A. D. Rendall, “Dynamics of K-essence,” Class. Quant. Grav. 23 (2006) 1557–1570,
arXiv:gr-qc/0511158

[21] M. Malquarti, E. J. Copeland, A. R. Liddle, and M. Trodden, “A New View of K-essence,”
Phys. Rev. D67 (2003) 123503, arXiv:astro-ph/0302279

[22] H. Yukawa, “On the Interaction of Elementary Particles,” Proc. Phys. Math. Soc. Jap. 17
(1935) 48–57

[23] V. L. Ginzburg and L. D. Landau, “On the Theory of Superconductivity,” Zh. Eksp. Teor.
Fiz. 20 (1950) 1064–1082

[24] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13
(1964) 508–509; F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge
Vector Mesons,” Phys. Rev. Lett. 13 (1964) 321–322; G. S. Guralnik, C. R. Hagen, and
T. W. B. Kibble, “Global Conservation Laws and Massless Particles,” Phys. Rev. Lett. 13
(1964) 585–587

[25] R. D. Peccei and H. R. Quinn, “Constraints Imposed by CP Conservation in the Presence of
Pseudoparticles,” Phys. Rev. D16 (1977) 1791–1797; R. D. Peccei and H. R. Quinn, “CP
Conservation in the Presence of Pseudoparticles,” Phys. Rev. Lett. 38 (1977) 1440–1443

165



[26] J. Polchinski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett. 75 (1995)
4724–4727, arXiv:hep-th/9510017

[27] M. Alishahiha, E. Silverstein, and D. Tong, “DBI in the Sky,” Phys. Rev. D70 (2004)
123505, arXiv:hep-th/0404084; X. Chen, “Inflation from Warped Space,” JHEP 08
(2005) 045, hep-th/0501184; S. Kecskemeti, J. Maiden, G. Shiu, and B. Underwood, “DBI
Inflation in the Tip Region of a Warped Throat,” JHEP 09 (2006) 076,
arXiv:hep-th/0605189; X. Chen, “Running Non-Gaussianities in DBI Inflation,” Phys.
Rev. D72 (2005) 123518, arXiv:astro-ph/0507053; X. Chen, “Cosmological Rescaling
Through Warped Space,” Phys. Rev. D71 (2005) 026008, arXiv:hep-th/0406198;
H. Firouzjahi and S.-H. H. Tye, “Brane Inflation and Cosmic String Tension in Superstring
Theory,” JCAP 0503 (2005) 009, arXiv:hep-th/0501099; S. E. Shandera and S. H. H.
Tye, “Observing Brane Inflation,” JCAP 0605 (2006) 007, arXiv:hep-th/0601099; J. E.
Lidsey and D. Seery, “Primordial Non-Gaussianity and Gravitational Waves: Observational
Tests of Brane Inflation in String Theory,” Phys. Rev. D75 (2007) 043505,
arXiv:astro-ph/0610398; R. Bean, S. E. Shandera, S. H. Henry Tye, and J. Xu,
“Comparing Brane Inflation to WMAP,” JCAP 0705 (2007) 004, arXiv:hep-th/0702107;
J. E. Lidsey and I. Huston, “Gravitational Wave Constraints on Dirac-Born-Infeld
Inflation,” JCAP 0707 (2007) 002, arXiv:0705.0240 [hep-th]

[28] E. Silverstein and D. Tong, “Scalar Speed Limits and Cosmology: Acceleration from
D-cceleration,” Phys. Rev. D70 (2004) 103505, arXiv:hep-th/0310221

[29] P. Steinhardt, Critical Problems in Physics, Princeton University Press, 1997, ch. 7

[30] C. Bonvin, C. Caprini, and R. Durrer, “A No-Go Theorem for K-essence Dark Energy,”
Phys. Rev. Lett. 97 (2006) 081303, arXiv:astro-ph/0606584

[31] E. Babichev, V. Mukhanov, and A. Vikman, “K-essence, Superluminal Propagation,
Causality and Emergent Geometry,” JHEP 02 (2008) 101, arXiv:0708.0561 [hep-th]

[32] C. Armendariz-Picon, T. Damour, and V. F. Mukhanov, “K-inflation,” Phys. Lett. B458
(1999) 209–218, arXiv:hep-th/9904075

[33] E. Babichev, V. F. Mukhanov, and A. Vikman, “Escaping from the Black Hole?,” JHEP 09
(2006) 061, arXiv:hep-th/0604075; E. Babichev, V. Mukhanov, and A. Vikman, “Looking
Beyond the Horizon,” arXiv:0704.3301 [hep-th]

[34] J. Garriga and V. F. Mukhanov, “Perturbations in K-inflation,” Phys. Lett. B458 (1999)
219–225, arXiv:hep-th/9904176

[35] X. Chen, M. Huang, S. Kachru, and G. Shiu, “Observational Signatures and
Non-Gaussianities of General Single Field Inflation,” JCAP 0701 (2007) 002,
arXiv:hep-th/0605045

[36] M. Li, T. Wang, and Y. Wang, “General Single Field Inflation with Large Positive Non-
Gaussianity,” JCAP 0803 (2008) 028, arXiv:0801.0040 [astro-ph]

[37] A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach, “The Three Point Correlation
Function of the Cosmic Microwave Background in Inflationary Models,” Astrophys. J. 430
(1994) 447–457, astro-ph/9312033

[38] J. M. Maldacena, “Non-Gaussian Features of Primordial Fluctuations in Single Field
Inflationary Models,” JHEP 0305 (2003) 013, astro-ph/0210603

[39] W. Pauli, “Offener Brief an die Gruppe der Radioaktiven bei der Gauvereins-Tagung zu
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