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ABSTRACT 

 
The Developmental Origins of Health and Disease in Women 
from the Michigan Bone Health and Metabolism Study: An 
Examination with Longitudinal and Intergenerational Data 

 

by 

Eileen Rillamas-Sun 

Chair: MaryFran R. Sowers 

 

Fetal and early life experiences may be associated with development of adult chronic 

disease and effects may extend across generations.  Epidemiologists have adapted these 

concepts to identify risk factors for chronic disease, but studies with longitudinal or 

intergenerational data are limited.  Using data from a cohort study of Caucasian women, 

aged 24-50 years in 1992 and followed annually for over 15 years, we evaluated whether 

low and high birth weight women had different adult body composition, carbohydrate 

metabolism, or lipid trajectories compared to normal birth weight women.  We assessed 

whether longitudinal risk profiles for diabetes or metabolic clustering differed by birth 

weight.  To better understand intergenerational continuity of risk, we evaluated whether 

pregnancy characteristics across two generations influenced the birth weight of these 

women’s offspring. 
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High birth weight women had higher adult body composition measures compared to 

normal birth weight women; however, slopes did not differ, suggesting the higher body 

composition measures observed among high birth weight women were constant over 

time.  High birth weight women had steeper rates of change in glucose levels, but no 

differences were observed in lipid, insulin, or insulin resistance levels or in their 

trajectories over time compared to normal birth weight women.  Body composition, 

carbohydrate metabolism, and lipid trajectories did not differ between low and normal 

birth weight women and the risk for developing type-2 diabetes or metabolic clustering 

did not differ by birth weight groups. 

 

When we examined the intergenerational effects, we found that women with in utero 

cigarette smoking exposure had offspring who were an average of 136 grams heavier 

than women without in utero smoking exposure (p=0.02).  Similarly, women born to 

older mothers had heavier offspring than women born to younger mothers.  

 

This dissertation expands our understanding of the relationship between birth weight and 

trajectories in adult body composition, carbohydrate metabolism, and lipids – known risk 

factors for many chronic diseases - and provides further support of an intergenerational 

effect on birth weight.  Understanding these relationships contributes to knowledge about 

chronic disease etiology and can motivate research and interventions aimed at improving 

reproductive and women’s health and preventing chronic disease. 

xii 



 

CHAPTER 1 

 

Introduction 

 

OVERVIEW 

From an evolutionary and biological perspective, the adaptive responses of 

species to their environment are fundamental to their survival and perpetuation 

[1].  The “fetal programming” concept stems from this perspective, 

acknowledging that an insult during a critical period of fetal development has a 

subsequent impact on an offspring’s survival, growth, and maturation into 

adulthood [2, 3].  Epidemiologists have expanded this concept through the 

developmental origins of health and disease paradigm.  This paradigm recognizes 

that the environment extending from conception and through early childhood can 

affect health later in life [4].  Further, epidemiologists have adapted the 

developmental origins concept to reflect their perspective of risk factors and the 

role of risk factor identification in disease, particularly chronic disease prevention. 

 

An underlying assumption of the developmental origins concept is that adverse 

fetal and infant growth and development are due to adaptations to environmental 

factors and, when these adaptations are incongruent with the environment and 
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growth post-birth and into adulthood, they give rise to adverse health later in life 

[4, 5].  Although the scope of research has expanded to include infancy and 

childhood experiences, a model for these adaptations is low birth weight, which is 

frequently used as an integrated proxy of sub-optimal intrauterine environment 

and a crude measure of deficiencies in fetal oxygenation, accessibility to adequate 

energy, and nutrient availability.  This dissertation research broadened this marker 

to include high birth weight, which may be a proxy measure of fetal overnutrition.  

 

Based on a rich history in animal husbandry, it was a logical extension that 

programming effects have generational consequences, such that a pregnancy that 

encompassed an adverse environment at conception or during fetal development 

not only affected the offspring from that pregnancy, but also the offspring in later 

generations.  In synthesizing evidence from both epidemiological and animal 

studies, Drake and Walker have proposed that there is a non-genomic generational 

effect of fetal programming with respect to low birth weight and cardiovascular 

disease in human populations [6]. 

 

Many epidemiological studies on the developmental origins of health and disease 

paradigm have described an association between low birth weight and increased 

risk for a number of chronic diseases, including cardiovascular disease [3, 7-11] 

and diabetes [3, 12-15].  However, investigations on the relationship between 

early life experiences and adult health using data collected longitudinally or 

across multiple generations are limited.  Moreover, when data across generations 
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were available, it often excluded information about selected aspects, such as 

intrauterine environments, adult health outcomes, or other reasonable measures of 

personal and community factors that may also influence health status.  As a result, 

studies have often been ecological or cross-sectional in design or utilized linked 

vital statistics data making it challenging to draw causal conclusions [16].  

Finally, as these longitudinal and generational data start to become available, the 

interdependence and hierarchical structure of the data must be appropriately 

considered.  

 

The Michigan Bone Health and Metabolism Study (MBHMS) is a prospective 

cohort study that provided a unique opportunity to examine both elements of the 

developmental origins of disease concept and subsequent intergenerational effects 

using population-based data with in-depth measures across two generations of 

Caucasian families.  Participants of the MBHMS were aged 24 to 50 years when 

their enrollment was completed in 1992, and have completed their 15th evaluation 

over the past 19 years.  Further, birth history data from nearly 1,000 offspring of 

the MBHMS participants who were born between 1964 and 2006 provided an 

opportunity to examine birth outcomes across generations. 

 

SPECIFIC AIMS 

The purpose of this dissertation was to characterize the effects of the fetal 

environment, using birth weight as a marker for intrauterine growth, on the 

longitudinal changes in body composition, carbohydrate metabolism, lipids and 
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the risk of developing type-2 diabetes or metabolic clustering in adulthood.  

Additionally, using pregnancy information across two generations of families, we 

aimed to investigate the generational determinants of birth weight by evaluating 

whether a mother’s fetal experience was associated with the birth weights of her 

offspring. 

 

Aim 1. To examine whether body composition (weight, height, body mass index, 

waist and hip circumference, waist-to-hip ratio, and fat, lean, and skeletal muscle 

mass) trajectories differ by birth weight category using data from the MBHMS, a 

population-based sample of middle-class, Caucasian adult women who were aged 

24 to 50 years at baseline and who have been followed annually over a 15-year 

study period. 

 

Aim 2. To determine whether carbohydrate metabolism (glucose, insulin, and 

insulin resistance) and lipid (total, low-density lipoprotein, and high-density 

lipoprotein cholesterol, and triglycerides) trajectories and the risk of developing 

type-2 diabetes or metabolic clustering differ by birth weight category using data 

from the same study population of MBHMS women. 

 

Aim 3. To evaluate the pregnancy and birth characteristics across two generations 

of mothers (mother of MBHMS participant and MBHMS participant herself) to 

investigate the generational determinants of birth weight. Specifically, this aim 
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assessed whether a mother’s own fetal experience was related to the birth weights 

of her offspring. 

 

PUBLIC HEALTH IMPLICATIONS 

Expanding our understanding of the relationship between intrauterine growth and 

the development of select chronic diseases in adulthood not only contributes to 

knowledge about human development, but also informs our comprehension of 

chronic disease etiologies and aids in their prevention [16].  Examining the effect 

of the intrauterine environment and its long-term health consequences in affected 

offspring and in the subsequent generations may aid in focusing research, 

interventions, and public health strategies to improve reproductive health and 

prevent chronic disease. 

 

BACKGROUND  

The developmental origins of disease and health paradigm was adapted by 

epidemiologists based on biological and evolutionary concepts that the 

environment during conception and into early life affects subsequent growth and 

development, including increased risk for disease and adverse health later in life 

[4, 17, 18].  Early epidemiological approaches to the developmental origins of 

health concept and its implications on the development of adult diseases involved 

studies on the association of birth weight with cardiovascular disease.  Using 

death registry data, Barker and Osmond observed that death rates from ischemic 

heart disease in England and Wales correlated with historical rates of infant 
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mortality [19].  Barker and Osmond recognized that the geographical distribution 

of ischemic heart disease among the poor in England and Wales was inconsistent 

with increasing rates of ischemic heart disease among the affluent living in 

Western countries and Britain [19, 20].  Indeed, the distribution of heart disease 

rates reflected post-World War II infant mortality rates, which in Great Britain 

were frequently used as a proxy of an area’s health, development, and quality of 

life [20].  Simultaneously, Barker observed that other markers of poor social and 

economic conditions, such as higher smoking frequency and greater dietary fat 

consumption, were not consistent with the geographic distribution of ischemic 

heart disease [20].  Based on these observations, Barker hypothesized that the 

relationship between infant mortality rates and the higher prevalence of ischemic 

heart disease were due to environmental effects that occurred in utero and during 

early infancy [3, 4]. 

 

Barker’s observations of ischemic heart disease and infant mortality rates, as well 

as similar observations from other investigators, resulted in the consolidation of 

the “Fetal Origins Hypothesis” which states that poor nutrition in utero causes 

long-term alterations in a fetus’s organization, metabolism, and physiology, 

subsequently becoming a risk factor for disease in adulthood [3, 18].  The 

emergence of the Fetal Origins Hypothesis was extended to the developmental 

origins of health and disease paradigm in order to include not only the intrauterine 

environment, but that from pre-conception through infancy and early childhood 

[18].  Epidemiologic investigations of the developmental origins paradigm has 
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resulted in numerous studies of cardiovascular disease, hypertension, stroke, and 

diabetes, as well as intermediate markers for these diseases such as blood 

pressure, glucose intolerance, and total cholesterol.  The scope of research has 

also continued to expand to diseases of cancer, cognition, and the musculoskeletal 

system. 

 

EXPLANATIONS OF THE DEVELOPMENTAL ORIGINS PARADIGM  

The developmental origins of health and disease concept is based on 

developmental plasticity, which results when one genotype gives rise to multiple 

phenotypes because of differences in the environment during growth and 

development [5, 21].  Examples of developmental plasticity occurring in nature 

are abundant.  For instance, the temperature at which alligator eggs incubate 

dictates the proportion of sex among offspring, the rate of postnatal growth, and 

skin pigmentation [22].  In humans, an example is in the development of sweat 

glands.  While the number of sweat glands is set at birth, the environment in 

which the infant is born dictates the number of glands that becomes activated – 

adults born in cooler climates have a lower number of activated sweat glands than 

adults born in warmer climates [3, 22].  The developmental origins of health and 

disease paradigm is an extension of developmental plasticity, in which specific 

environmental factors result in adaptations during fetal and early life 

development, and when these adaptations become incongruous with growth and 

the environment later in life, adverse health and disease occurs [4, 5].  Further, 

three features of developmental plasticity define the underlying assumptions of 
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the developmental origins model, specifically: 1.) the types of responses that may 

manifest is dependent on the characteristics of the environment; 2.) levels of 

vulnerability differ depending on the timing of the factor that gives rise to a given 

environment and; 3.) the time span in which environmental factors can impact 

development is limited [5].  Godfrey has created a conceptual model for the 

developmental origins of disease, which is provided in Figure 1.1 [23]. 

 

 

 

 
Figure 1.1 A conceptual framework for the developmental-origins hypothesis.  

From Godfrey K. The ‘developmental origins’ hypothesis: epidemiology, in 
Developmental Origins of Health and Disease. Gluckman PD and Hanson MA, eds. 

2006, Cambridge University Press: Cambridge; New York. Reprinted with the 
permission of Cambridge University Press. 

 

Several hypotheses have been proposed to explain the developmental origins of 

health and disease paradigm.  The three most common are: the “Thrifty 

Genotype” hypothesis, the “Thrifty Phenotype” hypothesis, and “Predictive 

Adaptive Responses”. 
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The Thrifty Genotype Hypothesis. The Thrifty Genotype Hypothesis was 

proposed by Neel in 1962 as an explanation for the increasing prevalence of type-

2 diabetes [24].  He suggested that the selection of “thrifty” genes that caused 

insulin resistance and slow fetal growth was an evolutionary adaptation and 

survival mechanism in undernourished conditions, but confers a disadvantage in 

settings of overnourishment [4, 24, 25].  This hypothesis was further adapted to 

explain the association between smaller birth size and disease risk because insulin 

is involved in the regulation of fetal growth [5].  However, a strictly genetic 

explanation dismissed any environmental influences which was inconsistent with 

findings from experimental animal models or from natural experiments, such as 

the Dutch Famine [5]. 

 

The Thrifty Phenotype Hypothesis. Proposed by Barker and Hales, the Thrifty 

Phenotype Hypothesis suggests that, under conditions of maternal malnutrition, 

the fetus learns how to be “thrifty” with its energy needs, resulting in intrauterine 

growth retardation [26].  Although the learned response is a survival mechanism 

of the fetus to ensure energy needs are distributed to more important organs 

during development, it comes at the cost of slower fetal growth and insulin 

resistance.  However, critics of the Thrifty Phenotype Hypothesis argued that 

extreme maternal undernutrition is necessary to see impaired growth in the fetus, 

despite evidence of a graded risk of type-2 diabetes associated with birth weight 

[5].  In other words, the risk of type-2 diabetes appears to be inversely associated 
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with birth weight, even among those within a normal range of birth weight.  

Further, this hypothesis does not account for any influences due to genetics. 

 

Predictive Adaptive Responses. A main criticism of both the Thrifty Genotype 

and Thrifty Phenotype Hypotheses is their unidirectionality, specifically that the 

risk of disease was only explained for those with fetal growth retardation and 

under conditions of maternal malnourishment.  In addition, these hypotheses 

focused on fetal development, and did not include the periods of pre-conception, 

conception, or infancy, which are also still susceptible to developmental 

plasticity.  To address these concerns, Gluckman and Hansen proposed a broader 

explanation of the developmental origins of disease paradigm with the Predictive 

Adaptive Response.  The Predictive Adaptive Response (PAR) is the hypothesis 

that gene-environment interactions occurring early in development trigger a 

physiologic and physical phenotypic change during development, not necessarily 

for immediate survival, but to provide an advantage for a specific future 

environment [22].  Using cues and information provided by the mother, the egg, 

embryo, fetus, and/or infant learns to adapt to a specific environment, which 

provides a basis for predicting the responses that will be needed to increase its 

survival and growth later in life.  It is theorized that PARs lead to disease when 

there is a divergence from the environment that was expected to the environment 

that was actually realized [22, 27]. 
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By acknowledging a phenotypic adaptation in response to a particular 

environment, the PAR serves as an expansion of the Thrifty Phenotype 

Hypothesis, while broadening the scope beyond fetal development and maternal 

undernutrition.  Moreover, the PAR represents a type of environmental response 

assumed with developmental plasticity, except that the effects are not apparent 

immediately, but rather later in life [5].  A conceptual model developed by 

Gluckman and Hanson that describe how features of the PAR lead to increased 

disease risk is provided in Figure 1.2 [5, 17]. 

 

 

Figure 1.2 A general model of how intergenerational, genetic and environmental, 
and prenatal and postnatal factors interact to create a pathway to altered disease 

risk in adulthood. 
From Gluckman PD and Hanson MA. Living with the past: evolution, development, and 

patterns of disease. Science, 2004. 305 (5691): 1734. Reprinted with permission from 
AAAS. 
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DEVELOPMENTAL INSULTS 

Inherent in the developmental origins of health and disease paradigm is the 

presence of an insult that creates an environment during fetal and early life 

development that ultimately results in adverse health later in life.  One of the most 

frequently studied insults is maternal nutrition during pregnancy.  Indeed, both the 

thrifty genotype and thrifty phenotype hypotheses explained the association 

between birth size and diabetes assuming conditions of maternal malnourishment.  

However, maternal diet is only one of many potential insults.  Insults may arise 

because of maternal characteristics (e.g. physical constraint or age), genes (e.g. 

polymorphisms), toxicants (e.g. dioxins or nicotine), or social circumstances (e.g. 

poverty or stress), among many others.  Furthermore, more than one insult can 

occur during growth and development and multiple insults can occur at various 

times or simultaneously.  Insults may reflect deranged oxygen availability or 

transport, energy availability, nutrient metabolism, impaired temperature control, 

fluid imbalance, uncontrolled oxidative stress or infection. 

 

A key aspect of the impact of insults is its time of occurrence during 

development, which can yield different consequences or varying degrees of 

outcome severity.  Specifically, there is a “critical window” with respect to 

development so that insults that occur during this window are typically more 

deleterious than insults that occur outside of this window.  For example, a male 

fetus exposed to an antiandrogenic steroid, such as diethylstilbestrol, between the 

seventh and twelfth week of gestation is more likely to develop a birth defect in 
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the urethra called hypospadias [28, 29].  Exposure to this compound during the 

seventh week of gestation results in more severe hypospadias than exposure after 

the twelfth week when there is markedly less effect on penile development [28, 

29]. 

 

Typically, insults during the first trimester tend to be more damaging because cell 

and organ differentiation occur within the first twelve weeks of pregnancy.  

However, insults during the second or third trimester can also cause deleterious 

outcomes.  For instance, if growth-restricting insults occur early in pregnancy, 

infants frequently experience symmetric intrauterine growth retardation at birth 

because overall development of all cells and organs is slower [30].  However, if 

the fetus experiences growth-restriction late in pregnancy, nutrients are 

preferentially distributed to organs that are essential for survival, such as the brain 

and heart, and the growth of non-vital organs is slowed, causing asymmetric 

intrauterine growth retardation at birth [30].  Therefore, the insults resulted in 

negative outcomes but the phenotypic result differed based on the timing of the 

insult during fetal development.  

 

BIRTH WEIGHT AS A MARKER FOR THE INTRAUTERINE 

ENVIRONMENT 

Numerous studies examining the developmental origins of health and disease 

concept have attempted to understand how developmental insults alter the 

environment and give rise to the subsequent risk for chronic disease and adverse 
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health in adulthood.  Direct measurement of the impact of insults during 

development is ideal, but is often not practical or realistic.  Natural experiments, 

such as fetal and infant growth during wartime famine [31-34], as well as animal 

models [35-37], where the timing and severity of insults can be manipulated, have 

provided valuable information about the effects of insults on later disease, but are 

limited in scope and subject to concerns of generalizability.  Since it is difficult to 

directly measure disruptions, such as anoxia or under-nutrition during 

development, studies often rely on the use of a proxy measure as a crude 

representation of the environment during growth [5, 30, 38].  A frequently used 

birth marker for a sub-optimal intrauterine environment is low birth weight.   

 

The measure of birth weight itself is not believed to cause negative health 

outcomes in adulthood, but rather is intended to serve as an indicator of the 

quality of the intrauterine environment that the fetus was exposed to prior to birth 

[4, 17, 38].  It is acknowledged that fetuses can experience different intrauterine 

environments but yet have the same weight at birth [3, 4, 38].  Suggesting that 

low birth weight is not a cause of infant mortality, Wilcox questions the utility of 

low birth weight as a measure for explaining increases in infant mortality, citing 

evidence that, in developing nations and higher risk populations where low birth 

weight is prevalent, there is no increased risk for infant death [39].  These 

observations, known as the “Low Birth Weight Paradox”, extend to the 

associations between low birth weight and increased risk for adverse adult health 

[39, 40].  Thus, birth weight is recognized to be an insensitive measure of fetal 
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growth and development, and may not necessarily represent one’s intrauterine 

experience.  Therefore, the inclusion of birth measures beyond birth weight, such 

as gestational age, head circumference, length, and ponderal index (a measure of 

lean mass similar to body mass index) would provide additional information 

about the quality of intrauterine environment [38, 39].  Further, with the 

recognition of that developmental plasticity occurs after birth, studies have 

expanded to include rate of weight gain during infancy and adolescence (i.e. rapid 

catch-up growth) and feeding patterns and nutrition [7-9, 41-43].  Likewise, a 

number of maternal factors, including pre-pregnancy body size, age, parity, and 

smoking, physical activity, or dietary behavior, has also been shown to influence 

the birth size of the offspring [17, 38].  Therefore, the inclusion of a variety of 

birth measures and maternal factors are likely to better describe of the quality of 

the fetal environment than the use of birth weight alone. 

 

INTERGENERATIONAL EFFECTS  

Intergenerational influences are described as conditions, exposures, factors, and 

environments occurring in one generation that affect the growth, development and 

health of subsequent generations [6, 44].  There is continuing evidence in both 

animal and human studies that the associations between early life experiences and 

health later in life extend across multiple generations, suggesting that a 

developmental insult during a pregnancy may affect not only the offspring of that 

pregnancy, but offspring in future generations [6, 45-50]. 
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Evidence has shown that the birth weights of offspring are associated with 

maternal [50-58] and, to a lesser extent, paternal birth weight [50, 51, 53].  

Although pregnant women exposed to the Dutch Hunger Winter famine while in 

their first trimester gave birth to normally sized daughters, their grandchildren 

were smaller in body size [47-49].  Studies in rats have shown that 

malnourishment during pregnancy of one generation reduces birth weight in the 

offspring, and this reduced birth weight persists over multiple generations despite 

resumption of a non-malnourished diet [45, 46]. 

 

Intergenerational effects have been proposed as an extension of the predictive 

adaptive response, suggesting that the fetus uses not only information provided by 

the mother, but also information left by the grandmother for the mother to predict 

its future environment and prepare itself for optimal growth and survival [6, 59].  

The information left by grandmothers may occur either through female germ 

cells, since oocytogenesis occurs in utero [50, 59] or via shared genetic and 

environmental factors that persist over multiple generations [50, 60, 61].  

 

PUBLIC HEALTH SIGNIFICANCE 

Although the developmental origins of disease and health paradigm is rooted in 

biology and evolution, these concepts have been adapted by epidemiologists for 

risk factor identification and to better understand chronic disease etiology and 

prevention.  Many earlier epidemiological studies on the development origins of 

disease concepts have focused on cardiovascular disease and metabolic disorders, 
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such as diabetes and metabolic syndrome, but as evidence supporting the 

developmental origins of these diseases strengthens, the scope of diseases is 

expanding to include cognitive, musculoskeletal, and neurological diseases as 

well as cancers and mental illness.  Understanding the mechanisms for how 

insults increase risk for adult chronic disease can inform our understanding of its 

etiology and its prevention and provide general insight about human development 

[16, 62].  

 

The inclusion of additional pregnancy and birth information, including growth 

from infancy to adolescence, social and genetic factors, and longitudinal measures 

of health in adulthood, will enable researchers to investigate how the external 

environment interacts with developmental effects during growth to give rise to 

negative health outcomes as an adult.  Studies that collect data across multiple 

generations can evaluate the influence of intergenerational effects, further 

investigating the extent of the developmental origins of health and disease impact.  

The information gathered from these studies can serve as an important guide for 

the creation of interventions and policies that improve maternal, reproductive, and 

infant health and chronic disease prevention.  

 

OVERVIEW OF STUDY POPULATION AND DATA COLLECTION  

Study Population. The Michigan Bone Health and Metabolism Study (MBHMS) 

is a longitudinal prospective cohort study that was established to examine changes 

in women’s health prior to and during the menopause transition.  In 1988, 
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recruitment for the MBHMS began among the female offspring of participants of 

the Tecumseh Community Health Study (TCHS), a population-based cohort study 

started in 1959 that examined longitudinal health outcomes in Caucasian families 

from Tecumseh, Michigan.  A total of 543 women who were between ages 20 to 

40 years were recruited and enrolled into the MBHMS. In 1992, recruitment was 

extended to a group of women from a Tecumseh community census (Kohl’s 

directory), whose families were not in the TCHS.  Upon completion of enrollment 

in 1992, a total of 664 women aged 24 to 50 years were enrolled into the 

MBHMS. 

 

Tecumseh, Michigan is largely regarded as a rural community, the majority of 

whose residents are Caucasian and of middle-class socioeconomic status.  All 

women recruited into MBHMS were residents of Tecumseh at the time of 

enrollment and many continue to reside there at present.  Therefore, the MBHMS 

study participants represent a racially and socioeconomically homogenous 

population from a shared community environment.  Using demographic data from 

the MBHMS, this representation was validated with the marital status and 

education level distributions, which has remained relatively stable over a 15-year 

time span (Table 1.1).  This distribution showed that the majority of MBHMS 

participants have some college education, a common indicator for middle-class 

status.  
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Table 1.1. Distribution of Marital Status and Education Level in 1992 and 2007 
among Michigan Bone Health and Metabolism Study Participants1  
  1992   2007 
  n (%)   n (%) 
MARITAL STATUS     
   Married or Widowed 461 (79.4%)  395 (81.1%) 
   Divorced or Separated 83 (14.3%)  79 (16.2%) 
   Never Married 37 (6.4%)  13 (2.7%) 
      
EDUCATION LEVEL     
   Less than High School 8 (1.4%)  5 (0.8%) 
   Graduated High School 270 (46.5%)  276 (43.9%) 
   Some College 303 (52.2%)   348 (55.3%) 

1Totals differ across year and category because of missing data. 

 

Commencing in 1992, excluding two lapses in funding of 13 and 18 months in 

duration, MBHMS participants have been followed annually and data have been 

collected in 15 examinations over a 19-year study period.  As of March 2008, 561 

(84.5%) of the 664 enrolled at the 1992 baseline were still active participants of 

MBHMS. 

 

While women were pre-menopausal at enrollment into MBHMS, now nearly 20 

years into the study, most women are menopausal or transitioning into 

menopause, thus marking the end of their reproductive capacity.  Furthermore, 

many are at or nearing the age when the intermediate markers as well as the 

presentation of many chronic diseases are being expressed. 

 

Collection and Management of Birth History Data. During the 1988 

examination, when the MBHMS participants were between 20 and 40 years of 

age, 530 (98%) of the 543 enrolled participants reported their weight at birth.  In 

19 



 

order to collect birth weights on the additional women recruited in 1992, as well 

as to gather additional information on the birth characteristics of all the MBHMS 

participants, a supplemental telephone-based interview was administered in 2008.  

A questionnaire was developed to gather data about the participant’s birth history, 

including behaviors and characteristics of her mother while pregnant with the 

participant (Appendix A).  The questionnaire also collected information about the 

participants’ pregnancies and their children’s birth characteristics, including their 

children’s birth weights.  All participants who were still active in the study in 

2008 (n=561) were mailed a letter informing them about the collection of these 

data, including a copy of the questionnaire that was developed.  The questionnaire 

was pre- and post-tested and the clinic staff was trained on the administration of 

the questionnaire.  The collection of these data was approved by the University of 

Michigan Institutional Review Board (IRB).  The protocol that was sent to and 

approved by the University of Michigan IRB, including a copy of the letter that 

was mailed to the participants, is provided in Appendix A.  

 

Collection of these data began in April 2008 and was completed in August 2008.  

Among those who were still active in the MBHMS in 2008, 82% participated 

(n=460) in the supplemental telephone-based birth history interview, while 4% 

(n=22) refused or could not be found and 14% (n=79) could not be reached. 
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All data collected were entered into a data entry program, which was created 

using EpiInfo v6.  Staff was trained on the use of the data entry software and all 

questionnaires were double data entered by two independent data entry personnel.  

 

Pedigree Data. Family pedigrees of the MBHMS participants were created during 

the 1988 and 1992 enrollment.  This pedigree information included birth dates of 

the parents and siblings of the MBHMS participants.  With these data, 

information about birth order, singleton or multiple birth status, and parental ages 

at time of participant’s birth were compiled.  The use of these pedigree data 

supplemented the birth history information collected from the telephone 

interviews. 

 

MEASUREMENTS 

Birth Weights of MBHMS Participants. The birth history data collected from the 

MBHMS participants in 2008 were intended to serve as a supplement to the birth 

weight data gathered during the 1988 examination.  Since the birth weight data 

from the 1988 interview were self-reported, efforts were made during the 2008 

interview to document birth weight data from either birth certificates or hospital 

records.  However, the information provided on birth certificates is not 

standardized across the states, so birth weight data were not always available.  

The majority of participants were born in Michigan during a time period when 

birth weight was not reported on birth certificates.  As a consequence, the sources 

used to document birth weight information included birth certificates as well as 
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baby books, hospital records, and memory (either the participant’s or a 

participant’s parent). 

 

To determine if there were variations in reporting by source of information, we 

compared mean birth weights by source of information (Table 1.2).  A t-test 

analysis comparing the mean birth weights by source revealed no statistically 

significant differences (p>0.27). 

 

Table 1.2. Frequency, Mean, and Range of Michigan Bone Health and Metabolism 
Study Participant Birth Weights, in grams, by Source of Information Reportedly 
Used in the 2008 Supplemental Interview1 
  n (%) Mean ± SD Min Max 
Birth Certificate 61 (16%) 3293 ± 670 1729 5188 
Hospital Records / Baby Book 70 (18%) 3373 ± 571 1843 4479 
Parent's Memory 166 (44%) 3323 ± 596 1531 5188 
Participant’s Memory 155 (42%) 3282 ± 636 1361 4990 

1Percents do not sum to 100 because sources were not mutually exclusive. 
 

For 301 women, the birth weights gathered in 2008 could be compared with the 

birth weights that were self-reported in 1988. Table 1.3 provides the mean 

difference in birth weights reported in 2008 relative to 1988 by source of 

information.  In general, the differences in mean birth weight between the 1988 

and 2008 collection periods were small.  However, compared to the 1988 data, 

birth weights collected from memory had greater variability than birth weights 

that were documented (Table 1.3).  For birth weights collected from the parent’s 

memory, mean birth weight was higher than the 1988 data (p-diff<0.01), while for 

birth weights collected from the participant’s own memory, the mean birth weight 

was lower than the 1988 data (p-diff<0.01).  Based on these results, the 2008 birth 
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weight information was used only if the 1988 birth weight data were missing 

(n=78). 

 

Table 1.3. Difference in Mean Birth Weight, in grams, of Michigan Bone Health and 
Metabolism Study Participants Comparing 1988 and 2008 Data Collection by 
Source of Information Reportedly Used in the 2008 Supplemental Interview1 
  n (%) Mean ± SD Min Max 
All Sources Combined 301 -6 ± 234 -1418 1474 
Birth Certificate 43 (14%) -21 ± 251 -652 992 
Hospital Records / Baby Book 55 (18%) -5 ± 137 -468 454 
Parent’s Memory2 136 (45%) 39 ± 274 -1418 1474 
Participant’s Memory2 127 (42%) -45 ± 243 -652 1474 

1Percents do not sum to 100 because sources were not mutually exclusive. 
2p<0.01 mean difference compared to all other sources. 
 

The birth weight data, which was originally collected in pounds and ounces, was 

converted to grams and categorized into three levels based on the following 

clinical cut-points [63]: low birth weight, defined as less than 2500 grams; normal 

birth weight, defined as 2500 to 4000 grams; and, high birth weight, defined as 

greater than 4000 grams.  

 

Birth Weights of MBHMS Participant’s Offspring. For women who experienced 

a live birth, the 2008 telephone-based supplemental interviews also collected birth 

histories, including birth weights, about the MBHMS participants’ offspring.  

Birth weight, in grams, was a continuous variable and was the outcome of interest 

for Specific Aim 3. 

 

Body Composition, Carbohydrate Metabolism, and Lipids. Measures of adult 

body composition were the outcomes of interest for Specific Aim 1 and, along 
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with risk of type-2 diabetes and metabolic clustering, measures of carbohydrate 

metabolism and lipids were the outcomes for Specific Aim 2.  The body 

composition, carbohydrate metabolism, and lipid measures were continuous 

outcomes.  

 

Beginning with the 1992 examination, when the MBHMS participants were 

between ages 24 and 50 years, and every subsequent year thereafter (excluding 

two years with lapses in funding), health histories and physical measures were 

collected and phlebotomy was performed.  Specimens were collected fasting and 

during days 2-7 of the follicular phase of the menstrual cycle.  For women who 

were amenorrheic, specimens were collected on the anniversary of the woman’s 

date of enrollment ± 15 days. 

 

Adult body composition measures collected during the physical assessment 

included weight (in kilograms), height, waist, and hip circumference (in 

centimeters), and fat, lean, and skeletal muscle mass (in kilograms).  Balance 

beam scales and calibrated stadiometers were used to measure weight and height, 

respectively.  Waist and hip circumference were measured using a non-stretching 

tape measure at the narrowest section of the torso and the widest section of the 

hip, respectively.  Measures of impedance and conductance from bioelectrical 

impedance analysis were used to collect fat, lean, and skeletal muscle mass [64, 

65].  From the 1992 to the 2007 examination, there were a maximum of twelve 

annual collections of body composition measures. 
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Beginning in 1993, specimens were assayed for the assessment of carbohydrate 

metabolism measures, which included glucose and insulin, and the lipid measures 

of total cholesterol, low- and high-density lipoproteins, and triglycerides.  A 

measure of insulin resistance, the homeostatic model-assessment insulin 

resistance index (HOMA-IR), was estimated from multiplying fasting insulin 

(µU/ml) by fasting glucose (mmol/L) and dividing the product by 22.5 [66].  

Total cholesterol and triglycerides were analyzed using enzymatic methods.  

High-density lipoproteins were isolated using heparin-2M manganese chloride 

[67] and low-density lipoprotein levels were calculated using the Friedewald 

equation [68].  From 1993 to 2007, there were a maximum of eleven annual 

collections of carbohydrate metabolism measures and a maximum of ten annual 

collections of lipid measures.  

 

Type-2 Diabetes and Metabolic Clustering. Type-2 diabetes and metabolic 

clustering were dichotomous outcomes for Specific Aim 2 and were assessed at 

each woman’s annual visit.  A woman was regarded as having diabetes based on a 

self-reported physician diagnosis or if she was using anti-diabetic medicines at the 

time of the annual examination.  Metabolic clustering was based on a published 

definition of cardiometabolic clustering [69].  Women were classified as having 

metabolic clustering if they had at least two of the following six conditions: 1.) A 

blood pressure measuring > 135/85 mm Hg or use of anti-hypertensive medicines; 

2.) A triglyceride level > 150 mg/dL; 3.) A high-density lipoprotein level < 50 

mg/dL or use of statins; 4.) A glucose level > 100 mg/dL or use of anti-diabetic 
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medicines; 5.) A HOMA-IR value > 5.2, which was the 90th percentile cut-off 

point for the MBHMS sample; and 6.) A C-reactive protein level > 0.74 mg/dL, 

which was the 90th percentile cut-off point for the MBHMS sample. 

 

Additional Birth Characteristics. With the 2008 supplemental interview, 

pedigree, and MBHMS annual examination data, additional characteristics about 

the MBHMS participants own birth as well as her offspring’s births could be used 

for analysis.  Characteristics about the MBHMS participant’s birth included her 

mother’s age and smoking behavior at the time of her birth, whether they were a 

singleton or a twin, and their birth order.  Characteristics about the MBHMS 

participants’ offspring births included whether they were from a singleton or 

multiple birth, birth order, sex, the MBHMS participant’s age and smoking status 

at time of offspring birth, and amount of weight gained during the pregnancy.  A 

summary of these additional variables is described in Table 1.4. 

 

Table 1.4. Summary of Characteristics Collected about the MBHMS Participant’s 
Birth and her Offspring’s Births 

 Birth Characteristic Method of Assessment or Estimation 

MBHMS 
Participant 

Mother’s age at time of 
birth 

Using pedigree data, subtracted MBHMS 
participant’s date of birth from mother’s date 
of birth 
Selected from four categories in the 2008 
interview: 

Mother’s smoking 
behavior at time of birth 

• Mother smoked before but not during 
pregnancy 

• Mother smoked before and during 
pregnancy 

• Mother did not smoke 
• Does not know 
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Singleton birth status- 

Based on birth dates from pedigrees and/or 
selected from two categories in the 2008 
interview: 
• Singleton Birth 
• Multiple Birth 

Birth order Based on birth dates from pedigrees and/or 
mother’ prior number of live births 

 
 
 
Offspring of 
MBHMS 
Participant 

MBHMS participant’s 
age at offspring’s birth 

Using 2008 interview data, subtracted 
offspring date of birth from MBHS 
participant’s date of birth 

Using smoking behavior information from 
the MBHMS annual examinations, four 
categories were created: MBHMS participant’s 

smoking status at time 
of birth 

• Ex-smoker and quit before pregnancy 
• Smoker during pregnancy 
• Never Smoker 
• Could Not Assess 

Singleton birth status Based on birth dates from 2008 interviews 

Birth order Based on birth dates from 2008 interviews 

Sex 

Selected from two categories in the 2008 
interview: 
• Male 
• Female 

Amount of weight 
gained during pregnancy 

Open-ended question from the 2008 
interview 

 

 

STATISTICAL ANALYSIS 

Composition of Data and Statistical Models for Specific Aims 1 and 2. The 

MBHMS population is comprised of daughters recruited from families who were 

in the TCHS.  Study participants were evaluated annually and have body 

composition, carbohydrate metabolism, and lipid measures along with diabetes 

and metabolic clustering assessments that were collected repeatedly over time.  
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Therefore, for specific aims 1 and 2, the data were multilevel, comprising the 

repeated occasions (level 1) nested within the MBHMS participant (level 2), 

which are nested within families (level 3).  The structure of the data for specific 

aims 1 and 2, which describes the different levels of data are described in Figure 

1.3. 

 

 

Figure 1.3. The three-level data structure for specific aims 1 and 2 

 

Since the measures of body composition for specific aim 1 and carbohydrate 

metabolism and lipids for specific aim 2 were continuous, linear mixed effects 

modeling was used.  For linear mixed effects modeling, preliminary analyses 

included testing the model assumptions and completing steps for model selection 

to identify the statistical model that would be the best fit for the data.  In addition, 

specific aim 2 examined the risk of developing type-2 diabetes or metabolic 

clustering, which were dichotomous outcomes; therefore, a marginal model was 

used.  
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Diagnostic testing involved determining if each continuous measure had a normal 

distribution.  Since the data were longitudinal, histograms of each body 

composition, carbohydrate metabolism, and lipid measure at every annual study 

visit were created and examined to ensure that the distributions were consistent 

over time.  Based on these histograms, weight, body mass index, hip 

circumference, fat mass, insulin, HOMA-IR, and triglycerides were log-

transformed.  Following log-transformation, these measures were reexamined to 

confirm the transformation resulted in a normal distribution. 

 

In preliminary analyses, linear mixed effect models were evaluated to find the 

statistical model that would best fit the data.  Statistical models were evaluated in 

the following steps: 1.) Comparing the random intercept only to the random 

intercept and random slope model at the participant-level; 2.) If the random 

intercept and random slope model was the better model in step 1, identifying the 

best covariance structure to describe the between-participant random effects; and 

3.) Identifying the best covariance structure to describe the residuals (the within-

participant variance).  

 

Step 1: Comparison of the Random Intercept Only Model vs. the Random 

Intercept and Random Slope Model. Since there were no family-level (3rd level) 

predictors, a random intercept model only was used to specify the between-family 

variance.  At the MBHMS participant-level (2nd level), a random intercept model 

was compared to a random intercept and random slope model to identify the 
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model that would best fit the specification of the between-woman, within-family 

variance.  An unstructured covariance structure was employed to avoid any 

assumptions about the structure of the covariance between the random intercept 

and random slope.  The fixed effects were the same in the random intercept-only 

model and the random intercept and slope model, which allowed for comparisons 

using the Akaike’s information criteria (AIC) and the log-likelihood ratio test. 

 

For all outcome measures, the AIC was smaller in the random intercept and 

random slope model compared to the random intercept only model.  Consistent 

with the comparison of the AIC, there were large differences in the negative two 

log-likelihood values between the two models suggesting statistically significant 

p-values at two degrees of freedom.  The result of these model fitting tests 

indicated that the model that specified random intercepts and random slopes was a 

better fitting model for the between-subject variance than the random intercept-

only model.  

 

Step 2: Identifying the Best Covariance Structure for the Between-Participant 

Random Effects. Comparison of the Variance Components and Unstructured 

covariance patterns revealed that for waist circumference, waist-to-hip ratio, lean 

mass, skeletal muscle mass, and the carbohydrate metabolism measures, use of 

the Variance Components covariance pattern was better.  However, the 

Unstructured pattern better described the covariance between the random 
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intercepts and slopes for weight, height, BMI, hip circumference, fat mass, and 

the lipid measures. 

 

Step 3: Identifying the Best Covariance Structure for the Within-Participant 

Variance. To identify the ideal covariance structure around the residuals, the 

Variance Components, Compound Symmetry, Auto-Regressive (First Order), and 

Unstructured covariance structures were compared.  For all outcome measures, 

the Unstructured and Compound Symmetry covariance structures would not 

converge, suggesting models incorporating these covariance patterns were not 

appropriately fit.  Using AIC and the log-likelihood ratio tests, the First-Order 

Auto-Regressive covariance structure described the best fit around the residuals 

for all the measures, except for insulin.  For insulin, the Variance Components 

covariance structure provided the best fit. 

 

Establishing the Linear Mixed Effects Models. Based on the findings from the 

diagnostic testing and the model selection process, the linear mixed effects model 

used for the body composition, carbohydrate metabolism, and lipid measures is 

depicted in Equation 1.2.  To arrive at this model, we let Yk(i)j be an outcome for 

the ith participant from the kth family at the jth occasion.  Without including any 

explanatory variables, Yk(i)j was assumed to be from the following model: 

 

Yikj = α + ηk + π 0ik + π1ik (Timeikj) + εikj       (1.0) 
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In this model, ηk is the random family effect with a zero mean, π0ik is the 

participant-specific random intercept, π1ik is the participant-specific random slope 

of time and εikj is the random error.  Since we were interested in modeling the 

effects of birth weight categories on the rates of change of the outcome, we 

regressed π0ik and π1ik on the birth weight categories in which normal birth weight 

was the referent, and adjusted for baseline age.  This is described with the 

following models: 

 

π 0ik = β000 + β001(Baseline Ageik ) +β002(Low BWik ) +β003(High BWik ) +b0ik  

π1ik = β010 + β011(Baseline Ageik ) + β012(Low BWik ) + β013(High BWik ) + b1ik   

where 
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Substituting the model from (1.1) into the model from (1.0), the full model was: 

 

Yikj = α1 + β001(Baseline Ageik ) + β002(Low BWik ) + β003(High BWik ) +

β010(Timeikj) + β011(Baseline Ageik )(Timeikj) + β012(Low BWik )(Timeikj) +

β013(High BWik ) + ηk + b0ik + b1ik + εijk
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For Specific Aim 2, an additional linear mixed effect model that included 

adjustment for adult body mass index was also evaluated.  This model was similar 

to (1.2), except that the model included body mass index as time-varying variable, 

but excluded body mass index as a random effect. 

 

Establishing the Marginal Models for Diabetes and Metabolic Clustering. In 

addition to the linear mixed effects models used for the carbohydrate metabolism 

and lipid measures, generalized estimating equations (GEE) were used to estimate 

the risk of developing type-2 diabetes or metabolic clustering.  While these 

outcomes were dichotomous, because the covariates and exposures were identical 

to those used for the linear mixed effects model, the GEE was very similar to the 

model described in (1.2).  The full model is described in Equation 1.3. 

 

log
Pr(Yikj =1)
Pr(Yikj = 0)

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

=

α1 + β001(Baseline Ageik ) + β002(Low BWik ) + β003(High BWik ) +
β010(Timeikj) + β011(Baseline Ageik )(Timeikj) +

β012(Low BWik )(Timeikj) + β013(High BWik )(Timeikj)

  (1.3) 

 

In this model, the outcome is the log odds of developing the diabetes or metabolic 

clustering, where Yikj is the dichotomous outcome (Yes/No) for the ith participant 

from the kth family at the jth occasion.  Just as with the linear mixed model 

described in (1.2), the intercept (α1) was the population mean and the statistical 

model included adjustment for participant’s age at the baseline examination 
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(Baseline Ageik).  Low and high birth weight (Low BWik and High BWik, 

respectively) were dummy variables, with normal birth weight as the referent. The 

beta-coefficients for low and high birth weight were the overall risk of developing 

the disease associated with being either low or high birth weight relative to being 

normal birth weight.  The interactions between the birth weight and time 

estimated the annual risk of disease over time.  

 

The model in (1.3) was also examined with body mass index as a time-varying 

covariate. 

 

Data Composition and Statistical Model for Specific Aim 3. The composition of 

the data for specific aim 3 was also comprised of three levels, but differed from 

the data used for specific aims 1 and 2 because the outcome of interest was the 

birth weight of MBHMS participants’ offspring.  The data were also comprised of 

three levels – the offspring (level 1) nested within the MBHMS participant (level 

2) nested within families (level 3).  The structure of the data for specific aim 3 is 

depicted in Figure 1.4. 
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Figure 1.4. The three-level data structure for specific aim 3. 

 

Offspring birth weight was a continuous measure; therefore, linear mixed effect 

models were used.  Despite three levels of data, this mixed effects model was 

simpler than the one used for specific aims 1 and 2 since only adjustment for 

maternal and family clustering was necessary.  Offspring birth weight was 

confirmed as having a normal distribution, but additional steps for model 

selections were not needed.  Further, a variety of different birth and pregnancy 

characteristics were examined as exposures, so the number of covariates in the 

model varied.  A generic full model is given in Equation 1.4. 

 

Yikj = α1 + β01 j (X1ik ) + ...+ β0nj (Xnik ) + ηk + b0ik + εikj ,
where
ηk   ~  N(0, σ 2)   
b0ik ~  N(0, σ 2)
εikj   ~  N(0, σ 2)

    (1.4) 
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In this model, Yikj is the expected birth weight for the jth offspring of the ith 

MBHMS participant from the kth family.  The intercept (α1) was the population 

mean birth weight and the beta-coefficients describe the mean difference in jth 

offspring birth weight associated with a given birth characteristic(s).  The random 

intercept at the family-level is defined by ηk, the random intercept at the MBHMS 

participant-level is defined by b0ik, and the random error is described by εikj. 

 

SUMMARY AND CHAPTER OVERVIEW 

This dissertation expands the existing development origins of health and disease 

literature by examining not only low birth weight, but also high birth weight, a 

possible proxy measure for fetal overnutrition, on adult measures of disease and 

associated risk factors for disease that were collected longitudinally.  The 

availability of birth and pregnancy data across two generations of women 

permitted the evaluation of an intergenerational influence on the birth weight of 

offspring from the third generation.   

 

In Chapter 2, the trajectories of adult body composition comparing women who 

had low and high birth weight to women who had normal birth weight are 

described.  Also comparing across birth weight categories, Chapter 3 examines 

whether there were different trajectories seen in adult measures of carbohydrate 

metabolism and lipids as well as whether there were differences in the risk 

profiles of type-2 diabetes and metabolic clustering.  In Chapter 4, birth and 

pregnancy characteristics from two generations of women were evaluated to 
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understand their association to birth weight in offspring in a subsequent 

generation.  Finally, a summary of the dissertation’s main findings, suggestions 

for the future direction of developmental origins of health and disease research, 

and public health and clinical implications are discussed in Chapter 5. 
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CHAPTER 2 

 

The Relationship of Birth Weight with Longitudinal Changes in 
Body Composition in Adult Women 

 

ABSTRACT 

Fetal and early life experiences may be associated with chronic disease 

development.  Early studies reported an increased risk of chronic disease, 

particularly obesity and diabetes, in those with low birth weight.  More recent 

investigations have reported a decreased risk for cardiovascular disease among 

high birth weight individuals, despite evidence that high birth weight is associated 

with increased adult weight and lean mass.  Since most studies examined adult 

measures cross-sectionally, the ability to infer causality remains a concern.  To 

address this, we examined the relationship of self-reported birth weight to 

longitudinal changes in adult body composition using data from 587 women of 

the Michigan Bone Health and Metabolism Study who were aged 24 to 50 years 

at baseline. 

 

Low, normal, and high birth weight were defined as <2500 grams, 2500-4000 

grams, and >4000 grams, respectively.  Linear mixed models were used to 
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estimate the association between birth weight categories and women’s 15-year 

longitudinal change in adult weight, height, body mass index (BMI), waist and 

hip circumference, waist-to-hip ratio, and fat, lean and skeletal muscle mass. 

 

Mean birth weight was 3289 ± 580 grams, with 9.2% and 8.9% classified as being 

low and high birth weight, respectively.  Over the 15-year study period, body 

composition measures increased in all women over time.  At baseline, high birth 

weight women weighed 13% more and had BMI values that were 11% higher 

than normal birth weight women after adjustment for baseline age.  Waist 

circumference and lean mass were 5.51 cm and 3.91 kg larger, respectively, in 

high compared to normal birth weight women at baseline.  No differences in adult 

body composition between low and normal birth weight women were observed.  

Rates of change in the adult body composition measures did not vary between 

low, normal, and high birth weight women.  

 

In this population of rural mid-western women, those heavier at birth continued 

that trajectory into adulthood – a longitudinal finding that validates reports from 

cross-sectional studies.  Further research is needed to address whether the higher 

body composition observed in high birth weight women increases the longitudinal 

risk for obesity-related chronic diseases over time.
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INTRODUCTION 

The high prevalence of obesity in the United States is regarded as a major public 

health problem because of its association with increased risk for chronic diseases, 

including diabetes, metabolic syndrome, and cardiovascular disease [1, 2], 

decreased quality of life [3]and life expectancy [4], and its economic burden [5].  

The developmental origins of health and disease theory, an outgrowth of the 

Barker hypothesis [6], posits that fetal and early life experiences may be 

associated with the development of select chronic diseases later in life, including 

adult obesity [7, 8].  Evaluating the contribution of the developmental origins of 

obesity is important, not only to understand its mechanisms, but for the creation 

of programs and interventions to prevent obesity and obesity-related diseases.  

 

Although a crude proxy measure, birth weight is frequently used as a marker for 

the fetal experience, with low birth weight suggestive of a sub-optimal 

intrauterine environment that includes undernutrition [7, 8].  Previous studies 

have focused on the relationship of low birth weight with the risk of developing 

chronic diseases and reported an association between low birth weight and an 

increased risk for a number of chronic conditions, including obesity, diabetes, 

cardiovascular disease, metabolic syndrome, osteoporosis, cancer, and dementia 

[9, 10].  Studies of  pregnancy outcomes during famine and starvation has 

provided further evidence that infants exposed to malnourishment in utero were at 

greatest risk for obesity later in life [11-14].  Animal models as well as 

population-based observational studies have confirmed this relationship [15-18].  
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More recent investigations have expanded the focus of early life exposures to 

include the full distribution of birth weight, including high birth weight.  In 

contrast to low birth weight, epidemiologic studies of high birth weight have 

suggested a decreased risk for chronic disease, particularly cardiovascular disease 

[6, 19, 20], despite evidence that higher weight at birth was associated with higher 

BMI later in life [21-24].  To better understand this paradox, investigators have 

examined the relationship of birth weight with body composition measures and 

consistently reported that high birth weight was associated with higher BMI via 

higher levels of lean mass [21, 25-27].  In contrast, studies have provided less 

consistent evidence about the relationship of birth weight to fat mass and fat mass 

distribution [21, 23, 25-27]. 

 

Although the existing literature has examined the relationship of birth weight with 

health later in life in a wide range of age groups, including early childhood, 

preadolescence, young adult, adult, and the elderly, the majority of studies have 

been completed outside the United States, specifically in the United Kingdom and 

Scandinavia where comprehensive birth data are routinely collected.  Most studies 

examined outcomes cross-sectionally and thus, associations of birth weight with 

longitudinal outcomes are not well described.  

 

The purpose of this study was to examine the relationship of birth weight with 

changes in body composition observed over a 15-year study period in a 

population-based sample of middle-class adult white women.  We hypothesized 
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that body composition trajectories would differ among low and high birth weight 

women compared to women who were normal weight at birth.  Specifically, high 

birth weight women would have greater weight gain and increases in waist and 

hip circumference, and have higher levels of BMI and fat and lean mass compared 

to normal birth weight women over the 15-year study period.  We further 

hypothesized that increased levels in the body composition measures would also 

be evident in low birth weight women, but not to the extent seen in high birth 

weight women. 

 

METHODS 

Study Population. The study population was from the Michigan Bone Health and 

Metabolism Study (MBHMS), a prospective cohort study investigating changes in 

women’s health prior to and through the menopause [28].  Recruitment and 

enrollment began in 1988 and comprised 543 women, aged 20-40 years, who 

were daughters of the participants in the Tecumseh Community Health Study 

(TCHS).  In 1992, recruitment was extended to age-eligible female residents of 

Tecumseh, Michigan whose families were not in the TCHS, resulting in the 

enrollment of an additional 121 women.  Upon completion of recruitment, 664 

women aged 24-50 years were enrolled into the MBHMS.  Since 1992, 

participants have been evaluated annually over a 15-year study period, excluding 

two time intervals of 13 and 18 months duration associated with lapses in funding. 
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These analyses incorporated data from 587 (88.4%) women for whom birth 

weights were available and who were from a singleton birth.  These 587 women 

represented siblings from 399 nuclear families with between one and seven 

daughters.  There were 263 families with one daughter in the study, while 100 

families had two daughters, 26 families had three, and ten families had between 

four and seven female siblings in the study. 

 

Birth Characteristics. During the 1988 examination, 530 of the 543 enrolled 

women self-reported their birth weight.  In 2008, the 561 active MBHMS 

participants were contacted to participate in a supplemental telephone-based 

interview to further characterize their birth history.  These 2008 interviews 

collected and/or confirmed the birth weight data obtained in 1988, and provided 

additional birth characteristics, including participant’s in utero smoking exposure, 

mother’s date of birth, participant birth order, and whether participant was from a 

singleton or multiple birth.  Among those still active in the MBHMS in 2008, 

82% (n=460) participated in the supplemental birth history interview, while 4% 

(n=22) refused and 14% (n=79) could not be reached.  

 

Self-reported birth weight was converted from pounds and ounces to grams (g) 

and categorized into groups based on clinical cut-points, including low, defined as 

less than 2500 g; normal, defined as 2500-4000 g; and high, defined as greater 

than 4000 g.  Since there was little variation in the self-reported birth weight data 
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gathered in 2008 as compared to 1988, birth weight reported in 2008 was used 

only if 1988 birth weight data were missing (n=78).  

 

Participant’s in utero smoking exposure was classified into three categories: 

mother smoked before and during pregnancy, mother smoked before but stopped 

during pregnancy, and mother never smoked.  Mother’s age at the time of 

participant’s birth was calculated by subtracting the participant’s date of birth 

from their mother’s date of birth and was classified into five age groups: 15-19 

years old, 20-24 years old, 25-29 years old, 30-34 years old, and 35 years and 

older.  First born status (Yes/No) was derived using participant’s birth order. 

 

Body Composition Measures. At each annual MBHMS visit, physical measures 

of body composition were obtained, including weight (in kilograms), height (in 

centimeters), waist and hip circumferences (in centimeters), and fat, lean, and 

skeletal muscle mass (in kilograms).  Calibrated stadiometers and balance-beam 

scales were used to measure height and weight, respectively.  Weight divided by 

the square of the height, in meters, provided the body mass index (BMI) measure.  

Using non-stretching tape, waist circumference was measured during expiration at 

the narrowest section of the torso, while hip circumference was collected at the 

widest section of the hip.  Waist-to-hip ratio was calculated by dividing waist by 

hip circumference.  Fat, lean, and skeletal muscle mass were collected using 

impedance and conductance measures from bioelectrical impedance analysis [29, 

30]. 
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Statistical Analysis. Contingency tables and analysis of variance were used to 

examine frequency distributions and mean differences of the birth characteristics 

and body composition measures by birth weight categories.  Least-square means 

and chi-square tests evaluated statistical significance across the birth weight 

categories. 

 

Scatterplots and box plots were created to verify that the random errors around 

each body composition measure had a mean zero and constant variance 

suggestive of a multivariate normal distribution.  Since data were collected 

annually, histograms for each body composition measure at each study visit were 

examined to confirm that the distributions were consistent across the 15-year 

study period.  Non-normally distributed outcomes were log-transformed for 

analyses, but were back-transformed to their original scale to ease interpretation. 

 

In addition to evaluating the mean baseline body composition measures, linear 

mixed modeling was used to examine the 15-year trajectories of adult body 

composition measures.  Since the study participants included sisters from the 

same nuclear family and data were collected longitudinally, the linear mixed 

models accounted for the within- and between-family variance and the within-

subject correlation.  The Akaike’s information criterion and chi-square tests 

comparing the log likelihood ratios between reduced and full models identified 

the ideal covariance structure on the within-subject random effects and around the 
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residuals.  Final models included random intercepts at the family-level and 

random intercepts and slopes at the subject-level.  Birth weight by time 

interactions in the models were used to determine whether the rates of change in 

the adult body composition measures varied by birth weight category.  All models 

were adjusted for participant’s baseline age, which was centered about the median 

age of 37 years.  Statistical analyses were completed using SAS v9.2 and 

statistical significance was defined as α<0.05. 

 

RESULTS 

In this study population of women born between the years 1942 and 1967, birth 

weight was normally distributed with a self-reported mean of 3289 ± 580 g and 

range of 1531 to 5897 g.  When categorized using clinical cut-points, the majority 

(81.9%) of women were normal birth weight with a mean birth weight of 3291 ± 

352 g, while 9.2% were low birth weight with a mean birth weight of 2208 ± 259 

g and 8.9% were high birth weight with a mean birth weight of 4399 ± 364 g. 

 

Low birth weight women were more likely to be first born (35.3%) compared 

with normal birth weight women (26.6%), but this difference was not statistically 

significant (p=0.19) (Table 2.1).  Women who were low weight at birth were 

more likely to report in utero smoking exposure than women who were normal or 

high weight at birth (30.6% vs. 22.3% and 19.1%, respectively); however, these 

frequencies were also not statistically significant. 
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The average maternal age at participant’s birth was 26.1 ± 6.6 years, 25.8 ± 5.1 

years, and 28.8 ± 6.5 years for low, normal, and high birth weight women, 

respectively.  The mean differences in maternal age between normal and high 

birth weight women were statistically significant (p<0.01).  Women classified as 

low weight at birth were more likely to have been born to a teenaged mother 

(19.6%), compared to women classified as normal (10.4%) or high weight at birth 

(10.2%).  Normal birth weight women were more likely to have been born to 

mothers in their twenties (67.7%), while high birth weight women were more 

likely to have been born to mothers who were at least thirty years of age (44.9%). 

 

The mean baseline body composition values observed in adulthood in low birth 

weight women did not differ from those of women who were normal weight at 

birth (Table 2.2).  In contrast, high birth weight women had significantly higher 

mean baseline body composition measures observed in adulthood relative to 

normal birth weight women, except for height and waist-to-hip ratio.  At baseline, 

low birth weight women weighed 68.6 ± 18.7 kg and normal birth weight women 

weighed 70.5 ± 15.3 kg (p=0.70); however, high birth weight women weighed 

82.2 ± 19.2 kg at baseline, or 16.6% more than normal birth weight women 

(p<0.01).  Similarly, baseline waist circumference for high birth weight women 

was 6.6 cm higher than normal birth weight women (p<0.01).  Mean baseline fat 

mass in women with high weight at birth was 34.0 ± 15.3 kg, or 28.8% more than 

the mean baseline fat mass in normal birth weight women (p<0.01). 
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The fitted linear mixed models indicated that, in general, women experienced an 

increase in their adult body composition measures over the 15-year study period.  

However, after adjusting for baseline age, high birth weight women experienced a 

greater increase in weight, height, BMI, waist and hip circumference, and fat, 

lean, and skeletal muscle mass compared to normal birth weight (Table 2.3).   

 

At the study baseline, women in the high birth weight group were, on average, 

13% (p<0.01) heavier and had BMI and fat mass levels that were, on average, 

11% (p<0.01) and 20% (p<0.01) higher, respectively, than women in the normal 

birth weight group.  Similarly, waist circumference and lean mass were an 

average of 5.51 cm (p<0.01) and 3.91 kg (p<0.01) larger, respectively, in high 

relative to normal birth weight women at baseline. 

 

Over the 15-year study period, there were no differences in adult body 

composition or in the trajectories between low and normal birth weight groups of 

women and only marginal significance in the waist circumference, lean mass, and 

skeletal muscle mass trajectories of high birth weight women compared to women 

who were normal weight at birth (Table 2.3). 

 

DISCUSSION 

Using clinical cut points for birth weight, this study compared low and high to 

normal birth weight women to assess whether differences existed in their body 

composition trajectories as middle-aged adults.  In this population-based 
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longitudinal examination of middle-class Caucasian women from the mid-western 

United States, women who were heavier at birth continued to be heavier into 

adulthood.  Fitted slopes from mixed effects modeling of the adult body 

composition measures did not differ across the birth weight categories, suggesting 

that while women in the high birth weight groups had higher adult body 

composition measures, their rates of body composition change over time were 

similar to those of women in the normal birth weight group. 

 

This study is one of the few to examine the relationship between birth weight and 

longitudinal measures of body composition in adult women using data collected 

annually over a 15-year time period.  The finding that high birth weight women 

had a greater propensity for higher adult body composition levels corroborates 

reports from cross-sectional studies that consistently described a positive 

association between birth weight and weight, BMI, and lean mass later in life.  

Furthermore, the use of longitudinally-collected data provided additional insight 

about the trajectories and rates of change in adult body composition in women 

that have not been previously described.  Notably, these data suggest that 

trajectories are maintained during young adulthood and are not a unique 

characteristic of middle age, when women are transitioning through menopause. 

 

While we found an association with high birth weight and adult lean mass, fat 

mass, and waist circumference, no relationship was observed with waist-to-hip 

ratio, suggesting that the higher levels of adipose tissue in the high birth weight 
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group of women were not more likely to be centrally distributed.  The relationship 

between birth weight and adult fat mass and waist-to-hip ratio, a frequently used 

marker for central adiposity, has been less consistently observed in previous 

studies.  A number of studies have reported a positive association between birth 

weight and fat mass [17, 31, 32], while others describe either no association [27, 

33] or an inverse relationship [24].  This has led to the proposal that high birth 

weight is more strongly associated with the programming of lean mass 

distribution [21, 25-27]. 

 

High birth weight may represent a crude proxy measure for overnutrition during 

fetal development.  Compared to women in the low and normal birth weight 

groups, a larger proportion of the high birth weight women were born to older 

(>30 years old) mothers, and this may reflect a unique fetal environment.  For 

example, older maternal age is a risk factor for gestational diabetes [34, 35], and 

gestational diabetes is associated with larger babies at birth. 

 

Our findings are consistent with previous studies which have investigated the 

relationship of birth weight with body composition in different age groups, 

including children [31, 36], teenagers [23, 27], adults [24, 32], and the elderly 

[33] and all have reported that higher weight at birth or higher ponderal index, a 

measure of body size used until age two, is associated with higher weight, BMI, 

and lean mass later in life.  These associations persisted in both men and women 

and regardless of whether body composition data were acquired via dual-energy 
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X-ray absorptiometry or bioelectrical impedance, or through proxy measures such 

as skinfold thickness or the calculation of waist-to-hip ratio.  The majority of 

these studies were completed outside of the United States, primarily in countries 

where birth weight information is routinely collected and archived.  

 

In the Nurses Health Study, high birth weight was positively correlated with 

higher levels of adult BMI among nurses; however, no other body composition 

measures were evaluated [22].  Similarly, Leong et al reported a U-shaped 

relationship between birth weight and BMI in women age 50-79 years living in 

New Hampshire, Massachusetts, or Wisconsin, suggesting that being either low or 

high birth weight is associated with higher BMI; however, again, no additional 

body composition measures were gathered [37].  In contrast, a study of Mexican 

American and non-Hispanic white women, aged 25 to 64 years, from the San 

Antonio Heart Study reported no differences in mean BMI or waist-to-hip ratio 

across birth weight tertiles [38]. 

 

A major strength of this study was the ability to analyze effects over a 15 year 

time frame.  Previous research with the ability to assess birth weight and 

longitudinal changes in adult body composition is limited.  In a nine-year study of 

adults from Amsterdam, Netherlands, who were aged 27 years at baseline and 

followed over four time points, increasing birth weight in females was associated 

with decreasing subcutaneous fat mass, truncal fat, and waist circumference over 

time [18].  However, in this study, those in the highest birth weight tertile were 
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still within the clinically-accepted range of normal birth weight.  Other studies 

that have collected outcomes longitudinally did not use statistical methods to 

evaluate birth weight effects over time [32, 39]. 

 

This study examined a population-based sample of white women, born between 

1942 and 1967, the majority of whom were born and continue to reside in 

Tecumseh, Michigan, a middle-class community.  The homogeneity of the study 

population permitted analysis with minimal concern for selected confounding 

factors, such as race, socioeconomic status, and social environment, which are 

frequently associated with variability in birth weight as well as in adult body 

composition.  Body mass index is considered a crude measure of obesity because 

of its inability to distinguish whether higher levels are associated with increases in 

lean or fat mass [26, 40].  Moreover, measures of fat distribution, such as waist-

to-hip ratios or skin-fold thickness, are considered unreliable measures of fat mass 

[26].  Therefore, a strength of this study was the collection of lean, skeletal 

muscle, and fat mass body composition data as well as fat distribution data. 

 

A potential limitation of this study was that birth weight data were self-reported, 

although a number of studies have described the validity of self-reported birth 

data [41, 42].  A recent study by Tehranifar et al found good level of agreement 

and sensitivity in self-reported birth weight when compared to medical records 

[43].  Although the MBHMS women interviewed in 2008 were asked to refer to 

birth documents to validate their birth weight, many continued to rely on their 
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memory or the memories of their family members; however, the information 

gathered in 2008 was designed to supplement birth weight data already collected 

in 1988.  Since both periods of data collection relied primarily on recall, it is 

likely that the 1988 data was less prone to recall bias because it occurred 20 years 

earlier and during the participants’ childbearing years, when women may be more 

likely to think about their own birth weights in consideration of their own 

children’s births.  It has also been suggested that self-reported low birth weight is 

less sensitive to measurement error than normal or high birth weight [43], so our 

finding of no association may also be due to the attenuation of effects due to 

measurement error. 

 

This study reported no differences in body composition between low and normal 

birth weight women, in contrast to a number of studies describing an association 

with low birth weight and obesity [11, 17, 18].  However, many of those studies 

were based on prenatal exposure to famine and malnutrition, unlikely occurrences 

in our middle-class study population. 

 

Studies have speculated that low birth weight may be more closely related to the 

programming of fat mass distribution later in life.  However, it is unclear whether 

the mechanism for adult fat mass distribution is due to low birth weight 

representing a proxy for a specific fetal insult and/or whether an interaction with 

rapid catch-up growth after birth is implicated.  Our findings suggested that low 

birth weight was not directly associated with adipose distribution; however, 
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limited information on birth characteristics in our data prohibited the examination 

of other possible mechanisms.   

 

In conclusion, these data support previous findings that high birth weight was 

related to higher levels of adult body composition, including higher levels of lean 

mass.  Although cross-sectional studies have suggested that the association with 

lean mass may explain the decreased risk of certain chronic diseases in high birth 

weight populations, it is not known whether this decreased risk in chronic 

diseases will continue to be seen longitudinally.  Our finding that high birth 

weight was not associated with centrally distributed fat mass despite a positive 

association with fat mass suggests the need to examine whether high birth weight 

women have a decreased risk for chronic diseases in which central adiposity is a 

risk factor, such as metabolic syndrome and type-2 diabetes. 
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Table 2.1. Birth Characteristics of Women from the Michigan Bone Health and 
Metabolism Study by Birth Weight Category, n=587a 
  BIRTH WEIGHT CATEGORY 
  Low Normal High 
  (<2500 g) (2500 - 4000 g) (>4000 g) 
N (%) 54 (9.2%) 481 (81.9%) 52 (8.9%) 
      
BIRTH CHARACTERISTIC     
Birth Order     
 First Born 18 (35.3%) 116 (26.6%) 13 (26.0%) 
 Not First Born 33 (64.7%) 320 (73.4%) 37 (74.0%) 
Mother's Ageb     
 15 - 19 years 10 (19.6%) 45 (10.4%) 5 (10.2%) 
 20 - 24 years 18 (35.3%) 176 (40.7%) 11 (22.5%) 
 25 - 29 years 8 (15.7%) 117 (27.0%) 11 (22.5%) 
 30 - 34 years 8 (15.7%) 66 (15.2%) 12 (24.5%) 
 35 and older 7 (13.7%) 29 (6.7%) 10 (20.4%) 
Mother's Smoking History     
 Smoked before but not during pregnancy 1 (2.8%) 24 (7.6%) 1 (2.4%) 
 Smoked before and during pregnancy 11 (30.6%) 71 (22.3%) 8 (19.1%) 
  Did not smoke 24 (66.7%) 223 (70.1%) 33 (78.6%) 
aValues do not sum to totals because of missing data.    
bp<0.01 High vs. Normal       
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Table 2.2. Mean Body Composition at Baseline (1992) by Birth Weight Category in 
Women from the Michigan Bone Health and Metabolism Study, n=587 
  BIRTH WEIGHT CATEGORY 
  Low Normal High 
  (<2500 g) (2500 - 4000 g) (>4000 g) 
Birth weight (g) 2208.1 ± 259.2 3290.6 ± 352.1 4398.5 ± 363.5 
Age (years) 37.7 ± 4.5 36.8 ± 4.9 36.0 ± 6.0 
      
BODY COMPOSITION     
Weight (kg)  68.6 ± 18.7 70.5 ± 15.3 82.2 ± 19.2a 
Height (cm) 161.9 ± 6.6 163.6 ± 5.8 165.4 ± 5.8 
BMI (kg/m2) 26.1± 6.6  26.3 ± 5.6 30.0 ± 6.7a 
Waist Circumference (cm) 78.9 ± 15.3  79.1 ± 12.6 85.7 ± 15.1a 
Hip Circumference (cm) 103.3 ± 15.7 103.3 ± 12.1 111.6 ± 13.3a 
Waist-to-Hip Ratio 0.76 ± 0.06 0.76 ± 0.06 0.76 ± 0.06 
Fat Mass (kg) 25.6 ± 13.7 26.4 ± 11.6 34.0 ± 15.3a 
Skeletal Muscle Mass (kg)  19.9 ± 2.7 20.3 ± 2.5 21.9 ± 2.6a 
Lean Mass (kg) 42.8 ± 6.7 44.0 ± 6.4 48.2 ± 6.4a 
ap<0.01 compared to Normal       

 



 

Table 2.3. Fifteen-Year Longitudinal Relationship of Birth Weight with Adult Body Composition in Women of the Michigan Bone Health 
and Metabolism Study, aged 24 to 50 years at Baseline (1992), n=587a        
  Low Birth Weight (<2500 g)  High Birth Weight (>4000 g) 
  Main Effect   Slope  Main Effect  Slope 
BODY COMPOSITION β   SE  p    β       β  SE  p  β   SE  p SE  p 
Log Weight (kg) -0.03 0.03 0.37  0.001 0.001 0.41  0.13 0.03 <0.01  0.001 0.001 0.26 
Height (cm) -1.15 0.82 0.16  -0.001 0.010 0.96  1.83 0.82 0.03  0.0003 0.010 0.97 
Log BMI (kg/m2) -0.01 0.03 0.73  0.001 0.001 0.42  0.10 0.03 <0.01  0.001 0.001 0.27 
Waist Circumference (cm) -0.45 1.92 0.81  0.091 0.104 0.38  5.51 1.92 <0.01  0.182 0.100 0.07 
Log Hip Circumference (cm) -0.005 0.02 0.77  0.0004 0.001 0.67  0.06 0.02 <0.01  0.001 0.001 0.15 
Waist-to-Hip Ratio -0.003 0.01 0.75  0.001 0.001 0.34  0.01 0.01 0.49  0.0001 0.001 0.89 
Log Fat Mass (kg) -0.04 0.06 0.46  0.002 0.003 0.54  0.19 0.06 <0.01  0.002 0.003 0.44 
Lean Mass (kg) -0.97 0.96 0.31  0.035 0.040 0.38  3.91 0.96 <0.01  0.065 0.039 0.09 
Skeletal Muscle Mass (kg) -0.29 0.37 0.43   0.010 0.015 0.52  1.52 0.37 <0.01  0.023 0.015 0.11 
aAdjusted for Participant's Age at Baseline.               
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CHAPTER 3 

 

The Relationship of Birth Weight with Longitudinal Changes in 
Carbohydrate Metabolism, Lipids, and Risk of Diabetes or Metabolic 

Clustering in Adult Women 
 

ABSTRACT 

Increased incidence of diabetes and cardiovascular disease, and its associated 

cardiometabolic risk factors, are commonly reported among those with lower birth 

weights, but the relationship of high birth weight with subsequent chronic disease risk is 

less understood.  Data examining the effect of birth weight on trajectories of 

cardiometabolic risk factors over time are limited.  We described the relationship of birth 

weight groups with longitudinal changes in carbohydrate metabolism and lipid measures 

and the risk of developing type-2 diabetes or metabolic clustering – a condition similar to 

metabolic syndrome - in 587 women of the Michigan Bone Health and Metabolism Study 

who were between ages 24-50 years at baseline. 

 

Low, normal, and high birth weight were defined as <2500 grams, 2500-4000 grams, and 

>4000 grams, respectively.  Linear mixed modeling was used to estimate the association 

between birth weight categories and women’s 15-year longitudinal change in levels of 

glucose, insulin, insulin resistance, triglycerides, and total, low-, and high-density 

lipoprotein cholesterol.  
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Generalized estimating equations were used to evaluate the baseline and annual risk of 

developing type-2 diabetes or metabolic clustering. 

 

Glucose levels increased at a rate of 0.63 mg/dL per year among high compared to 

normal birth weight women (p<0.01).  Trajectories of insulin, insulin resistance, and 

lipids did not differ by birth weight group.  Relative to normal birth weight, the risk at 

baseline of diabetes in low and high birth weight women was 0.36 and 1.54, respectively; 

the comparable risks for metabolic clustering were 1.31 and 1.60, respectively.  Risks 

were similar after adjustment for participant’s baseline age and adult body mass index 

and were not statistically significant (p>0.05) across the birth weight groups. 

 

This study contributes to our understanding of how birth weight is associated with adult 

glucose trajectories, providing additional insight about the possible role of fetal growth 

and development in glucose metabolism and regulation in women.  Additional studies 

with longitudinal data are needed to determine whether these findings can be replicated in 

other populations. 
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INTRODUCTION 

Support for the developmental origins of disease and health theory [1-3] comes from 

studies that have related low birth weight with an increased risk for type-2 diabetes [3-8], 

coronary heart disease [3, 9-13], and metabolic syndrome [14-17] in adulthood.  In a 

meta-analysis of 30 studies, birth weight was inversely associated with the risk of type-2 

diabetes among middle-aged and older populations, even after adjustment for potential 

confounding factors such as age, sex, body mass index, and socioeconomic status [18].  

Likewise, an increased risk of coronary heart disease and metabolic syndrome has been 

reported among adults who were low weight at birth, with the risk further exacerbated by 

rapid catch up growth during infancy and childhood [9, 10, 13, 14, 16, 19]. 

 

While evidence for the association between low birth weight and risk for chronic disease 

is frequently reported, less attention has been paid to the relationship of high birth weight 

to chronic disease risk.  Studies have described a decreased risk for cardiovascular 

disease in adults who were high weight at birth [20-22], despite the evidence that study 

participants had a greater likelihood for obesity later in life [20, 23, 24].  The reports 

describing the relationship between high birth weight and risk for type-2 diabetes or 

metabolic syndrome, however, are few in number and the findings are inconsistent.  In 

primarily Caucasian men and women from the Health Professionals Follow-up Study and 

the Nurses’ Health Study, respectively, those in the high birth weight groups had the 

lowest risk for diabetes [25, 26].  A study in Iceland, where high birth weight is common, 

high birth weight was protective for having diabetes in adulthood [27].  However, in 

studies among the North American Indian populations, a U-shaped relationship has been 
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reported between birth weight and adult diabetes prevalence [28, 29].  Most studies have 

also reported a decreased risk for metabolic syndrome among those in the highest birth 

weight category [14-16]. 

 

In a review of carbohydrate metabolism measures in 48 studies, most investigations 

showed that low birth weight was associated with higher levels of fasting glucose and 

insulin resistance, but acknowledged that a few studies found no or positive associations 

[30].  In a meta-analysis of 58 studies, total cholesterol was inversely associated with 

birth weight – levels were 1.39 mg/dL higher per kilogram decrease in birth weight [31].  

This negative relationship has been consistently reported in other reviews and cross-

sectional examinations with investigators concluding that the magnitude of the decrease 

in cholesterol measures associated with low birth weight does not have considerable 

public health impact [31-33].  Notably, few studies have described the relationship 

between birth weight category and change in these intermediate metabolic markers over 

time. 

 

Much of the reported work has been undertaken in British and Scandinavian wartime 

cohorts and combined data from men and women, despite evidence that cardiovascular 

risk factors vary by sex [34-36].  In a study of women of reproductive age from the San 

Antonio Heart Study, higher levels of mean glucose and insulin were observed among 

Mexican Americans with lower birth weight, but not among Non-Hispanic Whites [37].  

However, no differences were reported in lipid levels by ethnicity [37].  In a study of 

African American women from Philadelphia, birth weight was not associated with 

69 



 

measures of insulin and risk of diabetes [38].  Data on the associations of birth weight 

with risk factors for diabetes and cardiovascular disease in middle-aged U.S. women are 

lacking. 

 

The purpose of this study was to describe the relationship of low and high birth weight 

classification to the risk of developing type-2 diabetes and metabolic clustering – a 

condition similar to metabolic syndrome characterized by excess body fat and 

cardiometabolic dysfunction - in a population-based sample of middle-class, Caucasian 

women born post-World War II (1947 -1967) who were followed annually over a 15-year 

time period.  We also examined the association of birth weight groups with longitudinal 

changes over 15 years in carbohydrate metabolism and lipid measures, acknowledged 

risk factors for type-2 diabetes and cardiovascular disease.  We hypothesized that the 

lipid trajectories and the risk of developing metabolic clustering would be similar across 

the birth weight groups, but that women in the low birth weight group would have higher 

levels of glucose and insulin resistance and carbohydrate metabolism trajectories 

suggestive of glucose intolerance compared to women in the normal birth weight group.  

We further hypothesized that women in the low birth weight group would have an 

elevated risk for type-2 diabetes over time.  

 

METHODS 

Study Population. Participants were from the Michigan Bone Health and Metabolism 

Study (MBHMS), a longitudinal cohort study examining changes in women’s health prior 

to and through the menopause [39].  In 1988, a total of 543 women, aged 20-40 years and 
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who were offspring of participants from the Tecumseh Community Health Study 

(TCHS), were recruited and enrolled into MHBMS.  In 1992, a supplemental recruitment 

included an additional 121 age-eligible women who were residents of Tecumseh, 

Michigan but whose families were not TCHS participants.  Since 1992, participants have 

been evaluated annually over a 15-year time period, excluding two time periods with 

lapses in funding of 13 and 18 months duration.  This report includes data from 587 

(88.4%) women from a singleton birth for whom birth weight information was available.  

The collection of these data was approved by the University of Michigan Institutional 

Review Board.  

 

Birth Characteristics. At the 1988 examination, 97.6% of the MBHMS participants self-

reported weight at birth.  In 2008, women were asked to participate in a supplemental 

telephone-based interview to further describe their birth history.  Among the 561 women 

available for interview in 2008, 82% provided supplemental data.  As there was little 

variation between the self-reported birth weight data collected in 2008 compared to the 

1988 data, birth weights collected in 2008 were used for the 78 women for whom there 

was no 1988 birth weight data.  Based on clinically establish cut-points, birth weight in 

grams (g), was categorized into three groups: low (<2500 g), normal (2500-4000 g), and 

high (>4000 g).  

 

Carbohydrate Metabolism and Lipid Measures. Annual visits included the collection of 

health histories and physical assessment and the performance of phlebotomy.  Specimens 

were collected fasting and in days 2-7 of the follicular phase of the menstrual cycle.  For 
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amenorrheic women, specimens were collected on the anniversary of the woman's 

enrollment ± 15 days.  Biological samples were aliquoted and stored at -80 degrees 

Centigrade without thaw until assay.  

 

Lipids were assayed beginning in the second year (1993) of the study and included low-

density and high-density lipoprotein cholesterol (LDL-c and HDL-c, respectively), total 

cholesterol, and triglycerides.  Lipids were assessed from EDTA-treated plasma using an 

Eastman Kodak analyzer (model E700; Eastman Kodak Company, Rochester, NY, USA).  

Total cholesterol and triglycerides were analyzed by enzymatic methods and HDL-c was 

isolated using heparin-2M manganese chloride [40].  LDL-c was calculated using the 

Friedewald equation [41]. 

 

Specimens were assayed for glucose and insulin beginning in 1993.  Glucose levels were 

determined using a hexokinase-coupled reaction on a Hitachi 747-200 (Boehringer 

Mannheim Diagnostics, Indianapolis, IN, USA) and insulin levels were assayed with an 

RIA (DPC Coat-a-count, Los Angeles, CA, USA).  The homeostatic model-assessment 

insulin resistance (HOMA-IR) index was calculated as fasting insulin (μU/ml) multiplied 

by fasting glucose (mmol/L) divided by 22.5 [42]. 

 

Calibrated stadiometers and balance-beam scales were used to measure height and 

weight, respectively.  Weight, in kilograms, divided by the square of the height, in 

meters, provided the body mass index (BMI) measure. 
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Women were characterized as having diabetes based on a self-reported physician 

diagnosis or use of anti-diabetic medications at the time of the assessment.  Using a 

published definition of cardiometabolic clustering [43], women were classified as having 

metabolic clustering if they had at least two of the following six conditions: 1) a blood 

pressure measure greater than 135/85 mm Hg or use of anti-hypertensive medication; 2) a 

triglyceride level greater than or equal to 150 mg/dL; 3) a HDL-c level less than 50 

mg/dL or use of statins; 4) a glucose level greater than or equal to 100 mg/dL or use of 

anti-diabetic medications; 5) a HOMA-IR value greater than 5.2, the sample’s cut-off 

value for the 90th percentile; and 6) a C-reactive protein level greater than 0.74 mg/dL, 

the sample’s 90th percentile cut-off value. 

 

Statistical Analysis. Histograms for each outcome at every study visit were examined to 

ensure that the distributions were similar over the 15-year time period.  Outcomes that 

were not normally distributed were log-transformed for analyses, but were back-

transformed to their original scale for ease of interpretation.  Unadjusted mean and 

standard deviations of the carbohydrate metabolism and lipid measures by birth weight 

categories were estimated and tested for statistical significance using analysis of variance 

and least squared means.  

 

Since the study participants included sisters from the same nuclear family and data were 

longitudinal, linear mixed models were used to examine the effect of birth weight on the 

change in carbohydrate metabolism and lipids over time, accounting for within- and 

between-family variance and within-subject correlation.  Birth weight was a categorical 
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variable and statistical models included dummy variables for low and high birth weight, 

with normal birth weight as the referent group.  All models included family-level random 

intercepts and subject-level random intercepts and slopes.  The Akaike’s information 

criterion identified the best fitting covariance structure for the random effects and the 

residuals.  

 

Statistical models also included birth weight by time interactions to determine whether 

the fitted slopes of the metabolic measures varied over time by birth weight category. 

Models were adjusted for participant’s baseline age and current BMI at time of annual 

assessment. 

 

Generalized estimating equations (GEE) were used to estimate the baseline and annual 

risk of developing type-2 diabetes and metabolic clustering across the birth weight 

categories, accounting for the within- and between-family variance and the within-subject 

correlation.  The annual risk was estimated by including birth weight by time interaction 

terms in the models.  GEE models were adjusted for participant’s age at baseline and 

adult BMI.  Statistical significance was defined at α=0.05 and analyses were completed 

using SAS v9.2. 

 

RESULTS 

Self-reported birth weight was normally distributed with a mean of 3289 ± 580 g and 

range of 1531 to 5897 g.  Birth weights were classified as normal (mean=3291 g) in 
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81.9% of participants, low (mean=2208 g) in 9.2% of women and high (mean=4399 g) in 

8.9% of women.  

 

Cross-Sectional Analysis of Metabolic Measures. Glucose levels at the study baseline 

did not differ among low and high birth weight groups compared to the normal birth 

weight group.  In contrast, the baseline mean insulin and HOMA-IR levels in the high 

birth weight group were significantly higher compared the normal birth weight group 

(Table 3.1).  Mean baseline insulin level in the low birth weight group was 14.0 ± 6.8 

mIU/L and 14.3 ±10.1 mIU/L in normal birth weight group (p-diff=0.98); as compared 

with 18.4 ± 19.0 mIU/L in high birth weight group - a value 28.7% higher than the 

normal birth weight group (p-diff=0.05). 

 

While there were no differences in mean baseline triglyceride and HDL-c levels across 

birth weight categories, women in the low birth weight group had higher baseline mean 

total cholesterol and LDL-c levels compared to the normal birth weight group (Table 

3.1).  At baseline, the mean total cholesterol for the low birth weight group was 224.0 ± 

48.7 mg/dL compared to a mean of 204.2 ± 44.3 mg/dL for the normal birth weight group 

(p-diff=0.01).  Mean baseline total cholesterol in the normal birth weight women was 

comparable to the values observed in the high birth weight group [195.5 ± 36.5 mg/dL 

(p-diff=0.40)].  The baseline mean LDL-c level was 13% higher in the low birth weight 

group compared to the normal birth weight group (147.0 mg/dL vs. 130.6 mg/dL, p-

diff=0.03), but was 4% lower in the high birth weight group compared to the normal birth 

weight group (125.3 mg/dL vs. 130.6 mg/dL, p-diff=0.66). 
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Longitudinal Analysis of Metabolic Measures. Fitted slopes from the linear mixed 

models of the glucose trajectory was steeper for the high birth weight group compared to 

the normal birth weight group (p<0.01) (Figure 3.1A).  In the model that only included 

participant’s baseline age, glucose was an average of 2.02 mg/dL higher at baseline and 

increased at a rate of 0.63 mg/dL per year in the high birth weight group relative to the 

normal birth weight group.  While the inclusion of adult BMI attenuated the differences 

in the slopes of the glucose trajectories between high and normal birth weight women, 

they remained statistically significant (p<0.01) (Figure 3.1B).  No statistically significant 

differences in the glucose trajectories were observed between the low and normal birth 

weight groups. 

 

While there were differences in glucose levels and trajectories according to birth weight 

classification, we observed no differences in the insulin or HOMA-IR trajectories over 

time across the birth weight groups before or after adjustment for baseline age or adult 

BMI (Table 3.2). 

 

The low birth weight group had, on average, higher total, LDL-c, and HDL-c cholesterol 

measures at baseline, which declined over time (Table 3.2).  In comparison, the high birth 

weight group of women had, on average, lower total, LDL-c, and HDL-c cholesterol 

measures at baseline that increased over time (Table 3.2).  However, these patterns were 

not statistically significant in the models that adjusted for baseline age.  In the models 

that adjusted for adult BMI, the increases observed in total and LDL-c cholesterol levels 
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among the low compared to normal birth weight group and the decreases seen in total and 

LDL-c cholesterol levels among the high compared to normal birth weight group were 

strengthened (Table 3.2). 

 

Risk of Developing Diabetes and Metabolic Disease. When we estimated the baseline 

disease risk and the subsequent risk of developing type-2 diabetes and metabolic 

clustering, we found that low birth weight group had 0.36 (CI: 0.05-2.81) the odds of 

having diabetes at baseline compared to normal birth weight group and which increased 

by 7% (CI: -4%-20%) annually.  In contrast, the high birth weight group had 1.54 (CI: 

0.35-6.83) the odds of having diabetes at baseline relative to normal birth weight group 

and these odds decreased by 1% (CI: -10%-9%) annually.  These patterns remained after 

adjustment for baseline age and adult BMI (Table 3.3).  Low and high birth weight 

groups had a 1.31 (CI: 0.41-4.21) and 1.60 (CI: 0.24-10.46) baseline odds, respectively, 

of having metabolic clustering compared to normal birth weight women, but these 

estimates were also not statistically significant (Table 3.3).  These patterns remained after 

adjusting for baseline age, but inclusion of adult BMI in the models resulted in an 

increased risk of metabolic clustering to 1.61 (CI: 0.40-6.53) among women in the low 

birth weight group and decreased the risk of metabolic clustering to 0.66 (CI: 0.19-2.31) 

among women in the high birth weight group. 

 

DISCUSSION 

This study examined the relationship between birth weight and longitudinal measures of 

carbohydrate metabolism, lipids and the risk of developing type-2 diabetes or metabolic 
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clustering in a population-based sample of middle-class Caucasian women born between 

1947 and 1967.  Over the 15-year study period, high birth weight women experienced a 

steeper rate of change in their glucose levels compared to the rate of change among 

normal birth weight women.  Glucose trajectories were not different between low and 

normal birth weight women and insulin and insulin resistance trajectories were similar 

across the birth weight groups.  Although mean baseline total cholesterol and LDL-c was 

higher in the low relative to normal birth weight group, these differences were weaker in 

the longitudinal analysis.  Further, the longitudinal analysis showed that lipid trajectories 

over time as well as the baseline and annual risk of developing type-2 diabetes or 

metabolic clustering did not vary across the birth weight groups. 

 

This is one of the first studies to evaluate the relationship between birth weight and 

longitudinal changes in carbohydrate metabolism, lipids, and the risk of type-2 diabetes 

or metabolic clustering in U.S. adult women born in the post-war baby boom era. 

Although we observed no association between birth weight classification and insulin, 

insulin resistance, lipids, and risk of diabetes or metabolic clustering over time, our 

finding that high birth weight women had steeper increases in their glucose measures 

over time compared to normal birth weight women represents new information not 

previously described in the existing literature. 

 

In a review of 48 published reports that examined the relationship of birth weight to adult 

glucose measures, most studies reported that lower weight at birth was associated with 

higher levels of adult glucose [30].  However, these investigations did not examine the 
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glucose trajectories.  Our observation that women with higher weight at birth experienced 

a steeper rise in adult glucose measures that may indicate that high birth weight is a risk 

factor for the increasing prevalence of diabetes or the earlier presentation of diabetes. 

 

A number of factors may explain why different fitted slopes for glucose measures were 

seen among the high birth weight women in our study.  Compared to women in the low 

and normal birth weight groups, a larger proportion of the high birth weight women were 

born to older (>30 years old) mothers (data not shown), and this may reflect a distinct, 

and possibly adverse, fetal experience and/or a shared genetic environment.  Older 

maternal age is a risk factor for gestational diabetes [44, 45], and gestational diabetes is 

associated with larger babies at birth and higher levels of glucose and increased risk of 

type-2 diabetes later in life in both the mother and the offspring [29].  Barker has also 

proposed that high birth weight due to gestational diabetes may be one explanation for 

the association of fetal growth with increased risk for diabetes later in life [46]. 

 

Although steeper increases in glucose measures were observed in high birth weight 

women, the fitted slopes for insulin and insulin resistance did not differ by birth weight 

groups.  This finding has several interpretations.  First, while high birth weight women 

had increasing rates of glucose, this did not necessarily translate to adverse adult health.  

A critical period for muscle growth and liver development occurs in utero, and this 

muscle and liver development is the purported mechanism for the unfavorable adult 

health outcomes seen in low birth weight persons whereby slow fetal growth is associated 

with a disproportionate fat to muscle mass ratio and inefficient liver metabolism post 
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birth [7, 46-48].  By extension, the fetal growth in high birth weight individuals may be 

associated with a more favorable fat to muscle ratio and liver development after birth. 

 

A number of studies have reported that high birth weight was associated with higher 

levels of lean mass later in life [21, 22].  Indeed, in Chapter 2, we reported that high birth 

weight MBHMS women had higher adult body composition measures compared to 

normal birth weight MBHMS women, especially of lean and skeletal muscle mass.  

Muscle is important for glucose uptake and the liver is a site for glucose metabolism and 

enzymatic regulation of lipids and growth hormone.  Potentially, the profile of increases 

in glucose in high birth weight women in the presence of similar insulin and HOMA-IR 

may be an indication of increasing dissonance in liver metabolism relative to muscle 

metabolism.  The molecular mechanisms of insulin resistance are consistent with post-

binding defects in insulin receptor-mediated signal transduction in adipocytes and 

skeletal muscle.  It has been postulated that this signaling defect produces selective 

insulin resistance. Defects in glucose-stimulated insulin release may also be present.  It is 

uncertain whether having greater muscle mass among those with a higher birth weight is 

an adequate explanation or whether the events leading to higher birth weight alters the 

timing of glucose-stimulated insulin release. 

 

Evidence regarding associations between birth weight categories and cross-sectional 

measures of fasting glucose, insulin, and insulin resistance is inconsistent in the literature 

[30], although most studies suggest that lower weight at birth is correlated with higher 

levels of these measures.  Indeed, in our cross-sectional analysis, we observed higher 
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glucose levels among the low and high birth weight group compared to the normal birth 

weight group.  In a review of 25 studies that examined the relationship of birth weight to 

fasting glucose levels, 15 reported a negative association, while four reported no 

association and six reported a positive association [30].  When the authors reviewed 

studies of birth weight to levels of fasting insulin and insulin resistance, similar 

proportions were reported [30].  However, many of the reviewed studies reporting a 

negative association were based on data from older European populations and combined 

men and women [30].  Furthermore, different statistical methods were used across the 

studies and the review utilized only the direction of the association and not the magnitude 

of the statistical significance of the associations [30]. 

 

Few studies have described the relationship of birth weight to carbohydrate metabolism 

measures in U.S. female baby boomers [37, 38].  In a study of 228 Mexican American 

and 62 Non-Hispanic white women with a mean age of 32 years from the San Antonio 

Heart Study, significant mean differences in fasting glucose and insulin were seen only in 

the Mexican American women [37].  Although mean differences in fasting glucose and 

insulin were not seen among the Non-Hispanic white women, the highest mean glucose 

levels were observed among those in the highest birth weight tertile [37], which was 

consistent with our findings.  In a report of 67 African American women with a mean age 

of 28 years, no association between birth weight and levels of fasting insulin were seen 

[38].  
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We identified a weak relationship between low birth weight and higher lipid levels.  This 

is consistent with the existing literature which has described a weak inverse association 

between birth weight and lipids [31-33, 49].  In three reviews that encompassed more 

than 100 reports, the authors concluded that the lower levels of total cholesterol and 

LDL-c associated with higher birth weights was too weak to have any clinical or public 

health impact on adult chronic disease risk [31, 32, 49].  Additionally, we also showed 

that slopes fitted to the lipid measures did not differ across the birth weight categories. 

 

We examined birth weight categories as risk factors for incidence and prevalence of 

diabetes and metabolic clustering.  There were intriguing findings although the failure to 

achieve statistical significance probably reflects inadequate power in a relatively younger 

population.  Although not significant, low birth weight women had a lower baseline risk 

of diabetes and high birth weight women had a higher baseline diabetes risk compared to 

normal birth weight women.  Most prior literature has reported that low weight at birth 

was associated with an increased risk for diabetes, as described in a meta-analysis of 31 

previously published studies [18].  However, the magnitude and direction of diabetes risk 

among high birth weight persons have been inconsistent, with reports of decreased risk in 

large population-based studies [25-27] and increased risk among the Native American 

population where gestational diabetes is prevalent [28, 29]. 

 

Several mechanisms have been proposed to explain the increased risk for diabetes among 

those with low birth weight, including maternal under-nutrition during pregnancy, which 

is speculated to cause metabolic and endocrine changes in utero resulting in slower fetal 
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growth [3, 46].  Although we could examine the actual occurrence of maternal under-

nutrition in our population, these women, who were born in the post-WWII U.S., were 

much less likely to experience in utero maternal nutritional deprivation than women born 

during the worldwide economic depression of the 1930 and the ensuing world war where 

nutritional deprivation occurred in Europe, the Soviet Union, and parts of Asia. 

 

We also described a non-significant increased risk for developing metabolic clustering, 

which represented a more sensitive measure of metabolic syndrome, in both low and high 

birth weight women compared to normal birth weight women.  However, after 

adjustment for adult BMI, the risk was strengthened among the low birth weight, but 

became protective among the high birth weight, suggesting the risk for metabolic 

clustering is driven largely by adult BMI and less by birth weight.  

 

A strength of this study was the capacity to evaluate the effect of birth weight on repeated 

measures of carbohydrate metabolism, lipids, and disease risk in the same women over a 

15-year study period.  To our knowledge, this is the first examination of birth weight in 

relation to longitudinal changes in glucose, insulin, and cholesterol measures and to the 

risk of type-2 diabetes.  The ability to analyze data longitudinally provided new 

information about risk trajectories as women aged.  An often cited limitation in studies 

that explore the relationship between birth weight and chronic disease risk is the inability 

to control for confounding variables, such as sex, age, race, and socioeconomic status; 

however, the MBHMS population is a relatively homogeneous cohort of Caucasian 

women with similar socioeconomic status. 
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The study has limitations.  Though birth weight was self-reported, several investigations 

have identified the validity of self-reported birth weight data [50-52].  While 15 years of 

follow-up data were available, these were secured in adulthood and not during infancy or 

early childhood, the time period of rapid catch up growth, a characteristic that appears to 

exacerbate the association between low birth weight and disease risk [5, 7, 8, 13-15, 17].  

The age and sample size of the population contributed minimal power to detect risk 

differences between birth weight groups with respect to disease outcomes such as type-2 

diabetes. 

 

In summary, this examination of birth weight in relation to longitudinal measures of 

carbohydrate metabolism and lipids provided new information about the contribution of 

birth weight to glucose trajectories.  We observed steeper rates of change in glucose 

measures in the high birth weight group over 15 years, although we found no differences 

in the patterns of insulin, insulin resistance, and lipid measures over time as well as no 

differences on the risk for developing adult type-2 diabetes according to birth weight 

groups.  These findings provide additional insight about the possible etiology and role of 

fetal growth and development of glucose metabolism and regulation in women.  

Additional studies with longitudinal data are needed in order to determine whether these 

findings continue to be seen in other populations. 
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Table 3.1. Baseline Mean Carbohydrate Metabolism and Lipid Measures by Birth Weight 
Category in Women from the Michigan Bone Health and Metabolism Study, n=587 
  BIRTH WEIGHT CATEGORY 
  Low Normal High 
  (<2500 g) (2500 - 4000 g) (>4000 g) 
N (%) 54 (9.2%) 481 (81.9%) 52 (8.9%) 
Birth weight (g) 2208.1 ± 259.2 3290.6 ± 352.1 4398.5 ± 363.5 
Age (years) 37.7 ± 4.5 36.8 ± 4.9 36.0 ± 6.0 
      
CARBOHYDRATE METABOLISM    
Glucose (mg/dL) 87.2 ± 8.6 85.0 ± 14.1 88.1 ± 17.7 
Insulin (mIU/L) 14.0 ± 6.8 14.3 ± 10.1 18.4 ± 19.0a 
HOMA-IR 3.1 ± 1.8 3.1 ± 2.9 4.7 ± 8.6a 
BMI (kg/m2) 26.1 ± 6.6 26.3 ± 5.6 30.0 ± 6.7 
      
LIPIDS     
Total cholesterol (mg/dL) 224.0 ± 48.7b 204.2 ± 44.3 195.5 ± 36.5 
Triglycerides (mg/dL) 119.7 ± 85.6 114.3 ± 95.9 111.6 ± 52.7 
LDL-c (mg/dL) 147.0 ± 43.2a 130.6 ± 40.6 125.3 ± 32.7 
HDL-c (mg/dL) 53.8 ± 15.1 50.6 ± 12.8 47.9 ± 12.3 
ap<0.05 compared to Normal     
bp<0.01 compared to Normal     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Table 3.2. The Relationship of Low and High Compared to Normal Birth Weight on the Fifteen-Year Changes in Carbohydrate 
Metabolism and Lipids in 587 Adult Women from the Michigan Bone Health and Metabolism Study 

  Overall Mean Difference   Interaction with Time 
  Low Birth Weight   High Birth Weight   Low Birth Weight   High Birth Weight 
  β  SE p  β  SE p  β  SE p  β  SE p 
Carbohydrate Metabolism                 
Glucose (mg/dL)                 
  Model A1 1.42 1.88 0.45  2.02 1.83 0.27  -0.002 0.21 0.99  0.63 0.20 <0.01 
  Model B2 1.56 1.82 0.39  0.28 1.80 0.88  -0.017 0.21 0.93  0.57 0.20 <0.01 
log Insulin (mIU  /L)                 
  Model A1 0.01 0.09 0.88  0.15 0.09 0.08  0.005 0.007 0.49  -0.002 0.006 0.77 
  Model B2 0.03 0.07 0.70  -0.02 0.07 0.75  0.003 0.006 0.55  -0.010 0.005 0.06 
log HOMA  -IR                 
  Model A1 0.03 0.10 0.74  0.17 0.09 0.06  0.005 0.007 0.53  0.002 0.007 0.75 
  Model B2 0.05 0.08 0.53  -0.02 0.08 0.83  0.003 0.006 0.59  -0.007 0.006 0.22 
Lipids          
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Cholesterol (mg/dL)                 
  Model A1 12.36 6.45 0.06  -10.40 6.39 0.10  -0.56 0.57 0.32  0.71 0.55 0.20 
  Model B2 13.24 6.41 0.04  -18.87 6.42 <0.01  -0.60 0.55 0.27  1.21 0.54 0.02 
log Triglycerides (mg/dL)                 
  Model A1 0.08 0.07 0.30  0.02 0.07 0.77  -0.005 0.005 0.30  -0.007 0.005 0.19 
  Model B2 0.09 0.07 0.18  -0.14 0.07 0.04  -0.007 0.005 0.15  -0.004 0.005 0.38 
LDL-c (mg/  dL)                 
  Model A1 8.45 5.63 0.13  -7.81 5.56 0.16  -0.31 0.52 0.55  0.87 0.50 0.08 
  Model B2 9.12 5.56 0.10  -13.17 5.54 0.02  -0.35 0.51 0.49  1.17 0.50 0.02 
HDL-c (mg/  dL)                 
  Model A1 2.12 1.89 0.26  -2.68 1.86 0.15  0.03 0.14 0.82  0.17 0.14 0.22 
  Model B2 1.82 1.76 0.30   -0.67 1.74 0.70   0.06 0.14 0.68   0.25 0.13 0.06 
1Adjusted for Participant's Age at Baseline.               
2Adjusted for Particpant's Age at Baseline and Current Adult BMI at Time of Assessment.                 

 

 



 

 
Figure 3.1. Predicted Fasting Glucose (mg/dL) Trajectories for 54 Low Birth Weight 
Women (red dashed), 481 Normal Birth Weight Women (green solid), and 52 High Birth 
Weight Women (blue dotted) from the Michigan Bone Health and Metabolism Study, 
adjusted for Baseline Age (A) or Baseline Age and Adult Body Mass Index (B) 
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Table 3.3. Fifteen-Year Baseline and Annual Risk of Diabetes or Metabolic Clustering in 587 Women from the Michigan Bone Health and 
Metabolism Study, with a mean age of 37 years at 1992 Baseline  

  Unadjusted   Adjusted for Baseline Age Only   
Adjusted for Baseline Age and 

Adult BMI 

  Baseline Risk Annual Risk  Baseline Risk Annual Risk  Baseline Risk Annual Risk 

  (95% CI) (95% CI)   (95% CI) (95% CI)   (95% CI) (95% CI) 

Type-2 Diabetes          

Low Birth Weight 0.36 (0.05-2.81) 1.07 (0.96-1.20)  0.34 (0.04-3.02) 1.07 (0.95-1.21)  0.33 (0.03-4.36) 1.08 (0.93-1.25)

Normal Birth Weight Ref   Ref   Ref   

High Birth Weight 1.54 (0.35-6.83) 0.99 (0.90-1.09)  1.65 (0.38-7.11) 0.99 (0.90-1.08)  1.45 (0.35-5.98) 0.97 (0.88-1.07)

           
Metabolic Clustering   
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Low Birth Weight 1.31 (0.41-4.21) 1.06 (0.96-1.16)  1.29 (0.40-4.18) 1.06 (0.96-1.16)  1.61 (0.40-6.53) 1.03 (0.92-1.15)

Normal Birth Weight Ref   Ref   Ref   

High Birth Weight 1.60 (0.24-10.46) 1.02 (0.95-1.10)   1.59 (0.24-10.49) 1.02 (0.94-1.11)   0.66 (0.19-2.31) 1.00 (0.93-1.08)
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CHAPTER 4 

 

Influence of Mother’s Intrauterine Experience on Offspring Birth 
Weight 

 

ABSTRACT 

Much work has been done to understand the determinants of birth weight, with a primary 

focus on maternal factors, such as behavior during pregnancy and socioeconomic 

characteristics.  However, little is known about intergenerational determinants on birth 

weight and the impact of the mother’s own fetal environment on offspring birth weight.  .  

This study examined the association of a maternal grandmother’s pregnancy 

characteristics on her grandchildren’s birth weight.  

 

Women of the Michigan Bone Health and Metabolism Study (MBHMS) provided 

information about their own birth history and the birth histories of their offspring.  

Participant’s birth history included in utero smoking exposure, mother’s age at their birth, 

birth weight, and birth order.  Their offspring’s birth history included birth weight, sex, 

birth order, and birth date.  We evaluated the association of participant and offspring’s 

birth history with offspring birth weight using generalized linear mixed models, adjusting 

for family clustering. 
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Women exposed to cigarette smoke in utero had offspring who were an average of 136 

grams heavier than offspring whose mothers were not exposed to cigarette smoke in utero 

(p=0.02).  The offspring of women whose mothers were between 25-29 years old at their 

birth were an average of 157 grams heavier than the offspring of women born to mothers 

who were between 20-24 years old at their birth (p<0.01).  No association was seen 

between offspring birth weight and their mother’s first born status or by whether their 

mother was from a singleton or multiple birth. 

 

These findings suggest an intergenerational effect on birth weight along the maternal line.  

These results emphasize the importance of a healthful pregnancy, which may not only 

affect the long-term health of the immediate offspring, but may influence birth outcomes 

of future generations. 
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INTRODUCTION 

The impact of maternal factors, including behavior during pregnancy, social factors, and 

physical characteristics, on offspring birth weight has been well examined [1-8].  Several 

studies have also examined intergenerational effects in order to understand how parental 

birth characteristics, such as birth order, gestational age, and birth weight, may influence 

their offspring’s birth outcomes [9-17].  However, few studies have had the capacity to 

investigate grandparental pregnancy characteristics and a parent’s fetal experience on 

birth weights in later generations. 

 

A multigenerational cohort study of men and women born in 1958 in the United 

Kingdom found a positive association between grandchildren’s birth weight and 

grandmother height [18] and grandmother smoking behavior during pregnancy [19].  A 

similar association between higher grandchild birth weights among grandmothers who 

smoked during pregnancy was also reported in a more recent study completed among 

women in the United States [20].  In a Danish study of women born between 1959 and 

1961, the risk of women who were small for gestational age having children who are also 

small for gestational age was strongest among grandmothers with the shortest stature 

[13].  In addition, this same study showed that women with in utero smoking exposure 

were more likely to be born small-for-gestational-age, but were not at increased risk of 

delivering a child who was small for gestational age [13]. 

 

It has been proposed that the correlations in birth weight seen across generations, 

especially along the maternal line, may be due to an intrauterine programming effect 
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[21].  As oocytogenesis occurs during a female’s fetal development, it is feasible that 

information from a grandmother’s pregnancy can be transmitted to her grandchildren.  

Determining the extent to which pregnancy characteristics of earlier generations affect 

birth outcomes in subsequent generations may provide evidence of these potential 

programming effects.  Furthermore, understanding intergenerational effects on birth 

outcomes would provide valuable information to women as they plan their future 

pregnancies, emphasizing the importance of achieving and maintaining a healthy 

pregnancy. 

 

The purpose of this study was to further investigate the association of a mother’s own 

fetal experience with the birth weight of her offspring.  We hypothesized that 

grandmaternal behaviors and characteristics during pregnancy would be associated with 

grandchildren’s birth weight, independent of pregnancy characteristics in the mother. 

 

METHODS 

Study Population. The source population were mothers from the Michigan Bone Health 

and Metabolism Study (MBHMS), a women’s health study which has been previously 

described [22].  Briefly, the MBHMS is a prospective cohort study that investigates 

changes in women’s health through the reproductive years to the menopause transition.  

Enrollment began in 1988 and included 543 women, who were aged 20-40 years and 

daughters of study participants in the Tecumseh Community Health Study (TCHS).  In 

1992, recruitment was expanded in order to include age-eligible women whose families 

were not in the TCHS, resulting in the enrollment of an additional 121 women.  
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Therefore, in 1992, a total of 664 women, aged 24-50 years, were participants in the 

MBHMS. 

 

In 2008, 561 (84.5%) of the MBHMS participants who were still active were invited to 

participate in a supplemental telephone-based interview to more fully characterize their 

personal birth history and the birth histories of their children.  Among these women, 82% 

(n=460) completed the supplemental interview, 4% (n=22) refused or could not be 

located and 14% (n=79) could not be reached.  The collection of these data was approved 

by the University of Michigan Institutional Review Board. 

 

This analysis included birth history data from 935 children of 397 MBHMS participants 

who experienced at least one live birth and who had at least one singleton offspring for 

whom birth weight information was available.  The data from 22 MBHMS children were 

excluded from analyses because they were from a multiple birth (n=20) or had missing 

birth weights (n=2).  Data also included pregnancy characteristics on 320 mothers of the 

MBHMS participants (grandmothers), which described the birth history of the MBHMS 

participant. 

 

To allow for differentiation, the mothers of the MBHMS participants were labeled as 

“mother of index”, MBHMS participants were labeled “index respondent”, and children 

of MBHMS participants were characterized as “offspring”. 
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Birth Characteristic Measures. At the 1988 examination, 530 of the 543 enrolled women 

self-reported their weight at birth.  During the 2008 supplemental interview, index 

respondents self-reported additional characteristics about their own birth and provided 

characteristics about their children’s birth.  For their own birth histories, index 

respondents self-reported their birth weight (in pounds and ounces), whether they were 

from a singleton or multiple birth, their birth order, their date of birth, their mother’s date 

of birth, and if their mother's smoked during pregnancy.  For their offspring’s birth 

history, index respondents reported birth weights (in pounds and ounces), birthdates, sex, 

and the amount of weight gained (in pounds) during the pregnancy. 

 

Index Respondent Birth Characteristics. To estimate the mother of index’s age at time of 

birth, the index respondent’s birth date was subtracted from mother of index’s date of 

birth.  This variable was grouped into five age categories: 19 years or less, 20-24 years, 

25-29 years, 30-34 years, and 35 years or more.  Four categories were used to describe 

the in utero smoking exposure: mother smoked before but not during pregnancy, mother 

smoked before and during pregnancy, mother did not smoke, and does not know.  Since 

index respondent birth weights were collected in 1988 and there was little variation 

between the information gathered in 1988 compared to 2008, the 2008 index respondent 

birth weight data were used only if the birth weight data from 1988 were missing (n=78).  

Birth weight in grams (g) was categorized into three levels based on clinical cut-points: 

low, defined as less than 2500 g; normal, defined as 2500 to 4000 g; and high, defined as 

greater than 4000 g.  Singleton birth was determined using birth date information and was 

a dichotomized variable. 
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Offspring Birth Characteristics. The outcome of this study was the birth weight in grams 

(g) of the offspring.  Index respondent’s age at each offspring’s birth was calculated by 

subtracting the offspring’s date of birth from the index respondent’s birth date and was 

categorized into five age groups: 19 years or less, 20-24 years, 25-29 years, 30-34 years, 

and 35 years or greater.  Amount of weight gained during each pregnancy was classified 

into three categories: 15 pounds or less, 15-45 pounds, and over 45 pounds.  Smoking 

status at time of offspring’s birth was constructed from the MBHMS annual interview 

data and categorized into four groups: ex-smoker and quit before pregnancy, smoker 

during pregnancy, never smoker, and undetermined.  Offspring dates of birth determined 

first born and singleton birth status, which were also dichotomized variables. 

 

A summary of the index respondent and offspring birth characteristics is provided in 

Table 4.1. 

 

Smoking History Across Two Generations. The smoking history of the mother of index 

respondent and the index respondent was combined to create a variable that would 

capture different smoking exposures over two generations of pregnancies.  Four 

categories were developed: mother of index respondent smoked during pregnancy and 

index respondent did not, mother of index respondent did not smoke during pregnancy 

and index respondent did, both smoked during pregnancy, and neither smoked during 

pregnancy. 

 

98 



 

Statistical Analysis. Offspring birth weight was examined for normality and contingency 

tables were used to evaluate frequency distributions on the index respondent and 

offspring birth characteristics.  Least square means and trend tests evaluated statistically 

significant mean differences in offspring birth weight by the index respondent and 

offspring birth characteristics. 

 

Since there were 935 offspring from 397 index respondents (mothers), who were 

daughters from 320 mothers of index (grandmothers), linear mixed models were used to 

estimate the change in offspring birth weight associated with index respondent and 

offspring birth characteristics, while accounting for correlated variances within both 

family and maternal clusters.  Mother of index’s age at time of index respondent’s birth, 

index respondent’s birth weight, index respondent’s age at offspring’s birth, and amount 

of index respondent’s weight gain during pregnancy were also examined as continuous 

variables to investigate linear and quadratic relationships to offspring birth weight.  

Statistical significance was defined at α= 0.05 and analyses were completed using SAS 

v9.2. 

 

RESULTS 

Index Respondent Birth Characteristics in Relation to Offspring Birth Weight. Most 

offspring (37.6%) were born to index respondents whose mothers were 20-24 years old at 

the time of their birth, while 10.6% and 9.5% of offspring were born to index respondents 

whose mothers were teenagers or 35 years and older, respectively, at the time of their 

birth (Table 4.2A).  Index respondents born to mothers aged 20-24 years gave birth to 
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offspring who weighed less than offspring born to index respondents whose mothers were 

aged 25-29 years (3410 ± 552 g vs. 3573 ± 509 g; p<0.01) (Table 4.2A). 

 

The majority of offspring (66.4%) were born to index respondents who self-reported that 

their mothers did not smoke while pregnant; however, 20.3% of offspring were born to 

index respondents who reported that mothers did smoke during their pregnancy.  Index 

respondents who self-reported being exposed to smoking in utero gave birth to children 

who were an average of 90 g heavier compared to index respondents who self-reported 

no intrauterine smoking exposure, although these mean differences were not statistically 

significant. 

 

Birth weights of index respondents tracked with those of their offspring - low birth 

weight index respondents had children with the lowest weights at birth, while high birth 

weight index respondents had children with the highest weights at birth (p-trend<0.01). 

 

Offspring Birth Characteristics in Relation to Offspring Birth Weight. The mean birth 

weight of male and female offspring, born between the years 1964 to 2006, was 3483 ± 

559 g, with a range of 1332 to 5245 g.  As age of the index respondent at delivery 

increased, the average offspring birth weight also increased (p<0.01) (Table 4.2B).  

Weight gain during pregnancy tracked with offspring birth weight, such that index 

respondents who gained the least weight had offspring with the lowest average birth 

weights and index respondents who gained the most weight during the pregnancy had, on 

average, the heavier offspring (p-trend<0.01).  Index respondents who were smokers at 
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the time of offspring birth had offspring who were, on average, lighter (3411 ± 572 g) 

than index respondents who never smoked (3519 ± 548 g), but these mean differences 

were not statistically significant (p=0.07) (Table 4.2B).  Over 55% of the offspring were 

male and were an average of 151 g heavier at birth than their female counterparts 

(p<0.01). 

 

Offspring Birth Weight in Relation to Smoking History Across Two Generations. A 

total of 791 offspring had information on smoking exposure over two generations of 

pregnancies (Table 4.3).  For most offspring (57.5%), neither the mother of index 

respondent (grandmother) nor the index respondent (mother) smoked during pregnancy; 

however, in 20.2% of offspring, the mother of index respondent was not a smoker during 

pregnancy but the index respondent was, while in 16.4% of offspring, mother of index 

respondent smoked during pregnancy but index respondent did not.  Mean offspring birth 

weight was highest among those whose mother of index respondent (grandmother) 

smoked while pregnant, regardless of the smoking status of the index respondent 

(mother) (Table 4.3); however, only those with discordant smoking histories were found 

to have statistically significant mean differences.  Mean offspring birth weight was 3556 

± 608 g in those whose mother of index respondent (grandmother) smoked during 

pregnancy but index respondent (mother) who did not compared to a mean offspring birth 

weight of 3377 ± 567 g in those whose mother of index respondent (grandmother) did not 

smoke during pregnancy but index respondent (mother) did (p=0.03).  
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Adjusted Analysis. After accounting for the family and maternal clustering in offspring 

birth weights, the findings were consistent with those reported in the descriptive analyses 

(Table 4.4A and Table 4.4B).  Index respondents born to mothers aged 25-29 years had 

offspring who were an average of 157 g heavier compared to index respondents born to 

mothers aged 20-24 years (p<0.01), and this association remained after adjustment for all 

other index respondent and offspring birth characteristics (Table 4.4A).  As a continuous 

variable, offspring birth weight increased an average of 7 g for every 1-year increase in 

mother of index respondent’s age (p=0.10), but this association attenuated to 5 g after 

adjustment for all other index respondent and offspring birth characteristics (data not 

shown).  Index respondents who self-reported in utero smoking exposure gave birth to 

offspring who were an average of 136 g heavier relative to index respondents who self-

reported being born to a mother who never smoked (p=0.02), and this association was 

strengthened after adjustment (Table 4.4A).  Offspring birth weight increased by 21 g, on 

average, for every 1-kg increase in index respondent’s birth weight (p<0.01) and these 

associations remained after adjustment for all other birth characteristics. 

 

Index respondent’s age at offspring birth showed a curvilinear relationship to offspring 

birth weight (Figure 4.1A).  Offspring birth weight increased an average of 113 g for 

every 1-year increase in index respondent’s age until approximately age 31 years, at 

which time mean offspring birth weight began to decrease (p<0.01).  However, this 

association weakened to a 48 g average increase in offspring birth weight after 

adjustment for all other index respondent and offspring birth characteristics.  Index 

respondents who gained less than 15 pounds during pregnancy had offspring who were 
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an average of 347 g lighter (p<0.01), while index respondents who gained over 45 pounds 

during pregnancy had offspring who were, on average, 199 g heavier (p<0.01) than index 

respondents who gained between 15-45 pounds during pregnancy (Table 4.4B).  As a 

continuous variable, offspring birth weight increased by 253 g for every 10-lb. increase in 

index respondent weight gain until approximately 70 pounds when offspring birth weight 

began to decrease (p<0.01).  This association remained statistically significant even after 

adjustment (Figure 4.1B).  Index respondents who were smokers at the time of offspring 

birth had offspring who were, on average, 114 g lighter than index respondent who were 

never smokers (p=0.04), but this association was attenuated after adjustment for all other 

birth characteristics.  First born offspring weighed an average of 186 g less than non-first 

born offspring (p<0.01) and male offspring weighed an average of 158 g more than 

female offspring (p<0.01) and adjustment did not affect these associations. 

 

DISCUSSION 

In this examination of middle-class, Caucasian women from the midwestern United 

States, a woman’s own fetal experience was associated with the birth weight of her 

offspring.  Women who had self-reported in utero smoking exposure or who were born to 

older mothers had heavier offspring than women who did not self-report exposure to 

cigarette smoke in utero or who were born to younger mothers.  These findings suggest 

an intergenerational relationship along the maternal line, specifically that the 

characteristics and behaviors during the grandmother’s pregnancy were associated with 

her grandchildren’s birth weight.  
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Since women have a finite number of oocytes at birth, it has been proposed that the 

intrauterine growth of females may be implicated in generational associations along the 

maternal line [18, 21].  It is also speculated that generational effects are associated with 

shared genetic and environmental factors [23].  Studies have reported that parental [4, 6, 

7, 24] as well as grandparental stature [7, 18], representing a shared genetic and social 

environment, is positively associated with birth weight in subsequent generations.  

Emanuel showed that grandmaternal height and grandpaternal social class was positively 

associated with the birth weights in the offspring of their daughters [18], suggesting that 

the health and socioeconomic conditions of grandparents influenced the birth outcomes 

of the grandchildren.  Although we could not directly test this hypothesis, we speculate 

that investigations in the MBHMS would yield similar findings because the families from 

the MBHMS were from and continue to live in a similar geographic environment 

(Tecumseh, Michigan) and there is little variation in social position. 

 

Our finding that women with fetal exposure to tobacco tended to have heavier offspring 

was consistent with the few published studies that have evaluated pregnancy and smoking 

behavior across multiple generations [13, 19, 20].  Misra et al reported that offspring of 

non-smoking women who had in utero smoking exposure were an average of 244 grams 

heavier than offspring of non-smoking women who did not have in utero tobacco 

exposure [20].  Similarly, women from a 1958 birth cohort study in the United Kingdom 

described a positive relationship between grandmaternal smoking during pregnancy and 

grandchildren birth weight [19].  Klebanoff et al report that grandmaternal smoking does 

not increase risk for small-for-gestational age grandchildren [13].  Misra et al suggested 
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that the increased birth weights seen in grandchildren among grandmothers who smoked 

during pregnancy may be due to unmeasured confounding in which smoking behavior 

may reflect a higher socio-economic status [20].  However, this hypothesis is unlikely to 

fully explain our study’s findings because our sample population is so homogenous with 

respect to social position.  Rather, the higher birth weight seen in offspring of mothers 

with fetal smoking exposure may represent a protective adaptive response consistent with 

an intergenerational programming effect on female germ cells.  Further, our finding that 

mean offspring birth weight from grandmothers who smoked during pregnancy but 

mothers who did not was significantly higher than mean offspring birth weight from 

grandmothers who did not smoke during pregnancy but mothers who did was consistent 

with Misra et al who described an interaction between mother’s smoking and mother’s in 

utero smoking exposure on offspring birth weight [20]. 

 

Women born to mothers who were in their late twenties at their birth tended to have 

offspring with higher birth weights, particularly compared to women born to mothers 

who were in their early twenties - a relationship not described in the existing literature.  

Since most MBHMS participants were born in the late 1940s to 1950’s, this may reflect a 

baby boomer cohort effect , when women were marrying and starting families at a 

relatively early age [25]. 

 

A few studies have described an inverse relationship between maternal birth order and 

offspring birth weight [16, 26].  These studies suggested that the association of higher 

maternal birth order to lower offspring birth weight was contradictory because maternal 
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birth order is positively related to the mother’s own birth weight which, in turn, is 

positively associated to her offspring’s birth weights [16, 26].  An evaluation of offspring 

birth weights to index respondent birth order in the MBHMS revealed no significant 

findings (data not shown); however, the relationship of maternal birth order and offspring 

birth weight in MBHMS was strengthened after adjustment for grandmaternal age at time 

of index respondent birth, a characteristic strongly associated with maternal birth order.  

This suggests the need to control for grandmaternal age in an analysis of maternal birth 

order and offspring birth weight. 

 

We also reported a significant positive association between a mother’s birth weight and 

her child’s birth weight, a finding that has been consistently confirmed in a number of 

prior generational studies [9-15, 17, 18].  Our findings that mother’s age, amount of 

weight gained during the pregnancy, sex and birth order of the offspring were related to 

offspring birth weight replicates findings reported in the literature [2, 9, 14, 15, 18, 27].  

Furthermore, identifying that the relationship of maternal age and amount of weight gain 

during pregnancy on offspring birth weight is not a linear but quadratic function may 

provide additional evidence for use in clinical recommendations regarding optimal age 

for and nutrition during pregnancy. 

 

The ability to examine characteristics across two generations was a strength of this study.  

Many generational studies have been limited to associations between parents and 

children, with relatively few studies able to evaluate birth and pregnancy characteristics 

contributed about grandmother, mother, and children.  Moreover, using linear mixed 
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modeling permitted us to account for variability arising from family and maternal 

clusters, sustained our statistical power and sample size and enabled us to maintain a 

population-based sample thus improving overall generalizability.  While Misra et al used 

generalized estimating equations to account for the maternal clustering, only the eldest 

daughter was used from the second generation of families [20] as did the 

multigenerational examination of the 1958 United Kingdom birth cohort [18].  In 

addition, the MBHMS participants were interviewed about the birth characteristics of 

their offspring in 2008, when they were between 66 and 41 years of age and most had 

completed their childbearing.  In contrast, women in the study by Emanuel et al were 

only followed until aged 23 years, well before they may have completed their 

childbearing [18].  Finally, the MBHMS participants represented a population-based 

sample of middle-class, Caucasian women, the majority of whom were born and continue 

to live in Tecumseh, Michigan.  The homogeneity across the generation of families in this 

study allowed analysis of generational influences on offspring birth weight without the 

need to control for confounding factors such as race, socioeconomic status, and social 

environment – characteristics associated with variability in birth weights. 

 

Despite these strengths, there are some limitations. All index respondent and offspring 

birth characteristic data were self-reported.  However, several studies have reported on 

the ability of women to validly report their own birth weight [28, 29] as well as the birth 

weights of their children [30-32].  In addition, women’s self-reported fetal smoking 

exposure has been shown be a reliable measure [33].  We were also limited to 

grandmaternal pregnancy information and were unable to examine other grandmaternal 
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characteristics, such as stature, body size, or socioeconomic position, which may provide 

more insight about shared environmental or genetic factors.  However, a few studies have 

already described a positive association between grandchildren birth weight and 

grandparental stature and socioeconomic status [7, 18]. 

 

In conclusion, this study provides support for a matrilineal effect on birth weight.  Since 

ooctyogenesis begins in gestation and is finished well before birth, it is feasible that 

programming effects may be occurring at a follicular level.  These findings emphasize the 

importance of healthful pregnancies, which may affect birth and health outcomes across 

multiple generations.  Although we speculate that the increase in grandchildren birth 

weight seen among women who had in utero smoking exposure is a beneficially adaptive 

response, studies that can investigate the health outcomes of these grandchildren would 

be worth pursuing. 
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Table 4.1. Summary of Birth Characteristics by Mother (Index Respondent) and Offspring 
 Variable Variable Characterization 

Index Respondent 
(n = 397) 

Mother’s Age at 
Index Respondent 
Birth 

Continuous, in years, and 
Five categories: 

• 19 years or less 
• 20 - 24 years 
• 25 - 29 years 
• 30 – 34 years 
• 35 years or more 

Four categories: 
• Mother smoked before but not during 

pregnancy 
• Mother smoked before and during pregnancy 
• Mother did not smoke 
• Does not know 

In Utero Smoking 
Exposure 

Continuous, in grams, and 

Birth Weight 
Three categories: 

• Low (<2500 grams) 
• Normal (2500–4000 grams) 
• High (>4000 grams) 

Singleton Birth 
Status 

Two categories: 
• From a singleton birth 
• From a multiple birth 

Birth Order 
Two categories: 

• First born 
• Not first born 
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Table 4.1. Summary of Birth Characteristics by Mother (Index Respondent) and Offspring 
(cont.) 

Offspring of Index 
(n = 935) 

Mother’s Age at 
Offspring’s Birth 

Continuous, in years, and 
Five categories: 

• 19 years or less 
• 20 - 24 years 
• 25 - 29 years 
• 30 – 34 years 
• 35 years or more 

Continuous, in pounds, and  
Three categories: 

• <15 pounds 
• 15-45 pounds 
• >45 pounds 

Amount of Weight 
Mother Gained 
during Pregnancy 

Four categories: 
• Ex-smoker and quit prior to pregnancy 
• Smoker during pregnancy 

Mother’s Smoking 
Status at Time of 
Birth • Never smoker 

• Undetermined 

Birth Weight Continuous, in grams 

Birth Order 
Two categories: 

• First born 
• Not first born 

Sex 
Two Categories: 

• Male 
• Female 
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Table 4.2A. Distribution and Mean Offspring Birth Weight, in grams, by Mothers’ (Index 
Respondent) Birth Characteristics, Michigan Bone Health and Metabolism Study, n=935a  
  n (%) Mean ± SD 
Index Respondent Birth Characteristics     
Grandmother's Age at Mother's Birth    
   19 years or less 98 (10.6%) 3482 ± 571 
   20 - 24 yearsb 348 (37.6% 3410 ± 552 
   25 - 29 years 249 (26.9%) 3573 ± 509 
   30 - 34 years 143 (15.4%) 3473 ± 614 
   35 years and older 88 (9.5%) 3545 ± 556 
Grandmother's Smoking History    
   Smoked before but not during pregnancy 65 (7.0%) 3487 ± 542 
   Smoked before and during pregnancy 190 (20.3%) 3561 ± 568 
   Did not smoke 621 (66.4%) 3455 ± 547 
   Does not know 59 (6.3%) 3521 ± 658 
Mother's Birth Weightc,d   
   Low (<2500 grams) 86 (9.8%) 3297 ± 547 
   Normal (2500 - 4000 grams) 718 (81.6%) 3496 ± 545 
   High (>4000 grams) 76 (8.6%) 3702 ± 475 
Mother Singleton Birth    
   Yes  909 (97.2%) 3477 ± 561 
   No 26 (2.8%) 3680 ± 459 
Mother First Born    
   Yes  259 (27.7%) 3469 ± 566 
   No 676 (72.3%) 3488 ± 557 
aValues do not sum to totals because of missing data.   
bp<0.01 mean difference compared to 25-29 year olds   
cp<0.01 mean difference across all categories    
dp<0.01 test for trend   
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Table 4.2B. Distribution and Mean Offspring Birth Weight, in grams, by Offspring Birth 
Characteristics, Michigan Bone Health and Metabolism Study, n=935a  
 n (%) Mean ± SD 
Offspring Birth Characteristics     
Mother's Age at Offspring Birthb    
   19 years or lessc 85 (9.1%) 3314 ± 519 
   20 - 24 yearsd,e 307 (32.8%) 3414 ± 556 
   25 - 29 years 304 (32.5%) 3539 ± 533 
   30 - 34 years 172 (18.4%) 3586 ± 565 
   35 years and older 67 (7.2%) 3497 ± 643 
Mother's Weight Gain During Pregnancyb,f    
   15 pounds or less 31 (3.5%) 3066 ± 546 
   15 - 45 pounds 717 (81.4%) 3476 ± 538 
   Over 45 pounds 133 (15.1%) 3651 ± 615 
Mother's Smoking History    
   Ex-Smoker and quit before pregnancy 119 (12.7%) 3484 ± 557 
   Smoker during pregnancy 233 (24.9%) 3411 ± 572 
   Never Smoked 494 (52.8%) 3519 ± 548 
   Undetermined 89 (9.5%) 3473 ± 579 
Offspring First Bornf    
   Yes 391 (41.8%) 3365 ± 546 
   No 544 (58.2%) 3568 ± 553 
Offspring Sexf    
   Male 516 (55.2%) 3551 ± 578 
   Female 419 (44.8%) 3400 ± 523 
aValues do not sum to totals because of missing data.    

   bp<0.01 test for trend 
  cp<0.01 mean difference compared to 25-29 year olds and 30-34 year olds

   dp<0.01 mean difference compared to 30-34 year olds 
  ep<0.05 mean difference compared to 25-29 year olds 

fp<0.01 mean difference across all categories    
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Table 4.3. Frequency and Mean Offspring Birth Weights by Grandmother’s and Mother’s 
Smoking Behavior during Pregnancy, Michigan Bone Health and Metabolism Study, n=791 
 Grandmother (Mother of Index Respondent) Smoked 

During Pregnancy 

Yes No 

Mother (Index 
Respondent) 
Smoked During 
Pregnancy 

Yes 

 
46 (5.8%) offspring 
Mean birth weight =  

3570 ± 496 g 
 

160 (20.2%) offspring 
Mean birth weight =  

3377 ± 567 ga 

No 

 
130 (16.4%) offspring 455 (57.5%) offspring 

Mean birth weight =  Mean birth weight =  
3556 ± 608 ga 

 
3490 ± 524 g 

ap<0.05 mean difference 
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Table 4.4A. Change in Offspring Birth Weight, in grams, associated with Mothers’ (Index 
Respondent) Birth Characteristics, Michigan Bone Health and Metabolism Study, n=935 
  Unadjusted   Adjusteda 

β (SE)  p-value   β (SE)  p-value   
Index Respondent Birth Characteristics           
Grandmother's Age at Mother’s Birth       
   19 years or less 70 (79) 0.37  96 (79) 0.22 
   20 - 24 years Referent   Referent   
   25 - 29 years 157 (57) <0.01  145 (58) 0.01 
   30 - 34 years 64 (68) 0.35  12 (68) 0.86 
   35 years and older 133 (83) 0.11  96 (82) 0.25 
Grandmother's Smoking History       
   Smoked before but not during pregnancy 37 (90) 0.68  118 (88) 0.18 
   Smoked before and during pregnancy 136 (59) 0.02  154 (57) <0.01 
   Did not smoke Referent   Referent   
   Does not know 31 (95) 0.74  75 (98) 0.45 
Mother’s Birth Weight       
   Low (<2500 grams) -187 (79) 0.02  -201 (78) 0.01 
   Normal (2500 - 4000 grams) Referent   Referent   
   High (>4000 grams) 210 (82) 0.01  225 (83) <0.01 
Mother Singleton Birth       
   Yes  -185 (142) 0.19  -186 (137) 0.17 
   No Referent   Referent   
Mother First Born       
   Yes  -27 (50) 0.59  -56 (55) 0.31 
   No Referent     Referent   
aAdjusted for all other mother and offspring birth characteristics shown in Table 4.4A and Table 4.4B.    
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Table 4.4B. Change in Offspring Birth Weight, in grams, associated with Offspring Birth 
Characteristics, Michigan Bone Health and Metabolism Study, n=935 
 Unadjusted   Adjusteda 
 β (SE)  p-value   β (SE)  p-value 
Offspring Birth Characteristics           
Mother's Age at Offspring Birth       
   19 years or less -94 (61) 0.12  -32 (61) 0.60 
   20 - 24 years Referent   Referent   
   25 - 29 years 110 (40) <0.01  35 (41) 0.38 
   30 - 34 years 159 (50) <0.01  55 (52) 0.29 
   35 years and older 56 (70) 0.42  12 (70) 0.86 
Mother's Weight Gain During Pregnancy       
   15 lbs or less -347 (99) <0.01  -332 (93) <0.01 
   15 - 45 lbs Referent   Referent   
   Over 45 lbs 199 (52) <0.01  187 (52) <0.01 
Mother's Smoking History       
   Ex-Smoker and quit before pregnancy 31 (68) 0.65  -77 (67) 0.25 
   Smoker during pregnancy -114 (54) 0.04  -52 (54) 0.33 
   Never Smoked Referent   Referent   
   Undetermined -60 (81) 0.46  -50 (80) 0.53 
Offspring First Born       
   Yes -186 (30) <0.01  -196 (34) <0.01 
   No Referent   Referent   
Offspring Sex       
   Male 158 (33) <0.01  157 (32) <0.01 
   Female Referent     Referent   
aAdjusted for all other mother and offspring birth characteristics shown in Table 4.4A and Table 4.4B.     
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Figure 4.1. Relationship of Offspring Birth Weight to Mother’s Age at Offspring Birth (A) 
and Amount of Weight Gained During Pregnancy (B). 
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CHAPTER 5 

 

Conclusions 

 

SUMMARY OF FINDINGS 

This dissertation expands the scope of research on the developmental origins of health 

and disease by examining the relationship of birth weight to trajectories in body 

composition, carbohydrate metabolism, and lipids and to the risks of type-2 diabetes and 

metabolic clustering in a population of middle-class, middle-aged midwestern Caucasian 

women.  These women were born between 1942 and 1967 and were followed annually 

from 1992 to 2007.  We also evaluated the determinants of birth weight across two 

generations of pregnancies in order to understand the extent to which a woman’s own 

fetal experience may affect her children’s birth outcomes.  

 

Early research on the developmental origins of health and disease focused on the 

association between low birth weight and adult disease in English and Scandinavian 

populations born either early in the 20th century [1-3] or during wartime famine [4-6].  

However, this study examined categories of birth weight in adult women, and included 

high birth weight – a birth characteristic that may also represent a unique fetal 

experience, but has not been examined as frequently as low birth weight.  The burden of 

collecting both birth history information and adult health outcome data in study 

populations over time often precludes the opportunity to investigate effects on 

longitudinal outcomes of health and across generations.  Thus, earlier studies have 
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typically used retrospective historical data that collected adult health measures at one 

point or period in time.  The availability of birth history information from two 

generations, along with annually collected measures of adult health and disease, 

permitted us to examine the effects of birth weight on changes in health over time as well 

as the determinants of birth weights across generations.  Investigating longitudinal 

changes in health as well as generational determinants of birth weight in women may 

provide insight about the etiology of chronic disease in this population.  It may also 

inform the development of clinical recommendations, behavioral interventions, and 

public health policies aimed at reducing chronic disease incidence and improving the 

general health of women across the life span. 

 

In Chapter 2, we examined whether groups of low and high birth weight women had 

different trajectories in their body composition measures compared to women classified 

as having normal weight at birth.  We saw no significant differences between the groups 

of low and normal birth weight women, but we found that women classified as high birth 

weight continued to be heavier into adulthood.  Compared to normal birth weight women, 

high birth weight women had, on average, higher weight, height, BMI, hip and waist 

circumferences, and higher fat, lean, and skeletal muscle mass.  Notably, these 

differences were constant over time.  Waist-to-hip ratio was not different across the birth 

weight groups, suggesting that although high birth weight women had higher levels of fat 

mass, this excess adipose tissue was not centrally distributed. 
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In Chapter 3, we evaluated the risk profiles of diabetes and metabolic clustering - a 

condition similar to metabolic syndrome - across the birth weight categories.  We also 

investigated the longitudinal changes of cardiometabolic risk factors across the birth 

weight groups.  Compared to women in the normal birth weight group, women classified 

as high birth weight had an increased overall risk for type-2 diabetes and metabolic 

clustering.  Women categorized as low birth weight appeared to be less likely to develop 

type-2 diabetes, but more likely to develop metabolic clustering.  The low incidence of 

these diseases in this relatively young population of women likely decreased our power to 

detect statistically significant associations.  In our examination of cardiometabolic risk 

factors, no differences in the trajectories of insulin, insulin resistance, total cholesterol, 

triglycerides, and low- and high-density lipoprotein cholesterols by birth weight group 

were observed.  However, women who were categorized as high birth weight had steeper 

fitted slopes in their glucose measures, with levels that increased at an average rate of 

0.63 mg/dL per year relative to women in the normal birth weight women group. 

 

In Chapter 4, we shifted focus to intergenerational associations of birth weight, 

specifically examining whether a woman’s intrauterine environment can influence the 

birth weights of her offspring.  Using birth weight data collected about the MBHMS 

participants’ offspring, women who self-reported being exposed to cigarette smoke in 

utero or women born to older mothers (25 to 35 years) gave birth to offspring who were, 

on average, heavier than women who self-reported having no in utero smoking exposure 

or who were born to younger mothers (20 to 24 years).  We saw evidence of effect 

modification between grandmaternal and maternal smoking status during pregnancy on 
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offspring birth weight.  Specifically, offspring birth weight was lowest among mothers 

who were smokers and grandmothers who were nonsmokers, but offspring birth weight 

was highest among grandmothers who smoked during pregnancy regardless of maternal 

smoking status.  This evaluation of pregnancy data about mothers and their daughters 

provided support for an intergenerational effect on birth weight along the maternal line.  

These findings suggest that the behavior and health of women who are pregnant with 

daughters may affect not only the offspring from that immediate pregnancy, but also the 

offspring from their daughters’ future pregnancies. 

 

Critics of the developmental origins of health and disease paradigm describe a number of 

analytical problems prompting debate about whether the associations between early life 

growth and development and adverse health in adulthood are real [7-11].  Jaddoe et al 

provides a summary of the points most commonly made, which include inconsistencies in 

the findings, inadequate statistical methods, inappropriately addressed confounding, 

selection bias, satisfying the criteria for causal associations, the biological mechanisms, 

and the strength of public health impact [10].  In the next section, I address some of these 

criticisms within the context of this dissertation research.  In the section that follows, I 

discuss the implications of some of these criticisms to general developmental origins of 

disease research and offer suggestions for future research in evaluating the developmental 

origins of health and disease.  I conclude with a discussion of how the findings from this 

dissertation may be used to inform clinical guidelines and public health policy and 

interventions. 
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STRENGTHS AND LIMITATIONS 

Inconsistencies in the Findings. Our findings that low birth weight women in the 

MBHMS did not have higher levels of body composition, carbohydrate metabolism, 

lipids nor increased risk for developing type-2 diabetes seems discordant with prior 

studies that have described associations between lower weights at birth and higher levels 

of fat mass [12, 13], glucose [14], total and low-density lipoprotein cholesterol [15-18], 

and increased risk for diabetes [19-23].  However, most of the previous research has been 

undertaken in populations whose early life experience differs substantially from the 

population of women in the MBHMS.  Many of the earlier research studies used 

retrospective historical cohorts in populations born prior to or during the World Wars, 

when family size, family dynamics, and the overall social environment were different 

[24].  For instance, the men in the studies from Hertfordshire, England were born 

between 1911 and 1930 [1], men and women of the Helsinki Birth Cohort were born 

from 1924 to 1944 [20, 21], and women of the Nurses Health Study were born from 1921 

to 1946 [25].  The majority of cohorts from these earlier studies would have come from 

larger families and be born to women who were smaller and less educated [24].  These 

period effects would likely result in differences in the association between early life 

experiences and adult health.  The women of MBHMS were born during a post-WWII 

era, from 1942 to 1967, to mothers who were of middle-class status.  In turn, present-day 

women in Michigan are heavier than their own mothers, more educated, and having 

children at later ages.  Acknowledging these period differences, emphasizes the 

importance of evaluating development origins of disease studies within the context of the 
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birth cohorts [24].  Law and Baird suggest that the evidence from developmental origins 

research should be interpreted in consideration of changes within generations [24].  

Therefore, the findings of low birth weight and adverse adult health reported in earlier 

studies and our finding that high birth weight was associated with higher body 

composition levels and steeper rates of change in glucose may be legitimate when 

considered within the context of secular trends and the birth cohort. 

 

Incomplete Statistical Analysis. A primary strength of our study was the ability to 

examine the same population of women using 15 years of annually collected data.  

Despite the three-level hierarchical structure of the data, we were able to employ 

statistical approaches that included linear mixed modeling and generalized estimating 

equations to account for the family and subject clustering as well as the within-subject 

variance inherent in longitudinally-collected data.  Our adjustment for random effects at 

both the family and maternal level in our examination of intergenerational effects 

permitted us to use the birth weights of all offspring from a given MBHMS participant, 

thus curtailing the loss of statistical power.  Prior intergenerational studies used first-born 

children only or randomly selected a single offspring [26-28]. 

 

Confounding. Another major strength of our study was the homogeneity of our study 

population.  All the MBHMS women (and therefore their mothers) were Caucasian.  

Most of the MBHMS women were born in Tecumseh, Michigan and continue to reside 

there.  Although it is possible that their offspring may be of mixed-Caucasian descent, we 
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believe this is unlikely in the majority of these births because Tecumseh continues to be 

an area with a racial composition of primarily Caucasians. 

 

Confounding due to socioeconomic factors is a criticism of many studies of the 

developmental origins of disease, including inability to adjust for socioeconomic status 

(SES) in adulthood as well as at birth [9].  The MBMHS population is a relatively 

homogeneous with respect to SES.  The city of Tecumseh, Michigan was and continues 

to be largely rural middle-class community.  The participants of the Tecumseh 

Community Health Study (TCHS), the study that comprised of the parents of the 

MBHMS women, were middle-class and the MBHMS participants were also middle-

class.  Further, when we evaluated the education levels of the MBHMS participants, most 

had some college-level education, which is an indicator of middle-class status.  Thus, 

women in the MBHMS likely retained the same SES from birth through adulthood. 

 

The appropriateness of adjusting for measures of adult body composition (primarily, 

adult body mass index) in analyses of birth weight on adult lipid measures and risk for 

metabolic diseases is controversial because these measures may be in the causal pathway 

of birth outcomes to adult disease [9, 10, 15].  Indeed, our findings reported in Chapter 2 

provided evidence that high birth weight resulted in higher adult body size.  Lucas et al 

observed that the inclusion of adult body size in examinations of birth size on adult 

disease is not an adjustment, but rather alters the exposure from birth outcomes to post-

birth growth patterns [9-11].  Therefore, we analyzed the effect of birth weight on 
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measures of carbohydrate metabolism and lipids and risk for diabetes and metabolic 

clustering with and without the adjustment for adult BMI. 

 

Critics have suggested that the association between low birth weight and adverse health is 

not a result of development in a sub-optimal fetal environment, but rather continued 

exposure to an unhealthy environment during childhood and adulthood [29].  Therefore, 

characteristics and behaviors that contribute to an unhealthy environment, such as 

smoking and alcohol use, sedentary lifestyle, poor nutrition, and poverty, should be 

controlled for in studies that examine early life factors and adult health.  Our relatively 

small sample limited the ability to control for these behavioral characteristics in our 

analysis.  However, prior studies with larger sample sizes, and thus statistical power, 

have reported that adjustment for these factors attenuates, but does not eliminate the 

association between restricted fetal growth and subsequent disease [3, 9, 25, 29, 30].  For 

example, research from the Nurses Health Study showed that adjustment for smoking and 

alcohol use, poor diet, ethnicity, physical activity levels, and socioeconomic status had 

little effect on the association of low birth weight on the risk for cardiovascular disease 

[25]. 

 

Selection Bias. Critics have argued that developmental origins studies that used large 

historical cohorts may be susceptible to selection bias because these cohorts had 

significant loss to follow-up and/or investigators used only a small proportion of the 

entire cohort [8, 10].  We believe, however, that our study was less likely to be prone to 

selection bias.  We were able to use birth weight and adult health measures on 587 
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(88.4%) out of the 664 women who were enrolled in 1992, 21 (3.2%) of whom were 

excluded because they were from a multiple birth.  Although selection bias can occur 

with a small percentage of loss to follow-up, we saw no evidence that women without 

birth weight data experienced different adult health outcomes than those with birth 

weight data.  

 

In contrast, the birth history data, including birth weights, of the MBHMS participants 

and their offspring were self-reported and may be subject to recall bias.  We see some 

evidence of this in our comparison of birth weights collected in 1988 and 2008.  While 

mean differences were similar between the 1988 self-reported birth weight data and the 

2008 documented birth weight data, there were statistically significant mean differences 

between the 1988 data and the 2008 data that were collected from memory (Table 1.3).  

Mean birth weights collected from the memories of participants’ parents were higher than 

the 1988 mean birth weights; however, mean birth weights recalled from the participant’s 

own memory were lower than the 1988 mean birth weights.  Therefore, we minimized the 

use of the 2008 birth weight data by using it only when it was missing from the 1988 

dataset, comprising of only 12.8% (n=78) of the cohort. 

 

Additional Strengths of the Study. The ability to prospectively examine body 

composition, carbohydrate metabolism, and lipid measures as well as risk for diabetes 

and metabolic clustering in adulthood is a strength of this study.  The women in the 

MBHMS were well into middle age at the end of the 15 years of follow-up, the time 

frame in which diabetes and metabolic conditions are more likely to be present.  Since 
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these health outcomes have a long latency period, their frequent follow-up is often a 

limitation in many cohort studies because of the cost and potential loss to follow-up in 

study populations followed over long periods of time. 

 

This study has good external validity.  The use of a population-based study sample was a 

good representation of U.S. middle-class Caucasian women.  The offspring of the 

MBHMS participants were not limited to those who were first born or were randomly 

selected from one child in the family, which has been done in other intergenerational 

studies [26-28].  This improved the study’s generalizablity because many U.S. families 

have more than one child. 

 

FUTURE DIRECTION OF DEVELOPMENTAL ORIGINS RESEARCH 

Causality and Biological Mechanisms. Birth weight is recognized as a crude marker of 

the fetal experience, since different genetic environments and maternal characteristics can 

give rise to the same weight at birth [19, 31, 32].  Therefore, comprehending what birth 

weight truly represents with respect to the intrauterine environment is challenging.  Law 

et al describe birth weight as a “summary measure of growth over a specified period 

reflecting length, body mass and head size, which in turn reflects skeletal and muscle 

growth, fat mass, and organ size” [33].  Langer describes four determinants of normal 

fetal growth: 1) genetics; 2) fetal hormones (e.g. insulin); 3) uterine constraints (e.g. 

placental function) and; 4) maternal risk factors (e.g. pre-pregnancy body size and 

amount of weight gained during pregnancy) [34].  Consistent with the concepts 

underlying the developmental origins paradigm, a change in the intrauterine milieu (i.e. a 
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developmental insult) that causes an alteration in any of these four determinants of 

normal fetal growth would give rise to abnormal fetal growth.  Indeed, risk factors 

associated with macrosomic or large for gestational age infants include excessive weight 

gain in pregnancy, tall maternal height, mother being multiparous, ethnicity, maternal 

history of type-2 diabetes and/or gestational diabetes, maternal history of a macrosomic 

birth, and high pre-pregnancy BMI [34-36].  In contrast, determinants of low birth weight 

and small for gestational age infants include insufficient weight gain in pregnancy, short 

maternal height, mother being nulliparous, ethnicity, smoking in pregnancy, maternal 

history of low birth weight infant, and low pre-pregnancy weight [37, 38].  

 

The inclusion of maternal characteristics and additional birth outcomes would contribute 

greatly to describing the quality of the fetal environment and to understanding the 

mechanisms by which intrauterine and early life development cause disease [8-11, 19, 

32].  Furthermore, the continued promotion of research that focuses on the identification 

of additional developmental insults as well as epigenetic research, including 

understanding the mechanisms by which these insults or gene-environment interactions 

operate, is important.  Along with animal models, clinical trials, and observational 

studies, study populations should continue to include twins and multiple generations of 

families, which can better control for shared genetic and social factors.  Given the 

influence of period effects previously discussed, research should proceed to include 

various populations, in both developed and developing countries, and across different 

social classes and racial/ethnic groups, while considering the context of time that 

generations were born.  Of note, current medical advances have improved the likelihood 
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of survival in very low birth weight and/or extremely premature infants, as well as the 

safe delivery of infants who are large for gestational age [24].  What the fetal experience 

of these infants represents and their potential influence on adult disease remains to be 

seen. 

 

For this dissertation research, we did not include information on maternal characteristics, 

and their investigation could provide additional understanding of the MBHMS women’s 

fetal experience.  However, future research on developmental factors and health in this 

study population could involve the incorporation of data from the TCHS, which would 

provide information about the health and behaviors about the parents of the MBHMS 

participants, including characteristics and risk factors in mother’s of the MBHMS 

women.  Furthermore, our collection of birth history data among MBHMS offspring 

included information about the MBHMS participants’ pregnancies, including amount of 

weight gain and presence of maternal disease (Appendix A).  Therefore, if data on the 

postnatal health outcomes of the MBHMS offspring were to be collected, future studies 

could evaluate the developmental origins of health and disease in the MBHMS offspring. 

 

We also recognize that the relatively small sample size of the MBHMS is a limitation for 

much developmental origins research.  However, there are a number of research studies 

in different study populations and from developing and developed countries that can be 

used to further investigate these relationships.  These include the continued use of 

historical birth cohorts such as the Helsinki Birth Cohort, which is comprised of nearly 

16,000 subjects whose data includes birth outcomes, childhood growth, and multiple 
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measures of adult health [39].  Studies of U.S. populations include the Nurses Health 

Studies, which comprise of three age cohorts of nearly 240,000 female nurses with 

longitudinally collected adult health measures, birth outcomes, and intergenerational data 

[40], the Health Professionals Follow-Up Study, a cohort study of over 50,000 U.S. men 

that began in 1986 and also includes birth weight and longitudinal adult health data [41], 

and the Framingham Heart Study, which has followed over 5,200 adults since 1948 and, 

in 1971 and 2002, recruited and enrolled the children and grandchildren, respectively, of 

the original cohort [42].  Research should also continue to examine diverse populations, 

including investigations in developing nations, such as the New Delhi Birth Cohort Study 

[42], and in minority groups, such as the Native American Indian tribes, which may have 

birth and adult health measures through medical record data from the Indian Health 

Service. 

 

In addition, newly established longitudinal cohort studies in pregnant women and infants 

aimed at examining multiple aspects and exposures that may influence growth and 

development include the Generation R Study in Rotterdam, The Netherlands, which 

recruited nearly 10,000 pregnant women who delivered between April 2002 and January 

2006 [43], and the National Children’s Study in the United States, which intends to 

follow approximately 100,000 U.S. children from birth to age 21 years and began 

recruitment of pregnant women from select locations in 2009 [44].  Although the 

availability of the data from the Generation R Study and the National Children’s Study as 

they relate to health and disease later in life will not be ready for several years, these 
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studies would potentially provide valuable insight about the developmental origins of 

health. 

 

Replication of Findings. In addition to research aimed at understand the biological 

mechanisms and causal associations of the developmental origins of health and disease, 

research should confirm our findings that high birth weight is associated with steeper 

adult glucose trajectories.  This observation is new and efforts to replicate these results in 

other study populations are needed.  The differences in the risks of type-2 diabetes and 

metabolic clustering by birth weight group that was observed in our study should be also 

confirmed using larger study populations that have greater statistical power.  This 

requires the use of large cohorts with longitudinally collected data, such as the Nurses 

Health Study or the Framingham Heart Study.  Further, the replication of research in 

these larger study populations may also generate new ideas about biological and social 

mechanisms and may help to explain how early life development affects disease later in 

life. 

 

The investigation of the role of intergenerational effects on health and disease in 

subsequent generations should also be pursued.  We found an association of 

intergenerational effects on birth weight along the matrilineal side of the family; 

however, the information about the pregnancy characteristics in the mothers of the 

MBHMS participants was limited in this body of work.  Moreover, our analysis of 

maternal age and weight gain during pregnancy on offspring birth weight maybe 

suggestive of an optimal amount of weight gain and an ideal age to reproduce.  These 
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findings should be replicated in other studies, especially among other racial/ethnic 

groups.  In addition, whether and how these intergenerational influences affect health 

when the offspring are adults is not known.  While there is some evidence in studies of 

offspring whose mothers were prenatally exposed to the affects from the Dutch Hunger 

Winter famine [45-47], studies such as the Nurses Health Study or the Framingham Heart 

Study, which have collected health data among their study subject’s offspring, could be 

extended to families who were not exposed to extreme maternal malnutrition. 

 

SUGGESTIONS FOR CLINICAL RECOMMENDATIONS AND PUBLIC 

HEALTH POLICIES AND INTERVENTIONS 

While more research on the developmental origins of disease is needed, the evidence that 

early life experiences affect adult health and disease is compelling.  In fact, within the 

context of this dissertation, we showed that in Caucasian women high weight at birth 

tracks to high weight in adulthood.  Further, these high birth weight women are at an 

increased risk for delivering high birth weight children.  Given the continued rise in 

obesity prevalences in the United States [44], a break in this perpetual cycle of high birth 

weight across generations may aid in curbing the obesity epidemic.  In addition, the 

general understanding that the health of women prior to conception and the growth and 

development of offspring through early adolescence, which likely extends across multiple 

generations, may have important public health significance.  Thus, clinical 

recommendations and public health programs and policies are proposed. 
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Clinical Recommendations. Our finding that grandmaternal pregnancy characteristics 

may be associated with birth outcomes in grandchildren demonstrates the need to collect 

parental health histories from pregnant women and women who are planning a 

pregnancy.  This may include information such as parental smoking behavior and alcohol 

use, body size, and socioeconomic indicators.  In addition to grandparental risk factors, 

maternal risk factors should also be more thoroughly gathered, including history of birth 

weights, disease and infection, and amount of weight gain in previous pregnancies, the 

presence of current chronic disease, smoking behavior, and body size.  With this 

information, clinicians may be better equipped to identify women who are at an increased 

risk for delivering a low or high birth weight infant and to create tailored health 

guidelines that include the ideal amount of weight that should be gained in pregnancy and 

the optimal age for childbearing.  In addition, as the technology of fetal monitoring 

becomes more advanced and with the collection of these grandparental and maternal risk 

factors, clinicians may be better informed about the need to induce labor, particularly 

among pregnancies with prolonged gestation, in an effort to prevent the birth of very 

heavy infants. 

 

When the delivery of a low or high birth weight infant occurs, grandparental and parental 

risk factors should also be collected in an effort to determine the possible explanations for 

the birth outcome.  If, for example, genetics likely explains the birth outcome (e.g. 

grandparents had small stature and mother was short), then further monitoring or 

recommendations for changes in behavior may not be warranted.  However, if the 

presence of maternal diabetes likely explains the birth outcome, clinicians may 

134 



 

recommend different feeding protocols to minimize birth weight tracking or may desire 

special monitoring for adverse health outcomes later in life.  

 

Public Health Interventions. In addition to clinical recommendations aimed at 

preventing adverse birth and adult health outcomes, public health interventions targeted 

to women planning a pregnancy, women already pregnant, or new mothers could be 

developed or more strongly reinforced.  By considering the familial risk factors and the 

woman’s reproductive history, these programs could all be tailored specifically for 

women who are at an increased risk for delivering offspring with an adverse birth 

outcome (e.g. high or low birth weight infant).  For women planning a pregnancy, these 

programs may involve recommendations for behavioral changes in diet or physical 

activity in order to achieve the ideal body size prior to becoming pregnant.  For pregnant 

women, interventions may include targeted prenatal care for dietary changes in order to 

achieve optimal weight gain.  While for new mothers, particularly those with a low or 

high birth weight infant, programs may involve becoming educated about specialized 

feeding protocols and monitoring the infant’s weight in an effort to limit rapid catch-up 

growth [in low birth weight babies] or to minimize obesity in early life tracking into 

adulthood. 

 

Public Health Policy. The transparency and availability of one’s own birth outcomes as 

well as parental health histories may be valuable for all individuals interested in risk 

factor identification for adult disease.  This may be achieved with a public health policy 

that includes the standardization of the collection of these data on all birth certificates.  
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Furthermore, the inclusion of parental health information, such as weight, height, and 

smoking behavior, on birth certificates will serve as grandparental health histories when 

the given individual is ready to begin his/her childbearing. 

 

 

 

CONCLUSIONS 

The developmental origins of health and disease research has expanded beyond low birth 

weight and maternal malnourishment to include maternal and birth characteristics, 

experiences, and insults that better represent the quality of early life growth and 

development.  This dissertation further extends the current developmental origins 

research to investigate adult risk factor trajectories, risk profiles of chronic disease over 

time, and intergenerational effects.  As this research continues to evolve and progress, we 

anticipate a greater understanding of the biological and social mechanisms of chronic 

disease and an increase in the general awareness of the importance of early life 

experiences on health later in life.  This knowledge will continue to have important 

implications in the development of public health policies and interventions as well as 

clinical recommendations aimed at improving women and children’s health across the 

lifespan and preventing adult chronic disease. 
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MICHIGAN BONE HEALTH AND METABOLISM STUDY 
PROTOCOL FOR THE COLLECTION OF BIRTH HISTORY DATA 

 
The Michigan Bone Health and Metabolism Study (MBHMS) is a prospective cohort study that 
was established to examine changes in women’s health through the menopause transition.  A 
total of 664 women were enrolled into MBHMS at baseline, which began in 1988.  Participation in 
MBHMS comprises of health evaluations and interviews and subjects are currently completing 
their 13th evaluation over the past 19 years. 
 
MBHMS will continue to examine the effect of the menopause transition on changes in women’s 
health.  However, in 2008, a new study aim will be implemented to examine the effect of the 
women’s birth and pregnancy characteristics on her subsequent development of select chronic 
disease in adulthood.  For this aim, participants will be asked to provide information about their 
birth and, if applicable, their pregnancies and the births of their children. 
 
Study Participants 
Participants for this new study aim will comprise of all women who are currently participating in 
MBHMS.  There are no exclusion criteria - all women who are willing to participate will be eligible. 
Women who are lost to follow-up or who have asked to no longer participate in the study will not 
be pursued to contribute.  Of the 664 women who were enrolled at baseline, 12 are deceased 
and 521 participated in the 2006 evaluation, resulting in a participation rate of 79.9%. 
 
Methodology 
 
Data Collection 
Participants will be sent a letter about this new study aim (Appendix A).  To collect data that are 
as accurate as possible, this data collection effort will encourage participants to use their birth 
certificate information for birthweight and gestational age and, if applicable, the birth certificate 
information of their children for the same information.  Within 1 month of receiving this letter, 
participants will be contacted via telephone and, upon consent, asked to complete a telephone-
based interview (Appendix B).  In addition to the letter, the information packet will include the 
interview and a description of what is being consented to by participating in the telephone 
interview.  Trained staff who have an established rapport with the participants will administer the 
phone interviews.  The phone interviews are anticipated to take between 10-20 minutes to 
complete.   
 
Measures 
Data gathered from the interview comprise of information about the participant’s own birth, her 
pregnancy history, and the birth history of her children.  Specific measures include: 
 
Birth Characteristics of Participant 

o Birthweight 
o Gestational Age 
o Singleton or Multiple birth 
o Age of mother at birth 
o Birth order 
o Mother’s smoking status at birth 

 
Participant’s Pregnancy History 

o Ever pregnant 
o Number of live births 

 
Birth Characteristics of Participant’s Children 

o Date of birth 
o Birthweight 
o Gestational age 
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o Type of delivery 
o If pregnancy occurred due to infertility treatment 
o Occurrence of pregnancy-related conditions (i.e., gestational diabetes, pre-

eclampsia)  
 

Data Management 
To ensure the participant’s anonymity, no personal identifiers will be included on the interviews. 
The same MBHMS identification number that has been used in prior evaluations will be used to 
differentiate all participants.  This will also ensure that the data collected for this aspect of the 
study can be linked to data already collected in previous examinations.  A data entry system will 
be created using Epi-Info 6 and all data will be entered by trained staff. All forms and 
questionnaires completed will be secured in locked files and be accessible to only qualified staff. 
 
Anticipated Timeline 
 
o January 2008: Pretest and finalize phone interview questionnaire and create data entry 

system 
o February 2008: Finalize and send letter to all currently active participants 
o March – April 2008: Begin and complete phone interviews to all currently active participants 
o April – May 2008: Complete data entry 
 
 
 
 
 
 
 
 



 

 
Date 
 
Participant’s Address 
City, State Zip Code 
 
 
Dear Participant: 
 
Thank you for your continued participation and dedication to the Michigan Bone Health and 
Metabolism Study.  With your help, we are able to better understand what causes and risk factors 
are associated with the development of adult chronic diseases, such as osteoporosis, 
osteoarthritis, diabetes, cardiovascular disease, and cognitive functioning.  In addition to this 
research, we are now also interested in learning how certain characteristics of your birth, such as 
birth weight or whether or not you were premature, may relate to the development of these 
chronic diseases as an adult.  We are hoping you are willing to participate in this new area of 
study! 
 
For this study, we plan to complete a phone interview with you in which we ask you a series of 
questions about your birth and, if you have children, the birth of your children. To ensure the birth 
information you give us is as precise as possible, we are asking you to refer to your birth 
certificate.  We plan to begin these phone interviews in March 2008 and we anticipate they will 
take between 10-15 minutes to complete.  We have enclosed a consent form which describe your 
rights as a study participant and a copy of the phone questionnaire, so that you will be aware of 
the information we will be asking you. 
 
If you have questions about this new phase of the Michigan Bone Health and Metabolism Study, 
please feel free to contact us at….. 
If there is a specific day and time you wish to be contacted for your phone interview, please feel 
free to call….to set up an appointment.   
 
Thank you again for your dedication and we look forward to talking to you this spring! 
 
 
Sincerely, 
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BIRTH HISTORY QUESTIONNAIRE 

  
Respondent MBHMS ID: _________________ 
Respondent DOB: ____ / ____ / ________ 

Date of Interview: ____ / ____ / ________                          
 
 
We are interested in learning more about how birth characteristics relate to health and 
disease as an adult.  This first series of questions are related to your own birth.  
 
SECTION A: BIRTH CHARACTERISTICS 
 
A1. What was your birthweight, in pounds and ounces?  __________lbs.  ___________oz. 
 
A2. How many weeks was your mother pregnant with you when she delivered you? 
 

________ weeks 
 
A3. Were you a single birth or from a set of twins, triplets, or more? (Please select.) 
 
  ____ Single birth (go to A4) 
             ____ Multiple birth (specify) _________________ (go to A3a) 
 
 A3a. Where you born first, second, third, or more?      Birth order: 
_____________________ 
 
A4. How old was your mother when you she delivered you? ______________ years old 
 
 
 
SECTION B: BIRTH HISTORY VALIDATION   
 
B1. Were all of the above questions answered using information on your birth certificate?  
  
  _______ Yes (go to SECTION C)             

_______ No (go to B1a) 
 
 B1a. Please explain your source of information for the answers to the above questions: 
 ______________________________________________________________________ 
 ______________________________________________________________________ 
 ______________________________________________________________________ 
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The following questions ask about your mother’s health when she was pregnant with you.  
 
SECTION B: MOTHER’S PREGNANCY HISTORY 
 
B1. How many children did your mother already give birth to before she gave birth to you?  
 
  ________ previous live births 
 
B2. Did your mother smoke cigarettes before or during her pregnancy with you? (Please select.) 
 
  ________ smoked before pregnancy but stopped during pregnancy 
  ________ smoked before and during pregnancy 
  ________ did not smoke before or during pregnancy 
  ________ don’t know 
 
 
 
This next section asks about your pregnancies and about the birth of your children. 
 
SECTION D. PREGNANCY CHARACTERISTICS  
 
D1. According to previous interviews, you have been pregnant ____ times. Is this correct? 
  
  If zero, STOP! END OF QUESTIONNAIRE. 
  If greater than zero, go to D2. 
 
D2. We also show that, of these pregnancies, ___ resulted in a live birth. Is this correct? 
 
  If zero, STOP! END OF QUESTIONNAIRE. 
  If greater than zero, go to SECTION E. 
 
 
I am now going to ask you a series of questions about your pregnancies and the births of 
your children, starting with your oldest child and finishing with your youngest child. 
 
INTERVIEWER: For each live birth reported, please ask the above questions and complete 
the following grid with the responses provided.  
 
SECTION E. BIRTH HISTORY OF CHILDREN 
 
E1. What is his/her year of birth? 
 
E2. What is his/her sex? 
 
E3. Do you have a copy of his/her birth certificate to refer to for the next set of questions?   
 
E4. What was his/her birthweight, in pounds and ounces? 
 
E5. How many weeks were you pregnant when you delivered him/her? 
 
E6. Did you have any pregnancy-related health conditions, such as extreme nausea, 
hypertension/preclampsia, gestational diabetes, infection, pre-term labor, or depression? 
 
E7. How much weight, in pounds, did you gain during this pregnancy? 
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E8. Did you become pregnant because of fertility treatments? 
 
E9. Did you deliver vaginally or did you have a Cesarean/C-section? 



 

 E1.  
Year of 
birth 

E2.  
Sex 

E3.  
Used birth 
certificate 

E4. 
Birthweight 

E5. 
Gestational 
age 

E6. 
Maternal conditions during 
pregnancy (check all that 
apply) 

E7.
Weight gain 
during 
pregnancy 

E8.
Used 
infertility 
treatments 

E9. 
Type of 
Delivery 

1st 
Child 

  
___Male 
 
 
___Female 
 

 
_____Yes  
 
_____No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 

 
________lbs 

 
_______Yes 
 
 
_______No 

 
____Vaginal 
 
 
____Cesarean 

2nd 
Child 

  
___Male 
 
 
___Female 
 

 
___Yes  
 
___No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 

  
_____Yes 
 
 
_____No 

 
___Vaginal 
 
 
___Cesarean 

 
 
 

3rd 
Child 

  
___Male 
 
 
___Female 
 

 
___Yes  
 
___No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 

  
_____Yes 
 
 
_____No 

 
___Vaginal 
 
 
___Cesarean 

4th 
Child 

  
___Male 
 
 
___Female 
 

 
___Yes  
 
___No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 

  
_____Yes 
 
 
_____No 

 
___Vaginal 
 
 
___Cesarean 
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5th 
Child 

  
___Male 
 
 
___Female 
 

 
___Yes  
 
___No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 
 

  
_____Yes 
 
 
_____No 

 
___Vaginal 
 
 
___Cesarean 

 
 
 

6th 
Child 

  
___Male 
 
 
___Female 
 

 
___Yes  
 
___No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 
 

  
_____Yes 
 
 
_____No 

 
___Vaginal 
 
 
___Cesarean 

7th 
Child 

  
___Male 
 
 
___Female 
 

 
___Yes  
 
___No  

 
_____lbs 
 
 
_____oz 

 
_______wks 

___Extreme Nausea 
___HTN/Preclampsia 
___Gestational Diabetes 
___Infection 
___Pre-term labor 
___Depression 
___Other, specify: 
 
 
 

  
_____Yes 
 
 
_____No 

 
___Vaginal 
 
 
___Cesarean 

 
 
These are all the questions we have for you. Thank you for your time and willingness to talk with us! 
 
 

END OF INTERVIEW. 
 

 
Interviewer Notes:  
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