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ABSTRACT 
 
 

NOTCH-REGULATED MECHANISMS OF EPITHELIAL CELL FATE 
SELECTION IN THE INTESTINE 

 
by 
 

Kelli L. VanDussen 
 

Chair:  Linda C. Samuelson 
 

 

Throughout the lifetime of an organism, progenitor cells in the intestine 

proliferate and differentiate to form cells of the secretory and absorptive lineages.  

Many intercellular signaling pathways, including the Notch pathway, coordinate to 

develop and maintain the intestine.  My thesis work has investigated how Notch 

signaling regulates intestinal cell fate using several novel genetically engineered 

and pharmacological mouse models.  Developmental analysis of a transgenic 

mouse model with forced expression of the Notch-regulated transcription factor 

Mouse atonal homolog 1 (Math1) showed increased numbers of all secretory cell 

types and loss of absorptive cells, demonstrating that Math1 is the key factor 

regulating intestinal secretory cell differentiation.  Furthermore, these data 

suggest that Math1 can redirect a bipotential progenitor cell to the secretory cell 

fate.  To study the role of Math1 in adult intestine, I describe an inducible Math1 

transgenic model; however, Math1 protein was not increased subsequent to 



 xvi 

transgene activation, suggesting that there may be active degradation of Math1 

protein in the intestine.  Previous studies have shown that inhibition of Notch 

signaling resulted in decreased epithelial cell proliferation and altered cell fate, 

suggesting that a stem or progenitor cell is targeted by Notch signaling; however, 

the identity of this target was unknown.  Pharmacological inhibition of Notch 

signaling in both fetal and adult intestine showed that expression of Olfactomedin 

4 (Olfm4), a crypt base columnar stem cell gene, was markedly decreased upon 

Notch inhibition.  Transcriptional studies in the human colon cancer cell line 

LS174T confirmed that Notch signaling activated OLFM4 gene expression and 

identified a region containing critical cis-regulatory DNA elements.  Finally, I 

made the novel observation that a population of intermediate cells that express 

both goblet and Paneth cell markers emerged upon Notch inhibition in adult 

mouse ileum and colon.  In conclusion, my thesis research has shown that Math1 

is the key regulator of secretory cell differentiation in the intestine and that Notch 

signaling directly targets the crypt base columnar stem cell.  Collectively, these 

studies have provided important information about Notch-regulated mechanisms 

of intestinal development and cell lineage determination. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 

 

Throughout the life of an organism, intestinal stem and progenitor cells are 

continuously dividing and differentiating to replenish the epithelial layer.  This 

process is integral to preserving sterility of the internal environment and a 

sufficient epithelial surface for digestion and absorption of nutrients.  Due to the 

close proximity of the epithelium to the external environment, the stem and 

progenitor cells must be able to respond and adapt to not only intrinsic cues, but 

also to a variety of environmental cues, in order to establish the correct balance 

of proliferation versus differentiation at any given time.  As such, the processes of 

intestinal development and maintenance involve integration of many signals and 

are orchestrated by fundamental signaling pathways including Notch, Wnt, 

Hedgehog (Hh) and Bone Morphogenetic Protein (BMP)1.  During adaptive 

responses or disease states, the equilibrium of signaling is changed, resulting in 

altered proportions of undifferentiated (proliferative) cells versus differentiated 

cells or of specific differentiated cell types.  Thus, a fine-tuned and complex 

balance of many signals controls intestinal development, maintenance and 

response to stressors. 

The general structure of the developing and adult intestine is shown in 

Figure 1-1.  The mature intestine is composed of four main differentiated cell 

types including the absorptive enterocytes which are the most abundant intestinal 

cell and three secretory (granulocytic) cell types: the mucus-producing goblet 

cells, the anti-microbial peptide-producing Paneth cells and the hormone-

releasing endocrine cells.  With the exception of Paneth cells, differentiation of  
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intestinal progenitor cells occurs with a specific spatial distribution with the least 

differentiated cells at the base of the crypt and the oldest differentiated cells at 

the tip of the villus.  Stem cells, progenitor cells, and Paneth cells are anchored in  

the crypts while mature enterocytes, goblet cells and endocrine cells are located 

on the villi.  Stem cells give rise to the rapidly proliferating transit amplifying 

progenitors located in the mid to top of the crypts.  Several crypts surround the 

base of each villus and provide the mature cell types that migrate out of the 

crypts and onto the villi in organized columns where they eventually reach the 

villus tip, undergo apoptosis, and are shed into the intestinal lumen2.  It is unclear 

whether apoptosis initiates the shedding event or whether it is secondary to 

detaching from the basement membrane; however, intestinal barrier function is 

maintained by a yet unidentified substance that seals the gap created by the 

shed cell3.  The migratory path from crypt to villus tip takes 3-5 days.  In contrast 

to the other mature cell types, Paneth cells migrate to the base of the crypts 

where they reside for approximately 20 days before being phagocytosed by 

neighboring cells2, 4.  The perinatal intestine does not have crypts or Paneth cells; 

these structures and cells arise 2-3 weeks after birth.  Instead, proliferating cells 

are located in the so-called “intervillus zone”.  Relatively little is known about how 

the processes of cytodifferentiation, allocation to the absorptive versus secretory 

lineage, and terminal differentiation of the mature epithelial cell lineages are 

regulated, although critical transcription factors and signaling pathways are 

beginning to be elucidated.  This thesis addresses the critical role of Notch 

signaling in epithelial lineage decisions during intestinal development and 

maintenance of the adult intestine. 

 

Formation and Patterning of the Gut Tube 
The gastrointestinal tract is composed of cells originating from each of the 

three germ layers: the epithelium from endoderm, the mesenchyme (muscle, 

myofibroblasts, etc.) from mesoderm, and the enteric nervous system from 

ectoderm.  Although differentiation of the endoderm is not fully understood, cell 

fate mapping studies have identified key morphological movements during 
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embryogenesis and determined which regions of the gut tube contribute to 

various digestive organs5.  In mouse, the primitive, endoderm-derived gut tube 

closes by embryonic day 9 (E9).  During formation of the gut tube, cellular 

migration and morphological changes are occurring at the same time, as 

stratified squamous endodermal cells are becoming a pseudostratified columnar 

epithelium layer which will eventually form a single-cell thick columnar epithelium. 

The gut tube can be subdivided into ventral foregut, dorsal foregut, midgut, and 

hindgut regions, which begin to express different gene sets that control formation 

of the endodermal organs5.  The ventral foregut gives rise to liver, ventral 

pancreas, lung, and stomach while the dorsal foregut gives rise to esophagus, 

dorsal pancreas, stomach and duodenum.  The midgut and hindgut give rise to 

the small and large intestines, respectively5. 

The mouse homeodomain transcription factor caudal type homeobox 2 

(Cdx2) is part of the parahox gene cluster6 and has a conserved function in gut 

tube formation from flies to humans.  Following gastrulation in mice (E7.5+), 

Cdx2 is expressed highly in posterior gut endoderm7, prior to expression of most 

hox genes.  Expression of this gene becomes restricted to the intestinal 

epithelium over time with high nuclear expression throughout the small intestine 

and proximal colon8.  Until recently, the function of Cdx2 in the endoderm was 

unable to be studied in vivo due to early lethality of Cdx2 null mice; it was thought 

that Cdx2 null embryos did not survive the pre-implantation period due to loss of 

Cdx2 expression in the trophectoderm during this early developmental stage9.  

The early lethality was circumvented by using a Cre-loxP transgenic mouse 

approach.  The Foxa3-Cre transgenic line which expresses Cre in early 

endoderm was used to cause recombination of floxed Cdx2 alleles, effectively 

generating a Cdx2 null mouse post-implantation (Foxa3-Cre; Cdx2flox/flox)10.  

These Cdx2 mutant mice died shortly after birth; however, the intestinal 

phenotype could be analyzed during developmental stages.  Cdx2-deficient 

intestine showed loss of all differentiated intestinal cell types and down-regulation 

of many intestinal genes.  Instead, many esophageal-type genes were expressed 

in the distal intestinal domain suggesting that anterior-posterior patterning had 
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been disrupted and the intestine had adopted a more anterior identity10.  Thus, 

Cdx2 is essential for proper anterior-posterior patterning of the gut tube and 

functions to promote intestinal fate and inhibit anterior (esophageal) fate in the 

midgut and hindgut. 

Two other mouse Cdx homologs, Cdx1 and Cdx4, did not display gut 

phenotypes in mouse11, 12.  Interestingly, Cdx1 was found to be significantly 

decreased in the Foxa3-Cre;Cdx2flox/flox mutant.  Together with data showing that 

Cdx1 expression is activated in the gut endoderm about 3 days later than Cdx28, 

this suggests that Cdx2 may be upstream of Cdx1.  Indeed, Cdx2 appears to be 

a master regulator of intestinal identity that functions upstream of multiple 

intestinal transcription factors including Cdx1, Isx, Hnf1α, and HNF4α, which in 

turn can function with Cdx2 to activate the intestinal gene program10. 

In frog, the Cdx homologue Xcad3 activates posterior hox gene 

expression to regulate development of the posterior gut13.  A similar mechanism 

does not appear to be acting in the development of the mouse gut since the hox 

gene code was largely unaffected in the Foxa3-Cre;Cdx2flox/flox mouse10.  In 

addition, another gene belonging to the parahox cluster, Pdx1, which is 

expressed in the antrum, duodenum, and pancreas, was found to be unaffected 

in the Cdx2 mutant mouse intestine suggesting that some endodermal patterning 

can be maintained in the absence of Cdx2. 

In addition to its patterning role during development, Cdx2 appears to be 

important for maintenance of the mature intestinal epithelium; loss of Cdx2 in the 

intestine is associated with colorectal cancer.  Ninety percent of heterozygous 

Cdx2+/- mice developed metaplastic colonic polyps by 3 months of age in regions 

in which Cdx2 expression was lost by an unknown mechanism9.  Moreover, Cdx2 

expression is reduced or lost in many human colon cancer cell lines14 and 

mutations in Cdx2 were discovered in a subtype of human colorectal tumors15.    

In contrast to Cdx2 expression being lost in intestinal cancers, ectopic Cdx2 in 

non-intestinal tissues is associated with cancer progression in Barrett's 

esophagus16 and gastric cancer with an intestinal metaplasia phenotype17.  

Transgenic expression of Cdx2 in the stomach resulted in emergence of 
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intestinal-type goblet cells and expression of intestinal genes including alkaline 

phosphatase, villin, intestinal fatty acid binding protein, and trefoil factor 3 (Tff3), 

suggesting that Cdx2 is the driving force behind intestinal metaplasias18.  Thus, 

Cdx2 functions as a master regulator of the intestinal differentiation gene 

program and can ectopically activate this gene program in metaplasias of other 

endoderm-derived organs. 

 

Role of Epithelial-Mesenchymal Signaling in Intestinal Development and 
Homeostasis 

In addition to anterior-posterior patterning, the developing intestine is 

patterned along the crypt-villus axis.  Interactions between the epithelium and 

mesenchyme are thought to be key for villus formation, crypt formation and 

epithelial maintenance.  Key pathways participating in intestinal epithelial-

mesenchymal “cross-talk” are Hh, BMP, and Wnt signaling.  Mutations in these 

pathways cause general loss of villus and/or crypt morphology or changes to the 

distribution of cell types along the crypt-villus axis.  Current research in the field 

is attempting to understand the particular effect of each signaling pathway; 

however, since there is considerable interaction between these pathways, it has 

been difficult to dissect the direct and indirect phenotypes resulting from 

perturbations of this complex regulation network.  As an example, in Chapter 2, I 

used an epithelial-specific transgenic mouse to alter cell lineage allocation and, 

as a consequence, the mesenchyme was remodeled.  This study demonstrates 

the close relationship between the epithelial and mesenchymal compartments. 

 

Hedgehog Signaling Restricts the Proliferative Zone in the Intestine 
In the intestine, Hh signaling is strictly paracrine with the pathway ligands 

Sonic hedgehog (Shh) and Indian hedgehog (Ihh) being secreted from the 

epithelium to activate their receptors Patched1/2 and effectors Gli1/2/3 in the 

mesenchyme19, 20.  Ihh and Shh are expressed in the gut endoderm in 

overlapping patterns at E8.521, 22.  This expression pattern is restricted towards 

the epithelium of the intervillus zone by late fetal development23.  Mice deficient 
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in Shh (Shh-/-) or Ihh (Ihh-/-) died perinatally and exhibited many gastrointestinal 

defects23. Shh-/- mutants displayed excessive and ectopic neuronal differentiation 

while Ihh-/- mutants often lacked neurons in portions of the small intestine 

demonstrating that these ligands regulate migration, proliferation and/or 

differentiation of the enteric nervous system during development23.   A redundant 

role for the Hh ligands was observed with respect to muscle development with 

both mutants exhibiting loss of smooth muscle23. In addition to their 

mesenchymal abnormalities, Shh and Ihh mutants also displayed epithelial 

phenotypes suggesting that there is a feedback mechanism that can signal from 

the mesenchyme back to the epithelium in response to Hh signaling.  Ihh-/- mice 

had reduced proliferation in the intervillus zone with reduced villus size; in 

contrast, Shh-/- mice had overgrowth of villi suggesting that Shh and Ihh play 

opposing roles in epithelial stem cell maintenance23.  A mouse model that drove 

expression of a secreted form of the pan-hedgehog inhibitor Hhip from the 

intestinal epithelium via the villin promoter showed increased proliferation and 

formation of ectopic crypt-like structures, impaired villus formation, and reduced 

smooth muscle20.  A similar phenotype was observed when neonatal mice were 

treated with a Hh neutralizing antibody24. Thus, the combined effect of the Shh 

and Ihh signal is important for smooth muscle proliferation and/or differentiation, 

villus formation, and restriction of the proliferative compartment to the intervillus 

zone in perinatal intestine. 

 

BMP Signaling Restricts Crypt Number in the Intestine 
Similar to Hh signaling, BMP signals are also paracrine; however, the 

direction of the BMP signal is from the mesenchyme to the epithelium.  The BMP 

ligands, BMP2 and BMP4, are expressed in the intestinal mesenchyme with their 

receptor, BMPR1a, expressed in the epithelium25, 26.  Signaling activity is 

transduced through the cytoplasm to the nucleus by the SMAD transcription 

factors.  SMAD4 is a common mediator shared by the TGFβ, activin, and BMP 

pathways and, for BMP signaling, SMAD1, 5, and 8 are the receptor-activated 

SMADs27. Thus, active BMP signaling as determined by the presence of nuclear 
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phospho-SMAD1, 5, and 8 transcription factors occurs in the villus epithelium25. 

BMP signaling is inhibited in the crypt epithelium due to expression of the BMP 

antagonist noggin in this region26.  A transgenic mouse in which the villin 

promoter was used to drive expression of xenopus noggin (X-noggin) presented 

with ectopic crypt structures in 3-month old adult mice and adenomatous foci 

development in older adult mice25 suggesting that BMP signaling normally 

functions to limit crypt number.  These types of epithelial changes are 

reminiscent of a rare, autosomal-dominant gastrointestinal syndrome called 

familial juvenile polyposis (FJP), which is characterized by development of many 

hamartomatous polyps throughout the gut.  Mutations in SMAD4 and Bmpr1a 

have been identified in patients with FJP28-30 implying alterations in BMP 

signaling in the pathogenesis of this syndrome.  Indeed, a second mouse model 

in which the Bmp1ra receptor was conditionally inactivated using the interferon-

inducible Mx1-Cre also exhibited polyp formation26.  Loss of Bmpr1a specifically 

in the epithelium showed increased epithelial proliferation and a defect in 

secretory cell differentiation, but not formation of ectopic crypts or polyps31. 

Comparison of the epithelial-specific Bmpr1a knock-out mouse model with the X-

noggin and Mx1-Cre;Bmpr1a models, which had inhibition of BMP signaling in 

both the epithelium and mesenchyme, suggests that mesenchyme has a larger 

role in progression to polyps in FJP because epithelial-specific loss of BMP 

signaling did not result in polyp formation.  In addition, these data show that BMP 

signaling is important for limiting epithelial stem cell proliferation and blocking the 

formation of ectopic crypts in the intestine.  Furthermore, since BMP4 is 

positively-regulated by Hh signaling and the ectopic crypt phenotype in villin-Hhip 

and X-noggin mice is similar20, 25, it is likely that BMP signaling is a key factor 

mediating Hh signaling in the intestine to restrict the proliferative zone. 

 

Wnt Signaling Promotes Intestinal Proliferation 
In opposition to the anti-proliferation effect of the Hh and BMP signaling 

pathways, Wnt signaling is the key pathway promoting proliferation in the 

intestinal crypts.  Overactive Wnt signaling such as that seen in the APCmin 
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mouse model leads to enlarged crypts with enhanced proliferation and 

progression to adenocarcinoma32, 33.  Conversely, blocking Wnt signaling by 

forced expression of the secreted Wnt inhibitor Dickopff (Dkk1) or inactivation of 

the critical Wnt pathway components T-cell-specific transcription factor 4 (Tcf4) 

or β-catenin leads to decreased proliferation and crypt loss34-37.  There is 

evidence that non-canonical Wnt signaling is important for aspects of 

gastrointestinal development38; however, canonical Wnt signaling through β-

catenin and Tcf4 appears to be the most important for stem cell proliferation in 

the intestine34, 35.  Downstream targets of Tcf4-mediated Wnt signaling include 

critical pro-proliferation genes such as c-Myc39, 40 and Cyclin D141, 42.  The 

canonical Wnt ligands Wnt3, Wnt6, and Wnt9B are expressed in the crypt 

epithelium as are the Frizzled receptors 5, 6, and 7 and LRP5 and 6 co-

receptors43.  Thus, the pathway components for activation of signaling are 

present in the epithelium.  In addition, subepithelial myofibroblasts have been 

shown to express Wnt family genes and may also be a source of Wnt signaling43. 

However, to date, the “true source” of Wnt ligand has not been identified and, in 

fact, could potentially be coming from multiple sources.  Whatever the source, 

active Wnt signaling appears to be restricted to the crypts based on location of 

nuclear β-catenin and Wnt target gene expression40, 44. It is likely that multiple 

signals act to restrict Wnt to the crypt base with Hh signaling being one of these 

opposing signals.  Accordingly, Villin-Hhip mice had increased Wnt target gene 

expression and transfection of Ihh into colon cancer cells led to down-regulation 

of Wnt signaling20, 45.  Thus, a simplified model of epithelial maintenance in the 

intestine emerges: active Wnt signaling in the crypts drives stem and progenitor 

cells to proliferate and as maturing cells leave the base of the crypts and Wnt 

signaling zone, they exit the cell cycle and terminally differentiate. 

In summary, Wnt, Hh, and BMP integrate and relay information between 

the epithelium and mesenchyme to regulate stem cell renewal and proliferation, 

crypt-villus patterning and cellular differentiation in the intestine.  When these 

pathways are deregulated, loss of proliferation can lead to villus and/or crypt 

atrophy, compromising the nutritional status of an organism, or in the opposing 
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situation, excessive proliferation and lack of cell differentiation can lead to polyp 

formation and progression to adenoma. 

 

The Notch Signaling Pathway 
Notch signaling (Figure 1-2) is a critical regulator of proliferation and 

differentiation in the intestinal epithelium.  The work presented in this thesis has 

further elucidated the mechanisms by which Notch signaling regulates these 

processes. Both the Notch ligands and receptors are trans-membrane proteins; 

thus, signaling occurs between neighboring cells. Upon ligand engagement with 

the Notch receptor, a series of receptor cleavage events is initiated.  The first 

cleavage (S2 cleavage) is performed by the A Disintegrin and Metalloprotease 

(ADAM) protease, which removes the extracellular domain of the Notch receptor. 

It has recently been shown that ADAM10 (and not ADAM17) performs this 

essential cleavage in vivo46.  ADAM10-mediated cleavage is the key regulatory 

step in the activation of Notch signaling and produces a substrate for the 

subsequent γ-secretase complex-mediated S3 cleavage.  As part of a negative 

feedback regulatory mechanism, the interacting ligand (and possibly the 

ectodomain of the cleaved Notch receptor) are trans-endocytosed into the signal-

sending cell to reduce ligand availability; in addition, this may initiate other 

signaling events in the signal-sending cell47. The γ-secretase complex is 

comprised of the membrane proteins presenillin (Psen1/2), nicastrin, presenillin 

enhancer 2 homolog (Pen2) and alphaprotein 1 (Aph1) in a 1:1:1:1 

stoichiometry48.  At least six possible γ-secretase complexes can be formed in 

rodents due to two isoforms of presenillin and three isoforms of Aph149.  The 

biological significance of the different complex configurations is not currently 

known; however, biochemically, it appears that different complexes may exhibit 

differential processing efficiency for certain substrates and susceptibility to 

pharmacological inhibitors50, 51.  Thus, it will be important to identify the temporal  

 and spatial expression patterns of each of the components of the γ-secretase 

complex in the intestine to determine which complexes are formed because 

complex composition likely affects substrate specificity and biological function in  
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vivo.  Following cleavage by the γ-secretase complex, the biologically active 

Notch intracellular domain (NICD) is released from the membrane.  The NICD 

translocates to the nucleus of the signal-receiving cell and binds to its co-

activators Recombination signal binding protein for immunoglobulin kappa J 

region (RBP-J; also known as CSL), a DNA-binding protein, and Mastermind 

(MAML) to initiate transcription of target genes including hairy and enhancer of 

split 1 (Hes1).  In the absence of NICD, RBP-J appears to occupy its DNA 

binding sites some of the time and participate in a repressor complex47. 

Study of the Notch signaling pathway is challenging because of the 

difficulty of detecting nuclear NICD due to rapid degradation of this bioactive 

receptor fragment.  As an alternative to NICD detection, assessment of the 

transcriptional target of Notch signaling, Hes1, is used as an indicator of Notch 

signaling activity; however, there are caveats to this method of detection as well 

because Hes1 can be regulated by other pathways, including the fibroblast 

growth factor pathway52, the GATA transcription factors53, Ids54, and Pax 

transcription factors55. 

 

Regulation of the Notch Signaling Pathway 
The key rate-limiting step for the initiation of a Notch signaling event is 

ADAM cleavage47; however, other types of regulation can occur at many steps of 

the pathway. These regulatory mechanisms may affect either the amplitude or 

duration of a signaling event.  Evidence suggests that pathway activity is 

regulated by restriction of ligand or receptor availability (both spatially and 

temporally), modulation of ligand and receptor trafficking, and post-translational 

modification of receptor and ligand proteins47.  In addition to protein regulation, 

miRNA’s are also involved in controlling pathway component availability56, 57.  

This field of research is still relatively nascent and it is likely that mammalian 

Notch activity is differentially regulated based on temporal, tissue-specific, and 

even cellular-specific contexts. 
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Notch Signaling is Important for Cell Fate Selection and Progenitor Cell 
Maintenance in Multiple Tissues 

Notch signaling plays key roles in determination of cell fate in many 

tissues including the nervous system, hematopoietic system, the developing lung 

and pancreas, and intestine.  Notch signaling promotes glial cell fate over 

neuronal cell fate in the nervous system and exocrine versus endocrine cell fate 

in the pancreas58-60. Notch determines cell fate choice at many points during 

hematopoiesis including the selection of T-cell fate over B-cell fate and during 

further differentiation of each of these immune cell lineages (e.g. generation of 

CD4 versus CD8 T-cells)61.  A role for Notch signaling has also been 

demonstrated in the lung during developmental patterning of proximal and distal 

progenitors and in selection of Clara cell fate over ciliated cell fate62-66.  In 

addition to its role in cell fate selection, Notch signaling is important for stem and 

progenitor cell maintenance in many tissues.  Loss-of-function Notch mutants 

displayed precocious differentiation and progenitor depletion67-69.  Gain-of-

function Notch mutations have been associated with progenitor expansion and 

cancer, including (but not limited to) T-ALL leukemia, brain tumors, lung cancer, 

and colorectal cancer70-73.  This thesis focuses on Notch regulation of cell fate in 

the intestine. 

 

Notch Signaling in the Intestine 
All Notch ligands (Delta-like ligands; Dll1, Dll3, Dll4 and Jagged ligands; 

Jag1 and Jag2) and Notch receptors (Notch1-4) are expressed in the mouse gut 

during early development (E13.5) through adulthood except Dll3, whose 

expression recedes after early development74, 75.  Based on mRNA expression 

patterns, Dll1, Dll4 and Jag1 are most likely to mediate the effects of epithelial 

Notch signaling in the intestine with the critical epithelial receptors being Notch1 

and Notch275; however, it is currently not understood which intestinal cell 

populations are sending or receiving the Notch signal.  Immunostaining for NICD 

or Hes1 labels many cells in the crypts and not cells of the villus epithelium68, 76 

suggesting that active Notch signaling is occurring in stem cells or progenitor 
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cells, but not in terminally differentiated cell types (with the possible exception of 

Paneth cells).  Novel results that I report in Chapter 4 have identified the crypt 

base columnar (CBC) stem cell as one direct cellular target of Notch signaling.  

In addition, many Notch signaling components are also expressed in the 

intestinal mesenchyme75; however, their role is largely unknown. 

In the intestine, Notch signaling appears to be the key pathway regulating 

epithelial cell fate with Notch promoting the absorptive cell fate over the secretory 

cell fate.  Notch signaling is thought to mediate its affect on cell fate selection 

through the process of lateral inhibition.  For example, secretory cell progenitors 

may begin to express high levels of Notch ligand which, in turn, activates the 

Notch receptors and Notch signaling pathway in their neighboring cells to inhibit 

them from also adopting the secretory cell fate77.  Analysis of intestinal 

morphology paired with mathematical modeling suggests that lateral inhibition in 

the intestine is likely to occur in early progenitor cells in the crypts to initially split 

differentiating cells to the absorptive and secretory lineages.  This is followed by 

disproportionate subsequent cell divisions with absorptive progenitors dividing 

approximately 4 more times and secretory progenitors 1-2 more times.  This 

model would yield the observed result with ~4% of villus cells belonging to the 

secretory lineage and these cells are separated by many absorptive cells77, 78. 

 
The Intestinal Phenotypes of Notch Signaling Mutants 

The intestinal phenotypes of mouse models with alterations in key Notch 

pathway components show altered proportions of proliferating versus non-

proliferating cells and of absorptive versus secretory cell types (Table 1-1).  

Disruption of intestinal Notch signaling via a conditional knock-out mouse model 

for the essential NICD co-effector RBP-J or administration of the γ-secretase 

inhibitor dibenzapine (DBZ) resulted in loss of proliferating cells and increased  

goblet cell number79.  A different study using DBZ treatment in rats reported 

increased numbers of all secretory cell types80.  Conversely, activation of the 

Notch pathway using constitutively active NICD transgenic mice resulted in 

expansion of the proliferative zone and loss of secretory cells81, 82.  Mice deficient  
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Component 
Function Gene(s)* LOF/

GOF Intestinal Phenotype Reference

Notch1a LOF Normal Riccio et al., 2008

Notch2a LOF Normal Riccio et al., 2008

Notch1, 
Notch2a

LOF  goblet cells,  proliferation,  
p21 and p27 expression linked to 
loss of Hes1 repression on these 
promoters

Riccio et al., 2008

DeltaDd LOF  secretory cells in zebrafishd Crosnier et al., 2004

RBP-Ja LOF  Math1,  goblet cells,  
proliferation

Van Es et al., 2005

MAMLa,b LOF  secretory cells Maillard, unpublished

NICDa GOF  Hes1,  goblet and endocrine 
cells,  progenitor cells and 
proliferation,  apoptosis

Fre et al., 2005

NICDa GOF  goblet and endocrine cells,  
proliferation, no change in apoptosis

Stanger et al., 2005

ADAM10a,b LOF  secretory cells,  proliferation Dempsey, unpublished

ADAM17b LOF Normal Dempsey, unpublished

γ-secretase*,a LOF  Math1,  goblet cells,  
proliferation

Van Es et al., 2005

γ-secretase*,a LOF  Rath1 (rat homolog of Math1),  
Hes1,  goblet and endocrine cells, 
 apoptosis in rat

Milano et al., 2004

Pofut1c LOF  Hes1 and Hes5,  Math1,  
secretory cells (restricted to crypts), 
 proliferation with dispacement 
towards top of crypt

Guilmeau et al., 2008

Mindbombd LOF  secretory cells in zebrafish Crosnier et al., 2004

Mindbombc LOF  secretory cells, mislocated 
Paneth cells on villi,  proliferation

Koo et al., 2009

Hes1d LOF  goblet and endocrine cells, no 
change in proliferation,  apoptosis 
in intervillus zone,  Math1,  Hes5

Jensen et al., 2000

Hes1d LOF Precocious differentiation of Paneth 
cells

Suzuki et al., 2005

Phenotypes reported in mouse models unless otherwise stated.
*Pharmacological inhibitor; LOF, Loss-of-function; GOF, gain-of-function
a conditional mutant, adult analysis; b conditional mutant, developmental analysis
c constitutive mutant, adult analysis; d constitutive mutant, developmental analysis

Membrane 
Trafficking 
Regulators

Canonical 
bHLH 
Target

Table 1-1. Intestinal Phenotypes of Core Notch Pathway Mutants

Receptor

Ligand

Nuclear 
Effectors

Receptor 
Proteolysis

Glycosyl-
transferase 
Modifiers
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in the Notch1 or Notch2 alone did not exhibit a gut phenotype; however, 

compound Notch1/Notch2 receptor KO mice exhibited a similar phenotype to the 

intestine-specific RBP-J knockout mouse suggesting that these genes are 

redundant and that together they likely transmit all of the epithelial Notch signal83. 

Hes1-deficient embryos exhibited gut phenotypes similar to the Notch 

disruption models suggesting that Notch signaling exerts most of its effects 

through Hes168; however, the phenotype of these mice was not as severe as 

complete loss-of-function mutants suggesting that other Hes proteins may 

convey Notch signaling effects as well.  In support of possible redundancy 

among Hes genes, Hes1, Hes5, Hes6 and Hes7 have all been reported to be 

expressed in the intestine epithelium68, 75.  In particular, Hes5 is known to be 

expressed in the crypt in a similar pattern to Hes1 (Chapter 4) and Hes5 

expression was found to be up-regulated in the gut of Hes1-deficient embryos68.  

Another report on Hes1-deficient embryos showed that these mice also exhibited 

precocious differentiation of Paneth cells located primarily in the intervillus zone 

and that this was associated with increased expression of Paneth cell genes84. 

Mind bomb-1 (Mib1) is an E3 ubiquitin ligase that is important for Notch 

signaling purportedly due to its role in endocytosis of Notch ligand and receptor 

complexes upon their interaction85, 86.  Mib1 loss-of-function mutations in both 

zebrafish and mouse intestine resulted in increased intestinal secretory cells 

similar to other Notch disruption phenotypes86, 87.  Decreased proliferation was 

also reported in the mouse model, suggesting that mindbomb is important for 

Notch signaling86; however, these mice were examined at 2-4 weeks of age, and 

the secretory conversion was milder than complete Notch signaling loss-of-

function models, suggesting that some Notch signaling still occurs in the absence 

of mindbomb activity in mice.  Interestingly, in the mouse Mib-1 mutant, Paneth 

cells were occasionally mislocated to the villus, a phenotype reminiscient of the 

EphB3-/- mutant that will be discussed in more detail in a later section. 

Finally, the phenotype of a mouse model with deficiency in Protein O-

fucosyl-transferase (Pofut1), an ER chaperone protein that can post-

translationally modify the Notch receptor, also demonstrated a phenotype 
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reminiscent of Notch disruption models with increased secretory cells and 

decreased proliferation, although the phenotype was less severe than total loss-

of-function mutants and mice survived through adulthood88.  Studies in 

Drosophila and mammals have suggested that the essential role of the fucosyl 

transferases is ER chaperone activity and not enzymatic activity; non-fucosylated 

Notch receptors were able to reach the cell membrane, bind ligand and signal, 

and overexpression of unrelated ER chaperone proteins was able to rescue the 

phenotype in Pofut1-deficient cells89-93.  Although fucosylation is not required for 

signaling, it may affect which ligands bind the receptor94 and, therefore, is a 

mechanism that could affect overall Notch signaling in a context-dependent 

manner. 

 

γ-Secretase Inhibitors are Pharmacological Inhibitors of Notch Signaling 

 The γ-secretase complex has the ability to cleave more than 30 types of 

transmembrane proteins49, including the Notch receptor95, Notch ligands Dll1 and 

Jag296, ErbB497, CD4498, and E-cadherin99.  There does not appear to be a 

specific consensus sequence to determine whether a protein is cleaved by γ-

secretase; instead, the main prerequisite for a potential substrate appears to be 

removal of the ectodomain by sheddases49 such as removal of the ectodomain of 

the Notch receptor by the ADAM protease.  A class of pharmacological reagents 

known as γ-secretase inhibitors (GSIs) have been developed as inhibitors of γ-

secretase-mediated cleavage and downstream signaling events.  These 

inhibitors have been actively studied for decades because they have potential to 

block the generation of Aβ peptide generation that is associated with Alzheimer’s 

disease100.  More recently, there has been interest in using GSIs as anti-cancer 

drugs because they could potentially block hyperactive Notch signaling driving 

cancer progression101.  Unfortunately, a side effect of these drugs is often 

gastrointestinal toxicity due to Notch’s key role in intestinal cell homeostasis.  

Rodents treated with the GSI benodiazepine (BZ), DBZ, or LY-411,575 exhibited 

intestinal goblet cell hyperplasia and epithelial degeneration reminiscent of the 

phenotype observed in Notch disruption models79, 80, 102.  Thus, while use of 
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these drugs is useful for the study of Notch disruption, such as was done in 

Chapter 4, modifications to the timing of repeated dosing and/or drug specificity 

are being explored to make these drugs suitable for Alzheimer’s disease 

treatment or cancer therapy103, 104. 

 

Expression of Math1 in the Intestine 
 Math1 is a basic helix-loop-helix transcription factor involved in cell fate 

determination of intestinal secretory cells as well as several neuronal cell types 

important for the proprioceptive system including spinal cord interneurons105, 

inner ear hair cells106, and subsets of cerebellar and brainstem neurons107, 108. 

Currently, it is not well understood how Math1 expression is activated in the 

intestinal epithelium, but once activated, it binds to its own 3’ enhancer to 

perpetuate its own expression109.  One report suggests that Cdx2 is directly 

upstream of Math1110.  Math1 was down regulated in Foxa3-Cre;Cdx2flox/flox 

intestine10; however, this could be due directly to loss of Cdx2 itself or indirectly 

to loss of normal intestinal patterning.  Since Cdx2 is generally expressed in the 

intestinal epithelium, it is very likely that it would act in conjunction with other 

factors to activate Math1.  Studies in other tissues have indicated that Wnt 

signaling may be important for up-regulating Math1 expression.  Overexpression 

of β-catenin in neural progenitor cells increased the activity of a GFP reporter 

under the control of a Math1 enhancer111 and hyperactive Wnt signaling in lung 

progenitors activated Math1 along with intestinal secretory cell development in 

the lung in vivo112. Notch signaling is known to repress Math1 transcription via 

Hes1113.  Accordingly, models of Notch disruption exhibited increased Math1 

expression68, 79.  A recent study has shown that increased Math1 expression after 

Notch inhibition depends on formation of a DNA-binding complex that contains 

the Wnt pathway co-activators β-catenin and Tcf/Lef114, further supporting the 

role of Wnt signaling in activation of Math1 expression. 

Use of a mouse model in which lacZ was inserted into the endogenous 

Math1 locus (Math1lacZ/+) and immunohistochemistry have allowed for 

visualization of the Math1 expression pattern.  In the intestine, Math1 expression 
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is restricted to the epithelium by E16.5, near the time of the initiation of epithelial 

cytodifferentiation115.  Consistent with its role in cell fate determination, Math1-

expressing cells are found in the progenitor zones of both embryonic and adult 

intestine.  Furthermore, a portion of the lacZ-positive cells co-express 

proliferative markers such as Ki6737, 115 suggesting that secretory cell fate 

specification occurs early in the differentiation process and these specified cells 

continue to divide.  In addition, Math1 also continues to be expressed in all 

mature secretory cells37, 115.  Analysis of Dll1 expression in the intestine by in situ 

hybridization or with a Dll1lacZ reporter mouse showed that Dll1 is expressed in a 

very similar pattern to the Math1lacZ/+ mouse, suggesting that mature secretory 

cells and progenitor cells specifying to the secretory lineage express Notch 

ligand87, 116.  These expression patterns are consistent with Notch-mediated 

lateral inhibition contributing to secretory cell fate selection in the intestine. 

 

The Role of Math1 in Intestinal Cell Differentiation and Adaptive Response 
The studies presented in this thesis and others point towards Notch-

regulation of Math1 as the key mechanism by which Notch signaling affects cell 

fate determination.  Math1 is required for intestinal secretory cells in both 

developing and adult intestine.  Intercrossing of the Math1lacZ/+ mice described 

above generated a Math1-null mouse (Math1lacZ/lacZ).  These mice lacked all 

intestinal secretory cells and died upon birth, presumably from a respiratory 

defect resulting from loss of certain neuronal populations, which prevented 

studies in adult mice117.  A second study utilized a Cre-lox approach to 

specifically ablate Math1 expression in the intestinal epithelium (Math1Δintestine).  

To produce mice that lived to adulthood, a mosaic Cre transgenic mouse, 

Fabpl4X AT – 132, was used to activate recombination of the Math1flox/lacZ allele in the 

intestinal epithelium118.  Loss of secretory cells was observed specifically in the 

recombined Math1Δintestine crypts while non-recombined crypts retained normal 

secretory cell number.  These results demonstrated that Math1 has a similar role 

in both developing and adult intestine118.  The clinical relevance of this phenotype 

was indicated by the report of a patient who presented with severe diarrhea, 
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enterocolitis and loss of all intestinal secretory cell types whose pathology did not 

improve with immunosuppressive therapy, suggesting that the patient had a 

developmental block in secretory cell differentiation and not an autoimmune 

disease119.  Math1 expression was not assessed in this case report; however, it 

is tempting to speculate that Math1-deficiency was involved in this pathology.  

Nonetheless, it is likely that secretory cell differentiation in humans closely 

parallels that in rodents. 

Since Math1 is expressed in mature secretory cells in addition to cells in 

the progenitor zone, one could argue that Math1 may actually be required for 

secretory cell maintenance rather than cellular differentiation.  While Math1 may 

also be important for maintenance of the secretory cell identity, many studies 

indicate that Math1 actively promotes secretory cell fate during cellular 

differentiation and is important for adaptive and disease response mechanisms.  

Small bowel resection (SBR) in mice causes an adaptive response in which there 

is increased epithelial proliferation and sustained increases in secretory cell 

number and mucosal surface area, including increased crypt depth and villus 

height120. Math1Δintestine mice had a blunted response to SBR with smaller 

increases in crypt depth118.  This demonstrated the importance of Math1 for 

intestinal remodeling.  Increased secretory cell number is also observed in mice 

infected with the parasitic nematode Trichinella spiralis (T. spiralis)121, 122.  It was 

recently described that Math1 transcript levels are more than 2-fold higher in T. 

spiralis infection, suggesting that the increase in secretory cells may be due to 

induction and differentiation of a Math1-expressing progenitor cell123.  Thus, 

regulation of Math1 expression may be mechanistically important for the ability of 

the intestine to respond to adaptive and environmental stimuli. 

 

The Potential Role of Math1 as a Tumor Suppressor 
As a pro-differentiation transcription factor, recent studies have explored 

whether Math1 functions as a tumor suppressor gene in the gut124-127.  This is of 

great interest because colorectal cancer is among the top three types of cancer 

found in men and women of the United States population128.  Colon 
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adenocarcinomas are characterized by expansion of proliferative progenitor cells, 

inhibited cellular differentiation (including loss of the very abundant goblet cell 

population in affected regions of the colon) and inhibited apoptosis.  Importantly, 

comparison of colon adenocarcinoma samples to surrounding normal tissue from 

human patients showed that expression of Hath1, the human ortholog of Math1, 

was down-regulated in the carcinoma samples125.  Compared to control mice, 

enhanced polyp and tumor formation was observed in Math1Δintestine mice treated 

with the carcinogen azoxymethane (AOM) and in Math1Δintestine mice crossed to 

the APCmin mouse model that spontaneously develops adenomas due to 

hyperactive Wnt signaling124.  Moreover, when Hath1 was transfected into the 

colorectal cancer cell line HT29, proliferation of the cells decreased and 

expression of the differentiated goblet cell marker Muc2 increased125, thus 

suggesting that loss of Hath1 expression might contribute to neoplastic growth.  

Aberrant Wnt signaling is highly associated with development of colorectal 

adenocarcinoma129, with mutations in the APC gene that lead to overactive Wnt 

signaling present in 80% of sporadic colorectal tumors130.  Experiments in colon 

cancer cell lines have demonstrated that Wnt signaling can target Hath1 for 

proteasomal degradation via glycogen synthase kinase 3β (GSK3β)-mediated 

phosphorylation126, 127.  This suggests that Wnt signaling maintains the 

undifferentiated state of adenocarcinoma through down-regulation of 

Math1/Hath1.  In addition, human tumors with loss-of-function mutations and 

epigenetic silencing of the Hath1 gene were identified in one study, suggesting 

that loss of Math1 expression could also be a primary event in oncogenic 

progression124. 

 

Characterization of the Secretory Progenitor Cell 
At this time, the presence and character of “intermediate-stage” 

progenitors that have been specified to the secretory fate is under debate.  Data 

from Math1 loss-of-function mouse models and from the Math1 gain-of-function 

model described in this thesis suggest that Math1 may be expressed in a 

common secretory progenitor cell capable of differentiating into any of the three 
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mature secretory cell types115, 118 (also see VanDussen, Chapter 2).  

Alternatively, each lineage could have its own progenitor, each of which shares a 

common requirement for Math1.  Two studies that followed the progeny of single, 

randomly-labeled cells in the intestine determined the existence of short-lived 

progenitors that can yield just one or two cell types and long-lived progenitors 

that yield only enterocytes, only goblet cells, only endocrine cells, enterocytes 

and goblet cells, enterocytes and endocrine cells, or a mix of all epithelial cell 

types78, 131.  These data demonstrated the presence of long-lived progenitors that 

have been restricted to a particular lineage.  They also demonstrate the presence 

of a progenitor that yields progeny belonging to one of the secretory cell lineages 

or to the enterocyte lineage, which suggests that selection of a particular 

secretory cell fate occurs prior to Notch-mediated lateral inhibition.  Finally, 

clones that contain all epithelial cell types are likely derived from a multipotent 

stem cell.  Due to their slow turnover rate, Paneth cell clones have not been 

examined.  Of note, clones containing multiple secretory cell types and no 

enterocytes have not been observed suggesting that a common secretory 

progenitor does not exist or is extremely short-lived78, 131. 

 

Specification of the Secretory Lineage 
Differentiation of an intestinal progenitor to a mature secretory cell must 

involve the progenitor or a daughter cell becoming competent for the secretory 

cell fate, specification to a specific secretory lineage, and finally terminal 

differentiation.  Although reports from others and the findings presented in this 

thesis suggest that Math1 is the critical factor for specification to the secretory 

lineage, it is not currently well understood how progenitor cells become 

competent for secretory cell fate or how they are further specified to a specific 

secretory cell lineage.  Some recent studies have begun to elucidate transcription 

factors that are critical for specific secretory lineages and, from these data, a 

model of epithelial cell differentiation can be assembled (Figure 1-3). 

In accordance with a possible role in activation of Math1 expression, Wnt 

signaling can affect secretory cell differentiation and may be involved in making 
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intestinal progenitor cells competent for secretory cell fate1. Tcf4 null mice and 

Villin-Dkk1 transgenic mice, both of which have loss of Wnt signaling, showed 

loss of goblet and endocrine cells35, 37.  Furthermore, Math1 expression was lost 

in the villin-Dkk1 mice37.  The Notch ligands Dll1 and Jag1 have been reported to 

be downstream targets of Wnt signaling132-135.  Thus, Wnt signaling appears to 

have a strong interaction with the Notch signaling pathway and, therefore, can 

potentially influence secretory cell differentiation through Notch-dependent or 

Notch-independent mechanisms. 

 

Shared Mechanisms of Lineage Allocation to Goblet and Paneth Cell 
Lineages 

There is growing evidence that suggests that Paneth and goblet cells may 

share a common progenitor or, at least to some extent, a common mechanism of 

differentiation.  There are many genes in the intestine that are expressed highly 

in both Paneth and goblet cells including SAM pointed domain ETS factor 

(Spdef), serine/threonine kinase 11 (STK11; also called Lkb1), cAMP responsive 

element binding protein 3-like 4 (Creb3l4), chemokine (C-C motif) ligand 6 (Ccl6), 

kallikrein 1 (Klk1), hepatocyte growth factor activator (Hgfac), serine peptidase 

inhibitor, Kazal type 4 (Spink4), and tryptase gamma 1 (Tpsg1)116, 136, 137.  

Mutation of some of these genes has been shown to alter Paneth and/or goblet 

cell differentiation (described below).  The transcription factors growth factor 

independent 1 (Gfi1) and Spdef have been identified as downstream targets of 

Math1138 with mutation of Gfi1 specifically affecting allocation to the goblet and 

Paneth cell lineage at the expense of the endocrine lineage and mutation of 

Spdef affecting allocation between the goblet and Paneth cell lineages116, 136, 138. 

These data suggest that Math1, Gfi1, and Spdef affect lineage selection at 

distinct points in the differentiation process and function in a step-wise fashion. 

Gfi1 is a zinc-finger transcriptional repressor that is important for control of 

proliferation and differentiation in hematopoietic stem cells, immune cells, and 

sensory hair cells of the inner ear139.  In the intestine, Gfi1 is expressed in Math1-

positive progenitor cells and endocrine progenitor cells in the crypts as well as a  
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subset of mature endocrine cells138.  Gfi1-deficient intestine exhibited loss of 

Paneth cells, decreased goblet cells and increased endocrine cells138 suggesting 

that Gfi1 functions to select the goblet/Paneth cell fate over endocrine cell fate or 

that Gfi1 regulates the proliferation of a subset of endocrine cell types. 

Intestinal expression of Spdef is dependent on Math1 and Gfi1136.  Spdef 

is found mainly in post-mitotic goblet cells and Paneth cells, although it appears 

to also be present in a small population of progenitors in the crypt116, 136.  A 

mouse model deficient in Spdef expression (Spdef-/-) had impaired maturation of 

both goblet and Paneth cells; this impairment was thought to lead to 

accumulation of secretory progenitors that were unable to terminally differentiate 

(as determined by a larger number of Dll1-positive cells in the crypt)116.  

Expression of early goblet cell markers including Tff3 and goblet-5 was normal, 

but there was loss of period acid Schiff (PAS) staining, which stains the mucin 

normally present in goblet cells116.  Accordingly, many goblet cells presented with 

abnormal ultrastructure typical of immature goblet cells including poorly defined 

vacuoles in their cytoplasm, a clear brush border and a pronounced ER116.  

Paneth cells were also affected with reduction in the relative size of the Paneth 

cell compartment at the crypt base and in the cellular granule content116.  

Therefore, loss of Spdef affects terminal differentiation of both goblet and Paneth 

cells.  Endocrine cell number was reported to be unchanged in the Spdef-/- 

model, but, by microarray, the expression of the endocrine cell markers Ghrelin 

and Peptide YY (PYY) were increased suggesting that there could be increases 

in specific endocrine cell populations in this model116. 

Inducible transgenic expression of Spdef in the intestinal epithelium 

resulted in expansion of goblet cell number and increased goblet cell gene 

expression at the expense of other secretory cell types136.  Decreased epithelial 

proliferation without apoptosis was also observed suggesting that Spdef inhibits 

proliferation of intestinal secretory progenitors and promotes the terminal 

differentiation of goblet cells via activation of goblet cell associated genes to the 

detriment of the Paneth cell gene program.  Additionally, due to an affect on the 
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endocrine cell lineage, Spdef may also be able to redirect endocrine progenitors 

to the goblet/Paneth lineage. 

A microarray approach was combined with in situ hybridization analysis to 

determine the expression pattern of downstream targets regulated by Spdef and 

whether these targets were affected in Paneth cells, goblet cells, or both116.  

Spdef was found to be important for activating multiple genes expressed in 

goblet cells including Creb3l4, Ccl6, Klk1, mucin 2 (Muc2), Hgfac, and Tpsg1.  

Spink4 is normally expressed highly in Paneth cells and to a lesser extent in 

goblet cells; Spink4 expression was specifically lost in Paneth cells of the Spdef-/- 

intestine116.  Other genes expressed in Paneth cells, Defcr21 and Nupr1, were 

also reduced in the Spdef-/- mouse116 suggesting that Spdef expression is 

required to activate expression of these genes.  In contrast, other Paneth cell 

genes, including matrix metallopeptidase 7 (MMP7) and angiogenin 4 (Ang4), 

were highly up-regulated due to their ectopic expression in the goblet cells of 

Spdef-/- intestine116 suggesting that Spdef normally functions to repress 

expression of these genes in goblet cells.  The majority of this data indicates that 

Spdef does indeed function to promote goblet cell differentiation and goblet cell 

gene activation and to repress the Paneth cell gene program in terminally 

differentiated goblet cells.  Taken together, analysis of Gfi1 and Spdef mouse 

models putatively suggest the presence of a common Paneth/goblet progenitor 

cell. 

Of note, Spdef also plays an important role in goblet cell differentiation in 

the lung which highlights the parallels between intestinal secretory differentiation 

and secretory differentiation in other tissues.  Spdef expression has been shown 

to increase in the lung in response to allergens and transgenic expression of 

Spdef throughout the lung or specifically in Clara cells, the goblet cell precursors 

resulted in goblet cell hyperplasia without proliferation140, 141.  In contrast, goblet 

cell differentiation was prohibited in the Spdef-/- model following allergen 

exposure141 demonstrating that Spdef is required for goblet cell hyperplasia that 

occurs in response to allergens in the lung. 
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Additional Factors Important for Goblet Cell Differentiation 
Intestinal goblet cells secrete mucin glycoproteins, the major component 

of which is Muc2, that function to protect the intestinal epithelium and as a 

medium for transport between the luminal contents and epithelial cells.  The 

number of goblet cells in neonatal and adult intestine increases along the 

anterior-posterior axis with the highest number of goblet cells located in the colon 

(which correlates with the anterior-posterior distribution of Math1 expression)142 

(see also Chapter 2).  In addition, the mucin content of goblet cells is larger in the 

distal intestine compared to the proximal intestine143, possibly related to the 

larger bacterial population in the distal intestine.  The intestinal mucins are mostly 

acidic and so stain blue with periodic acid Schiff-alcian blue (PAS-AB) (compared 

to the stomach which has neutral mucins that stain pink with PAS-AB); the acidic 

mucins are further characterized by the presence of sulfated (sulfomucins) or 

non-sulfated (sialomucins) groups with sulfated mucins being the predominant 

group present after birth in rodents142.  Interestingly, the rate of mucus secretion 

and the type of mucins expressed can be modulated by host-microbe 

interactions142.  Increased number of goblet cells is found in a variety of intestinal 

diseases and adaptive responses including enteric infections, inflammatory 

bowel disease, colon cancer, small bowel resection, and total parenteral 

nutrition120, 122, 142, 144, 145 (and VanDussen unpublished). 

Kruppel-like factor 4 (KLF4) is a zinc finger transcription factor that is 

expressed in terminally differentiated cells of intestinal epithelium146-148.  

Recently, KLF4 expression has been shown to be regulated by Notch signaling 

with increased KLF4 expression observed when Notch signaling is inhibited with 

DBZ and decreased KLF4 expression when NICD1 is over-expressed in HT29 

colon cancer cells149.  This inverse relationship of KLF4 expression and Notch 

activity fits with the findings that KLF4 inhibits progression of the cell cycle150, 151 

while Notch is important for maintaining progenitors in a proliferative state.  KLF4 

also appears to be important for goblet cell differentiation because KLF4 

homozygous null mice displayed a 90% loss of goblet cells in their colons152.  
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Thus, KLF4 is an important regulator of proliferation and of goblet cell 

differentiation in the intestine. 

The Foxa1 and Foxa2 transcription factors are expressed in the intestinal 

crypts and also appear to regulate differentiation of goblet cells153.  In the 

Foxa1/2 intestine-specific double mutant, there is decreased goblet cell number 

throughout the intestine and colon and reduced density of the mucus granules153.  

It was determined that Foxa1 can bind directly to the Muc2 promoter in vivo and, 

accordingly, Foxa1/2 mutants exhibited a switch in their mucin profile with 

decreased expression of Muc2 and Muc6 and increased expression of Muc5b 

and Muc5ac in the colon153. 

Anterior gradient 2 (Agr2) is a member of the ER protein disulfide 

isomerase (PDI) family that functions to isomerize specific protein substrates into 

their bioactive confirmations while they are trafficking through the ER.  If PDI 

substrates are not isomerized, they accumulate in the ER and initiate ER stress, 

cell cycle arrest, and apoptosis154, 155.  Muc2 has been shown to be a specific 

substrate of Agr2 with disruption of Agr2 resulting in destabilized Muc2 protein 

and decreased mucus production in mice156.  Another Agr2-deficient mouse 

model also showed decreased expression of Muc2 along with decreased alcian 

blue-positive staining; however Tff3 was unaffected157.  Interestingly, an 

expansion of Paneth cells was also observed in this mouse model with some of 

the Paneth cells mislocated to the villi157.  Using an inducible Agr2-deficient 

model, the Paneth cell expansion was shown to occur within 24 hours, prior to 

the goblet cell defects157.  Of note, inflammation was observed in the terminal 

ileum and colon of Agr2-deficient mice157 highlighting the role of goblet cell 

mucins in epithelial protection. 

 

Paneth Cells in the Small Intestine 
Like the other secretory cell types, Paneth cells increase in number along 

the anterior-posterior axis of the intestine.  In contrast to goblet and endocrine 

cells, Paneth cells are absent from the colon under normal conditions, but they 

can be induced in the colon in disease states including adenocarcinoma32, 158, 159.  
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Paneth cells produce several proteins associated with host defense including 

lysozyme, cryptdins, MMP7, and TNFα 160.  MMP7 is required for processing 

procryptdin precursors to active cryptdin proteins161.  Accordingly, a mouse 

model with deficient MMP7 expression lacks mature cryptdins and is defective in 

clearing intestinal infections162. 

Morphologically, Paneth cells appear the same throughout the small 

intestine; however there is at least some degree of heterogeneity based on the 

distribution of the Paneth cell cryptdin genes.  For example, cryptdin-4 is only in 

Paneth cells of the distal intestine whereas cryptdins-1 and -5 are expressed 

throughout the intestine163.  This heterogeneity may be related to host defense 

since there is a greater population of bacteria in the distal gut and cryptdin-4 has 

very potent bactericidal activity against E. coli and S. aureas compared to other 

cryptdins164. 

Mature Paneth cells appear in the small intestine at 2-3 weeks of age in 

mice, concomitant with crypt formation.  Of note, multiple Paneth cell genes 

including cryptdins, MMP7 and lysozyme are expressed prior to appearance of 

recognizable Paneth cells or crypts.  In neonatal mice, the cells that stain for 

cryptdin and MMP7 are scattered throughout the villi160 (also see Chapter 2).  

Paneth cells are thought to initially differentiate at the top of the Paneth cell 

compartment and then migrate downward to the base of the crypt as they 

mature165.  Supporting this downward migration, lineage tracing of the CBC 

marker Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) 

(discussed more fully in a subsequent section) showed labeled Paneth cells first 

appearing at cell position 5 at the top of the Paneth cell compartment and then 

labeled cells moved nearer to the base of the crypts over time166. 

 

Paneth Cell Differentiation Requires Wnt Signaling 
In addition to its major role in promoting proliferation in the intestinal 

crypts, Wnt signaling is very important for Paneth cell maturation and distribution.  

Indeed, approximately 20% of downregulated genes in Tcf4-/- embryos encoded 

for Paneth cell genes, including some genes that appear to be direct Wnt targets 
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such as MMP7 and EphB3158.  Moreover, APCmin mice with overactive Wnt 

signaling exhibit a general loss of differentiation, but have excessive expression 

of Paneth cell markers32, 33. 

SRY-Box9 (Sox9) is a Wnt target gene that is essential for Paneth cell 

differentiation and has been implicated in regulation of crypt proliferation.  

Nuclear Sox9 expression is localized to Paneth cells and, additionally, almost 

perfectly overlaps with the proliferative zone in both the intervillus zone of the 

developing intestine and crypts of the adult intestine167, 168.  Sox9 is typically 

thought to function as an activator and indeed its expression increases 

expression of a number of Paneth cell genes including lysozyme, MMP7 and 

Ang4169.  It has been shown to repress expression of the differentiation genes 

Cdx2 and Muc2, but this likely occurs through an intermediate repressor167.  Two 

models of Sox9-deficiency have been described; each utilized a Cre-lox 

approach in which the second and third exons of the Sox9 gene were floxed and 

recombination was targeted specifically to the intestinal epithelium using a Vil-

Cre driver168, 169.  In both models, Paneth cells were found to be absent and crypt 

dimensions were increased along with enhanced proliferation168, 169.  Reduced 

goblet cell number and formation of villus-like structures in the colon was 

reported in one model169 while goblet cell number was reported to be unchanged 

in the other168.  This difference may have been due to use of different Vil-Cre 

lines; comparison of these lines is discussed in Chapter 3.  Together, these data 

show that Sox9 is essential for Paneth cell differentiation and also suggest a role 

for Sox9 in regulation of proliferation.  Sox9 is also a likely candidate for 

activation of ectopic Paneth cells in intestinal diseases; indeed, Sox9 expression 

has been documented in adenomas167.  Recently, a Sox9EGFP reporter mouse 

was used to show that high EGFP/Sox9 expression occurs in post-mitotic 

endocrine cells and low EGFP/Sox9 expression occurs in CBCs170 suggesting 

that Sox9 might perform some function in stem cells.  Interestingly, 

overexpression of Sox9 in the IEC-18 enteroendocrine cell line inhibited 

proliferation170. 
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Paneth Cell Distribution Along the Crypt-Villus Axis is Regulated by Wnt 
and Eph/Ephrin Signaling 

The Ephs are receptor tyrosine kinases whose ligands are the ephrins.  

Both Ephs and ephrins are membrane-bound proteins so signaling occurs 

between neighboring cells.  Upon ligand engagement, a bi-directional signaling 

event is activated that frequently results in repulsion of the signaling cells171.  In 

the developing intestine, EphB2 and EphB3 are expressed in the intervillus zone 

and EphrinB1 is expressed on the villi44.  In the adult intestine, this general 

pattern holds true, but it is a little more complicated with EphB2 and EphB3 both 

expressed in Paneth cells while EphB2 is also expressed more widely throughout 

the lower portion of the crypt.  EphrinB1 and EphrinB2 have low expression in the 

mid-crypt and this level gradually increases toward high expression on the villi.  

Canonical Wnt signaling through Tcf4 and β-catenin has been shown to increase 

expression of Eph receptors and decrease expression of EphrinB1 ligand44.  

EphB3 is a critical regulator of Paneth cell distribution along the crypt-villus axis; 

EphB3-/- mice have Paneth cells scattered among the crypt and villus44.  

Reinforcing the importance of Wnt in Paneth cell distribution, the same 

phenotype was achieved in a different mouse model in which the Wnt receptor 

Frizzled5 (Fzd5) was disrupted in the intestinal epithelium44. The mislocated 

Paneth cells were devoid of EphB3 expression, nuclear β-catenin expression, 

and cryptdin-1 whereas Paneth cells that remained at the base of the crypt 

retained these characteristics44.  This suggests that at least a portion of the 

Paneth cell program is cell non-autonomous and instead depends on the position 

of the cell along the crypt-villus axis. 

The Eph genes also appear to promote proliferation in the crypts and to 

separate the proliferative and post-mitotic compartments.  EphB2/B3-/- compound 

mutant mice displayed intermingling of proliferative and differentiated cells with 

EphrinB1-positive cells, which are normally excluded from the crypts, now found 

scattered throughout the crypt44.  In addition, acute inhibition of EphB2 via a 

blocking antibody resulted in overall decreased proliferation while, conversely, 

overexpression of EphB2 resulted in increased epithelial proliferation172. 
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Other Factors Affecting Paneth Cell Differentiation 
Other factors have been shown to function in Paneth cell differentiation 

including peroxisome proliferator-activated receptor β (PPARβ), colony 

stimulating factor 1 (Csf1) and fibroblast growth factor receptor 3 (FGFR3).  

Deficiency of PPARβ impairs postnatal development of Paneth cells; these mice 

do not have expansion of the Paneth cell lineage between 2 and 3 weeks 

compared to control mice that have a 6-fold increase in Paneth cells during this 

time period173.  In addition, mouse intestine deficient in Csf1 or FGFR3 exhibits 

decreased Paneth cell marker expression174, 175.  Together, these data suggest 

that complex interactions of signaling pathways and compartments direct Paneth 

cell differentiation, maintenance and distribution. 

 

Intermediate Cells: A Rare Intestinal Cell Population 
A rare cell population in the intestinal crypts was identified and 

characterized by electron microscopy many decades ago.  These cells had some 

characteristics of an undifferentiated cell including granular ER that is not well 

developed with many free ribosomes in the cytoplasm and some very small 

secretory granules.  Additionally, other electron-dense secretory granules of 

intermediate size between those of young Paneth cells and immature goblet cells 

(called granule goblet cells) and some granules containing small amounts of 

mucin were observed; thus, these cells were dubbed “intermediate cells”165, 176.  

Intermediate cells comprise ~1% of the crypt cell population and are most often 

located on the lateral side of the crypts and very rarely at the base of the crypts 

between the mature Paneth cells176.  Intermediate cells stain positively with PAS-

AB and have been shown to co-express genes that are normally expressed in 

Paneth cells including cryptdins and phospholipase A2 (Pla2g2a), and MMP7 

and genes that are normally expressed in goblet cells including Muc2121, 165 (also 

VanDussen, unpublished).  Of note, these cells do not express the full goblet or 

Paneth cell gene program; these cells do not contain sulfomucins, the 

predominant mucin form in the adult intestine, nor are they immunoreactive for 
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Tff3 or lysozyme suggesting they are functionally distinct from either 

differentiated lineage121, 177.  Consequently, intermediate cells have been 

proposed to be goblet cells that are trans-differentiating to the Paneth cell lineage 

or vice versa or, alternatively, the shared precursor of these lineages. 

 Early studies of intermediate cells have demonstrated that intermediate 

cells are capable of proliferating (or arise shortly after a previous cell division 

event) in accordance with their putative precursor identity.  Injection of 

Thymidine-3H into mice resulted in labeled intermediate cell nuclei176.  Studies in 

a mouse model with Paneth cell ablation have also supported the idea that 

intermediate cells may be precursors to Paneth and goblet cells.  The cryptdin2 

(CR2) promoter is expressed in Paneth cells, intermediate cells, and immature 

goblet cells; use of the CR2 promoter to drive expression of diptheria toxin 

resulted in reduced numbers of these cells, but most markedly a decrease in 

Paneth cells165 likely due to the highest CR2 expression in this cell type.  

Following this study, CR2 was used to drive expression of the SV40 TAg in mice 

which blocks differentiation of progenitor cells and thus, would block 

differentiation to Paneth cells in this model due to their high CR2 expression.  

The CR2-SV40 TAg intestines exhibited loss of mature Paneth cells as expected; 

the Paneth cell compartment was instead filled with undifferentiated CBCs165.  

Additionally, amplification of the goblet cell lineage and intermediate cell number 

was observed, supporting the idea that since intermediate cells were unable to 

differentiate to the Paneth cell lineage, they were redirected to the goblet cell 

lineage165.  The expanded populations of intermediate cells and immature goblet 

cells were located throughout the lower two-thirds of the crypt and upper 

crypt/lower villus, respectively165.  EM showed that the diameter of the electron-

dense granule cores was diminished and the mucin-occupied area was 

increased in the intermediate cells near the upper portion of the crypts compared 

to those near the bottom165, suggesting that transformation of intermediate cells 

to immature goblet cells to mature goblet cells is a bona fide mechanism of 

cellular differentiation in the intestine.  
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One report has placed STK11 as a critical regulator of intermediate cell 

differentiation137; however, the data presented do not fit with many other reports 

of intermediate cell characteristics.  STK11 has been demonstrated to inhibit cell 

proliferation in a number of tumor cell lines including the intestinal colorectal 

adenocarcinoma line SW480178.  It is widely expressed in the intestine but has 

especially high protein expression in Paneth and goblet cells137.  Inducible 

deficiency of STK11 in the intestinal epithelium resulted in increased Muc2 

expression and enlarged mucus droplets in goblet cells178; these goblet cells 

purportedly also expressed lysozyme, but this data was not shown178.  The 

Paneth cells at the base of crypts in STK11-deficient intestine were abnormal 

and contained mucin droplets178.  The authors concluded that there was 

emergence of intermediate cells in their model; however, since these cells were 

lysozyme-positive and mostly located at the base of the crypts178, these cells 

may not be equivalent to the intermediate cells described in other studies165, 176, 

177.  Perhaps STK11 instead functions as a negative regulator of the goblet cell 

mucin genes or in maintenance of the mature Paneth cell program. 

Intermediate cells have been implicated in the physiological response to 

infection; their numbers are increased in mice infected with the nematode T. 

spiralis121.  The expanded intermediate cell population was localized to the lateral 

sides of the crypts and extended onto the lower villi121.  The increase in 

intermediate cell number was accompanied by other epithelial cell changes in 

Paneth cells, goblet cells, and proliferation121, 123.  T. spiralis infection led to 

increased epithelial proliferation within 2 days, leading to crypt hyperplasia by 

day 6, the day of maximal worm burden123.  The numbers of Paneth cells, goblet 

cells, and intermediate cells were increased by 6 days with maximal increase by 

12 days (the time at which worm burden starts to decline) and a slow decline 

through days 18-27 when the worms are fully cleared123.  In accordance with 

increased secretory cell number, expression of Math1 was upregulated on days 

6-18 of the study123; however, it is not clear if this was due to its expression in the 

increased number of mature secretory cells or if the increased expression of 

Math1 induced the expansion of secretory cells or both.  In accordance with 
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increased differentiation of progenitor cells, the number of proliferating cells 

declined over time, being comparable to uninfected controls over days 6-12, and 

being lower than controls on days 18-27123.  These data suggest that the 

progenitor cells are being influenced more towards differentiation than self-

renewal during the response to T. Spiralis infection.  The intermediate cell 

response in this infection model is thought to be regulated by the host immune 

cell response, specifically, an unidentified population of T-cells121.  In Chapter 4, I 

show that a dramatically increased population of intermediate cells emerges in 

the small intestine subsequent to inhibition of Notch signaling via GSI treatment.  

In addition, induction of intermediate cells was observed in the colons of DBZ-

treated mice and throughout the gut of Vil-Math1 transgenics (Chapter 4 and 

VanDussen, unpublished).  Together, these data suggest that the host immune 

response is able to modulate intestinal Notch signaling which, in turn, affects 

intermediate cell differentiation and/or proliferation. 

 
Factors Controlling Differentiation to the Endocrine Lineage 

Endocrine cells comprise only ~1% of intestinal epithelial cells yet these 

cells play a very important role in communication between the organs, especially 

those involved in digestion and metabolism.  Many important transcription factors 

regulating endocrine cell differentiation in the intestine have been identified 

because they perform a similar function in pancreatic endocrine differentiation.  

Neurogenin 3 (Neurog3) is expressed in the endocrine progenitor cells of both 

the pancreas179 and intestine131, 180, 181.  Its expression is required and sufficient 

for endocrine cell differentiation in the intestine180, 181.  The endocrine progenitor 

cell is a transient cell type present in the intestinal crypt that soon begins to 

express the pan-endocrine marker chromogranin A, turns off Neurog3 

expression, and then terminally differentiates to a specific hormone-producing 

cell type131.  During its short period of expression, Neurog3 functions as a master 

regulator of the endocrine gene program and activates a network of pro-

endocrine transcription factors that likely push the differentiating cell toward a 

particular hormone-expressing endocrine cell type.  Transcription factors that 
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have been shown to affect differentiation of specific endocrine cell types or 

groups of endocrine cells include Pax4182, Pax6182, NeuroD1183, and Nkx2.2184. 

For example, Pax4 expression is required for many endocrine cell types including 

duodenal serotonin, secretin, cholecystokinin (CCK), gastric inhibitory peptide 

(GIP) and PYY cells182 while NeuroD1 expression is required just for CCK and 

secretin cells183.  Also, in addition to effects on goblet cell differentiation as 

described above, Foxa1 and Foxa2 are important for differentiation of L-cells 

(GLP-1, GLP-2, PYY) and D-cells (somatostatin) and expression of the pro-

endocrine transcription factors Pax6 and Isl-1, demonstrating that some intestinal 

transcription factors may affect distinct steps of the terminal differentiation of 

secretory cells153.  All in all, approximately 15 types of mature endocrine cells are 

found in the intestine; these cells are differentially distributed along the anterior-

posterior axis of the gut as well as the crypt-villus axis185 suggesting that a 

complex signaling network facilitates proper differentiation and distribution of the 

hormone-producing cells in the intestine. 

 

The Location, Number and Nature of Intestinal Stem Cells 
The ability to replace epithelial cells and regenerate intestinal tissue 

following damage is essential for proper maintenance of the intestine.  It has long 

been recognized that immature, undifferentiated cells exist near the base of the 

intestinal crypts, nestled between the Paneth cells; these cells are the CBCs186, 

187.  Early investigation of CBCs determined that they are radiosensitive and that 

they possess phagocytic capacity; subsequent to radiation, labeled phagosomes 

were generated186, 187.  The labeled phagosomes were first observed in the crypt 

base and later on the villus and could be traced to all mature epithelial cell types, 

suggesting that there were multipotential cells in the crypt base that could give 

rise to all epithelial cell types186, 187.  Since these seminal observations, many 

studies have been undertaken to further our understanding of the intestinal stem 

cell and the signals that are critical for maintaining its renewal properties and 

directing its differentiation.  To demonstrate true “stemness” in a population of 

cells, two criteria must be met: 1) the stem cell population must be able to be 
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maintained over long periods of time and 2) the stem cell population must be 

able to generate all of the differentiated cell types that comprise the 

organ/system. 

Currently, there is a debate about the exact location of the intestinal stem 

cell (schematic in Figure 1-4).  Cellular position within the crypt is counted 

starting from the middle of the crypt base.  This position is position 1.  Studies 

that assessed the position of label-retaining cells identified the +4 position, the 

position just above the Paneth cell compartment, as being occupied by a putative 

stem cell188-190.  Label-retention assumes that only stem cells will retain the label 

and is based upon Cairn’s hypothesis that stem cells will retain the template DNA 

strand during cell division to protect against DNA replication errors191.  It is of 

note that in the previously mentioned studies, label-retaining cells were not only 

found at the +4 position, but distributed throughout the crypt with highest 

concentration in the first nine positions.  This wide distribution and high number 

of label-retaining cells suggests that stem cells may be located at other positions 

than the +4 position and that non-stem cells may also be retaining label192.  Thus, 

it is currently not known if the so-called “+4 stem cell” that resides above the 

Paneth cell compartment or the CBC that resides at the base of the crypt is the 

“true” stem cell.  Furthermore, it is not known whether these putative stem cell 

populations are equivalent or if they serve distinct functions in regeneration of the 

intestinal epithelium. 

Experimental evidence from analysis of chimeric mice or mice 

heterozygous for an X-linked gene mutation suggests that neonatal crypts are 

polyclonal in nature and then, by an unknown mechanism, one stem cell is  

 “selected” for each crypt193, 194.  After the selection process, each crypt remains 

monoclonal throughout adulthood193, 194 with 4-6 stem cells per crypt during 

steady-state conditions195-197. However, 30-40 cells in the crypt (which contains 

~250 cells total) appear to possess capability to regenerate the crypt if a 

damaging event occurs166.  This suggests that there is flexibility in the self-

maintenance properties of the intestinal stem cell that allow it to adapt to the 

needs of the tissue. 
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Signaling between the epithelium and mesenchyme is vital for epithelial stem cell 

function and for control of epithelial cell turnover rate.  The intestinal 

mesenchyme is thought to be important for creation and maintenance of the 

intestinal stem cell “niche”, the specialized microenvironment in which the stem 

cells reside.  Mesenchymal cells residing in or near the stem cell niche may 

regulate stem cell function through secreted products or direct interaction with 

the stem cells.  It is thought that if stem cells are removed from their niche, they 

lose their stemness and become committed to differentiation198.  Migration of 

differentiating cells toward the top of the crypts would remove them from the 

influence of the stem cell niche and is likely an important step in the maturation 

process of most intestinal epithelial cells. 

 

Identification of Intestinal Stem and Progenitor Cell Markers 
Recent advances in stem cell research have brought renewed vigor into 

identification and characterization of the intestinal stem cell.  Many new intestinal 

stem cell markers have been identified (Figure 1-4) and the first in vitro cultures 

of the intestinal stem have been achieved.  A summary of putative stem and 

progenitor cell markers, the cell population(s) they are thought to mark, and a 

description of their reported properties is included in Table 1-2.  It is also noted if 

the stem cell marker has been described as a contributing factor to adenoma 

progression. 
 
Markers of the Crypt Base Columnar Stem Cell 

Since mouse models had demonstrated the importance of Wnt signaling 

for intestinal stem cell proliferation, it was hypothesized that Wnt-regulated genes 

would be expressed in stem and/or progenitor cell populations.  Screening of 

gene expression in colorectal cancer cells that had been transfected with a 

dominant-negative Tcf4 construct to block Wnt signaling identified ~80 Wnt-

regulated genes40.  Most of the genes were expressed in transit-amplifying cells 

or Paneth cells; however, expression of some genes, including Lgr5, was 

restricted to a limited number of cells in the base of the crypt, the CBC cell  
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Gene +4 CBC TA Longevity Multilineage 
Differentiation

Adenoma 
Formation Reference(s)

Ascl2 ✓ ✓ ✓ Van der Flier et al., 2009

Bmi1 ✓ ✓ Long ✓ ✓ Sangiorgi et al., 2009

DCAMKL1 ✓ May et al., 2009

Lgr5 ✓ Long ✓ ✓ Barker et al., 2007
Barker et al., 2009

Msi1 ✓ ✓ ✓ Kayahara et al., 2003
Potten et al., 2003
Gregorieff et al., 2005

Olfm4 ✓ Van der Flier et al., 2009

Prom1 ✓ ✓ Short ✓ ✓ Snippert et al., 2009
Zhu et al., 2009

PTEN ✓ He et al., 2004

Table 1-2. Gene Markers of Intestinal Stem Cells

Descriptions of reported expression pattern (+4, +4 cell position stem cell; CBC, 
crypt base columnar stem cell; TA, transit amplifying progenitor cell) is provided 
for each marker along with length of longevity (self-renewal capacity), capacity 
to form all major epithelial lineages, and role in adenoma formation of the cell 
labeled by each marker.
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described by Cheng and LeBlond199.  Lgr5 was also expressed at the base of the 

colonic crypts and the base of the antral glands of the stomach where the stem 

cells for these tissues are thought to reside199.  Lgr5 encodes an orphan G-

protein coupled receptor with high similarity to the peptide hormone receptors for 

luteinizing hormone, follicle-stimulating hormone and thyroid-stimulating 

hormone200.  Using an Lgr5-lacZ knock-in transgenic mouse and BrdU-labeling 

studies, it was determined that Lgr5-positive cells are actively cycling cells with 

an average of one round of cell division per day199.  A separate knock-in 

transgenic model in which a GFP-CreERT2 fusion protein was inserted into the 

Lgr5 locus allowed for lineage tracing when crossed to the Cre-activated 

Rosa26-lacZ reporter mouse199.  Lineage-tracing of the progeny of Lgr5-positive 

cells labeled all epithelial cell types with a time period of ~5 days for a migrating 

“ribbon” of labeled cells to reach the top of the villus, consistent with the rate of 

epithelial migration from crypt to the villus tip.  The labeling is long-lived, with 

labeled ribbons still maintained 14 months after induction of the lineage 

tracing201.  Thus, the Lgr5-positive cells fulfill both characteristics of stemness: 

the ability to form all epithelial cell types and longevity.  Although it is accepted 

that Lgr5 is expressed in an intestinal stem cell population, the function of Lgr5 in 

the stem cell has remained more elusive.  Deficiency of the Lgr5 gene caused 

neonatal lethality presumably due to fusion of the tongue to the floor of the mouth 

which prevented normal nursing and caused the newborns to swallow air202.  The 

intestinal phenotype of these mice was described in a later study.  Although Lgr5 

was found to be expressed in the proliferative intervillus zone at this 

developmental stage, no affect on proliferation or migration of epithelial cells was 

observed in Lgr5-/- embryos203. Lgr5-/- embryos had normal distribution of 

enterocytes, goblet cells, and endocrine cells, but they exhibited premature 

differentiation of Paneth cells which normally mature 2-3 weeks after birth203.  

Thus, at this point, Lgr5 has been accepted as a CBC marker, but a function for 

Lgr5 in stem cell maintenance has not been demonstrated although it does 

appear that Lgr5 can affect cellular differentiation. 
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Analysis of genes enriched in Lgr5-positive cells identified two additional 

genes, Achaete scute-like 2 (Ascl2; also called Mash2) and Olfmactomedin4 

(Olfm4), that were expressed specifically in the CBC by in situ hybridization204.  

Ascl2, itself a Wnt target gene, was shown to direct the expression of a number 

of other Wnt target genes, including Lgr5204.  Transgenic expression of Ascl2 in 

the intestinal epithelium via the villin promoter resulted in crypt hyperplasia and 

disorganized and branched villi with ectopic proliferative crypts at 2 weeks of 

age.  In contrast, conditional deletion of Ascl2 in the intestine led to 

disappearance of Lgr5-positive stem cells within 5 days as shown by loss of 

Olfm4 expression (although proliferation was not dramatically different compared 

to controls).  Thus, although Ascl2 is essential for CBC maintenance, other 

proliferating cells must be able to compensate for the loss of Lgr5-positive CBCs. 

Interestingly, over 15 days CBCs gradually reappeared; the authors attributed the 

regeneration due to increased crypt fission events of the crypts with stem cells 

that had escaped the Cre-mediated recombination event204.  Alternatively, a stem 

cell population that is Ascl2-negative could be able to rescue the Ascl2 loss-of-

function phenotype; this stem cell population potentially could be the +4 position 

cell. 

 

Bmi1 is a Potential Marker of the “+4 position” Stem Cell 
Bmi1 is a member of the Polycomb group gene family that is involved in 

chromatin silencing205.  It has been shown to participate in self-renewal of 

neuronal, hematopoietic and and leukemic cells206-208.  Bmi1-expressing cells 

were found to be located in the intestinal crypts, most often at the +4 position 

above the Paneth cells and sometimes in the CBC, both positions where stem 

cells are thought to be located209. In accordance, Bmi1 expression was enriched 

in Lgr5-positive sorted cells204.  Of note, Bmi1-positive cells were not found in 

every crypt suggesting that separate stem cells are proliferating in the crypts 

without a Bmi1 cell or that Bmi1 expression is not constitutively expressed or 

both. Lineage tracing of the progeny of the Bmi1-positive cell resulted in labeling 

of all mature epithelial cell types, a similar result to Lgr5 lineage tracing, with 



 43 

ribbons of labeled cells persisting for up to 12 months209.  The first labeled cells 

in the Bmi1 lineage tracing study were observed 20 hours after induction of 

labeling and these cells were usually located at the +4 position.  After 5 days, 

some crypts remained with only a single labeled cell suggesting that the Bmi1-

positive cell may cycle more slowly than the Lgr5-positive cell.  Therefore, Bmi1 

cells may represent a more quiescent state of the intestinal stem cell while Lgr5 

cells are an actively cycling stem cell population that supplies the transit 

amplifying progenitor population.  Ablation of the Bmi1-cell in 3-week old mice 

was achieved by activating diptheria toxin specifically in Bmi1-expressing cells 

using the Bmi1-CreER transgenic model.  Injection of tamoxifen on 3 consecutive 

days resulted in death of the mouse while a single injection of tamoxifen 

produced intestinal regions that were devoid of crypts which were gradually 

regenerated over 9 months through crypt fission or some other mechanism.  This 

suggests that Bmi1 is essential for stem cell function and epithelial cell 

maintenance.  Whether Bmi1-positive and Lgr5-positive cells represent the same 

cell population or distinct populations (or states) of stem cells remains a hotly 

debated and open issue in the field. 

 

Prominin1 Marks Short-Lived Progenitor Cells 
Prominin1 (Prom1; also called CD133) has been used as a surface 

marker for isolation of stem cells in many tissues210-214.  Two independently 

generated knock-in transgenic mouse models reported differing expression 

patterns of Prom1; both studies demonstrated that Prom1 is co-expressed in 

Lgr5-positive cells215, 216 while Snippert et. al. also showed Prom1 mRNA and 

protein expression was expressed in the transit-amplifying cell population above 

the Paneth cell compartment215.  Lineage tracing of the progeny from Prom1-

expressing cells showed that cells from all epithelial lineages were labeled and 

that labeling persisted for at least 60-75 days215, 216.  Interestingly, the frequency 

of tracing events observed 7 days after induction of labeling was only 10% of that 

observed 1 day after induction of labeling suggesting that many of the Prom1-

positive cells are short-lived progenitor cells and not stem cells; the remaining 
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labeling could potentially arise from the Prom1-positive cells that are also Lgr5-

positive215. 

 

Musashi-1 is a General Marker of Stem and Progenitor Cells 
Musashi-1 (Msi1) is an RNA binding protein that is thought to function in 

asymmetric division in neural stem cells by binding to and repressing m-Numb, 

an inhibitor of Notch signaling217, 218.  Msi1 is able to upregulate Hes1 expression 

in neural stem cells219 which is essential for neural stem cell self-renewal and 

suppression of differentiation113, 220, 221.  In the intestine, Msi1 is expressed in the 

CBC and in the +4 position cell222, 223.  Interestingly, a similar pattern of 

expression was observed for Hes1 suggesting that Msi1 could also positively 

regulate Hes1 in the intestine222.  Another study has shown that Msi1 is a more 

general marker with expression in many cells of the crypt proliferative 

compartment43.  Indeed, it has been noted that Msi1 appears to be expressed in 

a greater number of cells per crypt than the 4-6 proposed stem cells per crypt223.  

Thus, based on the current data, Msi1 appears to be a more general marker of 

crypt stem and progenitor cells. 

 

Controversial Putative Stem Cell Markers 
Other markers potentially expressed in stem cells include phosphorylated 

phosphatase and tensin homolog (P-PTEN) and double cortin and 

calcium/calmodulin-dependent protein kinase-like-1 (DCAMKL1).  P-PTEN was 

described as an intestinal stem cell marker based on its expression in BrdU 

label-retaining cells26; PTEN is linked to regulation of cell proliferation through 

PI3K and Akt signaling making it a provocative marker of intestinal stem cells.  

However, another study showed that P-PTEN-positive cells in the intestinal 

crypts always co-expressed the pan-endocrine marker chromogranin A224, 

suggesting that P-PTEN is actually expressed in differentiated endocrine cells 

that are present in the crypts.  DCAMKL1 was originally identified as a putative 

gastric and intestinal stem cell marker based on its expression in cDNA libraries 

generated from laser-captured tissue from regions where adult progenitor cells 
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reside225.  To facilitate the sample collection process, mice with a genetic 

mutation resulting in Paneth-cell ablation were used which may have influenced 

the results of the study.  Immunostaining for DCAMKL1 showed that it was 

expressed in the +4 position and not co-expressed with markers for any of the 

major epithelial lineages225, a finding confirmed by another study that analyzed 

DCAMKL1 expression in normal and irradiated intestine226.  DCAMKL1 did not 

co-localize with proliferation markers such as PCNA, but was found to be co-

expressed with BrdU in a label retention assay227.  Of note, DCAMKL1-positive 

cells are also present on the villus226, 228.  It has since been demonstrated that 

most, if not all, DCAMKL1-positive cells express markers of a minority cell 

lineage in the intestine, the tuft cell, including Cox1/2 and high levels of villin and 

α-tubulin228.  Tuft cells are a post-mitotic, differentiated cell type that is thought to 

function as a chemosensory cell type in the hollow organs of the gastrointestinal 

tract and respiratory system229.  Thus, at this time, both P-PTEN and DCAMKL1 

remain extremely controversial stem cell markers. 

 

In Vitro Culture of Intestinal Stem Cells 
Methodologies for long-term culture of intestinal tissue and stem cells 

have recently been developed and described230, 231.  Previous attempts to 

develop in vitro growth systems had been restricted by the rapid initiation of 

apoptosis after cells were removed from the basement membrane232, 233.   

Culturing of intestine from neonatal and adult mice was achieved using a 3D 

culturing technique with collagen gel to support the tissue at the air-media 

interface230.  The cultures formed spheroid structures with proliferative and 

differentiated zones.  The differentiated zones contained all major epithelial cell 

types.  Many of the spheroids produced crypt structures within 2 weeks of culture 

that contained the proliferative compartment, Lgr5- and Bmi1-expressing cells.  

Growth of the crypts could be inhibited by addition of recombinant Dkk1 and 

enhanced by addition of the Wnt agonist R-spondin, which had previously been 

shown to promote intestinal proliferation in vivo230, 234.  Finally, the differentiation 

of the spheroids could be driven to the secretory or endocrine lineage via 
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treatment with GSIs or adenoviral Neurog3, respectively, suggesting that the 

stem cells in these structures were able to respond to normal differentiation 

cues230.  Single Lgr5 stem cells have also been cultured long-term; these cells 

form organoids with crypt-villus structures that contain all the major epithelial cell 

types and form normal crypt-villus patterning with Paneth cells and Lgr5 cells 

situated at the base of the crypts as in vivo231.  The ability to sustain long-term 

culture from single intestinal stem cells that had been removed from their niche 

was somewhat surprising; however, a look at the culturing conditions reveals that 

many components normally provided by mesenchymal cells are required, 

including Noggin and a Wnt agonist (R-spondin was used).  In addition, Matrigel 

was used to provide a laminin-rich support and it is known that Matrigel also 

contains many growth factors.  EGF, which has been associated with intestinal 

proliferation235, and Jagged 1, a Notch ligand and agonist, were also present in 

the culturing media.  Together, this shows that the physical presence of 

mesenchymal cells may not be needed to maintain stem cells, but an 

extracellular matrix component and other secreted components from 

mesenchymal cells are essential.  These exciting advances in methodology for 

studying intestinal stem cells will be important for understanding stem cell 

identity, maintenance and differentiation. 

 

The Role of Intestinal Stem Cells in Progression to Adenoma 
Current cancer theory proposes that the same stem cells that maintain the 

epithelium during steady state can accumulate mutations that may lead to 

malignancy; these stem cells are unable to undergo normal differentiation and 

instead sustain cancerous growth.  Thus, identification of adult stem cells is an 

important step towards generation of therapeutic agents that can counteract 

aberrant stem cell activity.  Consistent with this theory of cancer, many of the 

recently identified intestinal stem cell markers are expressed in intestinal 

adenoma including Lgr5, Ascl2, Olfm4, Msi1 and Prom1199, 204, 215, 223, 236.  

Furthermore, only a small proportion of the cells within the adenoma expressed 

Lgr5 and Olfm4 making it tempting to suggest that these cells represent 
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malignant stem cells driving formation and progression of the adenoma204, 236.  In 

contrast, markers such as Prom1 were expressed widely throughout the 

adenoma215.  Inducing overactive Wnt signaling in vivo via APC loss-of-function 

or β-catenin gain-of-function mutants specifically in the Lgr5-cell, Bmi1-cell, 

Ascl2-cell or Prom1-cell led to development of hyperproliferative crypts followed 

by progression to adenoma suggesting that these cells can function as the 

driving force behind tumor development when they acquire certain mutations204, 

209, 216, 236. 

 

Thesis Overview 
For my thesis research, I have investigated the role of the Notch signaling 

pathway in directing intestinal cellular differentiation.  Notch signaling is the 

critical pathway controlling the bimodal switch between the absorptive and 

secretory cell lineages through regulation of a network of bHLH transcription 

factors.  In particular, Notch signaling regulates the pivotal balance between the 

transcriptional repressor Hes1 and its target, the pro-secretory transcription 

factor Math1.  My work and that of others has shown that Math1 is the key 

transcription factor regulating intestinal secretory cell differentiation.  I have also 

explored how Notch signaling affects intestinal stem cells and have identified the 

crypt base columnar stem cell as a direct target of this signaling pathway. 

In Chapter 2, I demonstrate that Math1 is sufficient to induce secretory cell 

differentiation to the detriment of the absorptive lineage during late fetal 

development.  Transgenic expression of Math1 was targeted to the intestinal 

epithelium via the villin promoter (the Vil-Math1 transgenic model). Transgenic 

founders analyzed at E18.5 were found to have increased goblet and endocrine 

cells throughout the intestine with the most severely affected mice having almost 

the entire epithelium converted to goblet cells.  Interestingly, precocious 

activation of Paneth cell markers was observed in the small intestine of Vil-Math1 

founders along with ectopic activation of Paneth cell markers in the transgenic 

colon.  Epithelial proliferation was decreased and displaced out of the intervillus 

zone and onto the villi; surprisingly, mesenchyme proliferation was greatly 
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increased leading to expansion of the mesenchyme compartment.  Accordingly, 

multiple mesenchyme cell types were increased in number including neurons, 

myofibroblasts, myoblasts and smooth muscle cells.  Since transgenic Math1 

expression was limited to the epithelium, this suggests that the epithelial changes 

in transgenic mice altered epithelial-mesenchymal signaling to remodel the 

mesenchyme and suggests that Math1 is a novel regulator of “cross-talk” 

signaling pathways. 

Chapter 3 attempts to expand on the findings presented in Chapter 2 

through the generation of an inducible Math1 transgenic model (called VZM) 

which would be used to generate stable transgenic lines and to study the affect 

of Math1 expression in adult mice (stable lines of Vil-Math1 mice were not able to 

be generated presumably due to neonatal lethality of expressing founders).  As 

part of this project, the recombination pattern of five Cre transgenic mouse 

models was analyzed to determine the best model for activation of the inducible 

Math1 transgene.  This work is presented in Chapter 3-A.  Chapter 3-B discusses 

the establishment and initial characterization of seven VZM transgenic lines.  

Unfortunately, due to lack of increased Math1 protein expression after induction 

of the transgene, this model was unsuitable for examining the role of Math1 

overexpression in adult mice. 

Chapter 4 discusses the results of two models of Notch disruption to 

determine which stem/progenitor cells are responding to Notch signaling and 

also to carefully analyze the induction of secretory cell lineages.  I have 

confirmed that Math1 expression and goblet cells are increased in adult mice 

treated with the GSI dibenzapine (DBZ).  In addition, I have shown that endocrine 

cells and Paneth cell markers are increased after GSI-treatment which agrees 

with a study in rat intestine reported by Milano et al80 and with our understanding 

that increased Math1 leads to increased numbers of all secretory cell types.  

These cell lineage changes were also observed in GSI-treated embryonic 

intestine organ cultures treated with DAPT, a GSI.  Interestingly, I made a novel 

observation that a population of intermediate cells that express markers of both 

goblet and Paneth cells emerges in both the small intestine and colon of GSI-



 49 

treated mice.  Decreased proliferation in the crypts of GSI-treated mice has been 

previously reported suggesting that Notch signaling regulates intestinal stem 

and/or progenitor cells.  We analyzed expression of intestinal stem and 

progenitor cell genes and found that expression of the CBC marker Olfm4 was 

dramatically down-regulated in both GSI-treated adult mice and embryonic organ 

cultures, suggesting that this gene may be directly regulated by Notch signaling.  

Transcriptional regulation of the Olfm4 gene was analyzed using promoter 

sequence analysis and luciferase assays to identify key regulatory regions of the 

Olfm4 promoter within the proximal 500 base pairs of the Olfm4 5’ promoter.  

These studies have further supported that Notch can directly regulate Olfm4 

gene transcription and have identified the CBC stem cell as a target of Notch 

signaling. 

Finally, Chapter 5 will summarize the conclusions of this dissertation 

research and discuss the implications of the results and how they have 

contributed to the field of intestinal Notch signaling and secretory cell fate 

selection.  Future directions for investigation will be presented and expanded 

upon. 
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CHAPTER 2 
 

MOUSE ATONAL HOMOLOG 1 DIRECTS INTESTINAL PROGENITORS TO 
SECRETORY CELL RATHER THAN ABSORPTIVE CELL FATE 

 

 
 
SUMMARY 
 

BACKGROUND & AIMS: The Notch-regulated transcription factor mouse 

atonal homolog 1 (Math1) is required for the development of intestinal secretory 

cells, as demonstrated by the loss of goblet, endocrine and Paneth cell types in 

null mice. However, it was unknown whether Math1 is sufficient to induce the 

program of secretory cell differentiation.  METHODS: Intestinal morphology and 

epithelial and mesenchymal cell fate were examined by histological staining and 

marker gene expression in transgenic mice expressing a villin-regulated Math1 

transgene. Cellular proliferation was assessed by Ki67 immunostaining. 

RESULTS: Late prenatal transgenic founders exhibited a gross cellular 

transformation into a secretory epithelium. The expansion of secretory cells 

coupled with the almost complete loss of absorptive enterocytes suggested 

reprogramming of a bipotential progenitor cell. Moreover, Math1 expression 

inhibited epithelial cell proliferation, as demonstrated by a marked reduction in 

Ki67 positive cells and blunted villi. Unexpectedly, the transgenic mesenchyme 

was greatly expanded with increased proliferation. Several mesenchymal cell 

types were amplified, including smooth muscle and neurons, with maintenance of 

basic radial patterning. Since transgenic Math1 expression was restricted to the 

epithelium, these findings suggest that epithelial-mesenchymal signaling is 

altered by the cellular changes induced by Math1. CONCLUSIONS: Math1 is a 
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key effector directing multipotential precursors to adopt secretory and not 

absorptive cell fate, and is a novel regulator of epithelial-mesenchymal crosstalk. 

 

 
INTRODUCTION 

 

The intestine is composed of a simple columnar epithelium overlying a 

complex multi-layered mesenchyme. The tissue is organized into villi that 

protrude into the lumen and crypts that invaginate into the mesenchyme. Stem 

and progenitor cells in the crypts replenish the epithelium at a rapid rate 

throughout the lifespan of the organism. The multipotential progenitor cells 

differentiate into two general cell lineages. The absorptive (columnar) cell lineage 

forms enterocytes, which are responsible for absorption of nutrients and 

constitute the majority of the epithelium. The secretory (granulocytic) cell lineage 

is composed of goblet, endocrine and Paneth cells, which secrete mucus, 

hormones and antimicrobial peptides, respectively. Epithelial cytodifferentiation 

first occurs during fetal development; the various mature cell types are 

established by birth, with the exception of Paneth cells, which are formed 

postnatally with the emergence of crypts. Although the mechanisms regulating 

epithelial cell fate choice have not been fully elucidated, multiple signaling 

pathways, including Notch, Wnt and Hedgehog, have been shown to influence 

progenitor cell proliferation and epithelial cell specification.1, 2 

Animals with perturbations in intestinal Notch signaling remodel their 

epithelium in a manner suggesting that activation of this pathway directs 

multipotential precursors toward an enterocyte fate at the expense of secretory 

fates.3-9  For example, transgenic mice expressing a constitutively active form of 

the Notch 1 receptor (NotchICD) in the intestinal epithelium exhibited a loss of 

secretory lineage cells, including goblet and endocrine cells as well as Paneth 

cell markers.3, 4 Conversely, blockade of Notch signaling in rodent intestine with 

gamma secretase inhibitors or by deletion of either the Notch pathway 

transcription factor CSL/RBP-J or both Notch1 and Notch2 receptors promoted 
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excessive differentiation of secretory cell types.5-7, 9 A similar phenotype was 

observed in zebrafish with disrupted Notch signaling,8 suggesting that Notch is a 

fundamental pathway regulating the specification of absorptive versus secretory 

cells in the vertebrate gut. 

A cascade of Notch-regulated basic-helix-loop-helix (bHLH) transcription 

factors have been identified as critical effectors directing intestinal epithelial cell 

fate decisions. In particular the bHLH transcriptional repressor Hairy and 

enhancer-of-split 1 (Hes1) has been determined to regulate the choice between 

absorptive and secretory cell differentiation. Hes1 is known to be a transcriptional 

target of Notch signaling, with expression localized to the epithelial progenitor 

zone of the intestine.10, 11 Importantly, mice with a Hes1 loss-of-function mutation 

exhibited a phenotype similar to models of Notch disruption, with excessive 

differentiation of secretory cell types, suggesting that Notch signaling primarily 

exerts its influence on intestinal progenitor cell fate choice through Hes1.12 In 

turn, Hes1 acts, at least in part, by repressing transcription of the bHLH activator 

atonal homolog 1 (Atoh1).13 Accordingly, Notch disruption results in decreased 

expression of Hes1 and increased expression of Atoh1.7, 12 Mouse Atoh1 (Math1) 

loss-of-function mutants have a phenotype similar to Notch gain-of-function 

models, with loss of goblet, endocrine and Paneth cells, demonstrating that 

Math1 is required for intestinal secretory cell development.14, 15 Additional bHLH 

transcription factors have been shown to function downstream of Math1, 

including Neurogenin 3 (Neurog3), which is instructive for endocrine cell 

development, as demonstrated by loss of enteroendocrine cells in null mice16 and 

enhanced endocrine cell development in transgenic mice expressing Neurog3 in 

the developing intestinal epithelium.17  

Since Math1 expression is required for intestinal secretory cell 

development, it has been hypothesized to be the key effector regulated by Notch 

signaling that controls the bimodal switch between absorptive and secretory 

lineages. However, since Math1 is expressed in mature secretory cells in 

addition to cells in the progenitor zone,14, 18 it is not clear whether Math1 

functions to initiate the secretory cell program of differentiation or to maintain the 



  
 

71 

differentiated phenotype. In this study we tested whether Math1 expression 

promotes the program of secretory cell development with a transgenic mouse 

model that overexpressed Math1 in the developing intestinal epithelium.  

 

 

MATERIALS AND METHODS 
 
Generation of Vil-Math1 Transgenic Mice   

The Vil-Math1 transgene contained the mouse cDNA under the control of 

the mouse villin enhancer/promoter.  The transgene was prepared by isolating 

Math1 from pCS2+Math119 after ClaI/KpnI digestion and shuttling into pBluescript 

SK (+/-) (Stratagene) before cloning into the villin expression plasmid pBSII-

p12.4KVillΔATG.20 Following verification by sequencing, the 15 kb transgene was 

excised with PmeI and microinjected into F2 zygotes from C57BL/6 X SJL 

parents by the University of Michigan Transgenic Animal Model Core. Potential 

founders were harvested at E18.5 and screened by polymerase chain reaction 

(PCR) amplification of a 270 bp product using the following primers: V1S 5’-GTA 

ACA GGC ACT AAG GGA GCC AAT GTA GAC; CM, 5’-TTA CCT CAG CCC 

ACT CTT CTG CAT GCA GCA. Mouse use was approved by the University of 

Michigan Committee on Use and Care of Animals. 

 

Tissue Morphology and Immunohistochemistry   

Intestines were dissected from potential E18.5 Vil-Math1 transgenic 

founders, and the proximal region (one cm distal to the pylorus), distal region 

(one cm distal to the midpoint), and colon (one cm distal to the cecum) were 

paraffin embedded after fixing overnight in 4% paraformaldehyde. Adjoining 

intestinal segments were processed for RNA. Sections (5 µm) were stained with 

H&E to assess cellular morphology and Periodic-acid Schiff (PAS)/Alcian blue 

(Newcomer Supply) to visualize mucin-containing goblet cells. Staining to 

visualize enterocytes was performed with the Alkaline Phosphatase Substrate Kit 

I (Vector Laboratories). For immunostaining, the following primary antibodies 
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were used: rabbit anti-chromogranin A (1:500; 94188/5 gift from J. F. Rehfeld), 

rabbit anti-Muc2 (1:500; Santa Cruz), rabbit anti-Ki67 (1:500; Novacastra), 

mouse anti-a SMA conjugated to Cy-3 (1:500; Sigma), rabbit anti-desmin (1:500; 

Abcam), and rabbit anti-neurofilament (1:500; Zymed), followed by appropriate 

secondary antibodies conjugated to Cy2 or Cy3 (1:400; Jackson 

ImmunoResearch Laboratories), AlexaFluor488 (1:500; Invitrogen) or biotin 

(1:200; Vector Laboratories), as described.21 Co-staining for desmin and Ki-67 

(1:100; BD Pharmigen mouse monoclonal) used Trilogy antigen retrieval (Cell 

Marque). Staining for Neurog3 (1:4000, F25A1B3 concentrated mouse 

monoclonal, Developmental Studies Hybridoma Band, University of Iowa) used 

tyromide signal amplification (TSA kit #2, Molecular Probes-Invitrogen), as 

previously described.17 TUNEL staining was performed as previously 

described.22 Microscopy was performed with either a Nikon E800 or Olympus 

BX-51 equipped with a SPOT or Olympus DP70 digital camera, respectively, or a 

Zeiss LSM 510 confocal microscope. 

 

Quantitation of mRNA Abundance  

Gene expression was measured by quantitative reverse transcription-PCR 

(qRT-PCR) analysis of transgenic (Tg) founders and nontransgenic (Ntg) 

littermate controls using the distal intestinal segment unless otherwise noted. 

RNA was isolated, DNase-treated and purified using the RNeasy Mini kit 

(Qiagen). RT reactions (50 µl) used 1 µg RNA and the Iscript cDNA synthesis kit 

(Bio-Rad), as recommended by the manufacturer. qRT-PCR was performed as 

described23 with SYBR green dye and the primers listed in Table 2-1.  

Expression levels were determined for individual embryos with triplicate assays 

per sample and normalized to the expression of glyceraldehyde 3-phosphate 

dehydrogenase (Gapdh), which remained the same in Tg and Ntg controls. 

 

Morphometric Analysis   
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Gene Forward Primer (5' to 3') Reverse Primer (5' to 3') Amplicon
(bp)

Cryptdin* AGGAGCAGCCAGGAGAAG ATGTTCAGCGACAGCAGAG 192
CCK 153

TCAAGAAGGTGGTGAAGCAGG TATTATGGGGGTCTGGGATGG 350
Glucagon CGCTGATGGCTCCTTCTCTGAC CAAGTGACTGGCACGAGATGTTG 156

Lactase CAGCGATGCCCACAGGAAAG ACGGAGCCCTTGACGAGAG 144
Math1 GCCTTGCCGGACTCGCTTCTC TCTGTGCCATCATCGCTGTTAGGG 116
Muc2 AGAACGATGCCTACACCAAG CATTGAAGTCCCCGCAGAG 132
Neurog3 ACCCTATCCACTGCTGCTTGTC CGGGAAAAGGTTGTTGTGTCTCTG 136
SM22α CTCTAATGGCTTTGGGCAGTTTGG GCTCCTGGGCTTTCTTCATAAACC 90
Vimentin ACTGCTGCCCTGCGTGATGTG GGTACTCGTTTGACTCCTGCTTGG 163

* Amplifies Cryptdins 1, 3, 6-12, 14, 15

Table 2-1.  Oligonucleotide Primers for Quantitative Reverse Transcription Polymerase 
Chain Reaction.

TACATCCAGCAGGTCCGCAAAG CGATGGGTATTCGTAGTCCTCGG
Gapdh

Hes1 GCTCACTTCGGACTCCATGTG GCTAGGGACTTTACGGGTAGCA 144
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Image J (1.34s by Wayne Rasband, NIH, USA, http://rsb.info.nih.gov/ij/) was 

used to calculate epithelial or total tissue area from 10-20 contiguous field views 

of an intestinal region (representing the whole tissue segment), except for  

 goblet cell analysis which included 3 contiguous field views. For specific 

epithelial cell populations, the number of positive cells was counted and data 

were expressed as number of positive cells/area of epithelium (µm2). To 

determine proportional tissue areas, the measured epithelial area (µm2) was 

divided by the measured total tissue area (µm2) to calculate the epithelial 

component, while the remainder was attributed to mesenchyme. 

 

Statistics 

Quantitative data were presented as mean ± SEM and analyzed by 

ANOVA followed by a Dunnett post test to compare data from each Vil-Math1 Tg 

founder to Ntg littermate controls. P < 0.05 was considered significant. 
 

 
RESULTS 
 
Increased Secretory Cell Development in Vil-Math1 Transgenics 

 To test the relationship between Math1 and secretory cell differentiation, 

we used the mouse villin promoter20 to target Math1 expression in transgenic 

mice to all intestinal epithelial cells, including stem and progenitor cells (Fig. 2-1). 

Stable Vil-Math1 transgenic lines were unable to be generated due to the lack of 

recovery of founder mice with effective transgene expression. Thus we analyzed 

prenatal transgenic founders to avoid the lethality resulting from the dramatic 

cellular changes induced by Math1. Interestingly, the intestines of Vil-Math1 

transgenics were distended, translucent and fluid-filled (Fig. 2-1B), possibly due 

to decreased fluid absorption or increased secretion resulting from the epithelial 

cell remodeling caused by Math1 expression (described below). Total Math1 

mRNA was measured in proximal small intestine, distal small intestine, and colon  
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intestinal segments and six Vil-Math1 founder embryos with increased Math1 

were analyzed. Increased Math1 mRNA was generally observed throughout the  

 gut of Vil-Math1 mice with increases up to 34-fold in the proximal intestine, 27-

fold in the distal intestine, and 10-fold in the colon (Fig. 2-1C).  

Histological analysis demonstrated a complex, disorganized morphology 

in transgenic intestine with stunted villi, hypocellular epithelium and expanded 

mesenchyme (Fig. 2-2). Analysis of the cellular changes induced by Math1 

included three separate regions, proximal and distal small intestine, and colon, to 

account for the normal regional variation in secretory cell numbers along the 

anterior-posterior gut axis. Analysis of Ntg controls demonstrated that Math1 

expression increases in the posterior intestine in strong correspondence to goblet 

cell numbers (Supplementary Fig. 2-1).  Thus, analysis of Tg phenotypes strictly 

compared outcomes with the corresponding region in Ntg controls.  H&E staining 

showed increased numbers of goblet-like cells throughout the gut, which was 

confirmed by staining with PAS/Alcian blue (Fig. 2-2). The epithelium of some Vil-

Math1 transgenics appeared to be almost completely transformed to the goblet 

cell lineage (eg. Fig. 2-2F, J). Morphometric analysis demonstrated significant 

increases in goblet cell number along the entire length of the small intestine and 

colon (Fig. 2-2G, K, O). For example, Tg M12 exhibited greater than 10-fold 

increases in goblet cell numbers in both proximal and distal small intestine, and a 

smaller, yet significant, increase in colon. 

Next we examined endocrine cells, another cell type belonging to the 

intestinal secretory lineage. Similar to the goblet cell findings, a general 

expansion of endocrine cells was observed in all three regions of the Vil-Math1 

intestine. Immunostaining for the pan-endocrine marker chromogranin A (CgA) 

revealed 2- to 8-fold increased endocrine cell numbers in Vil-Math1 transgenics 

compared to Ntg littermates (Fig. 2-3A-D). Normally, endocrine cells are 

distributed in the epithelium as single, scattered cells surrounded by enterocytes. 

In contrast, some CgA-positive cells were found in juxtaposition in the 

transgenics (Fig. 2-3C, inset). Goblet cell juxtaposition was also commonly 

observed in the transgenic intestine (eg. Fig. 2-2F, J). The observation of  
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enteroendocrine and goblet cells clustering in the Vil-Math transgenic mice 

suggested that increased Math1 expression disturbed the process of epithelial  

cell distribution, which is thought to be orchestrated through lateral inhibition 

regulated by Notch signaling.24, 25  

The endocrine cell expansion encompassed both mature endocrine cells 

and endocrine progenitor cells, which are marked by the transcription factor 

Neurog3.16, 17, 26, 27 In Ntg controls, Neurog3-positive cells were observed as very 

rare single cells located in the intervillus progenitor cell zone (Fig. 2-3E).  

Increased numbers of Neurog3-positive cells were observed in Vil-Math1 

transgenic founders and these cells were often observed on the villus, displaced 

from their normal location (Fig. 2-3F-G). Correlating with the increased numbers 

of Neurog3-positive cells, Neurog3 mRNA levels were increased up to 40-fold in 

Vil-Math1 Tg founders (Fig. 2-3H).  Tg M3, M41, and M98, which exhibited the 

greatest increase in Neurog3 mRNA levels, also had the highest number of 

Neurog3-positive staining cells (data not shown). 

Co-immunostaining for the endocrine hormone products cholecystokinin 

(CCK) and serotonin showed increased numbers of cells expressing a single 

hormone product (a pattern characteristic of mature endocrine cells) and did not 

reveal cells expressing multiple hormones (data not shown). Analysis of CCK 

and glucagon mRNA abundance showed that hormone expression was 

increased in all three regions of the Vil-Math1 intestines (Supplementary Fig. 2-

2).  Furthermore, expression patterns for these two hormones generally followed 

the normal regional patterning, with greater expression observed in small 

intestine than in colon. These data suggest that forced Math1 expression in the 

developing intestinal epithelium increased the formation of Neurog3-positive 

endocrine progenitor cells that further differentiated to form expanded numbers of 

mature endocrine cells.  Moreover, the regulatory network that influences 

differentiation of endocrine cells to specific hormone-producing subtypes was 

conserved. 

Paneth cells, the third secretory cell type, are not mature at E18.5; 

however, expression of Paneth cell anti-microbial genes is observed in the  
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prenatal intestine. Staining distal intestine from control mice for the Paneth cell 

markers lysozyme (Fig. 2-4A) and MMP7 (not shown) showed weakly  

 immunopositive cells scattered on the villus epithelium. In contrast, Vil-Math1 

transgenic founders had increased numbers of intensely-stained cells, which 

were commonly found in or near the intervillus zone.  In accordance with the 

expansion of Paneth-like cells, cryptdin mRNA levels were increased in the distal 

intestines of Vil-Math1 transgenics, with levels up to 80-fold greater than in Ntg 

controls (Fig. 2-4F). Unexpectedly, lysozyme staining, which is never observed in 

the Ntg colon, was widespread in Vil-Math1 Tg colon together with increased 

levels of colonic cryptdin mRNA (Fig. 2-4D-F), suggesting that increased Math1 

expression in the colon shifted the normal pattern of secretory cell differentiation 

to include Paneth cell genes.  Together, these findings demonstrate that Math1 is 

sufficient to trigger the program of intestinal differentiation to goblet, endocrine 

and Paneth cells throughout the intestine and colon. 

 

Loss of Enterocytes in Vil-Math1 Transgenics 

We tested the absorptive cell lineage in the Vil-Math1 transgenics to 

determine if the increase in secretory cells was associated with a corresponding 

reduction in enterocyte differentiation. A striking decrease in enterocytes was 

demonstrated in both proximal and distal small intestine by staining for the brush 

border enzyme alkaline phosphatase (Fig. 2-5). The Vil-Math1 transgenics 

exhibited decreased intensity of staining with an almost complete loss of staining 

in the most severely affected transgenics. Transgenics with the greatest increase 

in secretory cell number exhibited the most dramatic loss of enterocytes. Thus, 

excessive differentiation of the secretory lineage occurs to the detriment of the 

absorptive lineage in Vil-Math1 mice. Analysis of the enterocyte brush border 

enzyme lactase showed a dramatic reduction in mRNA abundance, with greater 

than 2000-fold decreases, consistent with the observed loss of enterocytes (Fig. 

2-5G). Similar reductions in mRNA abundance were seen for the enterocyte 

marker intestinal fatty acid binding protein (data not shown). These results  
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suggest that Math1 is capable of directing multipotential progenitor cells to adopt 

the secretory program of differentiation and not absorptive cell fate. 

 

 Reduced and Displaced Epithelial Cell Proliferation in Vil-Math1 Transgenics 

The epithelium in Vil-Math1 transgenics comprised a significantly smaller 

proportion of the intestinal tissue area than that of nontransgenics, consistent 

with the hypocellular appearance of the epithelium (Fig. 2-2 and Supplementary 

Fig. 2-3). This phenotype led us to examine whether Vil-Math1 transgenics had 

alterations in cellular proliferation or apoptosis. Analysis of apoptosis by TUNEL 

staining showed no change in apoptotic rate (data not shown). However, striking 

changes in cellular proliferation were observed. Normally, proliferating cells are 

restricted to the intervillus zone of the E18.5 intestinal epithelium as well as 

scattered cells in the mesenchyme, as shown by immunostaining for the Ki67 

antigen (Fig. 2-6A). In contrast, epithelial proliferation in Vil-Math1 transgenics 

was displaced and significantly decreased (Fig. 2-6B-D). An overall 2-fold 

reduction in epithelial proliferation in Vil-Math1 transgenic mice was shown by 

morphometric analysis of Ki67-positive cells (Fig. 2-6E). All 6 transgenic founders 

exhibited displacement of Ki67-positive cells from the intervillus zone to the villus 

(Fig. 2-6B-D and data not shown) suggesting that the progenitor cell “niche” was 

displaced towards the villus tips. Our finding that Neurog3-positive cells were 

also displaced to the villus, strengthens this conclusion. Moreover, in contrast to 

Ntg controls, Vil-Math1 transgenics had many cells in the intervillus zone that 

stained with PAS/Alcian blue or lysozyme suggesting that differentiated cells 

occupied the intervillus zone (Fig. 2-2 and 2-4). 

 

Mesenchymal Remodeling in Vil-Math1 Transgenics 

Signaling between the intestinal epithelium and mesenchyme is thought to 

play a critical role in the regulation of intestinal differentiation and proliferation.28 

Although Math1 transgene expression was limited to the epithelium, we observed 

marked changes in the mesenchyme. In contrast to the overall reduction in 

epithelial cell proliferation, there was a robust increase in Ki67-positive cells in  
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the mesenchyme of Vil-Math1 transgenics (Fig. 2-6A-D, arrowheads), accounting 

for the thickened mesenchyme layer seen in H&E stained sections (Fig. 2-2).  

 Mesenchymal expansion was observed in the villus core regions as well as the 

submucosa (Fig. 2-6 and data not shown).   

The mesenchymal expansion was substantiated by increased expression 

of the general mesenchyme marker vimentin, with 2 to 4-fold increased 

expression (Fig. 2-7A). The cellular basis for the expansion was determined by 

immunohistochemical analysis. Co-staining with antibodies to α-smooth muscle 

actin (SMA) and desmin enabled identification of three different mesenchymal 

cell types: myofibroblasts (SMA-positive), myoblasts (desmin-positive) and 

differentiated smooth muscle (SMA- and desmin-positive) (Fig. 2-7C-E). Vil-

Math1 transgenics exhibited an expansion of both SMA-positive myofibroblasts 

and desmin-positive smooth muscle precursors. In addition, there was a 

substantial increase in double-stained, differentiated smooth muscle. The 

myocyte expansion was verified by analysis of SM22α, a differentiated smooth 

muscle marker (Fig. 2-7B).  SM22α expression was increased as much as 3.7-

fold in Vil-Math1 transgenics, similar to the overall expansion in mesenchyme 

shown by increased vimentin expression (Fig. 7A, B).  Immunostaining for the 

neuronal marker neurofilament demonstrated that enteric neurons were also 

expanded in the transgenic mesenchyme (Fig. 2-7F-H). Although Vil-Math1 

transgenics exhibited increased numbers of numerous mesenchymal cell types, 

the basic radial patterning was maintained, with myofibroblasts more closely 

associated with the epithelium and enteric neurons situated between the circular 

and longitudinal smooth muscle. These data suggested that the epithelial cell 

changes induced by forced Math1 expression altered signaling to the 

mesenchyme to affect proliferation and differentiation, with resulting expansion of 

several mature cell types. 

 
 
DISCUSSION 
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This study has established that Math1 is sufficient to induce the program 

of secretory cell development in the mouse intestine. Transgenic expression of 

Math1 resulted in almost complete transformation of the intestine into a secretory  

epithelium. The loss of enterocytes and expansion of the secretory cell lineage 

suggested that Math1 regulates the cell fate choice of a bipotential progenitor. 

The importance of Math1 for intestinal lineage determination had previously been 

suggested from the loss of secretory cell types in Math1-deficient mice.14, 15 

Since Math1 is expressed in mature secretory cells as well as in cells in the 

progenitor zone,14, 18 the question remained whether its primary role was 

maintenance of the differentiated secretory cell phenotype or induction of 

differentiation. Our study showed that Math1 expression can override the normal 

developmental program to induce secretory cell differentiation, suggesting that a 

primary role of this transcription factor is determination of cell fate choice. 

Interestingly, expression of Math1 stimulated apparently normal terminal 

differentiation processes since we observed expression of differentiation markers 

specific for each secretory cell type, including Muc2 (goblet cells), hormones 

(enteroendocrine cells), and cryptdins (Paneth cells). Accordingly, the expression 

of transcription factors downstream of Math1 that are known to be important for 

specific secretory cell types were increased robustly in Vil-Math1 transgenic 

mice, including Neurog3 (Fig. 2-3)16, 17 and Gfi1 (data not shown).29 

Notch signaling has been shown to play a primary role in the regulation of 

cell lineage determination in the intestinal epithelium. Our study and others point 

to Notch regulation of Math1 transcription as the critical determinant of cell fate. 

Treatment with γ-secretase inhibitors to block Notch signaling has been shown to 

induce intestinal phenotypes similar to those evident in the Vil-Math1 transgenic 

mice.5, 7, 30 Similarly, genetic models with disrupted Notch signaling exhibited a 

generalized secretory cell expansion together with loss of enterocytes.7-9, 12 

Math1 expression was increased in these models of Notch disruption, consistent 

with our finding that Math1 expression controls absorptive versus secretory cell 

fate.  Accordingly, genetic models with increased Notch signaling exhibited 

decreased Math1 and loss of intestinal secretory cell types.3, 4 To determine if 
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increased Math1 mRNA had an effect on the Notch signaling pathway in the Vil-

Math1 transgenics, we analyzed expression of the Notch target gene Hes1.  No 

change in Hes1 mRNA levels were observed in Vil-Math1 transgenic founders 

(Supplementary Fig. 2-4), suggesting that the epithelial changes that we 

observed in our studies were due to increased levels of Math1 and not due to 

inhibition of Notch signaling. Together these studies and our data point to Math1 

as the key effector regulating the choice of secretory versus absorptive cell fate 

choice in the intestine.  

Transgenic Math1 expression affected intestinal proliferation in complex 

ways. We observed an overall reduction in epithelial cell proliferation, which 

suggested that Math1 stimulated differentiation and withdrawal from the cell 

cycle. Loss of Notch signaling in the intestine, and thus increased Math1, had 

previously been shown to convert proliferating crypt progenitors into post-mitotic 

cells with derepression of the cyclin-dependent kinase inhibitors p27Kip1 and 

p57Kip2.9 Increased cell-cycle inhibitor expression was proposed to result from 

loss of Hes1 repressor action on the promoters of these genes.9 However, our 

observations suggest that increased Math1 may also contribute to the Notch 

affect on proliferation. Although Vil-Math1 transgenics exhibited decreased 

epithelial cell proliferation, intestinal Hes1 mRNA expression was not changed, 

suggesting that the reduced proliferation and increased differentiation of 

progenitors was likely due to changes in Math1 and not Hes1.  

In addition to the profound changes to the epithelium, there were marked 

changes to the mesenchyme in Vil-Math1 transgenic mice, with a general cellular 

expansion and increased proliferation observed in both submucosa and villus 

cores. Since Math1 expression in our transgenic model was limited to epithelial 

cells, the mesenchymal changes were indirect, suggesting that the epithelial cell 

changes altered signaling to control the differentiation of the mesenchyme. The 

epithelial cell changes were multifaceted, thus signaling changes could result 

from changes to the intervillus progenitor zone, the loss of enterocytes, and/or 

expansion of secretory cell types. It is likely that multiple signaling pathways were 

affected by these cellular changes, including Wnt and Hedgehog. 



  
 

89 

In conclusion we have demonstrated that Math1 is a key transcriptional 

determinant of cell fate choice in the intestine. Proper Math1 levels are required 

for the normal patterning of epithelial cell proliferation as well as the distribution 

of secretory versus absorptive cells. The associated expansion of secretory cell 

types and loss of enterocytes observed when Math1 levels were increased 

suggests that this transcription factor directs the cell fate choice of a bipotential 

progenitor. Furthermore, the epithelial cell changes induced by increasing Math1 

had consequences for the mesenchyme due to alterations in epithelial-

mesenchymal crosstalk. Although radial patterning was essentially preserved, 

the mesenchyme of Vil-Math1 transgenic mice was grossly expanded, with 

increased proliferation and differentiation of several mesenchymal cell types. 

Thus, Math1 expression is critical for coordinated differentiation and 

morphogenesis of both epithelium and mesenchyme. 
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CHAPTER 3 
 

DEVELOPMENT OF AN INDUCIBLE TRANSGENIC MOUSE TO 
OVEREXPRESS MATH1 IN THE INTESTINAL EPITHELIUM 

 
 
 
OVERVIEW 
 

Differentiating intestinal progenitor cells face a binary switch in which they 

are selected to differentiate into an absorptive or secretory cell type.  The cell 

fate selection process is regulated by Notch signaling primarily through control of 

Mouse atonal homolog 1 (Math1) transcription.  Active Notch signaling represses 

Math1 expression through the Notch target hairy and enhancer of split 1 (Hes1).  

Math1 is required for intestinal secretory cell differentiation during development 

and adulthood.  However, since Math1 continues to be expressed in mature 

secretory cells, it is unclear whether Math1 is needed to specify the secretory cell 

fate or to maintain it.  Using a transgenic mouse (Vil-Math1) approach, I have 

shown that Math1 is sufficient to promote secretory cell differentiation during 

development.  Embryonic Vil-Math1 transgenic founders had increased numbers 

of goblet, Paneth and endocrine cells throughout their intestines and a loss of 

absorptive cells suggesting that Math1 can drive differentiating progenitor cells to 

the secretory lineage at the expense of the absorptive lineage.  Due to the 

dramatic remodeling of the intestinal epithelium in the Vil-Math1 transgenic 

founders, transgenic mouse lines could not be established.  To circumvent this 

limitation, I developed a new transgenic model (VZM) utilizing the Cre-lox system 

in which the timing of intestine-specific Math1 over-expression can be controlled 

by activation of Cre-mediated recombination.  
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For Part A of this chapter, I analyzed the intestinal recombination pattern 

of five mouse lines that express Cre recombinase in the intestine in either a 

constituitive or tamoxifen-inducible manner.  This analysis was used to determine 

which Cre line(s) would be best suited for recombination of the VZM transgene to 

activate Math1 expression.  In Part B of this chapter, I characterized seven VZM 

lines that were generated and determined that lines VZM1 and VZM7 would be 

used for further experiments.  VZM1 and VZM7 transgenics were crossed to 

12.4kbVil-Cre, 9kbVil-Cre, and Shh-EGFP-Cre mice to induce recombination of 

the transgene. VZM1;12.4kbVil-Cre transgenic mice exhibited increased Math1 

mRNA expression, but, surprisingly, Math1 protein was unchanged.  Thus, 

secretory cell differentiation was not changed in this model and the proposed 

experiments could not be completed.  Interestingly, this study suggests that 

Math1 protein is regulated by an unknown mechanism. 
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PART A: ANALYSIS OF CRE TRANGENIC MOUSE LINES WITH INTESTINAL 
EXPRESSION 

 
 
 

INTRODUCTION 
 

Complex interactions between the intestinal epithelium and mesenchyme 

are necessary for proper steady state and adaptive response mechanisms that 

maintain the epithelium throughout the lifetime of an organism.  The pathways 

that govern intestinal development and maintenance such as Notch, Wnt, 

Hedgehog and BMP are fundamental for many bodily processes.  To circumvent 

lethality, the ability to alter gene expression in vivo in an intestine-specific or cell 

type-specific manner is critical for studies in this field. 

The Cre-lox system is a powerful tool that can be utilized in mouse genetic 

studies to target alterations in gene expression to a specific cell population. The 

bacterial Cre recombinase protein recognizes a specific 24-bp loxP DNA 

sequence.  When two loxP sequences are present, Cre excises the “floxed” DNA 

sequence contained within the two sites1.  Accordingly, Cre-lox technology has 

provided a means to conditionally delete specific transgene sequences in vivo to 

control gene expression.  For example, a Cre transgenic line with an intestine-

specific promoter is used in conjunction with a floxed sequence-containing 

transgenic line to study the effects of gene alteration in the intestine.  This 

approach can be used to circumvent early embryonic lethality as well as to study 

specific cell populations.  Therefore, the choice of Cre transgenic line is 

intimately related to the output of a transgenic mouse experiment. 

The use of the villin promoter to drive Cre expression in transgenic mice 

has been instrumental for many intestinal studies; however, there are two 

reported villin promoters used for Cre transgenic lines and each has distinct 

advantages and disadvantages2, 3.  In addition, other Cre transgenic lines have 

been developed as more widely expressed drivers and their intestinal expression 
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pattern has not yet been described.  Thus, a direct comparison of these Cre 

transgenic lines will be beneficial for choosing the best strain for a particular 

study.  Here we directly compare the intestinal recombination patterns of 5 Cre 

transgenic lines crossed to the Cre-inducible Rosa26 lacZ reporter mice4 to aid in 

the choice of Cre transgenic line for intestinal studies: 12.4kbVil-Cre3, 9kbVil-

Cre2, 9kbVil-CreERT2 2, CAGG-CreERTM 5, and Shh-EGFP-Cre6.  In addition, we 

describe the stomach expression pattern of CAGG-CreERTM and Shh-EGFP-Cre 

transgenic lines because very few Cre drivers have been identified for studies in 

the stomach. 

 
 
MATERIALS AND METHODS 

 

Mice 

All experiments were performed according to protocols approved by the 

University of Michigan Committee on Use and Care of Animals.  Mice were 

maintained in a specified-pathogen-free barrier facility under a 12-hour light 

cycle.  Mice were generated as described previously: Rosa26-lacZ reporter mice 

(R26R)4 (Jackson Laboratories; stock #003474), 12.4kbVil-Cre 3(Jackson 

Laboratories; stock #004586), 9kbVil-Cre2 (gift from S. Robine), 9kbVil-CreERT2 2 

(gift from S. Robine), Shh-EGFP-Cre6 (Jackson Laboratories; stock #005622), 

CAGG-CreERTM 5 (Jackson Laboratories; stock #004682). 
 

Administration of Tamoxifen 

To make a 10 mg/mL tamoxifen solution, tamoxifen (Sigma) was first 

suspended in 500 µL mL of 100% ethanol and then added to 9.5 mL corn oil 

(Sigma) and vortexed until completely dissolved.  For vehicle controls, 500 µL of 

ethanol was added to 9.5 mL corn oil.  Both solutions were aliquoted and stored 

at -20°C in the dark.  For adult mice, 4 mg tamoxifen per 40 g body weight (10 µL 

of 10 mg/mL tamoxifen solution per gram body weight) was injected i.p. daily for 

5 days.  Mice were sacrificed 5 days after the last injection.  For fetal tissue 
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collection, timed pregnant females were injected at embryonic day 16.5 of their 

pregnancy with one i.p. injection of  4 mg tamoxifen per 40 g body weight and 

embryos were collected 48 hours later, at E18.5. 

 

Collection of Tissues and Histological Analysis 

Intestines were dissected from adult (1 month old) or fetal (embryonic day 

18.5) Cre transgenic (Tg) or Cre Tg; R26+/- littermates.  For adult intestine, 

regions were identified as follows: duodenum (1 cm segment distal to the 

pylorus), jejunum (1 cm segment at the midpoint), ileum (1 cm segment proximal 

to the cecum) and colon (1 cm segment distal to the cecum).  For fetal intestine, 

regions were identified as proximal (1 cm segment distal to the pylorus), distal (1 

cm distal to the midpoint) and colon (1 cm distal to the cecum).  For adult 

stomach dissections, the stomach was opened along the greater curvature, 

pinned flat on dental wax.  Tissues were prepared for cryosectioning by fixing in 

4% paraformaldehyde for one hour and incubating overnight at 4°C in 30% 

sucrose solution in 1X PBS before embedding in OCT (TissueTek) and freezing 

on dry ice. 

 

Cryosectioning and Staining for β-galactosidase 

Tissue blocks were warmed to -20°C and 8 µM sections were generated 

on a Microm HM 500M cryostat.  Slides were dried at room temperature for 5 

minutes, fixed for 5 minutes in 4% paraformaldehyde and then washed 3 times in 

X-gal wash buffer (0.1 M Sodium Phosphate pH 7.3 containing 2 µM MgCl2 and 

0.02% NP-40).  Slides were placed overnight in X-gal (5-bromo-4-chloro-3-

indoyl-β-D-galactosidase) staining solution (1 mg/mL X-gal in N,N-

dimethylformamide, 5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6-3H2O in X-gal wash 

buffer) at 37°C and protected from light.  Stained tissues were washed 3 times in 

X-gal wash buffer, counterstained with 0.5% neutral red (Sigma), and dehydrated 

with a series of ethanol washes followed by xylene washes.  Slides were 

mounted with Permount. Microscopy was performed with either a Nikon E800 or 

Olympus BX-51 equipped with a SPOT or Olympus DP70 digital camera, 



  102 

respectively.  Negative controls including R26R transgenic intestine or Cre 

transgenic intestine did not have positive staining for β-galactosidase (data not 

shown). 

 

 

RESULTS AND DISCUSSION 
 

The 12.4kbVil-Cre and 9kbVil-Cre Constitutive Drivers 

The villin promoter has been used extensively for transgenic mouse 

studies in the intestine.  The endogenous villin gene is expressed in the yolk sac, 

the proximal tubules of the kidney, and in the intestinal epithelium7-9.  

Additionally, the villin promoter has been reported to be active in a rare 

subpopulation of cells in the gastric antrum10.  Two villin promoters that can be 

used to direct transgene or Cre expression have been described, one containing 

12.4kb3 and the other containing 9kb2 of mouse villin sequence.  We crossed the 

12.4kbVil-Cre or the 9kbVil-Cre transgenics with the Rosa26-lacZ (R26R) 

reporter mouse4 to induce β-galactosidase expression in cells that expressed Cre 

recombinase and their progeny (Fig. 3-1). 

We observed homogenous β-galactosidase expression throughout the 

epithelium of the small intestine of adult Vil-Cre;R26R transgenics with positively-

labeled cells throughout the crypt-villus axis (Fig. 3-1A-C, E, F).  Each of these 

Cre transgenics appeared to have a similar expression pattern in the small 

intestine; however, the colonic β-galactosidase expression pattern was very 

different.  The 12.4kbVil-Cre;R26R was expressed in a mosaic pattern in the 

colon while the 9kbVil-Cre;R26R had strong, homogenous staining throughout 

the colonic epithelium (Fig. 3-1D, G).  The patchy staining suggests that the 

12.4kbVil-Cre transgene was expressed in a mosaic fashion in the colonic stem 

cells.  The 12.4kbVil-Cre promoter has been reported to be expressed most 

highly in the proximal intestine with lower expression in the ileum and colon3, 

consistent with our observed results.  In addition, staining for β-galactosidase 

was slightly less intense in the more undifferentiated cells of the crypts compared  
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to the mature villus cells, also consistent with previous reports3, 9 (Fig. 3-1, see 

also VZM transgene expression in Fig. 3-5).  The 9kbVil-Cre;R26R was 

previously reported to have strong β-galactosidase staining in the ileum and 

colon; however, Western blot for the Cre protein showed Cre expressed in a 

gradient with highest expression in proximal intestine and low expression in the 

ileum and colon2.  Thus, it may be that β-galactosidase expression and Cre 

protein expression are not always coupled in this transgenic line.  Of note, 

however, it is thought that very little Cre protein expression is necessary to 

facilitate loxP site recombination1. 

β-galactosidase staining in the kidney was not assessed in the Vil-Cre 

models in this study, the endogenous villin gene is known to be expressed in this 

tissue9.  Previous studies of the 12.4kbVil-Cre transgene promoter was never 

found to direct β-galactosidase expression in the kidney3.  In contrast, the 9kbVil-

Cre;R26R transgenic had strong expression in the kidney2.  Kidney phenotypes 

have been observed in studies using the 9kbVil-Cre transgenic and, in fact, it has 

been used to alter gene expression in the kidney11, suggesting that while Cre 

protein expression may be minimal, the Cre protein levels in the kidney are 

capable of initiating transgene recombination.  Thus, it is important to consider 

whether recombination of a particular floxed DNA sequence using the 9kbVil-Cre 

transgenic will cause a deleterious side-affect in the kidney. 

The recombination pattern of 12.4kbVil-Cre;R26R and 9kbVil-Cre;R26R 

mice were also examined at E18.5, during late fetal development (Figure 3-2).  

The 12.4kbVil-Cre line has been reported to have onset of expression at ~E12.5 

while the 9kbVil-Cre appears to activate at least 2 days earlier, at ~E10.52, 3.  

Thus, both Vil-Cre transgenics are expressed prior to the major morphogenesis 

events of the intestine.  Similar to the findings in adult mice, the 12.4kbVil-Cre 

showed a gradient of β-galactosidase, staining with the strongest staining in the 

proximal intestine and diminished staining in the distal small intestine and in the 

colon (Fig. 3-2A-C).  The 9kbVil-Cre showed strongest β-galactosidase staining 

in the colon, similar to its adult staining pattern (Fig. 3-2F).  Neither of the Cre  
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drivers had β-galactosidase staining that was as homogenous as that observed 

in adults (Fig. 3-1 and Fig. 3-2). 

 

Intestinal Expression of the 9kbVil-CreERT2 Inducible Driver 

The 9kb villin promoter was also used to drive expression of an inducible 

form of the Cre recombinase gene, CreERT2  2.  The CreERT2 construct generates 

a fusion protein with Cre and a mutated form of the ligand-binding domain of the 

human estrogen receptor12, 13.  This fusion protein is sequestered in the 

cytoplasm by heat shock protein chaperones until binding of the estrogen analog 

tamoxifen allows translocation of the Cre protein to the nucleus where it can 

initiate recombination of floxed DNA sequences12, 13.  Expression of this 

transgene was reported to not be found in the kidney upon tamoxifen induction, 

suggesting that the expression of the 9kb villin promoter in the kidney may 

depend on positional effects from the transgene insertion site2. Injection of 4 

mg/40g body weight tamoxifen on 5 consecutive days followed by 5 days of 

“chase” and sacrifice of the Vil-CreERT2;R26R transgenic resulted in mosaic 

recombination throughout the small and large intestines (Fig. 3-3).  In addition, 

ribbons of labeled cells were apparent suggesting that recombination occurred in 

a stem or progenitor cell located in the intestinal crypts (Fig. 3-3E, arrow).  This 

finding is consistent with labeled cells persisting up to 2 months in Vil-

CreERT2;R26R transgenics that were injected daily for 5 days with 1mg 

tamoxifen2.  However, expression was patchy suggesting that the transgene is 

not activated uniformly in the tissue.  A single injection of 4mg/40g body weight 

into pregnant females at stage E16.5 with fetuses analyzed at E18.5 showed 

weak recombination in the intestinal epithelium with the most β-galactosidase 

staining in the proximal small intestine and very little staining in the distal small 

intestine or colon (Fig. 3-2G-I).  Thus, if high recombination efficiency is desired, 

either a more concentrated dose of tamoxifen or multiple injections might be 

necessary.  Moreover, if experimental outcomes are being examined in the 

developing intestine, more efficient recombination would be achieved using a 

constitutive Vil-Cre model. 
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The Shh-EGFP-Cre Driver Line 

The Shh-EGFP-Cre line was developed for studies in the limb bud6; 

however, many other tissues also express Sonic hedgehog (Shh), including the 

intestine14-16.  Heterozygous mice do not exhibit any apparent phenotype from 

the loss of one Shh allele due to knock-in of the EGFP-Cre cassette and thus 

should be suitable for directing Cre-mediated recombination6.  Hh signaling in the 

intestine is strictly paracrine with the Hh ligands, including Shh, secreted from the 

epithelium and acting on cells within the mesenchyme15.  Accordingly, we 

observed strong β-galactosidase staining in the adult intestinal epithelium of Shh-

EGFP-Cre;R26R transgenics (Fig. 3-1H-J).  Endogenous Shh is expressed prior 

to intestinal morphogenesis, with robust endodermal expression throughout the 

midgut and hindgut apparent by ~E10.514, 15.  Strong β-galactosidase expression 

was observed in the Shh-EGFP-Cre;R26R E18.5 intestine, demonstrating that 

this Cre driver is suitable for studies of developing intestine (Fig. 3-2J-L).  Of 

note, β-galactosidase was observed in a mosaic pattern with ribbons of cells 

being generated from some crypts while others were devoid of β-galactosidase-

positive cells (Fig. 3-1H, J).  The mosaicism was the most apparent in the adult 

duodenum, but was present to some extent in the adult colon (Fig. 3-1J) and the 

E18.5 proximal intestine (Fig. 3-2J).  Since Shh becomes restricted to the 

proliferative zones during intestinal morphogenesis15, the β-galactosidase-postive 

cells on the villi were likely derived from a labeled stem or progenitor cell.   

 We also examined the gastric recombination pattern in Shh-EGFP-

Cre;R26R adult mice (Fig. 3-4). As in the intestine, recombination appeared to be 

specific for the stomach epithelium and was not observed in the mesenchyme 

(Fig. 3-4).  In the corpus, a mosaic pattern was observed with occasional staining  

of entire glands (Fig. 3-4A).  This pattern is consistent with transgene expression 

in all major epithelial lineages in the corpus as reported for a Shh reporter mouse 

in Waghray et al.17 and/or in occasional stem cells.  Although positive staining 

was much less frequent, recombination was also observed in the antrum (Fig. 3-

4B) consistent with less expression of a Shh reporter transgene in the antrum17 

and with antral Shh expression being detected in a study by Kolterud et. al.15. 
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The CAGG-CreERTM Driver Line 

The CAGG promoter is a chimeric promoter of the cytomegalovirus 

immediate-early enhancer and the chicken β-actin promoter, which direct 

widespread expression of transgenes in mice5.  For the CAGG-CreERTM 

transgenic, the CAGG promoter was used to drive expression of a CreERTM 

fusion protein12, 18, 19.  CreERTM is an earlier version of CreERT2; the CreERT2 has 

been further optimized for tamoxifen sensitivity and specificity20.  Similar to the 

CreERT2, CreERTM is a fusion protein that sequesters CreERTM to the cytoplasm 

until translocation to the nucleus is induced by administration of tamoxifen5. 

Although the CAGG-CreERTM driver line was reported to be expressed in 

the intestine, this data was not shown in the original description of the expression 

pattern for this line5.  Therefore, we examined β-galactosidase expression in 

CAGG-CreERTM;R26R transgenics after 5 consecutive daily i.p. injections of 

4mg/40g body weight tamoxifen followed by 5 days of chase (Fig. 3-3).  A very 

patchy staining pattern was observed throughout the small and large intestine 

with labeling occurring in scattered cells of the intestinal epithelium and 

mesenchyme (Fig. 3-3A-D).  Occasionally, we observed ribbons of labeled cells 

emanating from intestinal crypts, demonstrating that recombination occurred in a 

stem cell population (Fig. 3-2C, arrow). CAGG-CreER;R26R reporter expression 

was also examined in the adult mouse stomach.  β-galactosidase-positive 

staining was observed in a patchy distribution throughout the epithelium and 

mesenchyme of the gastric corpus (Fig. 3-4C) and antrum (Fig. 3-4D). 

A very weak, mosaic recombination was observed in the intestines of 

E18.5 embryos from pregnant mothers who were injected at E16.5 with a single 

dose of 4mg/40g body weight tamoxifen (Fig. 3-2M-O).  This Cre driver has been 

shown to be dose-dependent5, therefore, it is possible that multiple injections of 

tamoxifen or a higher dose of tamoxifen would increase the recombination 

efficiency.  Of note, Hayashi et. al. reported embryonic lethality as a result of high 

doses of tamoxifen; most embryos, including controls and CAGG-CreERTM 

embryos, developed normally when pregnant mothers were injected at E10.5 
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with 3mg/40g body weight tamoxifen while many embryos from pregnant mothers 

injected similarly with a 6-9 mg/40g body weight tamoxifen dose survived past 

E13.55.  This lethality effect appeared to not simply be tamoxifen dose-

dependent, but also dependent on the mass of the pregnant female5.  I also 

observed loss of litters after a single tamoxifen injection in both CAGG-

CreERTM;R26R and Vil-CreERT2;R26 transgenics.  The loss of our litters 

appeared to be alleviated when the tamoxifen dose was delivered via multiple 

injection sites suggesting that the injected volume and not necessarily the 

tamoxifen dose caused lethality. 

 

Concluding Remarks on Cre Driver Selection 

Direct comparison of the 12.4kbVil-Cre, 9kbVil-Cre, 9kbVil-CreERT2, Shh-

EGFP-Cre, and CAGG-CreERTM Cre drivers has contributed to our knowledge of 

intestinal and gastric recombination patterns that can be achieved with these 

lines.  This information will aid researchers who are using Cre-lox transgenic 

mouse technology to alter gene expression in these tissues.  Based on our 

results and the results of previous studies, the authors make the following 

suggestions: 

1. To alter gene expression in the developing intestine, use a constitutive Vil-

Cre driver rather than the inducible 9kbVil-CreERT2 driver. 

2. When using the 9kbVil-Cre transgenic, the potential development of a 

phenotype in the kidney must be assessed. 

3. For studies in the colon, more recombination may be achieved with the 

9kbVil-Cre than the 12.4kbVil-Cre.  However, the mosaic recombination 

pattern in the 12.4kbVil-Cre colons may be useful for side-by-side 

comparison of normal and mutant crypts. 

4. The Shh-EGFP-Cre driver may be useful for inducing epithelial gene 

alterations in the intestine and gastric corpus.  In the intestine, 

recombination is more complete in the distal intestine whereas in the 

duodenum and gastric corpus, normal and mutant crypt-villus units/glands 

could be studied side-by-side. 
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5. The tamoxifen treatment method used in this study would need to be 

modified to induce more efficient recombination with the CAGG-CreERTM 

driver to make it useful for intestinal or gastric studies. 
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PART B: AN INTESTINE-SPECIFIC INDUCIBLE MATH1 TRANSGENIC 
MOUSE MODEL 

 
 
 
SUMMARY 

 

Mouse atonal homolog 1 (Math1) is the critical transcription factor 

promoting secretory cell fate over absorptive cell fate in the intestine.  A fetal 

mouse model with complete loss of Math1 and an adult mouse model with 

intestine-specific loss of Math1 both exhibited loss of the intestinal secretory 

lineage.  In contrast, the Vil-Math1 transgenic model, in which Math1 expression 

was forced throughout the developing intestinal epithelium, exhibited increased 

secretory cell differentiation and loss of absorptive cells (Chapter 2).  Likely due 

to the extreme epithelial remodeling, stable transgenic Vil-Math1 lines were 

unable to be generated. To generate stable transgenic lines that could be used to 

further study how Math1 in adult intestine, a new intestine-specific inducible 

transgenic mouse model was generated.   Cre-mediated activation of the 

transgene resulted in as much 19-fold increased expression of Math1 mRNA 

compared to controls.  However, immunostaining for Math1 revealed that protein 

levels remained unchanged.  Thus, this model could not be used to study the 

affect of intestinal remodeling in response to increased secretory cell 

differentiation.  However, these data suggest that Math1 protein stability is 

regulated by some unknown mechanism. 

 

 

INTRODUCTION 
 

Notch signaling regulates cell fate selection of absorptive lineage cells 

over secretory lineage cells in the intestine.  It is thought that Notch controls the 

cell fate selection process primarily by transcriptional regulation of Math1 via the 
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repressor bHLH transcription factor Hes1.  Cells receiving the Notch signal have 

increased expression of Hes1, which represses Math1 expression21.  In contrast, 

Math1 continues to be expressed in the progenitors and mature cells belonging 

to the secretory lineage22, 23.  Math1 is both required and sufficient for secretory 

cell differentiation23, 24 (Chapter 2).  Lack of Math1 during development or in adult 

intestine results in absence of all secretory cells, including goblet, Paneth, and 

endocrine cells23, 24.  Conversely, forced expression of Math1 in the intestinal 

epithelium during late development in the Vil-Math1 transgenic model resulted in 

almost complete conversion of the intestinal epithelium to secretory cells with a 

corresponding loss of absorptive enterocytes suggesting that Math1 can direct 

differentiation of a bipotential progenitor cell to the secretory lineage (Chapter 2).  

Interestingly, Vil-Math1 founders also had an expanded mesenchyme 

compartment with increased proliferating cells and increased differentiated 

smooth muscle and neurons.  Transgenic Math1 expression was targeted to the 

intestinal epithelium, so these affects on the mesenchyme were indirect, 

suggesting that the cellular changes induced by Math1 affected signaling 

between the epithelium and mesenchyme (Chapter 2). 

Likely due to the extreme remodeling of the intestinal epithelium, Vil-

Math1 transgenic founders with high transgene expression could not be 

recovered after birth and thus could not be maintained as stable transgenic lines.  

Thus, in order to study the affects of Math1 expression in mature intestine, an 

inducible transgenic model was required.  In addition, to study the complex 

question of how Math1 affects epithelium-mesenchyme signaling in the intestine, 

the generation of stable transgenic lines would be necessary.  Thus, in this study, 

we generated an intestine-specific inducible transgenic mouse model in which 

Math1 expression could be activated by Cre recombinase to study the affects of 

Math1 expression in adult intestine. 

 

 

MATERIALS AND METHODS 

 



  115 

Transgene Construction and Generation of Transgenic Lines 

The VZM transgene was prepared in a three step process.  First, the 

multiple cloning site from SacII to XhoI of pBluescript SK (+/-) (Stratagene) was 

shuttled into pVFnLZ+Hhip25 (gift from D.L. Gumucio) to remove Hhip sequences 

and to generate the plasmid pVFnLZ+MCS containing a unique XhoI site.  

Second, Math1 was shuttled to pBluescript SK (+/-) after addition of XhoI sites to 

the 5’ and 3’ ends of Math1 by polymerase chain reaction (PCR) using 

pCS2+Math126 as a template and the primers 5Math1XhoI-F 5’- GGG CTC GAG 

CGA ATT CCG CCA TGT CC and 3Math1XhoI-R 5’- GGG CTC GAG TTC TAG 

ACT AAC TGG CC.  Third, Math1 was isolated by XhoI digestion from the shuttle 

vector and cloned into the XhoI site in pVFnLZ+MCS to generate the 

pVFnLZ+Math1 (VZM) transgene (Figure 3-5A).  The VMZ transgene contained a 

floxed nuclear lacZ-STOP cassette followed by the mouse cDNA under the 

control of the 12.4 kb mouse villin enhancer/promoter3.  Following verification by 

sequencing, the 19.3 kb transgene was excised with PmeI and microinjected into 

F2 zygotes from C57BL/6 X SJL parents by the University of Michigan 

Transgenic Animal Model Core. 

Seven transgenic founders were obtained and used to establish stable 

transgenic lines (VZM1-7), which were maintained on a C57BL/6 genetic 

background.  Transgenic founders and progeny were identified by multiplex PCR 

amplification of a 374 bp WT Math1 and a 525 bp transgenic product using the 

following primers: M1-F 5’-TGC TGC ATG CAG AAG AGT GGG CTG AGG TAA; 

M1-R, 5’-TCA GCT TGC ACA GCT GTT CCC GTA CTT TGA; pVFnLZ(17367)-F 

5’- TCG ACC TGC AGC CCA AGC TGA TCC TCT AGT.  For Cre-mediated 

recombination of the VZM transgene, VZM1 or VZM7 Tg were crossed to 

12.4kbVil-Cre3, 9kbVil-Cre2, or Shh-EGFP-Cre6.  More information is provided 

and intestinal recombination patterns of these strains are compared in Chapter 

3A.  Mouse use was approved by the University of Michigan Committee on Use 

and Care of Animals. 

 

Collection of Tissues and Histological Analysis 
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Intestines were dissected from adult (1-4 month old) or developing 

(embryonic day 18.5-3 weeks) VZM transgenic (Tg) and non-transgenic (Ntg) 

littermates.  For adult mice, the duodenum (2 cm segment distal to the pylorus), 

jejunum (2 cm segment at the midpoint), ileum (2 cm segment proximal to the 

cecum) and colon (2 cm segment distal to the cecum) were collected for 

histological analysis.  For fetal intestine, proximal intestine (2 cm segment distal 

to the pylorus), distal intestine (2 cm segment distal to the midpoint), and colon (2 

cm segment distal to the cecum) were collected.  The proximal 1 cm segment of 

each intestinal region was paraffin embedded after fixing overnight in 4% 

paraformaldehyde (Pfa). The distal 1 cm region was prepared for cryosectioning 

by fixing for 1 hour in 4% Pfa followed by overnight incubation in a 30% sucrose 

solution in 1X PBS, embedding in OCT (TissueTek), and freezing on dry ice. 

Adjoining intestinal segments were processed for RNA. Paraffin sections (5 mm) 

were stained with H&E to assess cellular morphology, Periodic-acid Schiff 

(PAS)/Alcian blue (Newcomer Supply) for mucin-containing goblet cells, rabbit 

anti-chromogranin A (1:500; 94188/5 gift from J. F. Rehfeld) for enteroendocrine 

cells, and rabbit anti-lysozyme (1:100; Zymed) for Paneth cells. For 

immunostaining, the appropriate secondary antibodies conjugated to Cy2 (1:400; 

Jackson ImmunoResearch Laboratories) or AlexaFluor488 (1:400; Invitrogen) 

were used. For Math1 immunostaining, following rehydration, slides were boiled 

25 minutes in Trilogy Solution (Cell Marque), cooled 25 minutes on ice and 

placed in 3% hydrogen peroxide in methanol for 60 minutes to block endogenous 

peroxidase activity.  Tissues were blocked using 1% BSA + 10% goat serum in 

0.3% Triton X-100 in PBS followed by incubation with rabbit anti-Math1 (1:50; gift 

from J. Johnson) for 3 days overnight at 4°C and biotinylated goat anti-rabbit IgG 

(1:200 Vector Laboratories) secondary antibody.  Staining was visualized with 

the DAB kit (Vector Laboratories) and counterstaining with hematoxylin. 

Cryosectioning and staining for β-galactosidase was performed as described in 

Chapter 3A. Microscopy was performed with either a Nikon E800 or Olympus 

BX-51 equipped with a SPOT or Olympus DP70 digital camera, respectively. 
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Analysis of Transgene and Cellular Marker Gene Expression 

Gene expression was measured by quantitative reverse transcription-PCR 

(qRT-PCR) analysis of VZM Tg and VZM;12.4kbVil-Cre Tg. RNA was isolated 

using Trizol (Invitrogen) according to the manufacturer’s directions.  RNA was 

then DNase-treated and purified using the RNeasy Mini kit (Qiagen). RT 

reactions (50 µl) used 1 µg RNA and the Iscript cDNA synthesis kit (Bio-Rad), as 

recommended by the manufacturer. qRT-PCR was performed as described27 

with SYBR green dye and the primers listed in Table 2-1 for cell lineage markers 

and Math1.  Expression of the VZM-lacZ transcript was determined using the 

primers Vill-F 5’-CAA CTT CCT AAG ATC TCC CAG GTG and lacZ-R2 5’-GGA 

TGT GCT GCA AGG CGA TTA AG.  Expression levels were determined with 

triplicate assays per sample (n = 2-8) and normalized to the expression of 

glyceraldehyde 3-phosphate dehydrogenase (Gapdh), which remained the same 

in all samples. 

 

Statistical Analysis 

Quantitative data were presented as mean ± SEM and analyzed by a 

Student’s t-test to compare data from VZM;Cre Tg to VZM Tg with p< 0.05 

considered significant. 

 

 

RESULTS 
 

Generation of VZM Transgenic Lines 

Constitutive expression of Math1 in the developing intestine causes 

dramatic epithelial remodeling that is not compatible with maintenance of stable 

transgenic lines with high transgene expression.  Thus, in order to generate 

stable transgenic lines, we utilized an inducible transgenic approach.  The VZM 

transgene contained the 12.4 kb villin promoter driving a floxed nuclear lacZ 

cassette with STOP and polyA sequences3, 25 and the Math1 cDNA (Fig. 3-5A).  

In the absence of Cre expression, the villin promoter drives expression of a lacZ 
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transcript (VZM-lacZ).  In the presence of Cre expression, recombination of the 

loxP sites excises the lacZ and STOP sequences so that the villin promoter now 

drives expression of Math1 (VZM-Math1).  Seven independent VZM transgenic 

founder lines (VZM1 through VZM7) were generated. 

 Regional expression of the VZM-lacZ transcript was determined in adult 

mice from each VZM line by qRT-PCR gene expression analysis and staining for 

β-galactosidase (Fig. 3-5,C).  Line VZM1 highly expressed the transgene 

throughout the intestine with strong lacZ expression localized to most if not all of 

the nuclei of the intestinal epithelium.  VZM1 also expressed the transgene in the 

colon, although the expression was more patchy than in the intestine, consistent 

with the expression pattern of the villin promoter3 (Fig. 3-1 and data not shown).  

Also consistent with the expression of the villin promoter, the transgene 

appeared to be expressed more strongly in mature cells on the villus than in the 

less-differentiated cells of the crypts3 (Fig. 3-5C).  Compared to VZM1, the other 

6 lines expressed the transgene at relatively low levels.  Lines VZM2, VZM3, 

VZM4, and VZM7 had similar β-galactosidase staining patterns with most villus 

epithelial cells being lacZ-positive and very little if any staining in the crypt cell 

nuclei (Fig. 3-5C and data not shown).  VZM5 and VZM6 transgenics expressed 

the transgene in only a few scattered epithelial cells (data not shown).  Based on 

this initial characterization, the high-expressing line VZM1 and one low-

expressing line, VZM7, were kept for further analysis. 

 

Fetal Onset of VZM Transgene Expression 

 The timing of transgene activation was determined in VZM1 and VZM7 

lines by examining transgene expression and β-galactosidase staining at fetal 

and perinatal (P0) stages.  Contrary to the adult expression levels, VZM7 had 

stronger fetal and perinatal transgene expression than VZM1 (Fig. 3-6).  The 

villin promoter has been reported to activate ~E12.53; however, the timing of 

promoter activation appears to vary among different transgenes, likely due to 

positional insertion affects and depending on the linked trangsgene (D.L. 

Gumucio, personal communication).  Low levels of VZM-lacZ transcript were  
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detected in VZM7 at E15.5 by qRT-PCR and this expression increased steadily 

through E17.5 and P0 time points with higher expression of the transgene in the 

small intestine compared to the colon (Fig. 3-6A).  Accordingly, the number of 

lacZ-positive epithelial cells was higher in duodenal tissue sections from P0 

VZM7 mice compared to E17.5 VZM7 mice (Fig. 3-6B).  Expression levels of the 

VZM-lacZ transcript in VZM1 mice at P0 was comparable to those of VZM7 mice 

at E15.5 (Fig. 3-6A).  This corresponded to patchy expression of the transgene 

as visualized by β-galactosidase staining, with a small proportion of nuclei 

intensely-expressing lacZ (Fig. 3-6B).  Thus, line VZM1 had the strongest adult 

transgene expression, but line VZM7 had the more robust transgene expression 

during intestinal development. 

 

Cre-induced Activation of Math1 mRNA Expression, but not Math1 Protein 

Due to its strong expression of the transgene, the VZM1 line was used 

first for induction of transgene recombination by intercrossing this line with 

12.4Vil-Cre model.  12.4Vil-Cre specifically expresses Cre recombinase in the 

intestinal epithelium3 (see Chapter 3A).  As a note, this specific Cre expression 

was not required since the VZM transgene is also intestine-specific; however, the 

12.4kbVil-Cre transgenic model is very robust and has been used in numerous 

intestinal studies.  The extent of transgene recombination was monitored by 

examination of VZM-lacZ transcript expression and Math1 expression as well as 

loss of lacZ-positive staining in tissue sections (Fig. 3-7).  VZM1;12.4kbVil-Cre 

mice were examined at E18.5, 2 weeks, 3 weeks, 4 weeks, and 4 months of age.  

Transgene recombination was not detectable at E18.5 by analysis of VZM-lacZ  

transcript abundance or β-galactosidase staining, however total Math1 

expression (endogenous Math1 plus VZM-Math1) was significantly increased 

2.6-fold compared to VZM1 transgenic controls, suggesting that some transgene 

recombination had occurred.  Complete transgene recombination was evident by 

2 weeks of age with loss of VZM-lacZ transcript expression and corresponding 

loss of lacZ-positive staining and increased total Math1 mRNA expression  (Fig. 

3-7).  The villin promoter is active in fetal mice, but is patchily expressed (Figure  
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3-2).  Therefore, transgene recombination may not be complete until after birth 

due to the expression pattern of the 12.4kbVil-Cre transgenics, specific details 

relating to the VZM1 transgene, its insertion site or timing of activation.  Despite 

late recombination, a 7-fold increase in Math1 expression was observed at 2 

weeks and as high as 19-fold increased Math1 expression was observed in the 

duodenum of 4 week old VZM1;12.4Vil-Cre transgenics compared to VZM1 

controls (data not shown).  Math1 mRNA levels were similar between VZM1 and 

12.4kbVil-Cre control mice demonstrating that increased Math1 mRNA levels 

were specific to mice with recombination of the VZM transgene (data not shown). 

 Math1 protein is found in progenitor cells in the crypts as well as in mature 

secretory cells22.  Immunostaining for Math1 protein in VZM1 and VZM7 mice 

showed a normal distribution of Math1-positive cells (Fig. 3-8A, C).  Surprisingly, 

a normal distribution of Math1-positive cells was also present in VZM1;12.4kbVil-

Cre transgenics, demonstrating that Math1 protein is not accumulating in 

recombined VZM transgenics (Fig. 3-8B).  A similar finding was made in VZM1 

and VZM7 mice that were crossed to other Cre transgenics including 

VZM7;9kbVil-Cre transgenics (Fig. 3-8D) and VZM1;Shh-EGFP-Cre transgenics 

(data not shown).  Sequencing of the recombined VZM-Math1 transcript showed 

that the complete Math1 protein coding region was present as well as an intact 

Kozak consensus sequence, suggesting that the proper elements for transgenic 

Math1 protein expression are present.  These data suggest that Math1 protein is 

being regulated by some unknown mechanism in the recombined VZM 

transgenics. 

 

Secretory Cell Differentiation is Normal in VZM1;12.4KBVil-Cre Transgenics 

In accordance with normal expression of Math1 protein, no changes in 

secretory cell differentiation were observed in VZM1;12.4kbVil-Cre transgenics 

(Fig. 3-9).  Intestinal morphology remained normal in all ages examined with 

similar numbers of goblet cells stained by the mucus-specific stain Periodic acid 

Schiff-Alcian blue (PAS-AB) stain (Fig. 3-9A-D and data not shown).  

Additionally, expression of cellular markers including Mucin2 (Muc2) for goblet  
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cells, cryptdin for Paneth cells, Neurogenin 3 (Neurog3) for endocrine progenitor 

cells, and Chromogranin A (CgA) for mature endocrine cells was similar between 

VZM1 and VZM1;12.4kbVil-Cre transgenics (Fig. 3-9).  Similar results were 

observed in other recombined transgenics including adult VZM1;Shh-Cre-EGFP 

mice and E18.5 and adult VZM7;9kbVil-Cre mice (data not shown). 

 
 
DISCUSSION 
 

In this study we generated a novel transgenic mouse model in which 

Math1 expression could be activated in the intestinal epithelium with expression 

of Cre recombinase.  Despite increased Math1 mRNA with Cre-mediated 

recombination of the VZM transgene, Math1 protein was found to be unchanged 

compared to non-recombined controls.  Accordingly, secretory cell number was 

unchanged in VZM;Cre transgenic mice.  Use of transgenic mouse models is 

complicated by unique transgene insertion sites that cause variability in 

transgene expression levels and timing of activation between founders/lines; 

therefore, we analyzed the phenotype of two independent transgenic lines, VZM1 

and VZM7.  Neither of these lines exhibited changes in secretory cell number 

when combined with multiple Cre driver lines, suggesting that effective Math1 

protein levels were never achieved. 

 We do not currently understand why Math1 protein was not induced in the 

VZM;Cre transgenics.  Sequencing of the recombined VZM-Math1 transcript 

showed a complete Math1 protein coding region and an intact Kozak consensus 

sequence suggesting that the elements necessary for Math1 protein production 

are present.  Indeed the recombined VZM-Math1 transcript is very similar to the 

Vil-Math1 transgene transcript that produced a secretory cell differentiation in 

E18.5 transgenic founders (Chapter 2).  In addition, strong epithelial phenotypes 

were observed in Vil-Math1 transgenic founders with 7- to 10-fold increased 

expression of Math1 (Chapter 2), similar to the level of Math1 mRNA abundance 

in the VZM1;12.4kbVil-Cre mice by 2 weeks of age; this suggests that effective 
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Math1 mRNA abundance was achieved in the VZM;12.4kbVil-Cre.  Of note, we 

have not determined the localization of increased Math1 mRNA in the 

VZM;12.4kbVil-Cre transgenics.  It is likely that Math1 mRNA can only affect the 

differentiation of progenitor cells and not mature cells on the villus.  The villin 

promoter is less active in undifferentiated epithelial cells compared to mature 

cells and, therefore, the VZM transgene was expressed more weakly in the 

crypts (Fig. 3B-1).  Thus, to confirm that Math1 mRNA is being induced in the 

crypt compartment of VZM;Cre transgenics, Math1 mRNA should be analyzed by 

in situ hybridization or with a Math1 reporter mouse23, 28. 

 The difference in timing of transgene activation might be an important 

contributing factor to the lack of phenotype in the VZM;Cre transgenics.  Efficient 

recombination in the VZM1;12.4kbVil-Cre transgenics was not observed until 2 

weeks of age, an age when the mouse intestine is reaching maturity with 

emergence of crypts and Paneth cells.  The VZM1;12.4kbVil-Cre did not have 

increased Math1 mRNA expression during the developmental stages that the Vil-

Math1 trangenic founders were examined.  Thus, perhaps there are key 

differences in regulation of Math1 protein in mature compared to developing 

intestine.  The VZM7 transgenics, which had early transgene activation (~E15.5), 

were crossed with 9kbVil-Cre and Shh-EGFP-Cre mice in an attempt to activate 

transgene recombination at an earlier, developmental age, but increased 

secretory cells were still not observed in these mice at E18.5.  Increased 

secretory cells were not observed in either of these compound transgenics at 

E18.5, but Math1 mRNA abundance has not been analyzed in these mice, so it is 

unknown if Math1 expression was comparable to Vil-Math1 transgenic founders. 

 Recent reports in the literature have demonstrated regulation of Math1 

transcription and protein stability by Wnt-regulated proteins GSK3β and β-

catenin29-32.  Active Wnt signaling inactivates GSK3β kinase, which results in 

accumulation of unphosphorylated β-catenin that translocates to the nucleus and 

activates gene transcription.  A nuclear complex of stabilized β-catenin and 

Tcf/Lef factors on the Math1 3’ enhancer has been shown to be important for 

induction of Math1 transcription at baseline conditions and after Notch inhibition 
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in the neuroblastoma cell line Neuro2a and also in neural progenitor cells derived 

from embryonic stem cells29.  Conversely, active Notch signaling increased 

GSK3β activity via phosphorylation at Y216, a critical activating modification, 

therefore decreasing stabilized nuclear β-catenin and decreasing Math1 

transcription29.  Accordingly, disruption of Notch signaling resulted in a relative 

decrease in the amount of phospo-Y216 GSK3β and both increased nuclear β-

catenin and Math1 transcription29.  Thus, the authors of this study proposed a 

regulatory hierarchy such that Notch signaling must first be turned down and then 

β-catenin can initiate Math1 transcription29.  Furthermore, GSK3β appears to be 

a key point of convergence of the Notch and Wnt signaling pathways29, 33 (Fig. 3-

10A).  While these studies suggest that Wnt signaling is important for activating 

Math1 expression, transgenic Math1 expression in our system is not regulated by 

endogenous enhancers.  Thus, it is more likely that Math1 protein is being 

regulated in our system. 

Wnt signaling and GSK3β have also been implicated in regulation of 

Math1 protein stability.  Colon cancer cells maintain their proliferative, 

undifferentiated state due to hyperactive Wnt signaling and down-regulation of 

Math1 protein31, 32, 34.  In addition, active Notch signaling appears to be important 

for tumor progression35.  While some human colon cancer samples had down-

regulated HATH1 (human ortholog of Math1) mRNA, others had HATH1 mRNA 

abundance that was comparable to healthy neighboring tissue32, suggesting that 

Math1 protein levels are negatively regulated in colon cancer.  Treatment of the 

colon cancer cell line SW480 with proteasome inhibitors resulted in increased 

expression of HATH1 protein, suggesting that HATH1 protein is normally 

targeted for degradation by the proteasome in cancer cells30.  Finally, Wnt-

dependent and GSK3β-mediated phosphorylation at HATH1 S54 and S58 was 

determined to target HATH1 protein for degradation30.  Thus, in cancer cells, 

GSK3β appears to be a key switch regulating stability of β-catenin versus HATH1 

(Fig. 3-10B).  Furthermore, because forcing stable HATH1 expression in colon 

cancer cell lines slows cellular growth and activates differentiation genes,  
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including Mucin231, 32, more knowledge of mechanisms regulating Math1 protein 

stability could contribute to development of colon cancer therapeutics. 

 Alignment of Math1 and HATH1 amino acid sequence shows that the 

GSK3β consensus site is conserved between both species (Fig. 3-10C).  

Therefore, Math1 protein in the VZM;Cre trangenics could be degraded in a Wnt-

dependent manner via GSK3b phosphorylation at Math1 S52 and S56.  

Accordingly, experiments that tested whether Math1 protein accumulated in 

VZM;Cre transgenic intestine treated with proteasome inhibitor could differentiate 

between the two possibilites that 1) Math1 protein is not being made, and 2) 

Math1 protein is being made but being degraded in a proteasome-dependent 

manner.  Finally, GSK3β inhibitors or DNA constructs in which the S52 and S56 

sites were mutated could be used to determine if Math1 protein is targeted for 

degradation due to phosphorylation by the GSK3β kinase. 
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CHAPTER 4 
 

NOTCH SIGNALING DIRECTLY TARGETS THE CRYPT BASE COLUMNAR 
STEM CELL 

 
 
 
SUMMARY 
 

Notch is a critical pathway regulating proliferation and differentiation in the 

intestine.  Blocking Notch signaling by genetic or pharmacologic means results in 

decreased epithelial cell proliferation and altered cell fate, suggesting that a stem 

or progenitor cell is targeted by Notch; however, the identity of this target is 

unknown.  This study sought to identify Notch-responsive cells by analysis of 

stem and progenitor markers in fetal and adult mouse intestine after Notch 

inhibition. Notch signaling was disrupted in two mouse models by treatment with 

a γ-secretase inhibitor (GSI):  dibenzapine (DBZ) in adult mice and DAPT in fetal 

intestinal organ cultures.  Cell lineages were measured by histological analysis 

and marker gene expression.  Consistent with other studies of Notch disruption 

both GSI-treated models exhibited reduced proliferation and increased secretory 

cell types, including goblet, Paneth and endocrine cells, demonstrating effective 

Notch inhibition.  Interestingly, intermediate cells that possess characteristics of 

both goblet and Paneth cells were observed in the crypts of adult ileum and 

colon, suggesting that Notch may regulate cell specification and maturation in 

distinct ways.  Stem and progenitor cell marker expression was measured by 

qRT-PCR, including genes specific for the +4 quiescent stem cell, the active 

crypt base columnar (CBC) stem cell and progenitor cells.  We found that 

disruption of Notch signaling affected the CBC stem cell specific transcript 

olfmactomedin 4 (Olfm4), while the other markers were unchanged.  Olfm4 was 

reduced 40-fold in DAPT-treated fetal intestine cultures and 13-fold in DBZ-
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treated adult mouse intestine, suggesting that Notch activates transcription of this 

gene.  The mechanism of Notch regulation of Olfm4 gene expression was further 

examined by transient transfection studies in the human colon cancer cell line 

LS174T.  An OLFM4-luciferase construct containing 427 base pairs of human 5’ 

proximal promoter sequence had increased activity with constitutive Notch 

signaling and decreased activity in the presence of GSI or dominant negative 

mastermind, a key component of the Notch transcriptional complex, consistent 

with OLFM4 expression being activated by Notch signaling.  Analysis of the 

OLFM4 5’ proximal promoter revealed three consensus binding sites for the 

essential Notch co-activator, RBP-J.  The most upstream RBP-J site was not 

required for Notch-mediated regulation of OLFM4-luciferase activity; however, 

deletion of the region containing the other two binding sites resulted in loss of 

responsiveness to constitutive Notch signaling.  These studies have shown that 

Notch signaling targets the intestinal CBC stem cell to induce transcription of the 

secreted protein OLFM4.  In addition, disruption of Notch signaling induces 

formation of intermediate cells in crypts of fetal and adult mouse intestine. 

 

 

INTRODUCTION 
 

The intestinal epithelium is arranged into finger-like villi that extend into 

the lumen and invaginations into the mesenchyme called crypts.  The mature 

epithelium is comprised of four differentiated cell types including enterocytes that 

belong to the absorptive (columnar) lineage and goblet, endocrine and Paneth 

cells that belong to the secretory (granulocytic) lineage.  The villi contain mature 

enterocytes, goblet cells, and endocrine cells while the crypts contain the Paneth 

cells and the proliferative stem and progenitor cells.  All of these cell types are 

derived from stem cells that replenish the epithelium throughout the lifespan on 

an organism.  Notch signaling regulates homeostasis of the intestinal epithelium 

through maintenance of the progenitor cell pool and through binary cell fate 

selection between the two differentiated lineages of the intestinal epithelium1. 
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Notch signaling occurs between neighboring cells; both the Notch 

receptors and ligands are transmembrane proteins (see Fig. 1-2, reviewed in 2).  

Engagement of Notch receptor by ligand initiates a series of receptor cleavages 

mediated by the A Disintegrin and Metalloprotease (ADAM) and the γ-secretase 

complex, ultimately resulting in Notch Intracellular Domain (NICD) release from 

the membrane and translocation to the nucleus.  In the nucleus, NICD interacts 

with its co-activators RBP-J (CSL) and mastermind (MAML) to activate gene 

transcription of target genes including Hairy and enhancer of split 1 (Hes1).  

Localization of NICD or Hes1 protein shows that active Notch signaling occurs in 

the crypts, suggesting that Notch may target the intestinal stem cells3, 4; however, 

the cellular identity of Notch signaling targets is unknown.

Rodent models with alterations in intestinal Notch signaling have 

demonstrated the importance of Notch pathway regulation of stem or progenitor 

cell populations.  Disruption of Notch signaling in mice by genetic depletion of 

RBP-J, Hes1, or both Notch1 and Notch2 receptors resulted in depletion of 

proliferating cells3, 5, 6.  Conversely, constitutively active Notch signaling results in 

expansion of the proliferative zone7, 8 and hyperactive Notch signaling is 

associated with colorectal cancer formation9.  These data demonstrate that 

Notch signaling can control the balance of differentiated versus undifferentiated 

cells in the intestinal epithelium; it is unknown if Notch achieves this control 

through general affects on all cell populations or if it can directly regulate a 

specific progenitor cell population. 

In addition to regulation of epithelial proliferation, Notch signaling controls 

selection of the absorptive cell lineage over the secretory lineage.  Disruption of 

Notch signaling leads to increased differentiation to the secretory lineage3, 5, 6, 10 

while activated Notch signaling results in loss of secretory cells7, 8.  Notch 

signaling controls lineage selection primarily through regulation of the basic helix-

loop-helix transcription factor Mouse atonal homolog 1 (Math1); Math1 is both 

required and sufficient for differentiation of all secretory cells11 (Chapter 2).  

Notch signaling acts to repress Math1 expression via the transcriptional 

repressor Hes112.  Accordingly, when Notch signaling is disrupted, there is 
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increased expression of Math13, 6.  The use of γ-secretase inhibitors (GSIs) to 

block Notch signaling in rodents resulted in similar phenotypes to genetic models 

of Notch inhibition6, 10.  However, there are conflicting reports in the literature in 

regard to the cell changes induced by GSI treatment.  One study in rat reports 

GSI-induced increases in all secretory cell lineages10 while a study in mouse 

reports that only goblet cells were induced by GSI6.  Thus, some discrepancy 

about the secretory cell phenotype resulting from Notch inhibition exists in the 

literature and, therefore, this phenotype should be carefully reexamined. 

 Recently, many advances have been made in the intestinal stem cell field, 

including identification of mRNA markers that are expressed in specific stem and 

progenitor cell populations13.  It is thought that two stem cell populations are 

present in the intestine, one of which is located at the so-called “+4 position” 

above the Paneth cell compartment at the crypt base and marked by Bmi1 

expression14 and the crypt base columnar stem cells which are interspersed 

among the Paneth cells and marked by leucine-rich-repeat-containing G-protein-

coupled-receptor 5 (Lgr5), Achaete scute-like 2 (Ascl2), and Olfmactomedin 4 

(Olfm4; also called GW112 and hGC-1)15, 16.  The +4 position stem cell likely 

represents a quiescent stem cell population while the CBC has been shown to be 

actively cycling17.  Intestinal stem cells supply the population of short-lived transit 

amplifying progenitors, likely marked by Prominin1 (Prom1)18, 19.  Mushashi1 

(Msi1) appears to be expressed in both of the stem cell populations and may also 

be expressed in at least some transit amplifying progenitor cells, thus, making it a 

more general progenitor cell marker20-22.  Identification of these markers has 

made it possible to distinguish distinct populations of stem and progenitor cells in 

the intestine. 

 Since pharmacological agents disrupting Notch signaling throughout the 

body, including GSIs, are currently under study for treatment of Alzheimer’s 

disease and T-cell leukemia23, 24, it is important to characterize the intestinal 

response to Notch inhibition.  In this study, we sought to determine which stem 

cells and/or progenitor cell populations are responding to active Notch signaling 

by examining cellular markers of stem and progenitor cells in mouse models of 
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GSI-mediated Notch disruption.  This study led us to identify a stem cell gene 

that is likely a direct target of Notch signaling, Olfm4.  In addition, we further 

characterized the expansion of secretory cells that accompanies the loss of 

proliferation in Notch disruption models in response to increased Math1 

expression. 

 

 

MATERIALS AND METHODS 
 
Mice 

Experiments were done using wild type C57BL/6 mice unless otherwise 

noted.  Math1lacZ/lacZ mice were obtained from Jackson Laboratories (stock # 
005970) and genotyped by polymerase chain reaction (PCR) as described11, 25.  

Hes1-GFP and Hes5-GFP mice26 were genotyped by PCR of a ~250 base pair 

product with the following primers:  GFP_1 5’- GCA CGA CTT CTT CAA GTC 

CGC CAT GCC; GFP_2 5’- GCG GAT CTT GAA GTT CAC CTT GAT GCC.  

Mice were maintained in a specified-pathogen-free barrier facility under a 12-

hour light cycle.  All experiments were performed according to protocols 

approved by the University of Michigan Committee on Use and Care of Animals. 

 

Intestinal Organ Culture 

To stage pregnancies, mice were mated and the morning of the vaginal 

plug were considered embryonic day (E) 0.5.  Embryos were collected from 

pregnant females at E15.5 and the gastrointestinal tract was dissected out from 

each embryo and temporarily kept in PBS on ice.  The small intestine from each 

embryo was split into four segments of equal length (referred to as A, B, C, and 

D from proximal to distal).  Once all dissections were complete, intestinal 

segments were transferred onto a transwell membrane in a 6-well tissue culture 

plate format (Costar 3428) containing 950 µL BGJ/b media (Gibco 12591) with 

0.1 mg/mL ascorbic acid (Sigma A-4544) and 1X Pen-Strep (Gibco 15070).  

DAPT (gamma-Secretase Inhibitor IX in Solution; Calbiochem 565784) or an 
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equivalent volume of DMSO (vehicle) was added to the media to a final 

concentration of 10 µM, 20 µM, or 40 µM.  A small number of organ cultures 

were treated with 300 µM DBZ to confirm that a similar phenotype was observed 

after treatment with a different γ-secretase inhibitor (GSI).  Organ cultures were 

incubated at 37°C with 5% CO2 for 1-3 days with media changed daily. 

Segments A and D were processed for histology of proximal and distal intestine, 

respectively.  Segments B and C were pooled for RNA analysis. 
 

Administration of dibenzapine (DBZ) and bromodeoxyuridine (BrdU) 

Administration of DBZ was performed using a method similar to previously 

published studies6, 10.  To make a 0.3 M stock solution of DBZ, 0.01389 g of DBZ 

(Syncom) was dissolved in 100 µL DMSO and stored at 4°C in the dark.  To 

make 3 mL of injection solution, 30 µL of 0.3 M DBZ stock solution was finely 

suspended in 1.5 mL 1% (w/v) hydroxypropyl methylcellulose (Methocel E4M) 

and 0.6 mL 0.5% (w/v) Tween80 (Sigma P-1754) in H20.  Vehicle injection 

solution contained 30 µL of DMSO in place of DBZ stock solution. 

 DBZ injection solution or an equivalent volume of vehicle injection solution 

was injected i.p. into 7-8 week old mice at a dose of 30 µmol/kg (10 µL/g body 

weight) or 10 mmol/kg (3.3 µL/g body weight) daily for 5 days.  Mice were fasted 

overnight on the 5th day and sacrificed for tissue collection on day 6. 

 For adminstration of BrdU (Sigma B-9285), a 5 mg/mL BrdU solution was 

made fresh in phophate buffered saline (PBS).  A 50 mg/kg (10 µL/g body 

weight) dose of BrdU solution was delivered by i.p. injection 2 hours prior to 

sacrifice. 

 
Collection of Tissues and Histological Analysis 

For adult mice, the intestine was dissected out and regions were identified 

as follows: duodenum (4 cm segment distal to the pylorus), jejunum (4 cm 

segment at the midpoint), ileum (4 cm segment proximal to the cecum) and colon 

(4 cm segment distal to the cecum).  The proximal 1 cm of each tissue segment 

was processed for paraffin embedding after fixation in 4% paraformaldehyde at 
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4°C overnight.  Paraffin processing of segments A and D from fetal organ 

cultures was performed similarly.  Paraffin sections (5 µm) were stained with 

H&E to assess cellular morphology and Periodic-acid Schiff (PAS)/Alcian blue 

(Newcomer Supply) to stain mucin-containing goblet cells.  Immunostaining was 

performed as previously described27 using the following primary antibodies: 

rabbit anti-lysozyme (1:100, Zymed), rabbit anti-chromogranin A (1:500, 94188/5 

gift from J. F. Rehfeld), rabbit anti-Mucin2 (1:200, Santa Cruz), rat anti-MMP7 

(1:100, gift from P. J. Dempsey), mouse anti-BrdU (1:50, Dako), and chicken 

anti-GFP (1:500, Aves Laboratories).  For immunofluorescence, the appropriate 

secondary antibodies conjugated to AlexaFluor488, AlexaFluor555 (1:400; 

Invitrogen), or FITC (1:400) were used along with a DAPI nuclear stain (ProLong 

Gold, Invitrogen).  For BrdU immunostaining, biotinylated goat anti-mouse IgG 

(1:200 Vector Laboratories) secondary antibody was used and staining was 

visualized with the DAB kit (Vector Laboratories) and hematoxylin nuclear stain. 

Microscopy was performed with either a Nikon E800 or Olympus BX-51 equipped 

with a SPOT or Olympus DP70 digital camera, respectively.  Confocal 

microscopy was performed with an Olympus FV500. 

 

Analysis of Gene Expression 

RNA was isolated from the distal 2 cm of each region of adult intestine 

using Trizol (Invitrogen) according to the manufacturer’s directions.  RNA was 

then DNase-treated and purified using the RNeasy Mini kit (Qiagen).  For 

intestinal organ cultures, B and C segments were pooled from two embryos for 

each sample and RNA was isolated with the RNeasy Mini Kit according to the 

manufacturer’s directions.  Gene expression was determined by quantitative 

reverse transcription-PCR (qRT-PCR).  RT reactions (50 µl) used 1 µg RNA and 

the Iscript cDNA synthesis kit (Bio-Rad), as recommended by the manufacturer.  

qRT-PCR was performed as described28 with SYBR green dye and the primers 

listed in Table 4-1.  Expression levels were determined with triplicate assays per 

sample and normalized to the expression of glyceraldehyde 3-phosphate 

dehydrogenase (Gapdh), which remained the same in all samples. 
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Luciferase Constructs and Generation of Olfm4 Promoter Mutants 

The human OLFM4 expression constructs 2039OLFM4-luciferase and 

427OLFM4-luciferase were generated as described29 (gift from G.P. Rodgers).  

The dominant negative mastermind (dnMAM) construct MCSV-dnMAM was a gift 

from I. Maillard30.  The Notch pathway activator 3XNICD1 was a gift from R. 

Kopan31.  Deletion and mutation of the -251 RBP-J site in the OLFM4 promoter 

used the QuikChange Mutatgenesis Kit (Stratagene) and the primers listed in 

Table 4-2 according to manufacturer’s directions.  Generation of the OLFM4 

promoter deletion series was done with an overlap extension PCR method using 

the primers listed in Table 4-2 and 427OLFM4-luciferase as a template.  Briefly, 

the 5’ promoter segment and 3’ promoter segment flanking each deletion were 

amplified using the outside primers pGL3-RVprimer3 and pGL3-GLprimer2 and a 

corresponding set of deletion-specific primers.  The two promoter segments were 

then ligated together by a second PCR step with the outside primers only.  The 

deletion-containing PCR products were cloned into 427OLFM4-luciferase 

subsequent to digestion with KpnI and NheI.  Constructs were verified by 

analysis of digested products and sequencing. 

 

Cell Culture, Transient Transfections and Luciferase Assays 

LS174T colon cancer cells (ATCC #CL-188) were grown in MEM media 

(Gibco 11090) containing 10% fetal calf serum (Atlanta Biologicals), sodium 

pyruvate (Gibco 11360), non-essential amino acids (Gibco 11140), and Pen-

Strep-Glut (Gibco 10378) at 37°C and 5% CO2.  The afternoon before 

transfection, cells were split into 24-well plates at 5x105 cells/well so that they 

would be ~90% confluent at the time of transfection.  Equivalent amounts of 

luciferase contructs and co-factors were transfected per well using 

Lipofectamine2000 (Invitrogen) according to manufacturer’s instructions (0.8 µg  

DNA total).  In cases where co-factors were not transfected, an equivalent 

amount of promoterless DNA (pBluescript SK) was added to maintain 0.8 µg total 

DNA.  Cell lysates were collected 24-48 hours post-transfection after a brief wash  
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in PBS followed by a 5 minute lysis with 100 µL passive lysis buffer (Promega).  

Luciferase activity was assayed in triplicate using 20 µL of cell lysates with Dual 

Luciferase reagents (Promega) and a PerkinElmer Victor3 luminometer.  

Luciferase activity was normalized to total protein content, which was similar 

between samples. Samples for protein quantification were prepared by diluting 

cell lysates 1:10 in PBS and measuring protein content with a BCA Protein Assay 

kit (Thermo Scientific) according to the manufacturer’s directions using 25 µL 

samples and running assays in duplicate. 

 

Olfm4 Promoter Sequence and Transcription Factor Binding Site Analysis 

Mouse and human Olfm4 promoter sequences were obtained from the 

UCSC genome database (www.genome.ucsc.edu) and aligned using 

Lasergene8 MegAlign software.  Transcription factor binding sites were identified 

using the matrices defined by Genomatix software and default stringency 

parameters. 

 

Statistical Analysis 

Quantitative data were presented as mean ± SEM and analyzed by a 1-

way ANOVA followed by a Tukey post test to compare data from GSI-treated 

samples to vehicle-treated controls with P < 0.05 considered significant. 

 
 
RESULTS 
 
Increased Differentiation of All Secretory Lineages in GSI-treated Adult Mice 

Transmission of Notch signaling through the cytoplasm requires a γ-

secretase-mediated cleavage event to release the bioactive Notch intracellular 

domain (NICD) from the membrane (see Fig. 1-2).  We utilized the γ-secretase 

inhibitor (GSI) dibenzapine (DBZ) to inhibit Notch signaling in adult mice in vivo.  

Effective inhibition of Notch signaling was achieved in mice treated with a 30 

µmol/kg dose of DBZ, as shown by decreased intestinal expression of the Notch 
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target genes hairy and enhancer of split related with YRPW motif (Hey) 1, Hey2, 

and HeyL compared to vehicle-injected control mice (Fig. 4-1).  Interestingly, 

Hes1 and Hes5 were not significantly changed by GSI treatment (Fig. 4-1). 

Notch signaling primarily regulates secretory cell differentiation through 

control of the bHLH transcription factor Mouse atonal homolog 1 (Math1)11, 32 

(Chapter 2).  We observed a robust 9-fold increase in Math1 expression in GSI-

treated mice3, 6.  We also observed 2-fold and 8-fold increased expression of 

Math1 target genes growth factor independent 1 (Gfi1) and SAM pointed domain 

containing ets transcription factor (Spdef), respectively, (Fig. 4-2)33-35.  These 

data show that Notch signaling was significantly inhibited and that the pro-

secretory differentiation program had been activated. 

Changes in secretory cell number were observed in both mice treated with 

10 µmol/kg (data not shown) and 30 µmol/kg DBZ, with a much more dramatic 

increase in secretory cell number in the mice treated with the higher DBZ dose 

(Fig. 4-2).  A dramatic expansion of goblet-like cells was observed by H&E 

staining (Fig. 4-2A, B) and by increased numbers of cells staining for mucin 

production with periodic acid Schiff-alcian blue (PAS-AB) staining (Fig. 4-2D, E).  

Increased numbers of endocrine cells were observed by immunostaining for the 

pan-endocrine marker chromogranin A (CgA).  The expansion of goblet and 

endocrine cells was present throughout the intestine and colon (Fig. 4-2 and data 

not shown).  Additionally, there was expansion of the third secretory cell type, 

Paneth cells, in the duodenum and jejunum.  Expansion of the Paneth cell 

compartment at the base of the crypts was shown by increased staining with the 

Paneth cell marker lysozyme (Fig. 4-2 and data not shown).  Thus, all secretory 

cell lineages were expanded in response to DBZ-treatment. 

 

GSI-treatment Leads to Expansion of Intermediate Cells in the Distal Intestine 

  Intermediate cells are a rare epithelial cell type most often located on the 

lower lateral sides of the crypts and are named for their intermediate-sized 

secretory granules compared to those of immature goblet and immature Paneth 

cells36, 37.  Intermediate cells have been reported to express some Paneth cell  
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Figure 4-1.  Effective Notch Disruption in GSI-treated Intestine.  
Expression of the Notch signaling target genes Hes1, Hes5, Hey1, Hey2, 
and HeyL was analyzed by qRT-PCR to show that Notch signaling is 
effectively inhibited in both adult mice treated with DBZ and in intestinal 
organ cultures treated with DAPT or DBZ.  Data were normalized to Gapdh 
and presented as mean + SEM (n for each group shown above bar in 
parentheses, *p<0.05; **p<0.001; ***p<0.001 by 1-way ANOVA followed by 
a Tukey post test).
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markers including MMP7 and phospholipase A2 (Pla2g2a), but not lysozyme36, 38.  

Goblet cells markers such as Mucin2 (Muc2) are also present in intermediate 

cells due to small amounts of mucus in their cytoplasm, which will also stain with 

PAS-AB; however, other differentiated goblet cell markers such as trefoil factor 3 

(Tff3) are not present in intermediate cells39.  Thus, intermediate cells may 

represent a bipotential progenitor cell shared by the goblet and Paneth cell 

lineages36, 37.  Surprisingly, we observed a dramatic expansion of intermediate 

cells in the ileums of DBZ-treated mice.  Co-immunostaining for Muc2 and MMP7 

showed significant expansion of cells co-expressing these markers located 

primarily in the mid crypt to lower villi (Fig. 4-3A, B).  Paneth cells were still 

present in the GSI-treated ileum as evidenced by lysozyme-positive cells located 

at the base of the crypts and exclusion of Muc2 from this region (Fig. 4-3D).  In 

contrast to the more proximal regions of the intestine, the Paneth cell 

compartment in the ileum appeared to be of roughly the same size in vehicle-

treated and GSI-treated crypts.  However, all intestinal regions had a similar 

change in the cellular localization of lysozyme protein, which is normally present 

as a punctate stain due to localization in secretory granules, but presented as a 

diffuse cytoplasmic stain in GSI-treated intestine suggesting that secretory 

granules may be altered in the Paneth cells of GSI-treated intestine (compare 

Fig. 4-3C, D to Fig. 4-2J, K and data not shown).  Together, these data suggest 

that Notch signaling regulates specification to the Paneth/goblet lineage and 

maturation of these cell types in distinct ways. 

The colon is normally devoid of Paneth cells or Paneth cell marker 

expression.  Surprisingly, expression of the Paneth cell marker MMP7 was 

observed in scattered clusters of crypts in DBZ-treated colon and it was found to 

colocalize with Muc2, suggesting that an intermediate cell population had 

emerged in the colon (Fig. 4-3E, F).  Lysozyme-positive cells were never  

observed in GSI-treated colon (data not shown) supporting the notion that the 

Muc2/MMP7-positive cells represented intermediate cells and not fully 

differentiated Paneth cells. 
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Increased Secretory Cell Differentiation Depends on Math1 

We also explored the affect of Notch inhibition in the developing gut with a 

fetal organ culture system.  Small segments of E15.5 intestine were cultured with 

media containing vehicle or the GSI DAPT for 3 days.  Fetal intestine cultured 

with 40 µM DAPT had increased numbers of goblet and endocrine cells, the 

secretory cell types normally present before birth, compared to vehicle-treated 

cultures (Fig. 4-4).  We observed increased mRNA expression of the endocrine 

progenitor cell marker Neurogenin3 (Neurog3) in DAPT-treated cultures, 

supporting increased differentiation to the endocrine lineage (Fig. 4-4N) 40-42.  

Increased secretory cell differentiation was also observed in cultures treated with 

10 and 20 µM DAPT, with a milder secretory cell phenotype at 3 days of culture 

compared to 40 µM DAPT-treated samples which became similar to 40 µM 

DAPT-treated samples by 6 days of culture (data not shown). 

In addition to increased goblet and endocrine cell numbers, premature 

activation of Paneth cell markers was observed by immunostaining for lysozyme 

in DAPT-treated intestine (Fig. 4-4D, H); these cells tended to be located near 

the base of the intervillus zones (Fig. 4-4H).  Interestingly, most cells of the 

intervillus zones stained with PAS-AB as well (Fig. 4-4F).  Thus, it is very likely 

that the lysozyme and PAS-AB staining are co-labeling a subset of cells in the 

intervillus zones, although these Paneth-like cells are different than the 

intermediate cells observed in the ileum of adult DBZ-treated mice based on their 

lysozyme immunoreactivity. 

Similar to the studies in adult mice, 6-fold increased expression of Math1 

and 3-fold increased expression of Gfi1 were observed in 40 µM DAPT-treated 

organ cultures (Fig. 4-4).  The expression of these genes increased in a dose-

dependent manner in 3 day organ cultures treated with 10 µM, 20 µM, or 40 µM 

DAPT or 300 µM DBZ (Fig. 4-4L, M) confirming that the expression of these  

 genes is inversely correlated to the degree of Notch inhibition and positively 

correlated with the degree of secretory cell differentiation (Fig. 4-1 and data not 

shown).  Since Math1 has been shown to be required for and sufficient for 

intestinal secretory cell differentiation at steady state conditions11, 32 (Chapter 2),  
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we sought to determine if Math1 is also required for the secretory cell induction 

subsequent to Notch inhibition by treating a mouse model deficient in Math1 

(Math1lacZ/lacZ) with GSI.  The Math1lacZ/lacZ intestine lacks all secretory cells and 

dies shortly after birth purportedly due to the lack of certain respiratory neurons11, 

43 and, therefore, was unable to be examined during adulthood.  Math1lacZ/lacZ 

intestinal organ cultures treated with DAPT were devoid of secretory cells (Fig. 4-

4I-K), an identical phenotype to vehicle-treated Math1lacZ/lacZ intestine, 

demonstrating that Math1 is required for both normal secretory cell development 

and the induction of secretory cell differentiation subsequent to Notch inhibition. 

 

The Crypt Base Columnar Stem Cell is a Cellular Target of Notch Signaling 

Decreased proliferation was observed in DBZ-treated adult intestine, as 

demonstrated by decreased bromodeoxyuridine (BrdU) incorporation (Fig. 4-5)5, 

6.  This finding suggests that Notch signaling targets a stem cell and/or progenitor 

cell population; however, the identity of cellular targets of Notch signaling was 

unknown.  Expression of a GFP reporter construct driven by a Hes1 or Hes5 

promoter26 is localized to the intestinal crypts (Fig. 4-6) suggesting that Notch 

signaling is normally acting in the progenitor cell zone. 
 To identify which progenitor cell populations are directly responding to 

Notch signaling, we examined mRNA expression of specific markers of stem and 

progenitor cell populations in Notch disruption models.  Bmi1, which is expressed 

primarily in the “+4 position” stem cell14, was unchanged in either GSI-treated 

adult intestine or fetal organ cultures (Fig. 4-7).  The actively cycling CBC stem 

cell expresses Ascl2, Lgr5, Olfm4 genes15, 16.  Lgr5 and Ascl2 were not 

significantly changed in either GSI-treated model; however, these markers 

trended towards being down-regulated in the DBZ-treated adult intestine (Fig. 4-

7), suggesting that the CBC is still present in GSI-treated intestine, but the  

number of cells may be decreased slightly.  Expression of Olfm4, however, was 

dramatically decreased in both adult intestine and organ cultures treated with 

GSI; the loss of Olfm4 gene expression occurred in organ cultures treated even 

with a very low 10 µM dose of DAPT (Fig. 4-7).  These data suggest that the  







Figure 4-7. Olfm4 Expression is Decreased in GSI-treated Intestine.  
Intestinal stem cell marker expression was analyzed by qRT-PCR in 
GSI-treated intestinal organ cultures and adult mouse duodenum.  +4 position 
marker (Bmi1); crypt base columnar stem cell markers (Ascl2, Lgr5, Olfm4).  
Transit amplifying progenitor marker (Prom1).  General stem cell marker (Msi1).  
Data were normalized to Gapdh and presented as mean + SEM, (n is shown 
above bars in parantheses, *p<0.05; **p<0.001; ***p<0.001 by 1-way ANOVA 
followed by a Tukey post test).
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CBC is a cellular target of Notch signaling and Notch signaling activates Olfm4 

gene expression in the CBC cell. 

Finally, the transit amplifying progenitor cell marker Prom118, 19 and the 

general stem cell marker Msi120-22 were not significantly changed in either adult 

or developing intestine, but did trend towards being increased in DBZ-treated 

adult intestine (Fig. 4-6). The results from adult mice presented in Figure 4-6 are 

from duodenum, however, similar trends were also observed in the jejunum and 

ileum (data not shown).  These data point towards Notch disruption leading to 

premature differentiation of CBCs which leads to increased numbers of transit 

amplifying progenitor cells and premature differentiation to the secretory lineage. 

 

OLFM4 Promoter Activity is Regulated by Notch Signaling 

To explore the relationship between Notch signaling and Olfm4 gene 

expression, we analyzed the expression of Hes1, Hes5, Math1, and Olfm4 after 

1, 2, and 3 days of intestinal organ culture with vehicle- or 40 µM DAPT-treated 

media (Fig. 4-8).  Expression levels of Hes1, Hes5, and Olfm4 were decreased in 

GSI-treated samples while expression of Math1 was increased.  Hes1 was not 

down-regulated as quickly as Hes5, potentially due to other signaling pathways 

being involved in maintenance of Hes1 gene expression44-47.  Loss of Olfm4 

expression in embryonic organ cultures treated with 40 µM DAPT was significant 

by t-test (p<0.0001) at 1 day (Fig. 4-8D).  Interestingly, the pattern of Olfm4 

expression exactly mirrored the pattern of Hes5 expression, with the expression 

of each gene increasing in the vehicle-treated samples over the 3 days of the 

experiment and consistently low expression of each gene in the DAPT-treated 

samples.  Moreover, the loss of Olfm4 expression occurred prior to a change in 

Math1 expression, suggesting that premature secretory cell differentiation is not 

responsible for the loss of Olfm4 gene expression. 

 To further test Notch-regulation of Olfm4 expression, we analyzed OLFM4 

promoter activity with an in vitro luciferase assay.  Luciferase constructs that 

contained either 2039 (2039OLFM4-Luc) or 427 (427OLFM4-Luc) base pairs 

(bp) of the human 5’ OLFM4 promoter29 had increased activity when co- 



Figure 4-8.  Olfm4 Expression Rapidly Decreases in Response to GSI 
Treatment.    Embryonic intestinal organ cultures were treated with vehicle 
or 40 mM DAPT for 1, 2, or 3 days.  Expression of Hes1 (A), Hes5 (B),  
Math1 (C), and Olfm4 (D) mRNA were measured by qRT-PCR.  Olfm4 
mNRA abundance was consistently lower in DAPT-treated samples 
compared to vehicle-treated controls.  Data were normalized to Gapdh and 
presented as mean + SEM (n=5 for all groups, *p<0.05; ***p<0.001 by 
1-way ANOVA followed by a Tukey post test).
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transfected with NICD1, a constitutively active form of the Notch1 receptor NICD 

(Fig. 4-9).  The increase in activity was attenuated when a dominant-negative 

form of mastermind (dnMAML), an essential co-activator of Notch signaling, was 

added.  Thus, activity of the OLFM4 promoter correlates to the amount of Notch 

signaling within the cell, suggesting that Notch signaling functions as an activator 

of OLFM4 expression and critical elements for Notch signaling control of OLFM4 

expression are located within the 427 bp of 5’ proximal promoter. 

  

The -145 to -56 region of the OLFM4 5’ Promoter Contains Critical Notch 

Regulatory Elements 

The human proximal OLFM4 promoter sequence was analyzed for 

putative transcription factor binding sites that could confer Notch-mediated 

regulation of this gene (Fig. 4-10).  This analysis revealed an optimal RBP-J 

binding site at position -251 upstream of the transcriptional start site (labeled 

RBP-Ja; Fig. 10).  Deletion or mutation of the RBP-Ja consensus site responded 

to Notch activation in a similar manner as did the WT construct, showing that this 

site is not required for Notch regulation of the OLFM4 promoter (Fig. 4-9).  

Indeed, deletion of the region containing the site (Δ356-234 or Δ290-234) did not 

affect the ability of this construct to respond to Notch signaling (Fig. 4-11).  

Moreover, removal of a region containing a consensus N-box sequence (Δ427-

306), the binding site for Hes1, had no affect (Fig. 4-11), suggesting that this 

region is also not required for Notch regulation of OLFM4 gene expression. 

To identify the potential region by which Notch signaling controls OLFM4 

promoter activity, a series of deletions were made in the promoter of 427OLFM4-

Luc ranging from ~25 bp to ~120 bp.  Luciferase assays of these constructs 

determined that loss of the sequence between -145 and -56 resulted in  

decreased ability of the promoter to respond to NICD1 (Fig. 4-11) suggesting that 

this region contains critical Notch signaling regulatory cis-elements. 

In silico analysis using Genomatix identified two additional RBP-J 

consensus sites within the -169 to -80 region that were present in both the 

mouse and human Olfm4 promoters.  One of these sites (RBP-Jb) was aligned in  
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Figure 4-9.  OLFM4 Promoter Activity is Regulated by Notch Signaling.  
Human OLFM4 luciferase constructs were transfected into LS174T cells along 
with dominant-negative MAML (dnMAML), constitutively active Notch1 receptor 
intracellular domain (NICD1) or both.  OLFM4 promoter activity increased in 
response to NICD1 and decreased when Notch signaling was blocked with 
dnMAML.  An RBP-J consensus site was identified at position -251 in the 
OLFM4 5’ promoter (named RBP-Ja site in Figure 4-10).  Constructs with 
deletion of this site (427HOLFM4delRBPJa-Luc) or mutation of this site 
(427HOLFM4mutRBPJa-Luc) still responded to activation and inhibition of Notch 
signaling, demonstrating that this site is not required for Notch- regulated 
OLFM4 promoter activity.  Hes1-luciferase and pGL3 were used as positive and 
negative controls, respectively.  Cell lysates were collected 48 hours 
post-transfection.  Data were normalized to protein and presented as fold 
change compared to pGL3 + dnMAM (mean + SEM; n=9; ***p<0.001 by 1-way 
ANOVA followed by a Tukey post test).
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Figure 4-10.  Alignment of Human and Mouse 5’ Olfm4 Promoter Sequence 
and Positions of Selected Transcription Factor Consensus Binding Sites.  
Human (top) and mouse (bottom) Olfm4 promoter sequences were aligned and 
key cis-element seqeunces were annotated as follows: N-box (yellow box), 
RBP-J consensus (orange box), E-box (pink box), TATA box (black box), 
transcriptional start site (arrow, +1), translational start site (ATG underlined), 
-145 to -56 region (shaded green).
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Figure 4-11.  Critical Notch Regulatory cis-elements are Located in the 
-145 to -56 Region of the 5’ OLFM4 Promoter.  Regional deletions were 
made within the 5’ promoter sequence of 427OLFM4-Luc and tested for their 
ability to respond to constitutively active Notch signaling.  Constructs were 
transfected into LS174T colon cancer cells with or without the addition of 
NICD1.  Hes1-Luc and pGL3 were used as positive and negative controls, 
respectively.  A schematic of the OLFM4 promoter contained within each 
construct is shown on the left with the corresponding luciferase activity on the 
right.  Deletion of a consensus N-box site is shown in yellow.    Deletion of a 
consensus RBP-J site at position -251 (RBP-Ja) is shown in orange.  Deletion 
of all or a portion of the -145 to -56 region is shown in green.  Deletion contruct 
bar colors correspond to region deleted.  Cell lysates were collected 24 hours 
post-transfection.  Data were normalized to protein and and presented as fold 
change compared to pGL3 (mean + SEM, n=9, ***p<0.001 by 1-way ANOVA 
followed by a Tukey post test).
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the two species and near an aligned E-box consensus site, the binding site for 

bHLH transcription factors  (Fig. 4-10).  A second RBP-J consensus site (RBP-

Jc) within the -145 to -56 region was observed in both human and mouse in 

close, but slightly different locations.  These sites have a weaker overall 

consenus compared to the RBP-Ja site; however, these sites could be functional, 

especially if a nearby co-factor helped strengthen affinity for the site.  Ascl2 is a 

bHLH transcription factor known to be expressed in the CBC and, additionally, 

many other bHLH transcription factors are regulated by Notch signaling in the 

intestine; thus, the presence of paired RBP-J and E-box consensus sites is very 

intriguing and could contribute to Notch regulation of OLFM4 expression. 

Additionally, many consensus binding sites for transcription factors that could 

potentially be important for intestinal Olfm4 gene expression regulation were 

identified including binding sites for the KLF family, HNF1 and HNF4, Gfi1 and 

Pax4 in both the human and mouse promoters (data not shown). 

 
 
DISCUSSION 
 

Notch signaling regulates the binary cell fate selection between absorptive 

and secretory lineages in the intestine through control of the balance between 

Hes1 and Math13, 6, 11, 32.  My studies and others have shown that Math1 is the 

key factor promoting differentiation of secretory cells.  Forced expression of 

Math1 in the developing intestinal epithelium resulted in increased differentiation 

of all secretory cell types (Chapter 2).  Despite reported increases in Math1 

expression in models of Notch disruption, there has been some discrepancy as 

to which secretory cell lineages are expanded in GSI-treated rodents6, 10.  We 

report here that all secretory cell types are expanded in GSI-treated mouse 

intestine, consistent with Math1 expression being sufficient for induction of all 

secretory cell types (Fig. 4-2) (Chapter 2).  In addition, we show that Math1 

expression is required for the increased secretory cell differentiation because 
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GSI treatment was unable to induce secretory cell differentiation in Math1lacZ/lacZ 

mice. 

We made the novel observation that intermediate cells accumulate in the 

ileums and emerge in the colons of DBZ-treated intestine.  Evidence points 

towards intermediate cells being a shared precursor cell of the goblet and Paneth 

cell lineage that is capable of proliferating36, 37.  Paired with a loss of proliferative 

capability due to Notch inhibition, the intermediate cells observed in the ileum of 

DBZ-treated mice could be blocked from terminal differentiation to the Paneth or 

goblet cell lineage, resulting in their accumulation.  Interestingly, there was 

regional heterogeneity in the response to GSI-treatment with increased Paneth 

cell differentiation in the proximal intestine and increased intermediate cells in the 

distal intestine.  The Paneth cell compartment in GSI-treated intestine had 

increased number of cells, yet retained normal position near the base of the 

crypts suggesting that crypt-villus patterning signals were maintained.  Of 

interest, the Paneth-like cells present in the DAPT-treated fetal organ cultures 

occurred in the intervillus zone, suggesting that patterning is established 

independently of Notch signaling at early developmental stages and during 

adulthood. 

The Paneth-like cells that arose in the DAPT-treated organ cultures 

appeared to be distinct from intermediate cells due to their positive 

immunoreactivity for lysozyme.  Similar cells emerged in the intestine of Vil-

Math1 transgenic founders in which Math1 expression was forced throughout the 

intestinal epithelium (Chapter 2 and data not shown).  These data suggest that 

immature intestine is not able to support the terminal differentiation of Paneth 

cells as was observed in the GSI-treated adult intestine.  In the Vil-Math1 

founders, Notch signaling was unchanged as assessed by Hes1 mRNA 

expression, suggesting that the premature activation of the Paneth cell gene 

program may be a byproduct of increased Math1 expression (Chapter 2).  

Accordingly, Hes1 deficient mice, which exhibited increased Math1 expression, 

also had premature differentiation of Paneth-like cells48.   
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Very little has been reported about intermediate cell regulation and the 

mechanism behind the regional difference in intermediate cell formation is 

currently unknown; however, a number of factors could be contributing.  First, 

Paneth cells of the distal ileum, although morphologically similar to those in the 

proximal intestine, express high levels of cryptdin-4 whereas those in the 

proximal intestine do not49.  Thus, not all Paneth cells are equal and there must 

be signaling pathways regulating this difference.  Second, Notch signaling activity 

does not appear to be uniform throughout the intestine; following Notch signaling 

by a modified lineage tracing mouse model in which Cre recombinase expression 

was activated by ligand-induced Notch1 receptor proteolysis (NIP-Cre) showed 

that higher frequency of labeled crypts was observed in the duodenum and 

jejunum than the ileum, which contained very few labeled crypts4.  Thus, Notch 

signaling may be more active in the proximal intestine than the distal intestine 

and this could lead to differential sensitivity to GSI treatment.  Third, active Notch 

signaling, as demonstrated by NIP-Cre labeling and NICD immunostaining, has 

been reported to be present in some differentiated goblet cells suggesting that 

Notch may play a role in terminal differentiation of these secretory cells4.  Fourth, 

alterations in Wnt signaling are very likely to be involved because downstream 

targets of Wnt signaling, including Sox9, are essential for Paneth cell 

differentiation; mice lacking intestinal Sox9 expression have loss of Paneth 

cells50, 51.  Multiple Paneth cell differentiation genes, including MMP7 and 

cryptdins, are Wnt target genes52, 53 and are expressed in intermediate cells36, 38 

whereas lysozyme is neither a Wnt target nor expressed in intermediate cells38, 

53.  Furthermore, hyperactive Wnt signaling in APCmin mice has been shown to 

activate Paneth cell genes in the colon and to result in ectopic Paneth-like cells 

on the villus52-54.  Interestingly, the induced Paneth cells in the APCmin mouse 

model did not have typical secretory granules or express UEA-1 lectin suggesting 

that they might not be fully differentiated Paneth cells52.  Thus, although Wnt 

signaling is essential for Paneth cell differentiation, hyperactive Wnt signaling 

might be detrimental to the full terminal differentiation of Paneth cells.  Indeed, 

the pattern of lysozyme staining was more diffuse throughout the cytoplasm of 
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Paneth cells in the GSI-treated intestine, suggesting that a change in secretory 

granule structure had occurred; however, more work is needed to determine if 

the Paneth cells in GSI-treated intestine are normal. Together, the increased 

Paneth cells versus intermediate cells result demonstrates that Notch may 

function in distinct ways in each intestinal region and/or that interacting factors 

may be regionally distributed along the length of the intestine.  In addition, there 

is likely interaction of the Notch pathway with the Wnt signaling pathway to 

regulate Paneth and intermediate cell differentiation in the intestine. 

Here we show that the CBC stem cell is a direct cellular target of Notch 

signaling and, moreover, that the gene marker of CBC cells Olfm4 appears to be 

directly regulated by Notch signaling.  To our knowledge, this is the first specific 

cellular target of Notch signaling identified in the intestinal crypt.  Analysis of 

stem cell markers in GSI-treated adult intestine and fetal organ cultures revealed 

a marked loss of Olfm4 mRNA expression.  The γ-secretase complex can 

regulate cleavage of many signaling proteins other than Notch55-59 so we have 

confirmed our findings in a genetic model of Notch disruption in which an 

activating cleavage of the Notch receptor is blocked due to deletion of the 

ADAM10 protease gene in the intestine (Vil-ADAM10 KO) (VanDussen and 

Dempsey, data not shown). 

In this study, Olfm4 was identified as a putative direct target of Notch 

signaling.  Transcriptional studies showed that OLFM4 promoter activity 

increased with constitutively active Notch and decreased with addition of 

dnMAML.  Currently, the intestinal function of Olfm4 is unknown; however, 

reports from other studies in other tissues have suggested that Olfm4 has 

functions associated with stem cell properties.  Murine Olfm4 was originally 

cloned from hematopoietic precursor cells60 and has since been characterized as 

a secreted extracellular matrix glycoprotein that can facilitate cell adhesion and 

can bind to cell surface cadherins and lectins61.  Olfm4 has been shown to 

attenuate apoptosis at the level of cytochrome c release and caspase activation, 

potentially through an inhibiting interaction with GRIM-19, a known pro-apoptotic 

protein62.  In addition, overexpression of Olfm4 promoted tumor growth of 
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TRAMP-C1 prostate cancer cells that were injected into syngeneic C57BL/6 

mice62.  Along with many studies showing high expression of Olfm4 in breast, 

lung, pancreatic, colorectal and gastric cancer and inflamed colonic mucosa, 

these results suggest that Olfm4 may be an important regulator of tissue 

homeostasis and tumor progression63-68.  Olfm4 has also been suggested to 

have a role in the promotion of proliferation; siRNA against Olfm4 in the human 

pancreatic cancer cell line PANC-1 resulted in cell cycle arrest during early S-

phase63.  In addition, Olfm4 expression was noted to fluctuate throughout the cell 

cycle of PANC-1 cells with highest expression during S-phase63.  Thus, Olfm4 

may mediate important pro-proliferation and anti-apoptotic functions required for 

proper stem cell activity.  

 In the intestine, Olfm4 mRNA expression is specifically expressed in the 

CBC stem cells16.  Additionally, Olfm4 mRNA is found in a subset of colon cancer 

cells suggesting that it may also be a marker of malignant stem cells67.  Of 

interest, overactive Notch signaling is also important in cancer development9; 

thus, Notch signaling could contribute at least in part to tumor progression in the 

intestine through dysregulation of Olfm4 gene expression.  The precise 

localization of Olfm4 protein is not well understood.  One study shows diffuse 

staining of Olfm4 throughout the intestinal and colonic epithelium69 while another 

study shows a more limited protein expression pattern with expression limited to 

the proliferative zones the intestinal crypts and base of the colonic crypts65.  

Thus, more work is needed to understand Olfm4 protein expression and function 

in the intestine. 

 A series of promoter deletions in the OLFM4 5’ proximal promoter 

identified the -145 to -56 region as the region likely containing Notch-regulatory 

cis-elements; the -145 to -98 region is especially attractive due to complete loss 

of increased promoter activity in the presence of active NICD.  Sequence 

analysis has identified two RBP-J sites (RBP-Jb and RBP-Jc) within this region 

that are present in both mouse and human Olfm4 promoters.  These sites have a 

weaker consensus sequence than the RBP-Ja site (Fig 4-10); however, they may 

still be functional, and potentially strengthened by the addition of co-factors.  
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Future studies will address whether Notch signaling regulates OLFM4 promoter 

activity through RBP-J binding at these sites. 

Finally, many other potential regulators of Olfm4 activity were identified by 

sequence analysis which may be important for regulation of Olfm4 expression in 

the intestine.  KLF4 and KLF5 have been shown to be important for regulation of 

proliferation in the intestine70.  Additionally, KLF4 is regulated by Notch signaling.  

HNF1α and HNF4α are downstream targets of Cdx2 and function along with 

Cdx2 to activate the intestinal differentiation program71.  Thus, these binding sites 

could be generally important for activation of Olfm4 in the intestine.  Finally, Pax4 

and Gfi1 have been shown to be important for cell lineage differentiation in the 

intestine35, 72 and may function as tumor suppressors in some contexts73, 74; thus, 

cis-elements like these could be important for turning off Olfm4 gene transcription 

in differentiated cells.  Future studies will need to address whether Olfm4 is 

functionally important for CBC stem cell activity and cellular differentiation.  

These studies will be important for understanding the role of Notch signaling and 

Olfm4 in intestinal maintenance and progression to disease. 
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CHAPTER 5 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

 

 

The Role of Math1 in Secretory Cell Fate Selection 
This thesis has furthered our understanding of Notch signaling as a critical 

regulator of stem cell maintenance and cell fate selection in the intestine.  First, I 

have shown that the Notch-regulated transcription factor mouse atonal homolog 

1 (Math1) is the key regulator of secretory cell differentiation in the developing 

and adult intestine.  Transgenic expression of Math1 in the intestinal epithelium 

of fetal mice resulted in a conversion of the intestinal epithelium to secretory cells 

to the detriment of absorptive cells, suggesting that Math1 can redirect a 

bipotential progenitor cell to the secretory lineage (Chapter 2).  To further 

investigate the intestinal function of Math1, an inducible Math1 transgenic 

mouse, the VZM model, was generated and characterized (Chapter 3).  Cre-

mediated induction of VZM transgene recombination resulted in increased 

expression of Math1 mRNA; however, Math1 protein levels were not changed.  

This finding suggests that Math1 protein may be regulated in the intestine by 

some unknown mechanism.  Consequently, we were not able to determine 

whether Math1 expression is sufficient for secretory cell differentiation in the 

mature intestine with the VZM transgenic model so it is currently unknown 

whether Math1 performs a similar role in the developing and adult intestine. 

Studies using the γ-secretase inhibitor (GSI) dibenzepine (DBZ) to inhibit 

Notch signaling in adult mouse intestine are consistent with my conclusion from 

Chapter 2 that Math1 is the key regulator of secretory cell induction.  DBZ-treated 

intestine had increased Math1 mRNA and increased differentiation of all 
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secretory cells, including goblet, Paneth, and endocrine cells (Chapter 4).  These 

data complement my studies of fetal cell lineage determination.  The results are 

consistent with the conclusion that Math1 controls cell fate in developing and 

mature intestine.  Previously, a discrepancy in the literature existed because 

DBZ-treated rats were reported to have increased numbers of all secretory cells1 

while DBZ-treated mice were reported to only have increased goblet cells2.  Our 

results agree with those from the study in rats and have reconciled this 

discrepancy in the literature.  Thus, Math1 expression appears to be sufficient for 

inducing differentiation of all secretory cells in both developing and adult 

intestine.   

Presently, the mechanism of Math1-mediated regulation of secretory 

progenitor cells is not well understood, although recent studies have identified 

two downstream targets of Math1: Growth factor independent 1 (Gfi1) and SAM 

pointed domain containing ets transcription factor (Spdef), which both function in 

secretory lineage allocation and terminal differentiation of secretory cells3-5.  In 

addition to its role in secretory lineage selection, Math1 may also be important for 

maintenance of the secretory cell gene program since it continues to be 

expressed in mature secretory cells.  Future studies will need to determine the 

function of sustained Math1 expression in mature secretory cells.  In addition, the 

identity of progenitor cells that express Math1 need to be further characterized.  

As a starting point, planned future studies will examine co-localization of Math1 in 

leucine g-protein coupled receptor 5 (Lgr5)-positive crypt base columnar (CBC) 

stem cells using the Math1lacZ/+ and Lgr5-GFP-CreER reporter mice6, 7.  This 

study will determine if Math1 expression is activated in the CBC stem cell as a 

possible initiating event in the process of cellular differentiation.  In addition, co-

localization of Math1 and hairy and enhancer of split 1 (Hes1) or Hes5 using 

Math1lacZ/+ and Hes1-GFP or Hes5-GFP reporter mice8 may help to distinguish 

progenitor cells undergoing Notch signaling and fated to enterocyte differentiation 

versus those fated by Math1 to undergo secretory cell differentiation.  Since 

Hes1 is known to repress Math1 transcription9, this study will provide clues about 

how progenitor cells are regulated. 



  176 

 

Regulation of Intermediate Cells 
Interestingly, we observed regional differences in the DBZ-induced 

secretory cell phenotype.  Lysozyme-positive Paneth cells were expanded in 

number in the duodenum and jejunum, but did not appear to be expanded in the 

ileum of DBZ-treated mice.  Instead, we observed a marked increase in the 

number of intermediate cells in the ileum and colon that shared characteristics of 

both Paneth and goblet cells in DBZ-treated mice.  Ongoing studies are aimed at 

analysis of the ultrastructure of crypt cells in vehicle- versus GSI-treated intestine 

to definitively identify intermediate cells10, 11.  Preliminary results have identified 

crypt cells in DBZ-treated ileum that contain both electron-dense secretory 

granules and mucin droplets within their cytoplasm, characteristic of intermediate 

cells.  In addition, despite our observation that lysozyme staining is present in the 

cells at the base of the GSI-treated ileal crypts, none of these cells appear to be 

normal Paneth cells with normal electron-dense secretory granules.  Thus, the 

diffuse lysozyme staining that we observed throughout the small intestines of 

DBZ-treated mice may be indicative of abnormal Paneth cell ultrastructure in all 

regions of the intestine upon Notch disruption.  This notion will be explored by 

further ultrastructural analysis of more proximal intestinal regions.  In addition, 

ultrastructural analysis after a shorter DBZ treatment (e.g. 2-3 days instead of 5 

days) may provide information about how the ultrastructural remodeling occurs.  

For instance, do we observe this phenotype because mature cells are being 

reprogrammed or because there is induction of new cells?  Finally, this analysis 

may also be able to confirm loss of undifferentiated cells in the crypts based on 

morphological properties. 

 It is not currently understood why there are regional differences in 

secretory cell induction in the GSI model of Notch inhibition.  To probe the ileal 

intermediate cell induction further, it will be beneficial to first determine if this 

phenotype is observed in other models of Notch disruption such as the inducible 

RBP-J-deficient mouse intestine (see Table 1-1 for description).  Since Wnt 

signaling is critical for Paneth cell differentiation12-14, experiments that explore 
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differences in Wnt signaling between vehicle- and DBZ-treated mice as well as 

DBZ-treated duodenum versus DBZ-treated ileum may illuminate Wnt signaling 

as a contributor to the formation of intermediate cells. 

A mouse model with simultaneous loss of the three proliferation-promoting 

CDC25 family genes, CDC25a, b, and c, had loss of intestinal proliferation with 

increased expression of Wnt target genes and increased nuclear accumulation of 

β-catenin, including at the +4 stem cell position15. The authors suggested that 

enhanced Wnt signaling was induced to preserve the +4 position stem cells in 

which proliferation was blocked.  In contrast, ultrastructural analysis suggested 

that the CBC stem cells underwent terminal differentiation upon blockade of the 

cell cycle15.  Thus, since I hypothesize that a similar situation is occurring in the 

DBZ-treated intestine, I would predict that Wnt signaling is hyperactive in the 

DBZ-treated intestine as a compensatory mechanism due to loss of crypt cell 

proliferation.  However, since the cell cycle blockade with DBZ-treatment is 

accompanied by Notch inhibition and increased Math1, there is a second aspect 

of the phenotype, induction of secretory cell differentiation, which is not present 

in the CDC25 gene family mutant.  Therefore, if hyperactive Wnt signaling is 

induced by blockade of the cell cycle, the same Wnt signal is also likely to affect 

the cellular differentiation process. 

 
Notch Signaling Targets the CBC Stem Cell 

Notch signaling is important for progenitor cell maintenance in the 

intestine; however, relatively little is known about which specific stem or 

progenitor cell populations are responding to Notch signaling or how these cell 

populations are affected by gain or loss of Notch function.  My thesis work begins 

to address this knowledge gap by analyzing stem and progenitor cell markers in 

Notch loss-of-function mutants (Chapter 4).  Previous studies have shown that 

disruption of Notch signaling leads to loss of proliferating cells while hyperactive 

Notch signaling leads to increased numbers of proliferating cells and has been 

associated with cancer2, 16-18.  My studies strongly suggest that Notch signaling is 

targeting the CBC stem cell based on Notch-regulation of the CBC cell-specific 
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gene Olfmactomedin 4 (Olfm4) (Chapter 4).  However, more experiments are 

needed to definitively show that Notch signaling is active in the CBC cell. 

As a starting point, microarray revealed that Notch1 is enriched in high 

expressing Lgr5 CBC stem cells19.  Following up on this observation, future 

studies should determine if Notch target genes are expressed in the CBC cell.  

Due to poor antibody reagents, the use of in situ hybridization and/or transgenic 

reporter mice will be necessary.  As one possible approach, breeding of the Lgr5-

lacZ reporter mice6 with the Hes1-GFP or Hes5-GFP reporter mice8 could be 

used to show co-localization of known Notch target genes in the CBC stem cell.  

Future studies will also determine if alteration of Notch signaling specifically in 

the CBC cell mimics the phenotypes of whole intestinal epithelium alterations.  

To do this, the phenotypes of Cre-inducible RBP-J deficiency2 and Cre-inducible 

constitutive NICD1 activation16 using the CBC Cre driver Lgr5-EGFP-CreER6 or 

the intestinal epithelium Cre driver Vil-CreERT2 20 will be compared. 

Identification of which stem cell populations are affected by Notch 

signaling will be important for understanding the role of Notch signaling in the 

formation and progression of cancer.  Accordingly, a future direction for this 

project will be to quantitate CBC cell number in mouse models with Notch 

signaling alterations using the Lgr5-EGFP-CreER reporter mouse6 in which the 

CBC stem cells are labeled with GFP and by in situ hybridization for CBC 

markers including Ascl2 and Olfm4.  Profiling of stem cell gene expression may 

also provide some clues about how the various stem and progenitor cell 

populations are affected by alterations in Notch signaling.  A pilot study in 

perinatal 9kbVil-Cre;NICD1 mice showed a 2-fold increase in Olfm4 expression 

despite down-regulation of other CBC markers that suggest that CBC number 

may be decreased (VanDussen, unpublished).  This result supports the finding 

that Notch signaling activates Olfm4 gene expression in vivo, but complicates the 

role of Notch signaling in maintaining the CBC.  Furthermore, this result 

emphasizes the need to examine progenitor cell populations by multiple 

approaches. 
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Notch Regulation of Olfm4 Gene Expression 
 The results presented in this thesis have also suggested that active Notch 

signaling occurs in the CBC stem cell.  Disruption of Notch signaling in fetal 

organ cultures or adult intestine resulted in a striking decrease in the CBC stem 

cell transcript Olfm4, suggesting that Notch signaling normally activates Olfm4 

expression in the CBC cell (Chapter 4).  Transcriptional studies of the human 

OLFM4 promoter have supported the results of the in vivo studies and suggest 

that Notch signaling activates OLFM4 promoter activity.  A series of OLFM4 

promoter deletions identified that critical cis-elements for Notch regulation of the 

OLFM4 promoter are located in an 89 base pair region (-145 and -56) upstream 

of the transcription start site.  Of interest, 2 DNA binding consensus sites for the 

Notch co-activator RBP-J lie within this region; these sites are conserved 

between mouse and human, with one site being paired to an E-box (Figure 4-10).  

Mutation of a third RBP-J site 5’ to the critical -145 to -56 region did not have an 

affect on Notch-regulation of OLFM4 promoter activity.  Future studies will 

determine if one or a combination of these RBP-J sites are required for Notch 

activation of OLFM4 transcription. 

In addition, the importance of the conserved E-box will be explored.  If the 

E-box consensus site is important for OLFM4 expression, the identity of the 

bHLH that binds there would be of great interest since it is a half helix turn away 

from and would likely interact with the nearby putative RBP-J/NICD1 DNA-

binding complex.  A provocative bHLH protein candidate for binding to this site is 

Ascl2, a CBC cell-specific gene that is a target of Wnt signaling and functionally 

important for CBC stem cell activity19.  Olfm4 was identified as a putative Ascl2 

target gene by microarray comparison of Ascl2-deficient and control intestine19; 

however, since CBC cells were temporarily lost in Ascl2-deficient mice, it is not 

clear whether Olfm4 gene expression was down-regulated due to loss of Ascl2-

mediated activation or due to loss of CBC cells.  Hes1 is also a bHLH 

transcription factor that is likely to be expressed in the CBC cell, if Notch 

signaling is indeed active in this cell population; however, traditionally, Hes1 
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functions as a repressor protein and thus would not be likely to participate 

directly in activation of Olfm4 expression. 

 Other transcription factors with consensus binding sites that were 

identified within the critical -145 to -56 region have been reported to interact with 

Notch signaling, including CREB (located at -143 to -123) and TEF-1 (located at  

-133 to -121).  Of interest, these sites overlap the paired E-box and RBP-J 

consensus sites.  In mature CD8+ T-cells, CREB forms a DNA-binding complex 

with NICD and p300 to activate gene expression of granzyme B, an important 

contributor to the cytotoxicity of CD8+ T-cells21.  Thus, potential CREB binding on 

the OLFM4 promoter could link transcription of this gene to signaling from 

secondary messengers such as cAMP or calcium or activation of the MAPK 

pathway.  TEF-1 is part of the TEA domain (TEAD) family of transcription factors.  

TEAD transcription factors interact with nuclear yes-associated protein (YAP), a 

strong co-activator that promotes cell growth and is inhibited by the Hippo 

pathway22.  Activation of the Hippo pathway sequesters YAP in the cytoplasm, 

preventing its association with nuclear TEAD transcription factors, to limit organ 

size in flies and mammals22.  Overexpression of YAP or absence of the Hippo 

pathway gene WW45 in mice produces intestinal phenotypes that are 

reminiscient of Notch gain-of-function mutants with loss of differentiated cells and 

increased proliferation23, 24.  Furthermore, the YAP overexpression phenotype 

can be blocked by administration of DBZ, suggesting that YAP indeed can 

modulate Notch signaling or the affects of Notch signaling in the intestine23.  

Thus, the Hippo pathway may be an important regulator of intestinal stem cell 

activity through modulation of Notch signaling itself or of expression of Notch 

target genes, potentially including OLFM4. 

 Currently, very little is known about the Olfm4 protein other than it is a 

secreted glycoprotein and that its expression levels appear to correlate with 

progession of tumors25, 26.  However, some recent studies in cell lines have 

suggested that Olfm4 may be possess properties that would be important in stem 

cell function, including promotion of proliferation and inhibition of apoptosis27, 28.  
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Therefore, future studies should address the function of Olfm4 in the CBC to 

determine if it is required or sufficient for stem cell activity. 

 

 

The Effect of Notch Inhibition on Intestinal Stem and Progenitor Cells 
Based on the data presented in this thesis and in previous studies, I am 

proposing the model presented in Figure 5-1 as my current hypothesis on the 

effects of disruption of Notch signaling in the intestine. Notch functions to 

maintain the CBC cell pool in an active, cycling state.  After asymmetric division, 

the newly formed undifferentiated cells migrate away from the base of the crypt 

and are exposed to changes in the signaling niche that start the differentiation 

process and these cells become the transit amplifying progenitor (TA) cells.  At 

this point, Notch signaling now directs the process of cell fate selection with cells 

responding to active Notch signals with cells expressing Hes1 being directed to 

the absorptive lineage and cells expressing Notch ligand and Math1 being 

directed to the secretory lineage. 

When Notch signaling is disrupted, CBC cells prematurely differentiate 

into TA cells, which are then directed almost exclusively to the secretory lineage 

due to high Math1 expression and low Hes1 expression.  This data is supported 

by consistent decreases in CBC cell gene expression and increases in TA cell 

gene expression in models of Notch disruption (Chapter 4).  Furthermore, if this 

model holds true, one would expect to see an initial surge of proliferation after 

Notch inhibition due to increased numbers of highly proliferative TA cells; indeed, 

10 µmol/kg DBZ treated adult mice, which likely develop the Notch inhibition 

phenotype more slowly, exhibited increased crypt proliferation.  A direct time 

course study of DBZ treatment is needed to more accurately test this hypothesis.  

After 5 days of 30 µmol/kg DBZ treatment, proliferating cells were mostly absent 

from the intestinal crypts suggesting that cycling cells were either 1) still present 

but not cycling or 2) post-mitotic differentiated cells.  Due to the increased 

presence of markers of differentiated cells in the crypts, the latter possibility 

seems more likely. 
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The contribution of premature cellular differentiation to loss of proliferation 

in models of Notch disruption is also not fully understood.  Stated another way, is 

an increase in Math1 required for premature cellular differentiation and loss of 

proliferation?  Initial studies in fetal organ cultures demonstrated that Math1 is 

required for increased secretory cell differentiation in GSI-treated intestine 

(Chapter 4).  Future studies will address whether proliferation is affected in this 

model of developing intestine and whether Math1-deficiency attenuates the loss 

of proliferation observed in other models of Notch disruption. 

 
Remaining Questions in the Intestinal Stem Cell Field 

The intestinal stem cell field has made many recent advances that have 

rapidly increased our knowledge of the intestinal stem cell, our ability to define 

where stem cells exist and which cells in the crypt actually are stem cells; 

however, many questions still remain to be definitively addressed.  The precise 

number and location of stem cells is still not entirely known.  Estimates have 

placed the number at 4-6 cells per crypt; if this is true, what controls this number 

and does it change in adaptive response compared to steady state?  Many stem 

cell markers have been identified but it is not well understood if these markers 

are expressed in similar or distinct cell populations or whether these markers 

perform any functional role contributing to stemness.  In addition, markers of 

progenitor cells that are not long-lived but do produce all epithelial lineages such 

as Prom1 suggest that there must be distinguishing characteristics between the 

stem cells and their progeny.  More research is needed to determine the 

sequence of events that occurs during stem cell differentiation and what signaling 

pathways might act directly on the intestinal stem cell to influence this process. 

The ability to isolate and culture Bmi1-positive and Lgr5-positive cells is an 

exciting advancement that will be important for controlled experiments that will 

help to define whether stem cell characteristics are intrinsic or whether they are 

determined by the niche29.  Currently, conditions for culturing isolated stem cells 

includes many media components such as Noggin, the Wnt agonist R-spondin, 

laminin- and growth factor-rich Matrigel, and the Notch agonist Jagged 129.  With 
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many of the required factors in the culturing media used for these experiments 

coming from the mesenchyme in vivo, it suggests that the niche serves an 

essential role in stem cell function and regulation.  Defining this niche and its 

interaction with the intestinal stem cell will greatly contribute to our ideas on how 

epithelial maintenance is preserved. 

Lastly, with the discovery that CBC cells are dividing so rapidly, 

mechanisms must be in place to ensure that it remains a long-lived cell without 

accumulating mutations that cause disease.  It remains to be understood how 

these cells rise to the challenge of replenishing the majority of the intestinal 

epithelium every few days.  Two potential stem cell populations reside in the 

intestinal crypts with the more quiescent Bmi1-cell functioning to replenish and 

maintain healthy CBC cells30.  Thus, studies in the field need to determine if 

indeed two stem cell populations exist and to define the relationship between 

these cell populations. 

 

Some Remaining Questions about Intestinal Notch Signaling 
The body of work represented by the work of several laboratories and 

many mouse models with alterations in Notch signaling (Table 1-1) has 

definitively established the Notch signaling pathway as a fundamental pathway 

regulating epithelial proliferation and differentiation in the intestine.  This function 

appears to be conserved among vertebrates as recent studies in zebrafish and 

fruit fly have shown phenotypes in Notch pathway mutants that are similar to 

those observed in mice31, 32.  Despite the importance of Notch signaling for 

development and maintenance of the intestinal epithelium, there remains a large 

knowledge gap about the basic components involved in intestinal Notch 

signaling. 

For instance, the critical ligands that activate intestinal Notch signaling 

have not been described.  Targeted mutation of Delta-like 1 (Dll1)33 or Jagged 1 

(Jag1)34 mice results in early embryonic lethality (~E12) prior to intestinal cellular 

differentiation.  Delta-like 4 (Dll4)-deficient35 and Jagged 2 (Jag2)-deficient36 

mouse mutants have been generated and survive to at least neonatal stages, but 
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have not been analyzed for an intestinal phenotype.  Conditional mutants have 

been generated for analysis in other tissues and could be utilized for intestinal 

studies37-40. Thus, it is currently unknown which Notch ligands are functionally 

important for intestinal Notch signaling in vivo.  It is also not known whether 

Notch signaling control of secretory cell differentiation occurs entirely within the 

epithelium or whether it cooperates with ligand- or receptor-expressing cells in 

the adjacent mesenchyme.  Thus, identification of the signal sending and signal 

receiving cells in the intestine will be critical for understanding Notch function in 

the regulation of proliferation and cell fate selection.  It will also be important to 

understand the composition of the γ-secretase complex in the intestine because 

this likely has effects on its cleavage specificity and efficiency.  As a starting 

point, mouse mutants for presenillin141 and presenillin 242 have been generated 

for study in other systems and could be used for intestinal studies.  

Many intestinal diseases, disorders, and adaptive responses display 

changes in proportions of progenitors or secretory cells such as colorectal 

cancer, parasitic infection, post-small bowel resection, and leukocyte adhesion 

deficiency type II43-48 which may depend on Notch signaling.  For example, there 

are increased proliferative cells and increased numbers of undifferentiated cells 

in colorectal cancer47.  Thus, a more detailed and complete knowledge of Notch 

signaling will be critical for understanding intestinal homeostasis, repair, and 

progression to disease.  In addition, identification of each of the intestinal 

components of the Notch signaling pathway will be critical for developing 

treatments for T-cell leukemia, Alzheimer’s disease, and potentially certain 

cancers because drugs that can be delivered systematically with minimal 

intestinal side effects are greatly needed for these diseases49-51.  Thus, 

identification of therapeutics that target critical Notch targets in diseased tissues 

without severely affecting intestinal Notch signaling would be of great benefit. 
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