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Chapter 1 

Introduction 

Pancreatic cancer  

Pancreatic cancer is the 4th

Existing biomarkers 

 leading cause of cancer death in the United States[1].  

According to the statistics of National Cancer Institute, there are 42 thousand new cases 

in 2009 and the estimated death is 35 thousand.  Pancreatic cancer is the known for its 

extremely low 5year survival rate, which is only 5%.  Surgical resection is only possible 

if the tumor is detected early. However, 85% of the patients were diagnosed with 

unresectable pancreatic cancer because symptoms usually do not develop until tumor 

extends to the retro peritoneum, adjacent organs and vasculature. Unresectable pancreatic 

cancer is associated with mean survival of 6.5 months[2]. A small minority of patients 

(10-20%) is found to have early resectable pancreatic cancer at presentation.  While 

majority of these patients do not achieve curability, pancreatic resection is associated 

with substantially better outcomes including a five-fold higher 5-year survival rate. 

Unfortunately, overwhelming majority of patients do not present with early-stage disease 

and currently there are no clinically utilized strategies for detection of early pancreatic 

cancer. Current medical approaches for unresectable pancreatic cancer involve palliative 

chemotherapy and radiation[3].  Neither of these therapies is associated with long-term 

survival.  Pancreatic caner is also sometimes difficult to distinguish from chronic 

pancreatitis.  False diagnosis may lead to unnecessary surgery which could be life-

threatening for some patients.   
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Early-stage detection of pancreatic cancer can clearly affect the outcome of treatment 

against the disease and provide a prospect of long-term survival and even curability. 

Many strategies utilizing both invasive and noninvasive techniques have been employed 

to detect early pancreatic cancer among patients at high risk of developing this 

malignancy.  Endoscopic ultrasound, magnetic resonance cholangiopancreatography and 

computed tomography scans have been studied for screening pancreatic cancer[4]. 

However, due to the unpleasantness and cost of these exams, their usage has been limited 

to high risk population which is determined by hereditary factors and the presence of 

genetic syndromes. Compared to the invasive exams, noninvasive method, such as serum 

biomarker test, is much easier to be widely accepted by the general population. CA-19-9 

is the most famous serum biomarker for pancreatic cancer[5]. The abundance of this 

biomarker in serum elevates in 80% of the patients with pancreatic cancer, however it 

also elevates in pancreatitis patients. Researchers have found other potential biomarkers 

up-regulated in the serum for pancreatic cancer and combined them together to improve 

the sensitivity and specificity.  Faca et al identified the proteins with increase levels in the 

sera of tumor-bearing mice and from these proteins five of them were chosen to be 

combined with/without CA-19-9 as a panel to distinguish humans with pancreatic cancer 

from pancreatitis/healthy controls[6]. In another study, a larger panel of 92 distinctive 

proteins is assembled, where the protein level in the sera is probed with antibodies 

microarray[7]. Panels of multiple biomarkers have shown much better performance than 

the single CA-19-9 test, but the sensitivity and specificity of these panels have not been 

very satisfactory since the low occurrence rate of this tumor requires an extreme low false 

positive rate.  
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Glycoprotein and glycomic profiling 

Glycosylation is the most commonly occurring post translational modification on proteins 

involved in numerous biological processes, such as protein-protein interactions, protein 

folding, immune recognition, cell adhesion, and inter-cellular signaling. The function of 

glycoproteins is highly dependent on their carbohydrate structure. The alteration on the 

glycans is associated with multiple biological events and has been reported in a variety of 

diseases, especially cancer[8-11]. In the search for effective glycosylated biomarkers for 

targeted diseases, there has been great deal of effort invested in profiling and 

characterizing glycoproteins in complex samples. Many clinical biomarkers and 

therapeutic targets in cancer are glycoproteins, such as CA125 in ovarian cancer, 

Her2/neu in breast cancer and prostate-specific antigen (PSA) in prostate cancer [12-14]. 

In addition, the alteration in protein glycosylation which occurs through varying the 

heterogeneity of glycosylation sites or changing glycan structure of proteins on the cell 

surface and in body fluids have been shown to correlate with the development and/or 

progression of cancer and other disease states[15-17].  Identification of glycoprotein 

isoforms is becoming increasingly important to the diagnosis and management of human 

diseases as more diseases are found to result from glycan structural alterations such as I-

cell disease and congenital disorders of glycosylation leukocyte adhesion deficiency type 

II[18-19]. 

 Due to the complexity of the glycosylation structure, analysis of glycoprotein still 

presents many unconquered challenges against current technologies. Glycoproteins are 

often isolated from the proteome by affinity chromatography utilizing the selective 

binding between the glycans to lectins. Lectins are proteins that possess motifs that have 
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a strong affinity for glycans (the sugar component of glycoproteins). The isolated 

glycoproteins can be analyzed in their intact forms using RPLC and ESI-MS to obtain the 

molecular weight and relative abundance[20]. However, the resolved glycoforms, 

especially the ones with the glycan structure of interest, are often present at low copy 

number that requires highly sensitive detection technique. Alternatively, after enzymatic-

cleavage of the intact proteins, the glycosylated peptides are analyzed with liquid 

chromatography and mass spectrometry[21-24]. Due to the additional molecular weight 

and heterogeneity of the glycans, the glycosylated peptides often show lower ionization 

efficiency than unglycosylated peptides thus purification is necessary. Graphitized carbon, 

cellulose, sepharose and lectins have been used as SPE materials for glycopeptide 

enrichment[25]. In order to identify as many glycopeptide peaks as possible, in addition 

to high-accuracy molecular weight, MS/MS is often required to elucidate the sequence of 

the peptides then consequently the structure of the glycans. However, due to complexity 

of the glycan structure, the intensity of many low-abundance glycopeptides is not high 

enough to generate high-quality MS/MS spectra. Glycosylated peptides can be further 

treated with glycan-releasing enzyme to fragment the hybrid molecules to glycans and 

peptides for structural determination. Normal phase chromatography is usually employed 

for the separation of glycans for the polar nature of the carbohydrate molecules[26]. This 

method provides an overall profile of the structural changes of glycans as the onset or 

progression of a disease occurs. However, compared to the glycopeptide profiling, the 

information about the protein origin of the glycan is lost.  

Microarray approaches 
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Using LC-MS in glycomic analysis has proved to be effective in decoding the glycan 

structures and also generating quantitative information of the glycans or glycoproteins. 

Although very comprehensive, profiling the glycome with LC-MS method is time-

consuming when a large number of samples are analyzed. The prolonged analyzing time 

might also affect the reproducibility of the experiment and consequently compromise the 

accuracy of the quantitative result.  

 A technique that is becoming increasingly popular involves protein microarrays. 

Microarrays have proved to be a high-throughput technique because they allow multiple 

analytes to be investigated simultaneously due to their physical attachment to unique 

regions on a single microarray slide that can be analyzed with a reagent of choice[27-29]. 

By taking advantage of the high-throughput nature of the microarray platform and 

exploiting the unique binding properties of glycoproteins, carbohydrates and glycans, 

comprehensive studies of glycoproteomes are made possible. A variety of microarray-

based platforms for the study of glycoproteins have been pursued thus far.  

 Lectin array is based on binding of an intact glycoprotein or glycopeptides to the 

arrayed lectins, to provide in a characteristic fingerprint pattern that is highly sensitive to 

changes in a protein’s glycan composition. Lectin arrays determine the most appropriate 

lectins for glycoprotein enrichment as well as for the removal of undesirable 

glycoproteins. Lectin microarrays could also be used for rapid and simple analysis of 

protein glycosylation[30-32]. Protein microarrays are a useful screening method for 

whole cell lysates, fractionated proteomes, intact glycoproteins, and antigen-antibody 

reactions. One very promising strategy that has been explored is the use of 

multidimensional-fractionation techniques to simplify cell lysates into less-complex 
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fractions to produce natural protein microarrays. Patwa et al. have developed a 

fractionated glycoprotein array technique to analyze the unique glycosylation pattern of 

serum from pancreatic cancer patients[33]. The glycoproteins in the serum were enriched 

with two broad-spectrum lectins then separated with RPLC into fractions that each 

contained only a few glycoproteins which were subsequently arrayed on nitrocellulose 

slides before being probed with five lectins with different glycan-selectivity. Due to the 

complexity of some samples and limited resolution of RP-HPLC fractionation, the 

accuracy of the biomarker candidates identified with the glycoprotein microarray might 

be compromised when the differentiated fraction contains several glycoproteins and none 

of them is dominant. In this case the protein that contributes the most to the observed 

lectin binding can not be determined.   

 In Chapter Two, the development of an antibody/lectin glycoprotein microarray 

technique is described. The use of antibodies is a means to capture and purify specific 

proteins in a natural state.  The antibody microarray allows the efficient, multiplexed 

study of multiple individual proteins from complex mixtures. The variable carbohydrate 

structures attached to the captured proteins can be characterized by studying the 

interaction between the glycans and different kinds of biotinylated lectins or glycan-

binding antibodies[34-35]. Antibody-lectin sandwich microarray provides a means to 

measure glycosylation change on specific proteins captured from complex samples with 

lectin probes in a high-throughput array format. Compared to HPLC-MS, it is not only a 

simple and reproducible way of investigating large number of samples but also a type of 

assay that analyzes proteins in their native form which can be crucial for understanding 

the functional role of glycoproteins in the biological environment. 
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Bead-based glycoprotein assay 

Antibody microarray assay sometimes suffers low reproducibility when the microarray 

printed on slides show significant printing variation. To avoid the problem, in Chapter 

Three we developed a bead-based protein assay which is very similar to the 

antibody/lectin glycoprotein microarray assay on fluorescence/size labeled beads. The 

assay involves the capturing target proteins on the immobilized antibodies followed by 

characterizing and quantifying the captured proteins with different reporter molecules[36-

37]. Multiple analytes can be measured in a single assay simultaneously by using a 

multiplexed bead set in which the identity of each antibody-immobilized bead is defined 

by size or a unique mixture of two fluorescence dyes (ex. purple/red). Beads sets with 

different color codes capture target proteins which react with the reporter molecule with 

different affinity. The unique color code for each kind of bead allows the discrete 

quantification of each analytes in the system. The glycoprotein-antibody array assay can 

be performed on the bead platform by using lectins to detect the glycan structure.  

Cancer stem cell 

Recently a hierarchy model of carcinogenesis may be able to explain the recurrence of 

tumor and failure of the treatments. The model was proposed based on the concept that 

tumor consists of a heterogeneous population and only a rare population called cancer 

stem cells is responsible for initiation and development of the disease[38-40]. The cancer 

stem cells share some ability of normal stem cells such as self-renewal and producing 

differentiated progenitor cells and self protection against apoptosis. One impact about 

identifying the cancer stem cells is that we have to revise the mechanism of drug 

resistance in cancer according to the self protection property of cancer stem cells and 
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their ability of regenerating the tumor which may cause recurrence after therapy. We 

might also be able design treatment specially targeting cancer stem cells or some key 

pathway in the cancer stem cells to effectively kill the tumor.   

 Simeone and coworkers in University of Michigan have found a type of 

pancreatic stem cells which could be isolated from normal cells by three surface antigens 

CD24/CD44/ESA[41-43]. They performed functional study by planting 500 cells 

with/without the three surface antigens to an immunodeficient mouse. The result shows 

that a tumor was produced on the side where the cells with the surface antigens were 

planted, which proved that the cancer stem cells were responsible for regenerating the 

tumor. The material for our proteomic study was extracted from such a xenografted 

tumor in mice. The reasons for using xenografted tumor in mice are we have difficulty 

obtaining primary human tumor, it has been proven that mouse model accurately 

represent many features in primary tumor and many tests can be done on mice. As I 

mentioned, there are on 0.2-0.8% of cancer stem cells in pancreatic tumor. From a mouse 

tumor, we can typical obtain 10k antibody labeled cancer stem cells using flow cytometry, 

which corresponds to around 1ug of total proteins.  

Shot-gun protein profiling 

Profiling the proteome of cancer stem cells is one of the best ways to understand the 

molecular mechanism underlying the cancer stem cells properties. Shot-gun protein 

profiling is the most sensitive protein profiling approach for whole proteome 

profiling[44]. A typical shotgun proteomic strategy includes four major steps: 1) cell lysis, 

2) protein digestion, 3) protein prefractionation, 4) follow-up LC-MS analysis. There are 

two prefractionation strategies for shot-gun proteomics. One includes one or two-
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dimensional gel or liquid-based separation of the proteins from cell lysate with 

electrophoresis or liquid chromatography followed by trypsin digestion and nanoLC-ESI-

MS. This strategy is able to resolve proteins with PTMs and sometimes provide 

information on the protein mass and pI[45]. Alternatively, the cell lysate is directly 

digested and prefractionated with electrophoresis or chromatography separation before 

NanoLC-ESI-MS[46]. For small amounts of sample (under 1ug), the concern for the first 

strategy is that each protein fraction contains even less protein than the original amount, 

so that the efficiency of trypsin digestion of these protein fractions may be significantly 

lower than direct digestion of the cell lysate[47]. In addition, separating intact proteins at 

the micro scale level still presents a challenging technical issue due to the size of intact 

proteins[48]. Capillary electrophoresis is the only capillary-based method compatible 

with mass spectrometry for prefractionation of intact proteins with high molecular 

weight[49]. However, precipitation of proteins in the CE environment may still occur, 

especially in capillary isoelectric focusing. Direct digestion of cell lysate followed by 

prefractionation of the resulting peptides is thus a preferable method for analysis of small 

amounts of sample. The disadvantage of peptide level prefractionation is the distribution 

of tryptic peptides from high-abundance proteins into multiple fractions, where ionization 

of peptides from low-abundance protein may be suppressed. 

CIEF 

A preparative or first dimension liquid separation is frequently used before reverse-phase 

HPLC-MS to maximize the resolution of the enormous number of peptides from the 

digestion of a cell lysate, thus the overlapping of the peptides can be reduced to optimize 

the performance of the identification. The available preparative liquid separations include 
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ion-exchange, reverse-phase, normal-phase, size-exclusive chromatography and multiple 

types of electrophoretic separations[50]. The chromatography-based separations often 

present undesired retention of peptides with strong interaction with the chromatographic 

resin and, resulting poor recovery rate. In contrast, electrophoresis is usually performed 

in an open capillary, where peptides are separated based on migration under the influence 

of an electric field rather than based on retention. The inner wall of the capillaries used 

for electrophoresis is often coated with inert material to reduce the absorption of the 

analytes. Therefore electrophoresis provides much higher sample recovery rate than 

chromatographic methods.  

 Capillary isoelectric focusing (CIEF) was the first electrophoresis method 

emerged as a useful tool for protein/peptide prefractionation because of its high 

resolution and orthogonal separation mechanism versus RP-HPLC[51]. This pI based 

separation provides an optimal resolution of 0.01 pH unit, which indicates a peak 

capacity of 700 in a pH range from 3 to 10. CIEF focusing is conducted through 

establishing a linear pH gradient in the capillary with a series of carrier ampholytes. The 

peptides are positioned along the pH gradient according to their isoelectric points and 

concentrated in narrow bands. Once the focusing is complete, the concentrated peptide 

bands, maintained by an electric field, are hydrodynamically transferred into samples 

loops or 96-well plates for LC-MS injection. The capillary used in CIEF is usually 

neutrally coated with hydropropyl cellulose to prevent electroosmotic flow (EOF) and 

absorption of analytes. Thus, sample loss can be reduced to a minimal level, which is 

essential in handling small quantities of peptides. The carrier ampholytes for the creation 

of the pH gradient present in each fraction need to be removed by a nano trap column 
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filled with C18 material before the RPLC column due to their competition with peptides 

for electrospray ionization. Another electrophoretic first dimensional separation for shot-

gun proteomic study utilizes capillary isotachophoresis/capillary zone electrophoresis 

(CITP/CZE)[52], which separates and enriches the peptides to different level depending 

on their abundance. Low-abundance peptides are better enriched than high-abundance 

ones. CITP/CZE proves to be more robust and provides improved proteome coverage 

than CIEF. However, in comparative experiments, using CITP/CZE may introduce bias 

to the measurement of the peptides due to the abundance dependent enrichment; hence 

CIEF is preferred in our study. 

 In Chapter Four, our work of analyzing the whole proteome of pancreatic cancer 

stem cells is presented. An optimized protein extraction and peptide desalting procedure 

is used in our experiment. We employed CIEF as the first dimension separation and 

NanoLC as the second dimension. Peptides were identified with MS/MS spectra. 

Autoimmune response 

Autoimmune response was first known by autoimmune diseases, such as diabetes type 1 

and rheumatoid arthritis, where the immune system fails to recognize and direct strong 

immune attack against self tissue[53]. Then autoimmune response was found to be 

happening not only in patients with autoimmune diseases but also in every normal person 

and it plays the role of eliminating the abnormal cells and maintaining the responsiveness 

of the immune system against foreign antigens. Unlike normal cells, tumor cells are 

abnormal cells and present unusual antigens such as mutated proteins, proteins with 

modified PTM, aberrantly expressed proteins and etc[54-58]. These antigens may trigger 

attacks from the immune system, in the forms of cytotoxic T cells or antibodies produced 
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by activated B cells.  In this biomarker study, we are focused on studying the 

autoantibodies, which are sustained at a certain level in the serum for a long period of 

time after the autoimmune attack.  

 There are several facts about autoantibodies which make them excellent 

biomarker candidates. Autoantibodies can be directed against intracellular proteins as 

well as extracellular proteins including some important low-abundance proteins 

associated with the activation of cancer related genes[59-61]. The changes of 

autoantibodies in the patient serum have been found to precede the onset of clinical 

symptoms of multiple types of cancer.  It can be used to help diagnosis of cancer, decide 

the stage of an existing tumor and determine the invasiveness of the disease. And as 

mentioned above the level of serum antibodies, such as immunoglobin G, is stable for a 

long period of time after the first immune attack and may even persist for a life time. 

When a few tumor associated antigens are released into the serum, cells in the immune 

system are able to bind the antigens at a very low concentration and start the autoimmune 

response, which provides us a biological amplification of the disease signal. Thus, 

autoantibodies against tumor associated antigens can be very sensitive biomarkers that 

provide signals about cancer detection.  

 Autoantibodies for cancer have another feature that usually only a subset of 

cancer patients have a differential level of autoantibody against a specific antigen when 

the level of the autoantibody for the other patients are just like normal people. This means 

using a single autoantibody as biomarker, it only distinguishes some of the cancer 

patients from the normal people[62-64]. However, the problem can be fixed by using 
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other autoantibodies to pick up the rest of the patients because the levels of different 

autoantibodies are usually not correlated[65-67]. 

In Chapter Five, our work of using a natural protein microarray to look for the different 

of autoimmune response in the sera of pancreatic cancer patients is described. A 

statistical analysis which catches the outlier pattern is applied to the dataset and the 

potential biomarker candidates were confirmed with another sample set. The combination 

of several different biomarkers increased the sensitivity of cancer detection as we 

expected. 
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Chapter 2 

Pancreatic cancer serum detection using a lectin/glyco-antibody array method 

 

Abstract: 

Pancreatic cancer is a formidable disease and early detection biomarkers are needed to 

make inroads into improving the outcomes in these patients. In this project lectin 

antibody microarrays were utilized to detect unique glycosylation patterns of proteins 

from serum. Antibodies to four potential glycoprotein markers that were found in 

previous studies were printed on nitrocellulose coated glass slides and these microarrays 

were hybridized against patient serum to extract the target glycoproteins. Lectins were 

then used to detect different glycan structural units on the captured glycoproteins in a 

sandwich assay format. The biotinylated lectins used to assess differential glycosylation 

patterns were Aleuria aurentia lectin (AAL), Sambucus nigra bark lectin (SNA), Maackia 

amurensis lectin II (MAL), Lens culinaris agglutinin (LCA), and Concanavalin A (ConA). 

Captured glycoproteins were evaluated on the microarray in situ by on-plate digestion 

and direct analysis using MALDI QIT-TOF mass spectroscopy. Analysis was performed 

using serum from 89 normal controls, 35 chronic pancreatitis samples, 37 diabetic 

samples and 22 pancreatic cancer samples. We found that this method had excellent 

reproducibility as measured by the signal deviation of control blocks as on-slide standard 

and 41 pairs of pure technical replicates.  It was possible to discriminate cancer from the 

other disease groups and normal samples with high sensitivity and specificity where the 

response of Alpha-1-β glycoprotein to lectin SNA increased by 69% in the cancer sample 

compared to the other non-cancer groups (95% confidence interval 53% to 86%).  These 
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data suggest that differential glycosylation patterns detected on high throughput lectin 

microarrays are a promising biomarker approach for the early detection of pancreatic 

cancer. 

2.1 Introduction:  

Pancreatic cancer continues to have a high mortality rate due to detection at a late stage 

of the disease[1].  In fact, 85% of patients initially present with advanced, non-resectable 

disease, highlighting the importance of identifying early detection biomarkers. In addition, 

in a subset of patients, it may be quite difficult to distinguish chronic pancreatitis and 

pancreatic cancer, necessitating unnecessary surgery in some patients that otherwise 

might not require it if an adequate biomarker to distinguish these two diseases was 

available. A serum biomarker test is expected to improve the efficiency of the diagnosis, 

where the blood contains the unique secretome of the tumor cells.  Several serum markers 

have been investigated for pancreatic cancer. Elevated CA19-9 level has been cited as a 

potential marker of disease although it generally does not have the specificity or 

sensitivity for general screening[2-8]. It has been frequently utilized as a marker to 

monitor a patient’s progress after surgery[9].  Other existing biomarkers relate to the 

inflammation that associates with the tumor and other pancreatic diseases that may be 

present[10-12].  It should be noted that no individual biomarker has been found to be 

conclusive at diagnosis to distinguish chronic pancreatitis and pancreatic cancer[13,14].  

To our knowledge, there is no study comparing the serum of pancreatic cancer and 

diabetes which is a widely existing disease in patients at risk of pancreatic cancer.   

Discovery of new early detection biomarkers that are specific for pancreatic cancer 

remains a major challenge. 
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 Post translational modification of the proteome in serum analysis has become an 

important area in biomarker research[15]. Of particular interest is the study of 

glycoproteins where unique protein glycosylation patterns are associated with cancer[16-

25].  Glycans are involved in many biological processes including protein-protein 

interactions, protein folding, immune recognition, cell adhesion and inter-cellular 

signaling[26].  Alteration of glycan structure and coverage on several major 

glycoproteins in serum has been shown to contribute to the progression of cancer.  In 

previous work, fucosylated haptoglobin was suggested as a biomarker for early detection 

of pancreatic cancer[27].  Also the glycoforms of alpha-1-acid glycoprotein have been 

found to vary in cancer patients compared to the healthy controls[28].  These biomarkers 

can be used to improve the confidence of the diagnosis through identification of disease-

related glycan structures by various separation and mass spectrometry techniques[29-32].  

In one such study using lectin extraction and mass spec analysis the glycosylated 

isoforms of alpha-antitrypsin were shown to change in cancer compared to normal 

samples or pancreatitis[33]. Other studies have removed the glycan groups from the 

glycoprotein content of the cell and used glycan profiling to show distinct differences 

between cancer and normal samples based on changes in carbohydrate structures in 

serum, although association with a particular protein is lost[34]. In other studies 

hydrazide columns have been used to extract glycoproteins from serum which were 

digested and analyzed by LC-MS/MS. In this report glycoproteins associated with cancer 

were found although the actual glycan structural information was not delineated[35].  

 Recently, various microarray formats have been utilized for studying 

glycosylation patterns. In one study examining sera samples from patients with colon and 
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pancreatic cancers, glycoproteins extracted from serum were printed on glass slides and 

hybridized against various lectins to study changes in the glycan patterns during cancer 

progression[36,37]. This method provides a means of studying subtle changes in glycan 

structure and is an excellent discovery platform but does not provide a high throughput 

mode for further validation. Other methods have included the use of glycan arrays where 

glycans are directly printed on glass slides[38]  or alternatively lectin arrays where lectins 

are printed on a slide and glycoproteins or whole cells hybridized against them. The 

lectin array approach has been used to identify differences in glycoprotein surface 

markers for cancer cells compared to normal cells and between different types and stages 

of cancer in several studies[39,40]. Alternatively an antibody array approach has been 

used to capture proteins from serum and a lectin hybridized against the glycoprotein to 

study changes in glycan structure[41]. This method can screen large numbers of samples 

from serum for such changes but requires a discovery platform to choose the antibodies 

on the array for screening.  

 The antibody microarray is a favorable format for high throughput analysis, with 

a high level of specificity and reproducibility[42-44].  In the present study, we selected 

four glycoproteins as our target proteins for the antibody microarray. Three of them 

(Amyloid p component, Antithrombin and Kininogen) scored the first three highest Z 

values in previous study in which around ten potential biomarkers were found 

differentially expressed in the sera of pancreatic cancer and cancer-free (including 

pancreatitis) patients [36].  The other glycoprotein (A1BG) was reported in other work on 

urine sample analyzing bladder cancer patients [45].  Antibodies to these glycoprotein 

biomarkers were printed on nitrocellulose coated glass slides. The glycans on the printed 
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antibodies were first blocked to eliminate their interference in the hybridization with 

lectins.  The target proteins in the serum were then captured on the antibody array and 

probed with several biotinylated lectins where streptavidinylated fluorescent dyes were 

used for detection. Eighty nine samples from normal controls, 35 chronic pancreatitis 

samples, 37 diabetics samples and 22 pancreatic cancer samples were processed using 

this method where non-cancer samples were randomly selected and all cancer samples 

available were used.  Antibody specificity was verified by on-target digestion of the 

captured glycoproteins with subsequent on-slide MALDI-MS identification.  The data 

was subjected to statistical analysis to display the variation for a single patient and the 

differentiation among the disease groups. 

2.2 Experimental  

2.2.1 Serum samples- 

Inclusion criteria for the study included patients with a confirmed diagnosis of pancreatic 

cancer, chronic pancreatitis, long-term (for 10 or more years) Type II diabetes mellitus, 

or healthy adults with the ability to provide written, informed consent, and provide 40 ml 

of blood. Exclusion criteria included inability to provide informed consent, patients’ 

actively undergoing chemotherapy or radiation therapy for pancreatic cancer, and patients 

with other malignancies diagnosed or treated within the last 5 years. The sera samples 

were obtained from patients with a confirmed diagnosis of pancreatic adenocarcinoma 

who were seen in the Multidisciplinary Pancreatic Tumor Clinic at the University of 

Michigan Comprehensive Cancer Center.  All cancer sera samples used in this study were 

obtained from patients with stages III/IV pancreatic cancer. The mean age of the tumor 

group was 65.4 years (range 54-74 years). The sera from the normal, pancreatitis, and 
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diabetes groups was age and sex-matched to the tumor group. The chronic pancreatitis 

group was sampled when there were no symptoms of acute flare of their disease.  All sera 

were processed using identical procedures. The samples were permitted to sit at room 

temperature for a minimum of 30 minutes (and a maximum of 60 minutes) to allow the 

clot to form in the red top tubes, and then centrifuged at 1,300 x g at 4oC for 20 minutes. 

The serum was removed, transferred to polypropylene, capped tubes in 1 ml aliquots, and 

frozen. The frozen samples were stored at -70o

2.2.2 Microarray preparation and serum hybridization  

C until assayed. All serum samples were 

labeled with a unique identifier to protect the confidentiality of the patient. None of the 

samples were thawed more than twice before analysis.  This study was approved by the 

Institutional Review Board for the University of Michigan Medical School. 

Alpha-1-β glycoprotein antibody was purchased from Novus, while Amyloid p 

component antibody and Antithrombin antibody were from Abcam.  All the antibodies 

are monoclonal, raised in mouse, targeting human proteins. Antibodies were diluted to 

50ug/mL in PBS and spotted on ultra-thin nitrocellulose coated slides (PATH slides, 

GenTel Bioscience) with a piezoelectric non-contact printer (Nano plotter; GESIM).   

Each spotting event that resulted in 500 pL of sample being deposited was programmed 

to occur 5 times/spot to ensure that 2.5 nL was being spotted per sample.  The spots used 

by the MALDI-MS experiment were printed 50 times.  Each antibody was printed in 

triplicate.  The spot diameters were 280 um and 700 um for the spots that were printed 5 

times and 50 times respectively.   The spacing between the spots was 0.7mm.  14 blocks 

were printed on each slide in a 2X7 format and the block distance was 9.4mm.   
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Figure 1 presents an experimental flow chart of the microarray processing and on-target 

digestion for MALDI-MS.  The antibody arrays on the slides were first chemically 

derivatized with a method similar to previous work [22] but modified for this work.  The 

printed slides were dried in an oven at 30◦C for 1h before gently being washed with 

PBST 0.1 (100% PBS with 0.1% tween 20) and coupling buffer (0.02M sodium acetate, 

pH 5.5), and then oxidized by 200 mM NaIO4(Sigma) solution at 4C in the dark.  After 3 

hours the slides were removed from the oxidizing solution and rinsed with coupling 

buffer.  The slides were immersed in 1 mM 4-(4-N-maleimidophenyl)butyric acid 

hydrazide hydrochloride (MPBH; Pierce Biotechnology) at room temperature for 2 hours 

to derivatize the carbonyl groups.   1 mM Cys-Gly dipeptide(Sigma) was incubated with 

the antibodies on the slides at 4◦

 The slides were inserted into the SIMplex (Gentel) 16 Multi-Array device which 

separates the blocks and prevents cross contamination when different samples are applied 

on neighboring wells.  Serum samples were diluted 10 times with PBST 0.1 containing 

0.1% Brij.  100 uL of each sample was applied to the antibody array manually and left in 

a humidified chamber for 1 hour to prevent evaporation.  Slides were rinsed with PBST 

0.1  for 3 times to remove unbound proteins.   The arrays were then treated with different 

detection biotinylated lectins (Vector Laboratory) to determine lectin response and 

streptavidinylated fluorescent dye (Alexa555; Invitrogen Biotechnology) was used for 

detection.  After a final wash, the slides were dried and scanned with a microarray 

scanner (Genepix 4000A; Axon). The program Genepix Pro 6.0 was used to extract the 

numerical data.  A threshold of signal to background ratio was set at 10 and less than 1% 

C overnight.   The slides were blocked with 1% BSA for 

1 hour and dried by centrifugation.   



24 
 

of the spots were under this threshold and excluded.  The mean of the intensity in each 

spot was taken as a single data point into analysis.     

2.2.3 On-target digestion and MALDI-QIT-TOF 

The microarray slides were incubated with 0.5 M lactose for 10 min and washed with 

PBST 0.1 to remove the captured lectin from the glycoprotein.  After an additional wash 

with water the slides were dried with centrifugation.  Trypsin was diluted to 50 ng/uL 

with 50 mM ammonium bicarbonate and printed on the microarray spots.  The printed 

slides were moved into a humidity chamber and incubated at 37˚ C for 5min.  35 mg/mL 

2,5-dihydroxybenzoic acid (DHB) (LaserBio Labs, France) in 50% acetonitrile was 

printed on the microarray by the microarray printer and allowed to dry.   

 Mass spectrometric analysis of the microarray slides was performed using the 

Axima quadrupole ion trap-TOF (MALDI-QIT) (Shimadzu Biotech, Manchester, UK).  

The microarray slide was analyzed directly by taping the slide onto the stainless steel 

MALDI plate and inserting it into the instrument for analysis. Acquisition and data 

processing were controlled by Launchpad software (Kratos, Manchester, UK). A pulsed 

N2 laser light (337 nm) with a pulse rate of 5 Hz was used for ionization. Each profile 

resulted from 2 laser shots. Argon was used as the collision gas for CID and helium was 

used for cooling the trapped ions. TOF was externally calibrated using 500 fmol/µL of 

bradykinin fragment 1-7 (757.40 m/z), angiotensin II (1046.54 m/z), P14R (1533.86 m/z), 

and ACTH (2465.20 m/z) (Sigma-Aldrich). The mass accuracy of the measurement under 

these conditions was 50 ppm. 

2.3 Results and Discussion: 

2.3.1 Optimization of serum concentration: 
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The antibodies were printed on ultrathin nitrocellulose slides and hybridized with serum 

in a 14 multi-array device, then visualized with biotinylated lectin and Alexafluor-555.  

In a reproducibility test, a common sample selected at random was applied to all 14 

arrays.  Lectin SNA was used for detection.  The fluorescent image of the slide is shown 

in Figure 2a to illustrate the quality of the printed spots. There is a very low variation of 

the signal between different arrays over the slides.   The intensity of the signal in each 

block was calculated as shown in Figure 2b.  The standard deviations of the signal of all 

three antibodies within the slides were about 5% of the average. 

 In order to estimate the variation of the signal on different slides, 2 blocks on each 

slide were hybridized with the same two samples.  The signals of these two blocks were 

compared across slides to calculate the variation.   In multiple–slide experiments, the 

value of the slide to slide variation was about 10% of the average signal.     

 Different dilutions of serum were tested to determine the optimum concentration 

of the target glycoproteins.  The same lectin SNA was used for detection in this test.  

There were seven dilutions of serum sample from 2 to 600 times dilution that were 

applied to the arrays.  Figure 3 depicts how the intensity of the signal changes for the 

three antibodies with a decreasing dilution fold.  A rising trend was noted from the 600X 

dilution to the 50X dilution for the three glycoproteins shown. In the 50X dilution to the 

20X dilution the signal was relatively unchanged except for Antithrombin-III, where the 

signal increased 20% from the 50X dilution to the 20X.  The signal remained the same 

from the 20X dilution until it reached the 5X dilution, where a saturation of the signal has 

occurred.  A decrease of signal for all three glycoproteins from the 5X dilution to the 2X 
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dilution of serum sample can be seen in the figure 3, likely due to competing non-specific 

binding on the antibodies.   

 The result of the dilution test demonstrated that the antibodies were saturated by 

their target protein at 20X dilution or above in the process of hybridization (1hour, room 

temperature and gentle shaking).  Below 50X dilution the antibodies were not completely 

occupied, so the signal decreased with additional dilution.  The nonlinear relation  

between the concentration of the serum and the intensity of the signal could be attributed 

to various factors that may affect the antibody-antigen reaction, including accessibility of 

the antibodies, diffusion rate and solubility of the antigen in the hybridization buffer.  

Nonspecific binding on the antibodies was also considered as a possibility, but was 

further investigated and excluded by on-target digestion and MALDI-MS analysis. 

 To analyze the difference of the glycosylation on potential biomarker proteins, 

protein expression levels must be normalized.  The protein level was estimated by 

antibody assay.  In our experiment the three potential biomarkers were all relatively high 

abundance proteins in human serum (concentration >20mg/L) which could easily saturate 

the antibodies printed on the microarray.   Under saturation conditions, the amount of 

target biomarkers captured on the antibody spots was equal to the capacity of the printed 

antibody which should be the same in all the replicate blocks.  As a result, the need for 

protein assay was avoided and the intensity of the signal on the microarray directly 

represented the level of glycosylation. 

2.3.2 Antibody specificity test with MALDI-QIT-TOF 

In order to validate the specificity of the antibodies we performed on-target digestion and 

MALDI-QIT-TOF of the spots after elution of biotinylated lectins captured on the 
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glycoproteins with a concentrated sugar solution.  A trypsin solution with 50mM 

ammonium bicarbonate was printed with the microarray printer using the same spot lay-

out as in the antibody printing.  The volume of the trypsin solution was 4nL which in a 

humidity chamber lasts about 5 minutes before drying out.   Ammonium bicarbonate 

usually decomposes at the same time.  2,5-dihydroxybenzoic acid was then dissolved in 

50% acetonitrile and printed on the digested spots.  The matrix solution itself is very 

acidic and stops the digestion to prevent further digestion of antibodies and trypsin 

autolysis.  Acetonitrile also partially dissolved the nitrocellulose film and the digested 

peptides on the film were extracted and mixed with matrix.  Nitrocellulose film has been 

reported as an excellent substrate for MALDI-MS[46].  The presence of nitrocellulose in 

the mixture did not affect the crystallization of DHB. 

 The specificity (specific binding vs. non-specific binding) of the antibody as a 

function of the dilution times of the serum can be determined by comparing the spectrum 

from the arrays processed with different conditions.  In the experiment one control array 

(incubated with blocking buffer) and two sample arrays which were hybridized with 2X 

and 10X dilution of the same serum were tested.  The presented figures are the spectra of 

Amyloid p component antibody spot.   Figure 4a shows the spectrum of the Amyloid p 

component spot in the control array which only contained the antibody(anti human 

Amyloid p component).   All the peaks in the spectrum are the peptides digested from the 

antibody and the enzyme itself.  The top 3 peaks are attributed to the antibody digest.   

The intensity of the other peaks was too low to be identified.  The spectra in figures 4b 

and 4c are generated from the Amyloid p component spots in the sample arrays.  In the 

mass spectrum of 10X dilution, 3 new peaks appeared which were all identified by 
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MS/MS to be tryptic peptides of Amyloid p component. This result indicated that no 

other protein was captured on the antibody or the amount was too low to be detected.  In 

the case of the 2X dilution, 2 additional peaks emerged in the spectrum where one of 

them was identified as human serum albumin while the other one was not identified.   

The extra peaks are a sign of nonspecific binding on the antibody.  Thus, only when the 

concentration of the sample was increased to 2X the dilution of the serum does non-

specific binding begin to affect the specificity of the antibody. 

2.3.3 Detecting glycosylation on captured protein by blocked antibody arrays 

The chemical derivatization method was employed to block the glycans on the antibodies 

to eliminate their binding with the lectins used for detection of glycoproteins[41].  The 

cis-diol groups on the glycans were gently oxidized and converted to aldehyde groups 

which then reacted with hydrazide-maleimide bifunctional cross-linking reagent and 

capped with a Cys-Gly dipeptide.  After the derivatization reaction the lectins could not 

recognize the modified oligosaccharide group. 

 All the antibodies were tested against several samples and lectins to evaluate the 

effectiveness of the protocol.  The underivatized antibodies responded to some of the 

lectins, but after derivatization the binding greatly decreased or disappeared.  The serum 

solution was incubated against the derivatized antibody array where the spots showed 

lectin binding on proteins captured by the antibodies, indicating that the antibodies 

maintained their function after derivatization. 

2.3.4 Characterizing glycan structure of potential biomarkers with different lectins 

A previous study described ten potential biomarkers in the sera of normal and cancer 

patients that significantly changed their response to several lectins[18].  We chose four of 
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these target proteins (Antithrombin-III, Amyloid p component, alpha-1-β glycoprotein 

and kininogen) as a proof of concept to determine the proteins which provided the best 

discrimination of samples from patients in different groups based on lectin response.   

The biotinylated lectins used were Aleuria aurentia lectin (AAL), Sambucus nigra bark 

lectin (SNA), Maackia amurensis lectin II (MAL), Lens culinaris agglutinin (LCA), and 

Concanavalin A (ConA). AAL and LCA bind fucose linked (α-1,6) to N-

acetylglucosamine or (α -1,3) to N-acetyllactosamine related structures.  Both MAL and 

SNA recognize sialic acid on the terminal branches.  MAL detects glycans containing 

NeuAc-Gal-GlcNAc with sialic acid at the 3 position of galactose while SNA binds 

preferentially to sialic acid attached to terminal galactose in an (α-2,6) and an (α-2,3) 

linkage to a lesser degree.  ConA recognizes α-linked mannose including high-mannose-

type and hybrid-type structures.  These lectins were selected since fucosylation and 

sialylation have been shown to be related to cancer development[27,33] and ConA binds 

to almost all the N-linked glycoproteins where its signal translates into a general level of 

glycosylation.    

 Figure 5 shows the result of an initial test of the four antibodies with five lectins.  

The contrast and brightness in the images were optimized to differentiate the three groups.  

The borders were drawn by hydrophobic marker pens to prevent the cross contamination 

between the blocks.  The lectins used were AAL, LCA, SNA, MAL and ConA.  In each 

of the images, three normal samples were hybrized in the first column of arrays, three 

pancreatitis samples were in the second column and three cancer samples were incubated 

in the third column of arrays. In each array, antibodies were printed in different columns 

in the order of A1BG, Kininogen, Amyloid p component and Antithrombin-III. For LCA, 
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AAL, SNA and MAL the three cancer samples all showed a stronger response than the 

pancreatitis and normal samples, whereas the blocks probed with ConA showed equal 

signal in the three groups.  A binding pattern was shared between LCA and AAL, which 

agreed with their same specificity on fucosylated N-linked glycans, though the signal of 

LCA was lower in intensity.  These lectins were found to preferentially distinguish 

normal and chronic pancreatitis samples from cancer samples (data not shown).  MAL 

was not used for subsequent analysis due to its low sensitivity with these antibodies.  Of 

the 4 antibodies, 3 of them (A1BG, Amyloid p component and Antithrombin-III) 

displayed a signal-to-background ratio of higher than 20, and were chosen for large set 

analysis.   

2.3.5 High throughput analysis and data quality test 

183 samples from patients with various genders, fasting status and disease classes were 

processed in 4 batches on 16 slides.  Since the signal to background ratio for all the valid 

spots were higher than 10, the signals were directly used for analysis without taking into 

account the background.   41 of the patients in the groups of normal, chronic pancreatitis 

and diabetics contributed three samples with two samples collected twice under fasting 

conditions and the other sample was collected under non-fasting conditions.  The lectin 

used in this study is SNA.  Two patients provided only double fasting samples which are 

used for the data quality test.  For the other samples including some of the normal, 

pancreatitis and all the cancer patients, the information of the gender and fasting status is 

not available  After adjusting for fasting status, gender, and disease category, the data 

points were compared to a normal reference distribution (figure not shown).  Based on 
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this comparison, two outlying data points from the antibody of Antithrombin-III were 

excluded from all subsequent analysis. 

 The accuracy of the antibody microarray analysis is heavily dependent on the 

reproducibility of the technique which is also used as a means to filter out unreliable 

antibodies in distinguishing cancer from other disease classes.  Reproducibility is 

assessed by fitting a linear mixed effects model to log2 scale expression data, separately 

for each antibody.  This is a type of ANOVA model in which fixed effects for fasting 

status, gender, and disease category are included along with random effects for patients, 

and batches within patients.  Thus the expression variation for every antibody around the 

mean for its fasting/gender/disease group is described in terms of three variance 

components (residual, patient and batch within patient), which characterize the 

reproducibility at different levels of the experiment.  .  Residual variance represents 

variation for technical replicates (same person, batch, and fasting status).  Batch variance 

represents technical variation for the same person and fasting status across batches.  

Patient variance represents stable biological variation across people.  Table 1 shows the 

three variance components on the standard deviation scale, for the three antibodies. For 

example, the residual SD for A1BG is 0.21, which means that two thirds of the replicates 

will lie within (2^0.21-1) x 100% = 16% of the true values and 95% of the replicates will 

lie within (2^0.42-1) x 100% = 34% of the true value.  Alternatively, the reproducibility 

could be exhibited by the correlation of the replicate spots in log2 scale which is 

presented in Figure 5.    The scatter plots suggest that the technical error is not limited to 

a handful of outliers, consistent with our finding of an approximately normal distribution 
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of residual variance, as discussed above.  Figure 5 shows data for all non-cancer patients 

and antibodies pooled. 

2.3.6 Examination of potential bias 

Sex, fasting status and other related diseases could all possibly become the source of bias 

in biomarker validation.[47]  As discussed above,  linear mixed effects models were built 

separately for each of the three antibodies, with these potentially biasing factors modeled 

as fixed effects.  As always, one level of each factor variable is omitted, so the implicit 

fixed effect for a normal, non-fasting female is zero, and all other factor settings are 

interpreted as deviations from this arbitrary baseline setting.  The results are listed in 

Table 2.  Fixed effect estimates are shown along with the standard error.  The T-  Since 

log2 scale data are analyzed, we also converted the effects to the raw scale.  For A1BG 

the factors have small and non-significant effects. For Amyloid there is a significant 

effect for fasting, and for Antithrombin-III there is a significant effect for sex and disease 

(mainly due to pancreatitis). These effects are statistically significant but are small in 

magnitude relative to the residual and patient variation, and to the response in cancer. 

2.3.7 Antibody performance in distinguishing cancer and non-cancers 

Table 3 provides information concerning the discrimination between cancer and non-

cancer samples.  These estimates are obtained through the same linear mixed effects 

model discussed above.  A fixed effect estimate b on the log2 scale implies a percent 

change of (2^b-1)x100% on the raw scale, where negative and positive percent changes 

correspond to decreased, and increased expression, respectively.  The A1BG signal 

increases by 69% %=(2^0.76-1)*100% in cancer samples compared to normal, chronic 

pancreatitis, and diabetic samples. The Amyloid signal increases 33%, and Antithrombin-
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III is essentially unchanged. The total standard deviation from technical and biological 

variation (within disease classes) is around 0.32= sqrt(0.216^2 + 0.207^2 + 0.127^2)  for 

A1BG, summing the variance components from table 1.. Thus approximately 95% of the 

time, the experimental result for a particular non-cancer sample is expected to fall 

between 35% below the mean level or 56% above the mean level for all non-cancer 

samples ((2^-0.64-1)*100=-35 and (2^0.64-1)*100=56, where 0.64=2*0.32 is two 

standard deviations.  Thus the 69% average increase in A1BG associated with pancreatic 

cancer falls well outside the range of normal variation...  ROC curves in Figure 6 were 

also constructed for each of the three markers, based on their ability to distinguish 

pancreatic cancer from non-cancer samples (a pool of normals, pancreatitis, and diabetes). 

All three markers show some discrimination where only A1BG is potentially useful on its 

own. A1BG distinguished cancer and non-cancer samples with a 100% sensitivity and a 

98% specificity.  The AUC value measuring the area under the ROC curve for A1BG is 

0.998.  For Amyloid p component the cancer samples were distinguished from non-

cancer samples with 88% sensitivity and 68% specificity and its AUC value is 0.875.  

The discrimination for Antithrombin-III is due to the differences between cancer and 

pancreatitis and it would be unable to distinguish cancer from diabetes based on these 

data.  According to the scatter plot in Figure 7 where the signals of A1BG and Amyloid 

were used as X and Y axes, the overlap of the cancer samples with the non-cancer groups 

is around 20%.   The extent of the difference in 4 patient groups is also shown in Figure 8 

which depicts the distribution of the measurement for the antibody A1BG.  The boxplot 

provides the upper and lower quartiles of the measurements with respect to the median 
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value (red line in the middle of each box). The lines provide the ranges of the 

measurements, excluding outliers (+). 

 The use of the antibody microarray to capture potential biomarkers available in 

cancer serum provides a means for high throughput and analysis of glycosylation patterns. 

Because of the specific goal of quantifying the glycans in this study, antibodies were 

saturated with the analytes by optimizing the dilution times of the sera according to the 

saturation curve.  Thus the response of the lectin from the microarray directly represented 

the level of the particular glycosylation without concern about the various concentrations 

of the proteins in different samples. This strategy also defined the sensitive steps in the 

experiment where the serum was aliquoted, diluted and hybridized with the microarray, 

while in other applications of antibody microarrays, factors such as precipitation, 

heterogeneity of the serum and conditions in hybridization may vary and lead to bias in 

the method. 

 In this study antibody specificity was confirmed by direct MALDI-MS of the 

microarray spots.   Traditional immunoblotting is based on the same interaction as in the 

antibody microarray and does not exclude undesirable binding.  MALDI-MS can identify 

the tryptic peptides of any captured abundant protein on the target.  The microarray 

printer was essential in precisely depositing the extremely small amount of enzyme and 

matrix on top of the antibody spots [48].  In this experiment, the nitrocellulose surface 

generated high quality mass spectra.  In spite of peaks from the antibody that dominated 

the mass spectra, target proteins were readily identified and non-specific binding was also 

found when the serum was not sufficiently diluted. 
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 To access the technical error of the assay, a comprehensive reproducibility test 

was applied by using two fasting samples from the same patients (drawn at two times) as 

pure technical replicates.  The samples were disordered before being incubated on the 

antibody arrays.  In most other duplicate studies[42-45], variations from an entire slide or 

batch was more likely to be detected while the individual variability of the single blocks 

within the slide and batch were ignored.   In this work, by statistically comparing the 

pairs of technical replicates that were distributed across the slides, we were able to 

evaluate the divergence of the signal from the ideal value that resulted from the technical 

error.   

 The pancreatic cancer samples could be clearly distinguished from other disease 

states and normal samples. The ROC curves showed that Alpha-1-β glycoprotein 

response to SNA resulted in specific detection of pancreatic cancer with high sensitivity 

and specificity.  A combined ROC curve of Alpha-1-β glycoprotein and amyloid did not 

provide any improvement in discrimination.  However, a limitation of the analysis was 

that the cancer samples studies were all from late stage pancreatic cancer, thus the study 

served as a proof of principle experiment. To have an impact on the morbidity and 

mortality associated with pancreatic cancer, we will need to examine an adequately sized 

test and training set of early stage pancreatic cancer samples and compare results with 

appropriate age and sex matched normals and disease controls (i.e chronic pancreatitis 

and diabetics). Such a serum set is currently being collected as part of a multi-institution 

collaborative effort by the Early Detection Research Network (EDRN).  

2.4 Conclusion: 
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In this work, an antibody/glycoprotein/lectin sandwich assay was developed for screening 

potential markers of pancreatic cancer. These markers were chosen for study based upon 

our previous work using a lectin glycoarray approach. Three potential markers were 

chosen and their corresponding antibodies were printed on coated glass slides. They were 

exposed to sera from 89 normal samples, 35 chronic pancreatitis samples, 37 diabetic 

samples and 22 pancreatic cancer samples. The captured glycoproteins were analyzed 

against four different lectins where SNA was found to provide the best results. 

 Further, MALDI QIT-TOF MS was used for direct analysis of the captured 

glycoproteins to optimize dilution conditions of the serum and for minimizing 

nonspecific binding. It was shown that the pancreatic cancer samples could be clearly 

distinguished from other disease states and normal samples. The ROC curves showed that 

Alpha-1-β glycoprotein response to SNA resulted in specific detection of pancreatic 

cancer with high sensitivity and specificity. The resulting scatterplots also showed the 

ability to clearly distinguish pancreatic cancer from chronic pancreatitis, diabetics or 

normal samples.  The protein Amyloid also showed an acceptable ability to discriminate 

pancreatic cancer according to the ROC curve whereas Antithrombin-III could not 

provide such discrimination. A combined ROC curve of Alpha-1-β glycoprotein and 

Amyloid did not provide any improvement in discrimination due to correlation between 

the two markers.   
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Figures 

Figure 2.1 An outline of the experimental flow of microarray processing and on-target 

digestion. 
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Figure 2.2. Block-block variation test. a The fluorescent image of a microarray slide with 

14 identical antibody arrays, the antibodies in the three columns of each block are A1BG, 

SAMP, Antithrombin III.  SNA lectin was used for detection; b The intensity of the 

fluorescent signals for each of the spots of the same antibodies in the slide. 
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Figure 2.3. Saturation curve which shows the fluorescence intensity of the three 

antibodies  when they are exposed to different dilutions of serum with SNA lectin 

detection.  The numbers on X-axis are the folds that the serum has been diluted before 

hybridized with the antibody array.  The y-axis is the intensity of the signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

5000

10000

15000

20000

25000

30000

35000

40000

1 10 100 1000

Dilution times

Si
gn

al

A1BG
Amyloid
Antithrombin



40 
 

Figure 2.4.  The MALDI-MS spectra generated on the microarray spots of SAMP 

antibody after on-target digestion. The peaks assigned as Amyloid p component were 

marked with green arrows where the unassigned peaks appearing in c were marked with 

black arrows. a control spot, without incubation of serum; b incubated with10X diluted 

serum; c incubated with 2X diluted serum. 
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Figure 2.5 Scatter plot in log2 scale between every pair of technical replicates (a replicate 

is two distinct points same patient, same antibody, same fasting status and same batch) i.e. 

for any spot in the figure, its values on the aisles are the log2 intensities of any pair of 

replicate spots.  The lectin SNA is used. 
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Figure 2.6 ROC curves for the three antibodies alone and A1BG and Amyloid combined. 
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Figure 2.7 Scatter plot of sialylation level detected by lectin SNA on A1BG and Amyloid 

p component.  Samples from different disease classes are differently colored. Normal 

spots are orange, pancreatitis spots are blue, diabetes spots are pink and cancer spots are 

dark blue. 
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Figure 2.8 The boxplot depicts the distribution of the measurements for antibody A1BG.  

The boxes provide the upper and lower quartiles of the measurements with respect 

to the median value (red line in each box). The lines provide the ranges of the 

measurements, excluding outliers (+). 
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Table 2.1 Residual, batch and patient standard deviations of individual antibodies.  These 

are the estimated standard deviations for variance components in the linear mixed effects 

model, as described in the text.  Only samples with fasting replicates were analyzed. 

Std. Dev. (log2) A1BG Amyloid  Antithrombin-III  
Residual   0.21559 0.19667 0.22877 
Batch 0. 20701 0.16376 0.15382 
Patient 0.12681 0.05973 0.19776 
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Table 2.2 Fixed effects for sex, disease classes (excluding cancer) and fasting status.  

Point estimates, standard error and T value (ratio of point estimate to standard error) are 

given.  The effect estimate (column 2) is on the log2 scale, and the percent effect on the 

raw scale is given in column 3.  T-values greater than 2 in magnitude correspond to two-

sided p-values smaller than 0.05.  Only samples with fasting replicates were analyzed.  

The reference category is a normal (free of pancreatitis and diabetes), non-fasting female.  

Fixed effects are relative to this category. 

A1BG Estimate  Percent Std. Error T value 
Male 0.2948 2% 0.05324 0.55 
Female 0 0% --- --- 
Pancreatitis -0.03688 -3% 0.65551 -0.56 
Diabetic -0.3033 -2% 0.06616 -0.46 
Normal 0 0% --- --- 
Fasting 0.06761 5% 0.03157 2.14 
Non-fasting 0 0% --- --- 

 

SAMP  Estimate  Percent Std. Error T value 
Male 0.04110 3% 0.03808 1.1 
Female 0 0%   
Pancreatitis -0.03545 -2% 0.04829 -0.7 
Diabetic -0.00562 0% 0.04719 -0.1 
Normal 0 0% --- --- 
Fasting 0.06383 4% 0.02758 2.3 
Non-fasting 0 0% --- --- 

 

Antithrombin-III Estimate  Percent Std. Error T value 
Male 0.1134 8% 0.04489 2.5 
Female 0 0% --- --- 
Pancreatitis -0.16112 -12% 0.0564 -2.9 
Diabetic 0.03839 3% 0.05640 0.7 
Normal 0 0% --- --- 
Fasting 0.01663 1% 0.03088 0.5 
Non-fasting 0 0% --- --- 
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Table 2.3 Fixed effects of disease classes including cancer.   Point estimates, standard 

error and T value (ratio of point estimate to standard error) are given.  The effect estimate 

(column 2) is on the log2 scale, and the percent effect on the raw scale is given in column 

3.  T-values greater than 2 in magnitude correspond to two-sided p-values smaller than 

0.05.  The reference category is an individual free of diabetes and pancreatitis.  Fixed 

effects are relative to this category.     

A1BG Estimate  Percent Std. Error T value 
Cancer 0.75515 69% 0.06972 10.8 
Pancreatitis 0.02404 -2% 0.06323 -0.4 
Diabetic -0.01072 -1% 0.07169 -0.1 
Normal 0 0% --- --- 

 

SAMP Estimate  Percent Std. Error T value 
Cancer 0.41395 33% 0.06065 6.8 
Pancreatitis -0.04436 -3% 0.05510 -0.8 
Diabetic 0.00274 0% 0.06065 0.0439 
Normal 0 0% --- --- 

 

Antithrombin-III Estimate  Percent Std. Error T value 
Cancer 0.03193 2% 0.07523 0.4 
Pancreatitis -0.1629 -11% 0.06808 -2.4 
Diabetic 0.02831 2% 0.07523 0.4 
Normal 0 0% --- --- 
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Chapter 3 

A multiplexed bead assay for profiling glycosylation patterns on serum proteins 

 

Abstract: 

A multiplexed bead-based immunoassay was developed to simultaneously profile 

glycosylation patterns of serum proteins to investigate their usefulness as biomarkers for 

pancreatic cancer.  The multiplex assay utilized protein specific capture antibodies 

chemically coupled individually to beads labeled with specific amounts of fluorescent 

dye.  Captured proteins were detected based on the extent and specific type of 

glycosylation as determined by successive binding of fluorescent lectin probes. For 

immunoassay format comparison purposes, the same capture antibodies were printed as 

discrete spots on nitrocellulose surface microarrays.  Relative to the microarrays, 

antibodies coupled to the beads had less non-specific binding to the lectins, resulting in 

very low background signal.  The bead assays were performed in a 96-well filter plate 

enabling high-throughput screening applications. The antibody-conjugated beads 

responded linearly to the antigens at low concentration, whereas the signal saturates at 

20-fold dilution of serum. The assay was tested with ConA and SNA lectins to examine 

the glycosylation patterns of alpha-1-β glycoprotein and serum amyloid p component for 

use as biomarkers for the detection of pancreatic cancer.  We found combining the results 

from the two glycoproteins enabled us to distinguish pancreatic cancer from normal 

controls and pancreatitis (p< 0.05). The microarray platform was performed with the 

same sample set and results were compared between the two platforms. 

3.1 Introduction 
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Carbohydrate modifications on glycoproteins show a high structural diversity reflecting 

inherent functional roles for particular biological environments. Serum represents one of 

the most physiologically relevant glyco-proteomes in the human body. The alteration of 

glycan structure and coverage on several major glycoproteins in serum has been shown to 

contribute to the progression of cancer [1-5]. Studies comparing the carbohydrate chains 

of glycoproteins produced in serum from patients with developed malignancy to patients 

with corresponding chronic disease and normal controls, may provide useful information 

for the diagnosis, prognosis, and development of therapeutic strategies [6-10]. 

Pancreatic adenocarcinoma is the 4th leading cause of cancer-related death in the 

United States [11].  According to the SEER database pancreatic adenocarcinoma is 

associated with a 4% five-year survival rate.  While a majority of these patients do not 

achieve curability, pancreatic resection is associated with substantially improved 

outcomes including a five-fold higher 5-year survival rate [12]. Unfortunately, the 

overwhelming majority of patients do not present with early-stage disease and currently 

there are no clinically useful strategies for detection of early pancreatic cancer. Many 

strategies utilizing both invasive and noninvasive techniques have been employed to 

detect early pancreatic cancer among patients at high risk of developing this malignancy.  

Endoscopic ultrasound has been studied for screening purposes but has been found 

limited in several aspects [13].  CA 19-9 is a serologic biomarker of pancreatic cancer but 

it is ineffective at detecting early pancreatic cancer [14, 15].  Recently, a novel approach 

in cancer-biomarker discovery has exploited the field of glycomics to discover unique 

differential glycosylation patterns associated with malignant processes [16].  

Glycoproteins from patients' serum were extracted and separated by a combination of 
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multi-lectin affinity and reverse-phase chromatography, then spotted on glass slides. Five 

lectins were utilized to investigate the differential glycosylation pattern of the proteins in 

each fraction. The study identified 10 potential glycoprotein biomarkers with significant 

variation in pancreatic cancer samples.  

Microarray immunoassays have been increasingly used for profiling and 

characterizing captured proteins and their modifications, with the appeal of multiplexing 

and low sample cost. A new type of antibody-lectin array has been recently developed to 

detect the glycosylation of specific proteins in a complex mixture [17-19]. A variety of 

glycan structures of interest can be probed with commercially available lectins. Among 

the methods for glycosylation research, this technique provides the highest throughput 

and reproducibility in measuring the abundance and glycosylation of multiple proteins, 

which is essential for disease biomarker discovery. The same advantages are shared by 

microsphere or bead-based immunoassay techniques [20, 21]. Bead-based multiplex 

protein profiling is derived from antibody microarrays, but uses polystyrene beads 

labeled with amounts of discrete fluorophore instead of a flat surface for antibody 

immobilization.  The fluorophore intensity varies between different bead types and is 

easily distinguished using a flow cytometer.  Additional multiplexing capability is 

achieved through the use of differently sized beads also distinguishable by flow 

cytometers.  

The MultiBeads® immunoassay platform commercialized by Assay Designs 

provides beads internally labeled with discrete amounts of fluorescent dye producing 12 

spectrally distinct bead types.  Two sizes of beads are available allowing 24 different 

bead types to be combined. Similar to an antibody sandwich assay, each antibody-
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coupled bead captures an antigen that can be detected by a fluorophore conjugated 

secondary antibody. A mixture of bead types, each hosting a separate immunoassay can 

be simultaneously read in a flow cytometer. Each reading contains the measurement of 

multiple antigens, each diffentiated based on the intrinsic fluorescence and size of the 

host bead.  The beads used in a large set of a parallel assay are uniformly fabricated while 

each block of the microarray is printed individually providing the potential for bead-

based immunoassays to outperform microarray-based assays in terms of reproducibility 

and accuracy. In addition, protein microarrays typically use non-covalent interactions and 

require drying during the printing process to bind the antibody to the solid phase. Bead-

based immunoassays utilize covalent linkage chemistry and the immobilized antibodies 

are maintained in aqueous buffers.  The result is that bead-based assays typically produce 

lower background due to reduced nonspecific absorption.  

To take advantage of the benefit of bead-based immunoassays for glycosylation 

detection, we converted an antibody-lectin technique developed on the microarray 

platform for use on the bead platform (experimental scheme shown in Figure 1). Two 

types of antibody coupled beads targeting alpha-1-β glycoprotein and serum amyloid p 

component were prepared and tested to find the optimal conditions. As a proof-of-

concept, they are employed to measure the glycosylation pattern of samples from  

different groups of patients including pancreatic cancer, chronic pancreatitis, and normal 

controls. The performance of the microsphere based assay is analyzed and compared with 

the results of a microarray experiment using the same sample set.  

3.2 Experimental Section 

3.2.1 Serum samples 
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Inclusion criteria for the study included patients with pancreatic cancer, chronic 

pancreatitis, or healthy adults with the ability to provide written, informed consent, and 

provide 40 ml of blood. Exclusion criteria included inability to provide informed consent, 

patients’ actively undergoing chemotherapy or radiation therapy for pancreatic cancer, 

and patients with other malignancies diagnosed or treated within the last 5 years. The sera 

samples were obtained from patients with a confirmed diagnosis of pancreatic 

adenocarcinoma who were seen in the Multidisciplinary Pancreatic Tumor Clinic at the 

University of Michigan Comprehensive Cancer Center.  All cancer sera samples used in 

this study were obtained from patients with stages III/IV pancreatic cancer. The mean age 

of the tumor group was 65.4 years (range 54-74 years). The sera from the normal and 

pancreatitis groups was age and gender-matched to the tumor group. The chronic 

pancreatitis group was sampled when there were no symptoms of acute flare of their 

disease.  All sera were processed using identical procedures. The samples were permitted 

to sit at room temperature for a minimum of 30 minutes (and a maximum of 60 minutes) 

to allow the clot to form in the red top tubes, and then centrifuged at 1,300 x g at 4oC for 

20 minutes. The serum was removed, transferred to polypropylene tubes in 1 ml aliquots, 

and frozen. The frozen samples were stored at -80o

3.2.2 Mouse mAbs.  

C until assayed. All serum samples 

were labeled with a unique identifier to protect the confidentiality of the patient. None of 

the samples were thawed more than twice before analysis.  This study was approved by 

the Institutional Review Board for the University of Michigan Medical School. 

Alpha-1-β glycoprotein mAb was acquired from Novus, while amyloid p component 

mAb antibody was from Abcam. The mAbs were convalently coupled to 5.4 um latex 
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beads by Assay Designs. The mAbs were diluted with water to 0.5ug/uL for microarray 

printing.  

3.2.3 Antibody blocking 

To prevent reaction between the glycans on the antibodies and some specific detection 

lectins, the antibodies coupled to beads were chemically modified following the glycan-

blocking protocol described in our previous work [17].  Briefly, the beads were washed 

with coupling buffer (AB34) then incubated in 0.2M NaIO4 for 3hours. When the 

oxidation reaction was finished, precipitation was removed by washing the beads with 

coupling buffer with 0.1% Tween 20 three times. The oxidized antibody beads were 

incubated with 1mM MPBH and 1mM Cys-Gly dipeptide for 2hours. Finally the beads 

were kept in 1mM Cys-Gly in dark at 4C overnight. The blocked beads must be 

extensively washed before being stored in a 4C refrigerator to eliminate reagent in the 

solution. 

3.2.4 Sample incubation and flow cytometry detection 

The beads coupled to A1BG and SAP antibodies were mixed with 20X diluted serum in 

eppendorf tubes and incubated on a shaker set at 300rpm for one hour at room 

temperature. Each tube contained six thousand beads of each type. The beads were then 

transferred to two identical 96-well filter plates where subsequent incubation and 

washing were done.  The samples from different disease groups were randomized on the 

well plate to eliminate bias. The two duplicate plates were processed in parallel. Then the 

serum solution was drained and the beads were washed with PBST 3 times. A vacuum 

manifold was used to drain reagent and washing buffer. Biotinylated lectins (Vector 

Laboratory) were diluted to 1ug/mL and applied to each well. The lectin-glycoprotein 



56 
 

reaction was allowed to proceed for 45 minutes before being complete.  The filter plates 

were rinsed to remove unbound lectins. The solution of 1ug/mL streptavidinylated Alexa 

555 (Invitrogen Biotechnology) was added to each well for detection. Finally the beads 

were washed with water to remove detergent.  

The fluorescent signal was read by a flow cytometer (FACSCalibur). The beads 

were sorted by flow cytometer based on size and inherent fluorescent intensities using the 

670nm filter. Three hundred beads of each type were counted. The fluorescent signals of 

the analytes were measured at 575nm.  

3.2.5 Statistical analysis 

Data analysis was done in Weasel version 2.6.  The signals were gated to exclude 

damaged or cross-linked beads. The medians of the select signal spots at each inherent 

fluorescent level were taken as a data point into analysis. All the samples were measured 

twice with duplicate wells. The reproducibility of the experiments was assessed by 

calculating the coefficient of variation (CV) and Pearson correlation for the pairs of 

duplicates. To compare the signal of cancer and non-cancer samples, a student T-test was 

applied to the data, where a difference is considered statistically significant when P<0.05. 

The agreement of the data from the two platforms, bead and microarray, was also 

estimated by Pearson correlation.  

3.3 Results and discussion 

3.3.1 Optimization of the experimental conditions 

Necessity of Glycan blocking 

The binding of the lectins to glycans on the antibodies printed on the arrays resulted in 

interference for the detection of captured glycoproteins. Previous work using antibody 
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microarrays for glycoprotein studies utilized a blocking procedure to prevent this 

interaction [17, 18]. As described in the experimental section, the cis-diol groups on the 

glycans were gently oxidized and converted to aldehyde groups which then reacted with 

hydrazide-maleimide bifunctional cross-linking reagent capped with a Cys-Gly dipeptide. 

The fluorescent signal of the lectin bound to the blocked antibodies decreased 5 to 10 

fold depending on which lectin was used (data not shown). The derivatization procedure 

prevented the binding of the lectins to glycans on the antibodies but it resulted in reduced 

stability of the antibody on the antibody-coupled beads, where the signal of the blocked 

beads degraded over several days. To determine whether the glycan-blocking was 

necessary, the underivatised beads were treated with/without 20X diluted serum to assess 

their binding to 5 different lectins. The lectins utilized were ConA, SNA, AAL, MAL II 

and PNA.  

In Table 1a, the signal of the lectin-treated beads (without serum) indicates the 

level of interaction between the lectin and the underivatised bead-coupled antibodies. The 

signal of ConA and SNA bound to underivatised antibodies is 20 fold lower than the 

signal of the lectins bound to the underivatised antibody spots exposed to serum, thus the 

underivatised antibodies do not bind to ConA and SNA strongly. AAL had strong 

interaction with the underivatised form. MAL II also shows a low level of signal. PNA 

barely binds to the antibodies or the captured proteins. The glycan on the Fc region of 

IgG in a native form is hidden and is not accessible for lectins. Glycosylation on the Fab 

region is dependent on the variable amino acid sequence which correlates with the 

selectivity and affinity of each of the specific antibodies. PNA recognizes galactose but 

usually shows a very low signal with IgG, because the specific interaction can be 
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prohibited by the presence of sialylation which is very common for serum glycoproteins. 

Although a majority of the oligosaccharides on the Fab region are fully sialylated, the 

glycan chains may associate with the positively charged amino acid side chains on the 

protein but not stay free in the solution. Therefore, the binding of SNA and ConA to their 

target glycan structure may be prevented, while the binding of AAL to fucosylation is 

less affected. Alternatively, the modification on lysine for covalent coupling may have 

hampered the accessibility of the glycan chain. On the microarray, the signal of the 

lectins bound to the unblocked antibodies is at a similar level to those bound to the 

antibody spots exposed to serum (Table 1b). Therefore the blocking effect of the antibody  

glycan is caused by coupling the antibodies to the beads. Additional experiments need to 

be done to clarify the mechanism. Since the underivatised antibodies on the beads do not 

bind to ConA and SNA, these two lectins were selected for large scale analysis.  

Serum concentration  

For experimentation, serum dilution for studying glycosylation was targeted to antibody 

saturation and minimization of background binding.  At antibody saturation, 

glycosylation can be studied independently of target glycoprotein serum concentration 

since the amount of on-bead glycoprotein is standardized to the amount of antibody 

conjugated to the bead.  Thus, differences in glycosylation can be measured between 

samples as lectin binding is directly related to level of its target glycan structures present 

on the proteins captured on the antibody array.   

Different dilutions of serum (5X, 10X, 20X, 50X, and 200X) were tested to 

determine the optimum concentration of the target glycoproteins.  The same lectin ConA 

was used for detection in this test. Figure 2 depicts how the intensity of the signal 
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changes for the two antibodies with the dilution fold.  A rising trend was noted from the 

200X dilution to the 20X dilution for both antibodies. From 20X dilution to 5X dilution, 

the signal of SAP only increased by 5%. For A1BG, the signal reached a peak at 20X 

dilution, where a saturation of the target protein on the antibody had occurred. The signal 

then decreased 10% when the dilution increased to 5X. The decrease of signal was 

observed along with an increase of outlier data points in the flow cytometry spectrum and 

a higher standard deviation, likely due to competing non-specific binding on the 

antibodies.  

The result of the dilution test demonstrated that the antibodies were saturated by 

their target protein at 20X dilution in the process of hybridization (1hour, room 

temperature and gentle shaking).  Below or above 20X dilution would not completely 

occupy all the antibodies or introduce strong non-specific binding. Thus, 20X was chosen 

as the optimal dilution fold.   

3.3.2 Serum testing  

Lectin ConA and SNA were used in two separate tests with antibody-coupled beads to 

analyze serum samples from normal control and patients with chronic pancreatitis and 

pancreatic cancer. In the experiment using ConA as the detection lectin, ten samples from 

each of the three groups were tested, where duplicate wells were made on the same plate. 

SNA was used in an experiment to test twenty samples from each group and duplicate 

wells were made on two identical plates.  

Reproducibility 

The reproducibility was assessed using duplicate sample pairs, on the same plate or two 

different plates. The average CV of the duplicate pairs for antibody A1BG and SAP were 
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9.8% and 6.9% respectively.  On each of the two plates, 20 normal samples, 20 

pancreatitis samples and 20 cancer samples were analyzed in parallel. The average CV of 

the duplicate pairs on two different plates for antibody A1BG and SAP were 7.5% and 

5.9% respectively.  

Biomarker performance 

A1BG and SAP are pancreatic cancer related biomarker candidates. Their glycosylation 

levels have been found elevated in pancreatic cancer serum in a previous study using a 

RP HPLC-fraction microarray method [16].  Both of these two glycoproteins produced 

significant differences when analyzed against lectin SNA and ConA. Their potential to 

aid diagnosing pancreatic cancer was further tested utilizing the antibody microarray with 

lectin SNA in a previous study [17]. The results determined that A1BG was able to 

distinguish pancreatic cancer from chronic pancreatitis. On the bead based platform, a 

similar experiment was conducted with a different set of samples. The results (shown in 

Figure 3) are subjected to a t-test between each pair of sample classes. A P-value of 0.035 

was obtained for SAP between samples from chronic pancreatitis patients and pancreatic 

cancer patients, while the p-value for normal control and pancreatic cancer was 0.096 

which is above the significant level. For A1BG, the difference between normal control 

and pancreatic cancer patients is significant (p-value 0.026). The results demonstrate the 

importance of the multiplexed biomarker measurement, as neither of the two antibodies 

can significantly distinguish cancer samples from normal and pancreatitis samples by 

themselves, while together they create the capacity of differentiating cancer samples from 

the other two groups (Figure 3).  
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Mannosylation level of the glycoproteins were probed with ConA. The average 

signals and the variation for each group of samples are shown as a bar graph with error 

bars in compared to chronic pancreatitis was observed, but this did not reach statistical 

significance, p < 0.11.  

3.3.3 Comparison to Microarray results 

A microarray experiment using the same sample set and lectin SNA was conducted to 

compare the performance of these two platforms. We first calculated the Pearson 

correlations between the replicated well/block to estimate the reproducibility of the 

assays on these two platforms individually. As shown in table 2, the bead-based 

glycosylation assays using A1BG and SAP antibody show medium to high correlations 

(A1BG, r=0.85; SAP, r=0.72, total 57 samples) to their  replicates on the other plate. For 

microarray-based assay, the correlations of the replicate blocks are slightly lower (A1BG, 

r=0.80; SAP, r=0.70, total 60 samples). To determine whether the two assays provide 

similar results on the same sample set, Pearson correlation was calculated between the 

microarray and bead results. The microarray assay yielded an overall medium agreement 

(A1BG, r=0.64; SAP, r=0.51; total 57 samples) with the bead-based assay. Within 

subgroups, higher agreement between the result of the microarray and bead assays was 

observed in the cancer cases (A1BG, r=0.84; SAP, r=0.63; 20 cases), probably due to the 

higher in-group variation of the cancer samples (data not shown). In terms of the specific 

antibody, the agreement is poorer with SAP, as it showed lower variation than A1BG. It 

is notable that though both assays have been able to distinguish the samples from the 2 

disease classes and healthy controls, the ranking of the average signal varies in the results 

of these two assays. The average signal of the healthy controls ranked after cancer as the  
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2nd

group was the highest followed by cancer and pancreatitis.  

 highest in the microarray results, while in the bead-based assay the healthy control 

3.4 Discussion 

The bead-based glycoprotein detection method has been developed for multiplexed 

analysis of different kinds of glycosylation on biomarkers captured by antibodies coupled 

to the beads. The assay is ideally suited for large scale biomarker/sample screening. The 

analyses presented herein were conducted to measure the two types of glycosylation of 

two glycoprotein biomarker candidates that could be used to distinguish serum samples 

from pancreatic cancer patients and chronic pancreatitis and healthy controls, and 

evaluated the performance of this assay with respect to reproducibility and its agreement 

with the microarray-based assay. 

The bead-based assay has several notable advantages over the microarray-based 

assay. Some key steps, such as array printing and slide scanning, that always introduce 

spatial variation are eliminated when antibody coupled beads are used to perform the 

assay in a 96-well plate. Improved reproducibility was observed for both of the two 

antibodies tested. Additionally, the number of microarray slides that can be printed in one 

batch is limited and different batches introduce batch-to-batch variation; whereas 

antibody-coupled beads prepared in one batch are enough to perform thousands of assays. 

In terms of procedure, unblocked bead-coupled antibodies bind to ConA and SNA at a 

very low level, even lower than blocked ones on microarray (data not shown), thus the 

whole experiment can be simplified by removing the chemical blocking procedure. We 

are currently testing additional antibodies to find out whether they would behave 

similarly after coupling to the beads. Furthermore, unlike the traditional antibody 
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sandwich assay using commercially available antibody pairs for capture and detection, 

glycosylation detection is performed by a single lectin. Therefore, the number of 

multiplexed assays that may be done in a single well is only limited by the types of 

internally labeled beads available.  

3.5 Conclusion 

We have developed a method for high-throughput glycoprotein biomarker screening 

using a novel bead-based antibody-lectin glycoprotein assay. Compared to the microarray 

platform, the new technique showed improved sensitivity and reproducibility in glycan 

detection. Additionally, the glycans on the bead-conjugated antibodies were not reactive 

to lectin ConA and SNA, so the glycan blocking step can be avoided. Using the bead-

based assay, we discriminated glycosylation patterns among normal and other disease 

states with two glycoprotein biomarker candidates. This platform will be further tested by 

multiplexing more antibodies onto the beads and comparing the result with the 

microarray-based assay. Examination of a larger set of serum samples is planned to verify 

the validity of the biomarkers.  
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Figure 3.1. The diagram of bead based antibody-lectin multiplex assay. 1) production of 2 

sizes of unique labeled beads; 2) chemical coupling different antibodies to different types 

of beads; 3) hybridization of the antibody-conjugated beads with diluted serum in a 96-

well filter plate; 4) sequential reaction of antigen capture, glycan-lectin binding, and  

fluorescence detection; 5) detection of signal for each type of bead with a flow cytometer; 

6) gating signal points to extract data for each analyte.   
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Figure 3.2. Signal-dilution curve made to obtain the optimum concentration of serum for 

bead hybridization using lectin SNA. The x-axis is the dilution fold of serum incubated 

with the beads in each assay ranging from 5-200 X, the y-axis is the resulting fluorescent 

signal. The value of each spot on the y-axis presents the signal yield of each assay. A1BG: 

Alpha-1- β glycoprotein; SAP: Serum amyloid p component. 
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Figure 3.3. The experiment using lectin SNA to detect alpha-2,6 sialylation is performed 

with 20 samples from each of the three groups, pancreatic adenocarcinoma, chronic 

pancreatitis, and normal control.  The bar graph and SEM (error bars) shows the average 

signal and variation for each group of samples. The group marked with a green star on 

top can be significantly distinguished from the group marked with a red star. a) Serum 

amyloid p component; b) Alpha-1-β glycoprotein. 
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Figure 3.4. Result of an experiment using ten sera samples from patients with stage III 

and IV Pancreatic Adenocarcinoma , Chronic Pancreatitis, and Normal Healthy Controls.  

Mannosylation levels were probed with biotinylated ConA and detected by 

streptavidinylated Alexa555. The bar graph and SEM (error bars) shows the average 

signal and variation for each group of samples. The group marked with a green star on 

top can be significantly distinguished from the group marked with a red star. a) Serum 

amyloid p component; b) Alpha-1-β glycoprotein. 
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Table 3.1 Fluorescence signal of antibody-lectin experiment using either antibody-

conjugated beads or microarray platform. The beads and microarray were hybridized with 

serum or sample buffer. 

 

 
 
 

 
 
 

 
 
 
 
 
 
 

387 739 55 82 PNA 
11600 13067 1215 1543 ConA 
9875 12521 725 1069 AAL 
3735 3231 172 144 MAL 
5973 6834 

 
195 284 SNA 

SAP A1BG SAP A1BG 
With Serum Without Serum Microarray

Blocked 
c. antibody microarray without glycan 

  

685 1439 405 985 PNA 
16191 19850 18172 22570 ConA 
21569 19588 21449 19052 AAL 
5329 6335 3072 3924 MAL 
6312 11004 

 
5674 3080 SNA 

SAP A1BG SAP A1BG 
With Serum Without Serum Microarray

Unblocked 

b. antibody microarray with glycan 
  

a) antibody-conjugated beads without glycan 
  

11 13 16 2.5 PNA 
385 418 5 12 ConA 
403 317 353 276 AAL 
184 43 57 14 MAL 
660 636 23 15 SNA 
Sap A1BG SAP A1BG 

With Serum Without Serum Bead 
Unblocked 
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Table 2. Correlations of the results between the replicates in the microarray or bead assay 

and the correlation between the two assays. CVs indicate the variation in each group.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N/A N/A 0.09 0.16 0.15 0.16 Variability (CV) 
0.51 0.64 0.72 0.85 0.70 0.80 Pearson Correlation (r) 
SAP A1BG SAP A1BG SAP A1BG Antibody 

Microarray vs. Bead Bead vs. Bead Microarray vs. Microarray 
Validity Reproducibility 



70 
 

References 
1. Plavina T, Wakshull E, Hancock WS, Hincapie M, J Proteome Res 2007, 2, 662 
2. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA, Science, 2001, 291, 2370 
3. Gorelik E, Galili U, Raz A, Cancer Metastasis Rev, 2001, 20, 245 
4. Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM, J Proteome Res, 

2006, 5, 1792  
5. Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, 

Tennant BC, London WT, Evans AA, Blumberg BS, Dwek RA, Mattu TS, Mehta 
AS, Proc Natl Acad Sci USA, 2005, 102, 779 

6. Drake RR, Schwegler EE, Malik G, Diaz J, Block T, Mehta A, Semmes OJ, Mol 
Cell Proteomics, 2006, 10, 1957 

7. Peracaula R, Tabares G, Royle L, Harvey DJ, Dwek RA, Rudd PM, de Llorens 
RA, Glycobiol, 2003, 13, 457  

8. Kellokumpu S, Sormunen R, Kellokumpu M, FEBS Lett 2002, 516, 217 
9. Balzarini J, Nat Rev Microbiol, 2007, 8,583 
10. Kobata A, Amano J, Immunol Cell Biol, 2005, 83, 429 
11. Jemal A, Tiwari RC, Murray T, Ghafoor A, Samuels A, Ward E, Feuer EJ, and 

Thun MJ, CA Cancer J Clin 2004, 54, 8 
12. Sohn TA, Lillemoe KD, Cameron JL, Huang JJ, Pitt HA, Yeo CJ, J Am Coll Surg, 

1999, 188, 658 
13. Larghi A, Verna EC, Lecca PG, Costamagna G, Clin Cancer Res, 2009, 15, 1907 
14. Dalgleish AG, Br Med J, 2000, 321, 380 
15. Nazli O, Bozdag AD, Tansug T, Kir R, Kaymak E, Hepatogastroenterology, 2000, 

47, 1750 
16. Zhao J, Patwa TH, Qiu WL, Shedden K, Hinderer R, Misek DE, Anderson MA, 

Simeone DM, Lubman DM, J Proteome Res 2007, 5, 1864 
17. Li C, Simeone DM, Brenner DE, Anderson MA, Shedden KA, Ruffin MT, 

Lubman DM,  J Proteome Res, 2009, 8, 483 
18. Chen SM, LaRoche T, Hamelinck D, Bergsma D, Brenner D, Simeone D, Brand 

RE, Haab BB, Nat Methods, 2007, 5, 437 
19. Wu YM, Nowack DD, Omenn GS, Haab BB, Pancreas, 2009, 37, 502 
20. Morgan E, Varro R, Sepulveda H, Ember JA, Apgar J, Wilson J, Lowe L, Chen R, 

Shivraj L, Agadir A, Campos R, Ernst D, Gaur A, Clin Immunol, 2004, 110, 252 
21. Joos TO, Stoll D, Templin MF, Curr Opin Chem Biol, 2002, 6, 76 

 
 

 

 

 

 

 



71 
 

Chapter 4 

Quantitative proteomic profiling studies of pancreatic cancer stem cells 

 

Abstract: 

Analyzing subpopulations of tumor cells in tissue is a challenging subject in proteomic 

studies. Pancreatic cancer stem cells (CSC) are such a group of cells that only constitute 

0.2-0.8% of the total tumor cells but have been found to be the origin of pancreatic cancer 

carcinogenesis and metastasis. Global proteome profiling of pancreatic cancer stem cells 

from xenograft tumors in mice is a promising way to unveil the molecular machinery 

underlying the signaling pathways. However, the extremely low availability of pancreatic 

tissue cancer stem cells (around 10,000 cells per xenograft tumor or patient sample) has 

limited the utilization of currently standard proteomic approaches which do not work 

effectively with such a small amount of material. Herein, we describe the profiling of the 

proteome of pancreatic cancer stem cells using a capillary scale shotgun technique by 

coupling offline capillary isoelectric focusing(CIEF) with nano reversed phase liquid 

chromatography(RPLC) followed by spectral counting peptide quantification. A whole 

cell lysate from 10,000 cells which corresponds to ~1ug protein material is equally 

divided for three repeated CIEF separations where around 300 ng peptide material is used 

in each run.  In comparison with a non-tumorigenic tumor cell sample, among 1159 

distinct proteins identified with FDR less than 0.2%, 169 differentially expressed proteins 

are identified after multiple testing correction where 24% of the proteins are upregulated 

in the CSC group. Ingenuity Pathway analysis of these differential expression signatures 
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further suggests significant involvement of signaling pathways related to apoptosis, cell 

proliferation, inflammation and metastasis. 

4.1 Introduction: 

Pancreatic cancer has the worst prognosis of any major malignancy and is currently 

ranked the fourth leading cause of cancer-related mortality with a five-year survival rate 

less than 5%. Delayed diagnosis, relative chemotherapy and radiation resistance and an 

intrinsic biological aggressiveness all contribute to the abysmal prognosis[1]. Attempts to 

better understand the molecular characteristics of pancreatic adenocarcinoma have 

focused on studying the gene and protein expression profiling of pancreatic cancer 

compared to either normal pancreas or pancreatitis. However, these studies have not 

accounted for the heterogeneity of the tumor cells, in particular, the existence of a small 

set of distinct cells termed cancer stem cells which are responsible for tumor initiation 

and propagation.  

Cancer stem cells have been identified in pancreatic cancer and several other 

tumor types including colon, prostate, and brain. In Li et al [2], a subpopulation of 

pancreatic tumor cells with cell surface markers CD44+CD24+ESA+ was isolated and 

functional studies were conducted to verify that this subpopulation possessed the ability 

of self-renewal and producing differentiated progeny. New strategies addressing this 

disease with a paradigm shift in the mechanism of the therapeutic resistance and 

recurrence of pancreatic tumor can be developed with an improved understanding of the 

cellular signaling pathways in CSCs at the protein level. The xenograft model of primary 

human pancreatic cancer represents a significant advance for the study of pancreatic 

cancer. Animal models using cancer cell lines often do not recapitulate human 
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diseases 

The major obstacle to the study of global proteome expression profiling of the 

CSCs is the extremely small number of cancer stem cells available per study per tumor 

sample. Due to the unique features of pancreatic tissue and low percentage of pancreatic 

cancer stem cells (0.2% to 0.8%), from a single human tumor xenografted in a mouse, we 

can typically obtain 10k antibody labeled cancer stem cells using flow cytometry, which 

corresponds to around 1ug of total protein. Current publications of proteomic studies 

using capillary scale shotgun approaches are based on the analysis of entire tissue 

sections or cell lines instead of a subpopulation of primary human cells[3]. The amount 

of material consumed in a proteomic study using shotgun approaches such as MudPIT or 

offline 2D-LC/MS/MS is higher than 20 ug[4-6]. Some studies targeting a certain 

subpopulation of cells have restricted the analysis to one dimensional separation before 

mass spectrometry[7, 8] to avoid the sample loss in a 2

accurately, where the biological characteristics and histology of tumor-derived 

human pancreatic cancer tissue are preserved in the xenograft. 

nd

In the present study, we employed a PPS facilitated lysis procedure combined 

with a high resolution two-dimensional separation to accommodate the small sample size 

of this study. After cell lysis, protein extracts were digested and equally divided into three 

aliquots. Each aliquot of around 300 ng total material was then introduced into a two-

dimensional separation by CIEF and nano-RPLC followed by tandem mass spectrometry 

analysis to identify the proteins present. A label-free protein quantification using spectral 

counts was employed to measure the protein fold changes between the CSC group and 

the bulk tumor group. Ultimately, the signature proteins detected by the method were 

 dimension of separation, though 

limiting the ability of identifying proteins present in lower abundance. 
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then uploaded to Ingenuity Pathway Analysis (IPA) for functional analysis to identify 

signaling pathways and protein-protein interaction networks that were significant in 

CSCs compared to bulk tumor cells. 

4.2 Experimental: 

4.2.1. Starting Material Preparation 

a. Primary tumor specimen implantation.  

Samples of human pancreatic adenocarcinomas were obtained within 30 min following 

surgical resection according to Institutional Review Board–approved guidelines. Tumors 

were suspended in sterile RPMI 1640 and mechanically dissociated using scissors and 

then minced with a sterile scalpel blade over ice to yield two 2–mm pieces. The tumor 

pieces were washed with serum-free PBS before implantation. Eight-week-old male 

NOD/SCID mice were anesthetized using an i.p. injection of 100 mg/kg ketamine and 5 

mg/kg xylazine. A 5-mm incision was then made in the skin overlying the mid-abdomen, 

and three pieces of tumor were implanted subcutaneously. The skin incision was closed 

with absorbable suture. The mice were monitored weekly for tumor growth for 16 weeks.  

b. Preparation of single-cell suspensions of tumor cells.  
 
Before digestion with collagenase, low passage primary human pancreatic xenograft 

tumors were cut up into small pieces with scissors and then minced completely using 

sterile scalpel blades. To obtain single-cell suspensions, the resultant minced tumor 

pieces were mixed with ultrapure collagenase IV (Worthington Biochemicals, Freehold, 

NJ) in medium 199 (200 units of collagenase per ml) and allowed to incubate at 37 C for 

1.5 to 2 hrs for enzymatic dissociation. The specimens were further mechanically 

dissociated every 15 to 20 min by pipetting with a 10-ml pipette. At the end of the 
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incubation, cells were filtered through a 40-Am nylon mesh and washed with HBSS/20% 

fetal bovine serum (FBS) and then washed twice with HBSS.  

c. Flow cytometry. 

 Dissociated cells were counted and transferred to a 5-mL tube, washed twice with HBSS 

containing 2% heat-inactivated FBS, and resuspended in HBSS with 2% FBS at a 

concentration of 106

d. Material 

 per 100 ul. Sandoglobin solution (1 mg/ml) was then added to the 

sample at a dilution of 1:20 and the sample was incubated on ice for 20 min. The sample 

was then washed twice with HBSS/2% FBS and resuspended in HBSS/2% FBS. 

Antibodies were added and incubated for 20 min on ice, and the sample was washed 

twice with HBSS/2% FBS. When needed, a secondary antibody was added by 

resuspending the cells in HBSS/2%FBS followed by a 20-min incubation. After another 

washing, cells were resuspended in HBSS/2% FBS containing 4,6-diamidino-2-

phenylindole (DAPI; 1 Ag/mL final concentration). The antibodies used were anti-CD44 

allophycocyanin, anti-CD24 (phycoerythrin), and anti-H2K (PharMingen, Franklin Lakes, 

NJ) as well as anti–ESA-FITC (Biomeda, Foster City, CA), each at a dilution of 1:40. In 

all experiments using human xenograft tissue, infiltrating mouse cells were eliminated by 

discarding H2K (mouse histocompatibility class I) cells during flow cytometry. Dead 

cells were eliminated by using the viability dye DAPI. Flow cytometry was done using a 

FACSAria (BD Immunocytometry Systems, Franklin Lakes, NJ). Side scatter and 

forward scatter profiles were used to eliminate cell doublets. Cells were reanalyzed for 

purity, which typically was >97%. 
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10k Pancreatic cancer stem cells and 100k bulk tumor cells were obtained from mice 

xenografts after sorting by flow cytometry and gently washed three times with cold 

PBS(pH 7.4) by repetitive pipetting, followed each time by centrifugation at 1000g for 

5min at 4°C. In the third time of washing, excessive PBS was gently sucked off with 

extra caution when cell pellets were observed at the bottom of the tube. 

4.2.2 Cell lysis and trypsin digestion 

PPS (Protein Discovery, Knoxville, TN) powder was dissolved in 50 mM Ammonia 

Bicarbonate and was added to each tube at a final concentration of 0.2%(m/v).  Around a 

100 ul cell suspension was then vortexed and incubated at 60°C for 10min, followed by 

sonication in an ice-water bath for 2 hrs. An aliquot of 5 mM DTT was added and the 

mixture was incubated at 60°C for 30min. After cooling, 15 mM iodoacetamide was 

added and the mixture was placed in the dark at room temperature for 30 min in order to 

allow the carboxymethylation reaction of cysteine residues. 50 mM ammonia bicarbonate 

was then added at a dilution ratio of 1:5 and 1:50(w/v) L-1-tosylamido-2-phenyletyl 

chloromethylketone modified sequencing-grade porcine trypsin (Promega, Madison, WI) 

was added. The mixture was incubated at 37°C in a water bath with agitation. Formic 

acid (FA) was then added to make a final concentration of 2% to stop the proteolysis. 

Following termination, the acidified mixture was placed in a 37°C water bath again for 4 

hrs to facilitate the hydrolysis and allow the cleavage of PPS. The acidified tryptic 

peptide mixture was then desalted by a peptide micro-trap (Michrom, Auburn, CA) and 

eluted with 98% acetonitrile (ACN) and 0.3% FA, followed by spinning to dryness using 

a SpeedVac concentrator (Labconco, Kansas City) and stored in the -80°C freezer for 

future use. All chemicals were purchased from Sigma unless mentioned otherwise.  
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4.2.3. First dimensional separation: CIEF  

A Beckman CE instrument was modified for CIEF with fraction collection. A 70 cm 

CIEF (100 mm id, 365 mm od) capillary was coated as previously described[9]. 

Lyophilized peptides were first reconstituted in gel buffer containing 2% ampholyte (pH 

3-10) and were injected hydrodynamically to fill the capillary.  Peptide focusing was 

performed by applying 21kv voltage to the two ends of the capillary using 0.1M 

phosphate acid and 1mM sodium hydroxide as the anolyte and catholyte, 

respectively.  The cathodic end of the capillary was kept in a stainless steel coaxial device. 

As the current reached its plateau, the focusing was complete and the focused peptides 

were mobilized under pressure and eluted into a 96-well auto-sampler plate by a 2uL/min 

flow of catholyte solution delivered by a syringe pump. The auto-sampler plate was 

moved from well to well automatically every 2 minutes by a Beckman fraction collector. 

4.2.4 LC/MS/MS 

When CIEF separation was completed, all CIEF runs with each containing  ~30 pI 

fractions were injected in randomized order via Paradigm auto-sampler (Michrom 

Biosciences, Auburn, CA) and loaded onto a desalting nano-trap (300 µm x 50mm) 

(Michrom) connected to a nano-RP column  (C18AQ, 5 mm 200A, 100 µm x 150 

mm)(Michrom) by a Paradigm AS1 micro-pump (Michrom). The mobile phases A and B 

were composed of 0.3% FA in water and 0.3% FA in ACN, respectively. Peptides were 

first desalted and enriched starting at 100%A with a flow rate of 50 mL/min for 5 min. 

The sample was subsequently separated by a nano-RP column with a flow rate of 0.3 

mL/min after splitting. The linear gradient for separation was as follows: from 3% ACN 

to 12% ACN in 5 min, from 12% ACN to 40% ACN in 30min, from 40% ACN to 80% 
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ACN in 15 min and finally decreased from 80% ACN to 3% ACN in 10min. The 

resolved peptides were then introduced into a ThermoFinnigan linear ion trap mass 

spectrometer (LTQ) (Thermo Electron, San Jose, CA) equipped with a nano-spray ion 

source (Thermo Electron). The LTQ was operated in data dependent mode in which one 

cycle of experiments consisting of one full MS scan was followed by five pairs of zoom 

scans and MS/MS scans with dynamic exclusion set to 30 s. The capillary temperature 

was set at 175°C, spray voltage was 2.8 kV, capillary voltage was 30 V and the 

normalized collision energy was 35% for the fragmentation.  

4.2.5 Database search and protein identification 

MS/MS spectra were then searched against the human UniProt FASTA database by 

TurboSEQUEST provided by Bioworks ver3.1 SR1 (Thermo-Finnigan). The following 

modification was allowed in the search: 15.99 Da shift for oxidized Met residues; 58.1 

Da shift for carboxymethylated Cys residues. The identified peptides were subsequently 

processed through PeptideProphet and ProteinProphet incorporated in the trans-proteomic 

pipeline (TPP: http://proteinprophet.sourceforge.net/prot-software.html) where each 

protein was assigned with a probability indicating the significance level of the protein 

appearing in the original sample. In this study, we used a protein probability score of 0.99 

as the threshold for protein identification and the FDR is below 0.2%. 

4.2.6 Label-free protein quantitation and data transformation 

Spectral counts were parsed out of TPP xml files after processing the SEQUEST data and 

used as a surrogate measure of protein abundance in our analysis. Global normalization 

was used to reduce technical bias when acquiring spectral count data from different runs 

between and across samples. The bias may come from instrument error or the inherent 
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random sampling nature of the LTQ. Three replicated datasets for the CSC group and 

four replicated datasets for the tumor group (denoted as CSC1, CSC2, CSC3 and tumor1, 

tumor2, tumor3, tumor4), containing proteins with 99% confidence or above, together 

with their spectral counts, were generated.  The data were consolidated to form a matrix 

with seven columns; missing values were replaced with zero. To eliminate the 

discontinuity observed in simple count ratios when a protein shows spectral count 0, raw 

data were transformed according to Old et al[10].  The transformation uses the log2 

                                                     N= log

scale 

quantity 

2

for each protein, where n is the raw (globally normalized) spectral count value; t is the 

total number of spectra over all proteins in each dataset; and f is a correction factor. 

Larger values of f shrink the results for low spectral count proteins toward zero, thereby 

eliminating the discontinuity at zero and down weighting the results with greatest 

measurement error (i.e. the proteins with low spectral counts).  Several procedures for 

setting the constant term f have been proposed; we devised a new approach that is 

suitable for experiments with technical replicates.  We considered the following criterion:  

[(n+f)/(t-n+f)]                                                   

(Eq.1) 

                                           R(f) = Σ cor(between replicates)                                             

(Eq.2) 

Correction factor f is defined to be the value that maximizes the correlation given in (Eq. 

2).  This maximizing effect yielded the value f=3. A schematic view of this 

computational process is depicted in Figure1(b).  After transformation, statistical 

significance levels between the CSC group and the tumor group were then determined by 
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student's t-test followed by multiple testing adjustment using FDR test. Differentially 

expressed proteins used for subsequent pathway analysis were declared at the level of q-

value < 0.1. This FDR test was performed using R-package (http://cran.r-

project.org/web/packages/fdrtool/index.html). Fold change (FC) is computed from 

transformed data using the mean of spectral counts from all replicates within a group: FC 

= (mean CSC group) – (mean tumor group), where a positive sign indicates over 

expression in the CSC group and a negative sign indicates over expression in the tumor 

group. 

4.2.7 Ingenuity pathway analysis (IPA) 

To obtain detailed molecular information and infer significant signaling pathways from 

our global profiling results, differentially expressed proteins from the CSC group and 

tumor group were uploaded to IPA. The uploaded Excel spreadsheet file contains the 

relevant proteins with their fold change, q-value and corresponding primary accession 

number. The significance values for canonical pathways were calculated using the right-

tailed Fisher’s Exact Test by comparing the number of proteins that participate in a given 

function or pathway relative to the total number of occurrences of these proteins in all 

functional/pathway annotations stored in the ingenuity pathway knowledge base (IPKB). 

4.3 Results and Discussion:     

4.3.1 Evaluation of CIEF+RPLC platform  

Capillary isoelectric focusing is a powerful 1st dimensional separation for 

protein/peptides because of its high resolution and orthogonal separation mechanism 

versus RP-HPLC. This pI based separation provides an optimal resolution of 0.01 pH unit, 

which indicates a peak capacity of 700 in a pH range from 3 to 10, while strong cation 
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exchange only has a peak capacity of around 50. SCX also presents undesired retention 

of peptides with strong interaction with the chromatographic resin and results in poor 

sample recovery rate. In contrast, CIEF is performed in an open capillary which is usually 

neutrally coated to prevent electroosmotic flow (EOF) and absorption of samples. Thus 

CIEF usually provides a sample recovery rate of higher than 90% which is critical in 

analyzing the extremely small amount of sample in our pancreatic CSC study. 

The quality of the CIEF separation in terms of the resolution and reproducibility 

is essential to the accuracy of the comparative proteomic study. The theoretical pI value 

for each identified peptide within each fraction was calculated after database searching. 

The pI distribution plot from the first replicate of the CSC group is shown in Figure 2(a). 

As expected, the pIs of the fractions decrease from 10 to 4 following a linear trend except 

the first 7 fractions where only a few proteins were identified. Peptides beyond the pH 

range of the ampholytes (pH 3–10) used in these experiments were not expected to be 

resolved. Overall, CIEF exhibited high separation resolution where more than 70% of the 

peptides were identified in no more than a single fraction. In addition, the off line 

collection method has the advantage of maintaining the separated peptide bands, whereas 

on line collection directly coupled to RPLC reduces the workload at the cost of 

sacrificing separation resolution and increased sample loss. The number of peptides 

identified from the four replicate runs of the same tryptic digest from the tumor sample is 

plotted against their pI values shown in Figure 2(b). The distribution of the peptides 

demonstrates excellent reproducibility of the experiment.  

Reproducibility is also accessed by pairwise comparison of two selected replicates 

(CSC replicate run 1 and 2, Tumor replicate run 1 and 2) using the Pearson correlation 
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coefficient. No transformation was performed at this point. Common proteins identified 

in both replicate runs were used to calculate the correlation values (R) which are 0.87 

with 95% confidence level between [0.84, 0.9] for CSC1 vs CSC2 shown in Figure2(c) 

and 0.91 for tumor1 vs tumor2 shown in Figure2(d) with 95% confidence level between 

[0.89, 0.93] shown in Figure2(d). A complete correlation matrix can be found in the 

supporting material1.   

4.3.2 Spectral counting results and transformation 

Detecting relative protein quantity change between various disease classes or different 

samples is central to understanding the molecular processes of the cell. Currently there 

are two widely used but fundamentally different label-free protein quantification 

strategies: spectral counting and peak-area measurement. The latter method requires 

aligning the retention time of the chromatogram peaks to accurately locate the same 

peptide and is preferred in experiments where peptides are subject to only one-

dimensional separation before being analyzed by mass spectrometry for its accuracy, 

while the peak-area method is difficult to use with approaches containing two-

dimensional separations where the same peptide might appear in more than one 

LC/MS/MS run. Spectral counting is relatively easy to apply to two-dimensional 

separation data. We have previously reported a study using spectral counting to analyze 

the protein expression levels in two ovarian cancer cell line samples and spectral 

counting results of selected proteins were all consistent with western blot experiments[9].  

 

Different  types of computational algorithms regarding the processing strategies of 

spectral counting data have been proposed by a number of groups[10-13]. Zybailov et 
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al.[11] proposed a NSAF method to normalize and transform spectral count data based on 

protein length whereas Old et al.[10] adopted a transformation method to avoid the 

discontinuity problem which was originally used for serial analysis of gene expression. In 

the present study, spectral counts were assigned to each identified protein followed by 

global normalization by adjusting the mean of each dataset to be equal. After 

consolidating all 7 datasets into a matrix and replacing missing values with zero, we 

proceeded to identify the correction parameter f that produces the most meaningful 

abundance measurements for our experimental data.  The transformation (Eq. 1) that we 

applied has the effect of shrinking the expression scores for low spectral count proteins 

toward zero, compensating for their relatively greater uncertainty.  By maximizing R(f) 

(Eq. 2), the data was transformed in such a way that low-abundance proteins were 

appropriately, but not excessively down weighted in the analysis. The approach to 

defining f by maximizing R(f) is based on the fact that technical replicates from the same 

biological sample should be intrinsically the same. The correction factor was calculated 

to be 3 and then the whole dataset was transformed accordingly. This is similar to Old’s 

method[10] that f is adjusted according to higher correlation between expected and 

observed. The fitted transformation, shown in Figure3, indicated that above 300 

expression units on the original scale, the measured data were sufficiently reliable to be 

used without adjustment; between 100 and 300 expression units on the original scale the 

data were substantially shrunk toward zero, but still contributed to the analysis; and 

below 100 units, the data were shrunk to the degree that they have little influence in the 

analysis.  
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An important issue with any data transformation scheme that uses the class labels 

or clinical outcome information is the possibility that it may induce artifactual 

correlations between protein abundance and outcomes.   The transformation function (Eq. 

1) was monotonic, meaning that if the spectral counts of protein A were larger than those 

of protein B, this relationship would continue to hold after the transformation is applied.  

A monotonic transformation is limited in its ability to induce spurious correlations.  To 

further explore whether the transformation induced spurious correlations, we conducted a 

simulation study. We simulated spectral counts for 1000 proteins measured in two groups 

of samples, each with three replicates.  All 6,000 data values were simulated 

independently from a standard exponential distribution.  We applied the procedure 

described above for a range of f values from 0 to 100, and considered the number of Z-

statistics (comparing the two groups of three samples for a given protein) that exceeded 

various thresholds (2, 2.5, and 3).  We did not observe any inflation in the number of 

significant associations for f>0 compared to f=0. Furthermore, we observed in our 

experimental data that the results were not very sensitive to the specific value of f, as 

long as it was not too close to zero. Figure 4(a) shows the clustering results after 

transforming by f =3. The CSC group and the tumor group are well separated without 

introducing artificial interference.   

4.3.3 Protein profiling results  

Accepted protein identifications are obtained after applying a cutoff protein probability of 

0.99 by TPP which ensures the FDR is below 0.2%. A total of 763 and 1031 distinct 

proteins were identified from three CSC replicates and four tumor replicates, respectively. 

The detailed information about these identifications can be found from supporting 
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material2. Each identified protein was assigned a cellular location based on information 

from IPKB. Figure 5(a) and Figure5(b) show the cellular distribution of 763 and 1031 

identified proteins from the CSC group and the tumor group, respectively.  The cellular 

distribution is consistent for both of these two groups:  the majorities are cytoplasmic and 

nuclear proteins; plasma membrane proteins occupy 10% of each total proteome, 

suggesting PPS has the ability to extract hydrophobic proteins. Multiple correcting testing 

(FDR) was then performed to capture the differentially expressed molecules and 161 out 

of 1159 proteins were identified by using a threshold of q-value < 0.1. 24% of these 

differentially expressed proteins show up-regulation in the CSCs group and a few of them 

are related to the key signaling pathways of CSCs. For example, inter-alpha trypsin 

inhibitor H3 (ITIH3) was identified in all 3 runs of the CSC group with two unique 

peptides and an average spectral count larger than 10, while it was only identified in one 

of the tumor runs with low spectral counts. This protein associated with inflammatory 

response in local tissue[13]was previously reported to be one of the downstream target 

genes of Sonic Hedgehog (Shh), which plays a key role in signaling pathways that 

directly activate the genes involved in the self-renewal and apoptosis-inhibition functions 

of CSC[14] . The over-expression of ITIH3 is consistent with previous finding of the up-

regulated Shh at the mRNA level in pancreatic CSCs[2]. In contrast, a mitochondrial 

apoptosis-inducing factor (AIFM1) was down-regulated in the CSC group. This protein 

was identified in all 4 runs of the tumor group with 5 unique peptides, whereas it was 

only identified in one of the CSC runs. The decreased protein level detected in the stem 

cell group from our study agrees with previous reports that inactivation of AIFM1 

renders embryonic stem cells resistant to cell death [15].  Beside these significantly 
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differentially expressed proteins, some important low-abundant proteins were also 

detected although they were not found to be significantly different based on the FDR test. 

For example, NF-κβ was identified in one of the CSC runs with two unique peptides but 

not in any of the tumor runs, as well as c-MET and CXCL5. Their absence in the tumor 

group is mainly due to their low abundance level which was below the detection limit, 

however their relative over expression in the CSC group agrees with previous findings 

[16-20] that the elevated expressions of these proteins are related to the properties of 

CSCs.   

4.3.4 Signaling Pathway and Connectivity Network Analysis  

A list of 169 differentially expressed proteins was uploaded into IPA for functional 

annotation and pathway analysis. The detailed information about these molecules can be 

found in supporting material2. The most variant and relevant canonical signaling 

pathways enriched with differentially expressed molecules between the CSC group and 

the tumor group were generated by IPA and are ranked by significance shown in figure6 

with a threshold of p-value < 0.1. The length of the bars indicate the significance of the 

signaling pathways to which the differentially expressed proteins are related. 

These enriched pathways can be grouped into four main categories related to the 

characteristics of cancer stem cells: resistance to apoptosis, dysregulation of cell 

proliferation, association with inflammation and metastasis. The top pathway, 

Mitochondrial Dysfunction, is related to both  apoptosis and tumorigenesis[21, 22] and a 

recent report has linked mitochondrial dysfunction to ovarian cancer stem cells[23]. 

Pathways mapped to cellular growth, proliferation and development by IKGB include 

ILK Signaling, RhoA Signaling and Integrin Signaling. CXCR4 signaling and Acute 
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Phase Response signaling pathways categorized under cellular immune/inflammatory 

response are also shown to be significantly involved. The connection between 

inflammation and tumorigenesis has been recognized in many pathologic conditions 

including pancreatic cancer where some clues are suggesting that inflammation might 

induce an accelerated process of mutagenesis and mutation accumulation[1, 24]. VEGF 

signaling associated with angiogenesis is also shown to be significant.  

To further infer the functional relevance between these differentially expressed 

molecules, we have constructed connectivity networks by IPA. The top network which 

has the highest score of 54 (p-value < 1x10-54

4.4 Conclusion: 

 from Fisher Exact Test) consists of 27 

signature proteins shown in figure7. Interestingly, NF-κβ is imported as the central node 

to generate this interaction network by IPA, suggesting a potential involvement of this 

transcription factor although this molecule is not in the experimental signature protein list. 

This work represents the first proteome profiling study on pancreatic cancer stem cells 

from xenograted tumor in mice. We overcome the difficulty of analyzing the extremely 

small number of cancer stem cells from the xenografted tumor by using an ultrasensitive 

sample preparation procedure and CIEF as the 1st dimensional separation before 

LC/MS/MS to minimize sample loss and obtain high resolution of peptides. A modified 

transformation algorithm was also devised to handle spectral counting data with technical 

replicates in order to weight proteins with a large range of spectral counts appropriately 

in the subsequent statistical analysis. 169 proteins have been captured as differentially 

expressed signatures between the CSC group and the bulk tumor group. Pathway analysis 
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and network modeling by IPA has further revealed significantly involved signaling 

cascades relevant to the characteristics of CSCs.  

It will be important to validate proteome profiling results using alternative 

technologies such as the Western blotting or RT-PCR. However, currently, no other 

techniques work effectively with less than 1ug of protein material. To compensate for the 

lack of validation, we increased the confidence level of protein identifications by 

adopting a more stringent threshold. We set the cutoff to a protein probability score of 

0.99 which has a FDR less than 0.2% compared to the commonly used score of 0.9 which 

gives FDR less than 1%. Moreover, multiple testing corrections are employed to control 

false positives induced by performing significance tests on a large number of proteins. 

Thus, differentially expressed proteins identified in this way are more likely to be true 

positives.  
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Figure 4.1a Experimental flow chart 
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Figure 4.1b Data Processing Strategy. Upper left matrix is the consolidated dataset. 

Lower left flowchart is the correction factor searching scheme and transformation 

algorithm. 
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Figure 4.2a Theoretical pI distribution plot of the first run of CSC group. Fraction 

number shown in the X-axis is plotted against the average of peptides’ pI value within 

each fraction shown in the Y-axis. 
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Figure 4.2b Distribution of number of identified peptides from each run of tumor group 

in pI range 3.5-10. X-axis shows their pI values and Y-axis shows co the number of 

identified peptides. Different tumor replicate runs are represented by different colors. 
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Figure 4.2c Pearson correlation plot of all proteins detected with single or more spectral 

counts in the first and the second run of CSC group. 
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Figure 4.2d Pearson correlation plot of all proteins detected with single or more spectral 

counts in the first and second replicate of tumor group. 
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Figure 4.3 Monotonic plot of original data Vs transformed data. Different color and 

different shapes represent csc1, csc2, csc3, tumor1, tumor2, tumor3, tumor4, respectively. 

Y and X-axis represent transformed data on log2 scale. 
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Figure 4.4 Clustering results of the CSC group and tumor group after transforming by f=3. 
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Figure 4.5a Cellular Distribution of identified proteins from pooled CSC group  
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Figure 4.5(b): Cellular Distribution of identified proteins from pooled tumor group. 
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Figure 4.6 Canonical signaling pathways enriched with differentially expressed proteins 

ranked significance. A threshold p-value < 0.1 is applied. 

 

 

 

 

 

 

 

 

 

 

 

 



100 
 

Figure 4.7 The  connectivity network constructed ranked on top by IPA. This network 

only consists of differentially expressed proteins from experimental data. Red and green 

circles indicate overexpression and underexpression in the CSC group versus the bulk 

tumor group, respectively. 
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Chapter 5 

The identification of auto-antibodies in pancreatic cancer patient sera using a 

naturally fractionated panc-1 cell line 

Abstract: 

The immunogenic nature of cancer can be explored to distinguish pancreatic cancer from 

related non-cancer conditions. We describe a liquid-based microarray approach followed 

by statistical analysis and pre-validation for discovery of auto-immune biomarkers for 

pancreatic cancer. Proteins from the Panc-1 pancreatic cancer cell line were fractionated 

using a 2-D liquid separation method into over 1052 fractions and spotted onto 

nitrocellulose coated glass slides. The slides were hybridized with 37 pancreatic cancer 

sera, 24 chronic pancreatitis sera and 23 normal sera to detect elevated levels of reactivity 

against the proteins in spotted fractions. The response data obtained from protein 

microarrays was first analyzed by Wilcoxon Rank-Sum Tests to generate two lists of 

fractions that positively responded to the cancer sera and showed p-values less than 0.02 

in the pairwise comparison between cancer specimens and normal and chronic 

pancreatitis specimens. The top 20 fractions in the cancer vs. normal category were 

combined and demonstrated the ability to detect 85% of cancer samples with 95% 

specificity. Outlier-Sum statistics were then applied to the microarray data to determine 

the existence of outliers exclusive in cancer sera. The selected fractions were identified 

by LC-MS/MS. We further confirmed the occurrence of outliers with three proteins 

among cancer samples in a validation experiment using a separate dataset of 168 serum 

samples containing 48 cancer sera and 120 non-cancer controls. Phosphoglycerate kinase 
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1 (PGK1) elicited greater reactivity in 20.9% (10 in 48) of the samples in the cancer 

group, while no outlier was present in the non-cancer groups.  

5.1 Introduction: 

Pancreatic adenocarcinoma is the 4th leading cause of cancer-related death in the United 

States [1]. Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest survival rates 

of any cancers, where according to the American Cancer Society, for all stages of 

pancreatic cancer combined, the one-year relative survival rate is 20%, and the five-year 

rate is 4% [1]. These low survival rates result from the fact that fewer than 10% of 

patients' tumors are confined to the pancreas when in most cases, diagnosis of 80% to 

90% of PDAC cases are too late for surgical procedures to have a positive outcome. 

Unfortunately there are not any available diagnostic tools that allow for detection of early 

stage pancreatic cancer. Although there has been an effort to find protein markers in 

serum, none have shown sufficient sensitivity and specificity for early diagnosis including 

the commonly used CA 19-9 test [2,3] 

There remains a need for the discovery of innovative serological biomarkers that 

effectively improve diagnosis and prognosis of human cancer. Antibody responses 

associated with the occurrence and progression of solid tumors have been identified in 

multiple cancer types [4-6]. The underlying mechanism of the auto-immune response is 

still not fully understood [7]. However, the known molecular changes that can induce 

auto-immune response include proteins expressed at an aberrant level, and mutated gene 

products and isoforms of proteins with abnormal post-translational modifications (PTMs) 

 which may be significantly increased in 

pancreatitis in addition to pancreatic cancer, and is not reliably elevated in early stage 

cancer.  
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[8-10]. The immunogenic proteins are often found to be intracellular proteins whose 

functions are linked to the onset and growth of malignant tumors, such as oncoproteins 

HER-2/Neu and c-MYC [11-13] and, tumor suppression proteins such as p53 [14].  

Although research has suggested strong correlation between the presence of some 

auto-antibodies and the process of tumorgenesis, the frequency of the appearance of auto-

antibodies in cancer patients varies.  A mutation in the p53 gene elicits an auto-immune 

response in 4-30% of patients in several types of cancer [14]. Around 30% of patients 

with lung adenocarcinoma exhibit a humoral response to glycosylated annexins I and/or II 

whereas none of the noncancerous standards exhibit such a response [15]. In PDAC, auto-

antibodies to DEAD-box protein 48 were observed in 33.3% of pancreatic patient sera, 

while none of the patients with benign disease and healthy controls showed reactivity 

against the antigen [16]. MUC1 [17,18], p53 [19] and Rad51 [18] have also shown 

restricted immune reactivity in a subset of cancer samples. The typical frequency of the 

detection of a particular auto-antibody in a cancer type is 10-20% and may not be 

sufficient when used as a biomarker individually, but may be combined as a panel for 

improved performance [20-22].  

Adding new cancer specific auto-antigens to the existing biomarker repertoire is 

the impetus of developing analytical and statistical techniques for auto-immune response 

study. There are several approaches currently available for the identification of auto-

antigens.  One is targeting specific proteins or gene products that are known for their roles 

in cancer including p53, c-myc, and erB-2. This method only provides limited candidates 

for biomarker. Recombinant protein microarray produced from cDNA expression library 

has been used as a comprehensive antigen substrate to profile the auto immune reactivity, 
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however, it is unable to profile PTM dependent antibody-antigen interactions. The 

development of proteomic separation and identification techniques has benefited the 

discovery of auto-antibody biomarker, where proteins from tissue or cell line are 

fractionated by gel or liquid based multidimensional separations, while maintaining the 

natural PTMs and further identified by mass spectrometry. Few studies have examined the 

change of the auto-antibody profile in pancreatic cancer using such techniques.  In current 

work, we have used liquid fractionation methods to produce microarrays for the humoral 

response experiment against a Panc-1 pancreatic cancer cell line. The methods that are 

used involve separating intact proteins from cell lysates using two dimensions. A total cell 

fractionation can be performed using chromatofocusing separation in the first dimension 

where the proteins are fractionated according to pI.  Each fraction is then separated in a 

second dimension by nonporous silica RP HPLC [23]. Using this method isolated proteins 

in the liquid phase can be collected for spotting on coated glass slides [24]. The protein 

spots are probed for their humoral response by exposing them to sera from cancer and 

chronic pancreatitis patients, and normal individuals. This method offers a means for 

comprehensive proteomic analysis of proteins from large numbers of purified proteins as 

expressed in cancer cells while maintaining their PTMs that are often critical to the 

humoral response [25]. The method can produce arrays with over a thousand spots and 

can produce large numbers of slides for testing the response against a large number of 

patients. 

In order to account for the limited subset of patients with a specific tumor type 

that develop a response to a specific antigen, we attempt to apply two statistical methods, 

Wilcoxon Rank-Sum Test and Outlier Sum Statistics [26], to find potential markers that 
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show different types of immune reactivity patterns. Based on our results we perform a 

prevalidation study of 5 potential markers for pancreatic cancer against recombinant 

proteins on a microarray based format against samples from pancreatic cancer, 

pancreatitis, diabetes type 2 and normal controls. For three of the five proteins, a 

substantial number of samples from the cancer group show higher reactivity than the non-

cancer sample groups.  

5.2 Experimental  

5.2.1 Chemicals: 

Methanol, acetonitrile, urea, thiourea, iminodiacetic acid, dithiothreitol (DTT), n-octyl-D-

glucopyranoside (OG), glycerol, bis-tris, Trifluoroacetic acid (TFA), and PMSF 

(Phenylmethanesulfonyl fluoride) were purchased from Sigma (St. Louis, MO). Water 

was purified using a Milli-Q water filtration system (Millipore Inc., Bedford, MA) and all 

solvents were HPLC grade unless otherwise specified. Reagents used were in the purest 

form commercially available. Polybuffer 74 and polybuffer 96 were purchased from GE 

Healthcare Bio-Sciences Corp. (Piscataway, NJ). 1x PBS and ultra-pure DNase/RNase 

free distilled water were obtained from Invitrogen (Carlsbad, CA).  

Eighty six serum samples were obtained at the time of diagnosis following 

informed consent using IRB-approved guidelines. Sera were obtained from patients with 

a confirmed diagnosis of pancreatic adenocarcinoma in the Multidisciplinary Pancreatic 

Tumor clinic at the University of Michigan Hospital. Inclusion criteria for the study 

included patients with a confirmed diagnosis of pancreatic cancer, the ability to provide 

written, informed consent, and the ability to provide 40ml of blood. Exclusion criteria 

included inability to provide informed consent, patient’s actively undergoing 
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chemotherapy or radiation therapy for pancreatic cancer, and patients with other 

malignancies diagnosed or treated within the last 5 years. Sera were also obtained from 

patients with chronic pancreatitis who were seen in the Gastroenterology Clinic at 

University of Michigan Medical Center and from control healthy individuals collected at 

the University of Michigan under the auspices of the Early Detection Research Network 

(EDRN). The mean age of the tumor group was 65.4 years (range 54-74years) and the 

chronic pancreatitis group was 54 years (range 45-65).  The sera from the normal subject 

group was age and sex-matched to the tumor group. The chronic pancreatitis group was 

sampled when there were no symptoms of acute flare of their disease. All sera were 

processed using identical procedures. The samples were permitted to sit at room 

temperature for a minimum of 30 minutes (and a maximum of 60 minutes) to allow the 

clot to form in the red top tubes, and then centrifuged at 1,300 x g at 4oC for 20 minutes. 

The serum was removed, transferred to polypropylene, capped tubes in 1 ml aliquots, and 

frozen. The frozen samples were stored at -70o

5.2.2 Cell culture 

C until assayed. All serum samples were 

labeled with a unique identifier to protect the confidentiality of the patient. None of the 

samples were thawed more than twice before analysis.  This study was approved by the 

Institutional Review Board at the University of Michigan Medical School.  

The Panc-1 PDAC cell line was cultured in Dulbecco’s modified Eagle medium 

supplemented with 10% fetal bovine serum, 100 units/mL penicillin and 100 units /mL 

streptomycin (Invitrogen, Carlsbad, CA). Upon reaching 80% confidence, the cells were 

washed twice in 10mL 1X PBS containing 4mM Na3VO4, 10mM NaF and one half of a 

protease inhibitor cocktail tablet. The sample was then solubilized in 300ul lysis buffer 
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consisting of 7M urea, 2M thiourea, 100mM DTT, 0.5% biolyte ampholyte 3-10, 2% OG, 

4mM Na3VO4, 10mM NaF and 1mM PMSF at room temperature for 30min, followed by 

centrifugation at 35000 rpm at 4o

5.2.3 2-D intact protein separation 

C for 1hr. The supernatant was stored at -80°C until 

further use. 

Prior to CF, a PD10 column(Amersham Biosciences) was used to exchange the cell lysate 

from the lysis buffer solution to the CF buffer solution according to the manufacturer’s 

protocols. The start buffer consisted of 6M Urea, 0.2% OG, 25mM bis-tris. The elution 

buffer solution was composed of 6M urea, 0.2% OG, and a 10 fold dilution of polybuffer 

96 and polybuffer 74 in a ratio of 3:7. The pH of both buffer solutions (7.9, 4.0) was 

adjusted with saturated imminodiacetic acid. A chromatofocusing column (weak anion 

exchange HPCF-1D prep column, 250mm x 4.6mm ID, Eprogen, Darien, IL) was pre-

equilibrated with the start buffer solution and 13mg of the cell lysate was injected into the 

CF column with multiple injections. Fractionation was started after switching elution 

buffer and a stable base line achieved. The pH fractions were collected in 0.3 pH 

intervals and pH was monitored using a flow-through on-line pH probe. UV absorption 

was recorded at 280 nm. When a pH of 4.0 was reached, elution buffer solution was 

switched to a 1M NaCl solution to wash the column followed by Isopropanol to elute out 

strongly bound proteins from the column. The collected fractions were stored at -80C°. 

An ODSI-1 (8 x 33 mm) column (Eprogen, Inc.) was used to separate the pH 

fractions of the Panc-1 cell line after CF. Solvent A was 0.1% TFA in water and solvent 

B was 0.1%TFA in acetonitrile. The gradient was run from 5% to 15% B in 1min, 15% to 

25% in 2 min, 25% to 31% in 2min, 31% to 45% in 10min, 41% to 47% in 6min, 47% to 
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67% in 4min, 67% to 100% B in 3min, and reduced to 5% B in 1min after maintaining 

100% B for 1min. The flow rate was 1ml/min and the column temperature 65°C. UV 

absorption was monitored at 214 nm. The fractions were collected in 96 well plates and 

stored at -80°C.  

5.2.4 Protein Microarrays 

Approximately 30% of the total sample of the fractionated Panc-1 proteins obtained using 

2D separation were transferred into 96-well printing plates (Bio-Rad) and lyophilized to 

dryness. The fractions were reconstituted in printing buffer which was composed of 

62.5mM Tris-HCl (pH 6.8), 1% w/v sodium dodecyl sulfate (SDS), 5% w/v 

dithiothreitol(DTT) and 1% glycerol in 1 X PBS. Reconstituted fractions in the printing 

plate were placed in a shaker overnight at 4°C. The fractions from the printing plate were 

spotted onto nitrocellulose slides using a non-contact piezoelectric printer (nanoplotter 2 

GeSiM). Each spot contained 2.5nL of liquid of ~450µm diameter, and  the distance 

between spots was 600µm. Printed slides were dried on the printer deck overnight and 

stored in a fridge desiccated at 4C if the slides were not used immediately. 

5.2.5 Hybridization of slides 

The printed slides were blocked in a solution of 1% BSA in PBS-T (0.1%) overnight. 

Each serum sample was diluted 1:400 in probe buffer which consisted of 1% BSA, 

0.5mM DTT, 5mM magnesium chloride, 0.05% Triton X-100, 5% glycerol in 1 X PBS. 

The slides were hybridized in diluted serum for 2hrs using a mini-rotator at 4°C. After 

hybridization, slides were washed five times using probe buffer for 5min each time, and 

then re-hybridized with goat-anti-human IgG conjugated with Alexafluor 647 (1µg/mL, 

Invitrogen, Calsbad, CA) for 1hr at 4°C. The slides were washed five times again with 
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probe buffer for 5min each and dried. All slides were scanned using an Axon 4000B 

microarray scanner (Axon Instruments Inc., Foster City, CA). 

5.2.6 Data acquisition and analysis. 

The  residual 2/3rd of the sample in 96 well plates which was not used in microarray 

experiments were dried down to approximately 10µL and mixed with 10%(v/v) 

ammonium bicarbonate, 10% (v/v) DTT, and 1:50 ratio (v/v) TPCK-treated trypsin 

(Promega, Madison, WI). The solution was incubated at 37°C overnight and the tryptic 

digestion was terminated by addition of 2.5% (v/v) of TFA. The digested peptide mixture 

was analyzed by nano-flow reverse-phase LC/MS/MS using the LTQ mass spectrometer 

with a nano-spray ESI ion source (Thermo, San Jose, CA). The samples were separated 

using a (0.1 x 150mm) capillary reverse phase column (MichromBioresources, Auburn, 

CA) with a flow rate of 5ul/min.  An acetonitrile:water gradient method was used, 

starting with 5% acetonitrile which was ramped to 60% in 25min and to 90% in another 

5min. Both solvent A (water) and B (ACN) contained 0.3% formic acid. The electrospray 

voltage was 2.6kV, with a capillary temperature of 200°C and a capillary voltage of 4kV. 

The normalized collision energy was set at 35% for MS/MS. The MS/MS spectra 

obtained were analyzed using the Sequest feature of Bioworks 3.1 SR1, allowing only 

one missed cleavage during SwissProt human protein database searching.  To further 

validate data obtained from Sequest, Protein prophet/peptide prophet software modified 

in house was used to provide a confidence level in identification of 95%. Since there 

might be more than one protein in a protein spot on the microarray slide, we compared 

proteins identified in adjacent fractions. If the spot that responded to the humoral 

response was unique and did not have an adjacent spot that lit up then the highest scoring 
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protein based on LC-MS/MS analysis and protein prophet/peptide prophet was 

considered as the likely identification. If more than one protein was identified in the spot, 

then we also performed mass spec analysis on the adjacent spots. If the proteins were 

identified in the adjacent spots that did not respond then they were likely not to be the 

protein with the humoral response in our unique spot. However, if adjacent spots also 

showed a humoral response then the protein present in all spots was considered as the 

most likely candidate.   

5.2.7 Statistical Analysis:  

GenePix 6.0 software was used to grid all spots, to determine the fluorescent intensities at 

wavelength 635nm and median local background intensities for each spot. Background 

subtracted data of the spots was taken into analysis if the foreground measure was at least 

2X the background intensity measure. The signal intensities from all the slides are 

normalized to minimize experimental slide-to-slide variation. The data for each 

individual sample in the columns is centered by the median and scaled by the 

interquartile range (IQR). Two types of statistical analysis were applied to the normalized 

data in search of biomarkers with up-regulated response in the cancer samples compared 

to the normal and pancreatitis samples. The non-parametric Wilcoxon rank-sum test was 

employed to identify fractions showing a universally increased reactivity in the cancer 

samples. The Outlier-sum test was performed to select the fractions that react with only a 

subset of the samples in the cancer group.  

Heatmap 

Cancer and normal samples are clustered and presented in a heatmap containing 

normalized data of all the fractions. The heatmap and dendrogram are drawn in R.   
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Wilcoxon Rank-Sum Test 

Two pair-wise Wilcoxon Rank-Sum Tests were performed between cancer versus normal 

and cancer versus pancreatitis. The fractions with a p-value less than 0.02 were further 

studied with a Receiver Operation Characteristic (ROC) curve to determine their 

sensitivity and specificity in differentiating the samples groups. The top ranked fractions 

are combined in summary ROC curves to improve the sensitivity and specificity. The 

Wilcoxon Rank-Sum Tests and the ROC curves are programmed in R. The combination 

of ROC curves is performed using Canonical Discriminal Analysis in Tanagra software.  

Outlier Sum Statistics (OS) 

The dataset is first standardized for each fraction by subsequently subtracting the median 

and dividing the median absolute deviation (MAD).  The 75% quartile (q(75)) plus the 

interquartile range (q(75)+IQR) is used as a threshold. The data points beyond this 

threshold are defined as the outliers. The outlier-sum statistic is the sum of the values of 

these data points in the disease groups.  Fractions with outlier sum statistics ranked top 

5% and no outliers in the normal groups were considered to be differential. The 

overlapping fractions found in the comparisons between cancer/normal and 

cancer/pancreatitis are presented in bar graph form (Figure 4) (made in R with COPA 

package). 

5.2.8 Validation Using Recombinant Proteins 

Recombinant proteins were purchased from Abnova Coporation (Taiwan), and Genway 

Biotech Inc., (SanDiego, CA). The concentration of each recombinant protein was 

10ug/mL. A piezoelectric non-contact printer (Nano Plotter, GeSIM) was used to print all 

the recombinant protein arrays on ultra-thin nitrocellulose slides (PATH slides, GenTel 
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Bioscience). Each spotting event that resulted in 500 pL of solution being deposited was 

programmed to occur 5 times/spot to ensure that 2.5 nL was deposited on each spot. Each 

recombinant protein was printed in triplicate and 14 identical blocks were printed on each 

slide. The slides were washed three times with 0.1% Tween in PBS buffer (PBS-T 0.1) 

and then blocked with 1% bovine serum albumin (Roche) in PBS-T 0.1 for one hour. The 

blocked slides were dried by centrifugation and inserted into a SIMplex (GenTel 

Bioscience) multi-array device which divides each of the slides by 16 small wells. The 

wells separate the neighboring blocks and prevent cross contamination. Serum samples 

were diluted 10 times with PBS-T 0.1 containing 0.1% Brij. One hundred microliters of 

each diluted sample was applied to the recombinant protein array and the hybridization 

was performed in a humidified chamber for one hour. The 168 samples from different 

groups were perfectly balanced on each slide to eliminate bias from block-to-block 

variation and slide-to-slide variation. Two blocks on each of the slides were hybridized 

with two specific samples and used as control blocks for data normalization. The slides 

were then rinsed three times to remove unbound proteins. 1ug/mL goat anti-human IgG 

conjugated with Alexafluor647 (Invitrogen, Carlsbad, CA) solution was used for 

detection. After a second one-hour hybridization with anti-human IgG, the slides were 

washed and dried again, then scanned with a microarray scanner (Axon 4000A). The 

program Genepix Pro 6.0 was used to extract the numerical data.  The signals from 

different slides were normalized with the averaged signal of the control blocks on each 

slide.  

5.3 Results and Discussion  
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The proteins from Panc-1 human pancreatic ductal adenocarcinoma (PDAC) cell line 

were used as bait to study the humoral response in pancreatic cancer since the Panc-1 cell 

line has been used as a good representative sample of human pancreatic cancer[27]. The 

analytical work flow is illustrated in Figure 1. The solubilized protein solution extracted 

from Panc-1 cell line was fractionated using 2-D liquid separation methods as described 

consisting of chromatofocusing in the first dimension followed by nonporous reversed 

phase HPLC where intact proteins were collected as the final product. Fraction collection 

was performed where liquid eluent from each chromatographic peak was collected into 

96 well plates. Each collected protein fraction was separated into two parts for further 

work. One portion was used for spotting the microarray plates and a second portion was 

used for protein identification based on LC-MS/MS. There were 1052 protein peaks 

obtained over a pH range of 8.0-4.0 spotted using the microarray device onto each 

nitrocellulose coated glass slide. Each slide was hybridized against a patient serum 

sample where the humoral response was run in this work against 38 cancer serum 

samples, 23 pancreatitis serum samples and 25 normal controls. Statistical analysis 

including non-parametric Wilcoxon Rank-Sum Tests and Outlier-Sum Statistics were 

then performed over this sample set to determine which proteins provided a significant 

response to patient sera. For the selection of identified proteins, a pre-validation study 

using a second, independent set of 168 serum samples was performed where five 

recombinant proteins were arrayed on nitrocellulose slides and probed with serum from a 

separate cohort of normal, pancreatitis, diabetes and pancreatic cancer patients. 

5.3.1 Microarray Result of Humoral Response  
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The heterogeneity of humoral response has been displayed in a substantial percentage of 

patients with increased antibody expression to disease-related antigens, where only a 

subset of patients has an autoimmune response to a particular antigen. We herein assume 

that auto-immune markers show either an increased level of reactivity against most of the 

patient sera or an outlier pattern that exclusively appear in the cancer group. Two 

statistical methods, Wilcoxon Rank-Sum and Outlier Sum Test, were applied to the 

dataset to search fractions for auto-antibody response. 

5.3.2 Statistical Analysis 

Compared to traditional T-Test, Wilcoxon Rank-Sum Test was preferred in several 

previous humoral response studies because the dataset do not always fit a Gaussian 

distribution. The test generates a list of fractions with significantly greater intensities in 

the cancer group (p-value set at <0.02) in the pairwise comparisons in cancer versus 

normal and cancer versus pancreatitis. Twenty-nine fractions were selected in the 

cancer/normal pair and only seventeen passed the threshold in the cancer/pancreatitis pair. 

Figure 2 shows two heatmaps of these fractions after they are clustered using a 

hierarchical clustering algorithm. The clustering tree is added on top of the heatmaps. In 

the first heatmap/dendrogram, 65% (24 out of 37) of the cancer samples and only 17% (4 

out of 23) normal samples are clustered on the left side with more blue bands which 

indicate increased reactivity with serum.  Similarly the left side of the second 

heatmap/dendrogram includes 70% (26 out of 37) of the cancer samples and 29% (7 out 

of 31) of pancreatitis samples. Most of the samples are clustered with their own groups 

while a portion of the samples are not. Several reasons can be taken into account for this 

result. The incorrectly clustered cancer samples may not contain the antibodies to some 
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particular antigens in the Panc-1 cell line. Additionally, the non-cancer samples that 

incorrectly clustered with the majority of the cancer samples may be reactive to the co-

eluted proteins in some fractions containing cancer-related antigens.  

In a 2-dimensional separation, a protein often appears in two or more subsequent 

fractions rather than one because of the limited chromatographic resolution and also the 

post-column diffusion. In Figure 2, it is worth noting that the fractions in the heatmap are 

often accompanied by their adjacent fractions (red circled) ex. 7B1-7B3 and 4E4-4E11. 

The consecutive bands with a smooth reactivity profile are better candidates for further 

investigation and confer important information for protein identification. 

The result of the Wilcoxon Rank-Sum Tests can be transformed to a ROC curve 

which estimates the ability of the selected biomarkers to distinguish case from non-case. 

For each ROC curve, an area under the curve (AUC) is reported, where 1.0 represents 

perfect separation of one group from the other, 0.5 represents a completely random result 

or no separation. In both cancer vs. normal and cancer vs. pancreatitis categories, the 

fractions top-ranked in Wilcoxon Rank-Sum Tests, exhibit AUC values of 0.70-0.72. The 

samples which positively responded to these two fractions in the cancer group do not 

completely overlap, which indicates the possibility of obtaining higher sensitivity and 

specificity by using them together. The ROC curves are combined using Canonical 

Discriminant Analysis, which maximizes the separation of the existing groups. Combined 

ROC curves of these top two fractions in both categories are drawn in Figure 3a and 3b, 

suggesting an increased AUC of 0.748 and 0.746 respectively. The top 10 and top 20 

ranked fractions in the Wilcoxon Rank-Sum Tests are combined and the resulting ROC 

curves are shown in Figure 3c and Figure 3e. In the cancer vs. normal category, the ROC 
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curve of the top 10 fractions present the AUC value increased to 0.83 and combining the 

top 20 fractions further increases the AUC to 0.92. In the cancer vs. pancreatitis category, 

the combined ROC (figure 3d and 3f) curves of the top 10 and 20 fractions also give 

increased AUC values of 0.777 and 0.791 respectively.  

Recently, statistical outlier sum methods, such as COPA [28] and OS [26] have 

been proposed as methods for searching cancer related genes with microarray techniques. 

The outlier sum analysis is able to detect a small number of significantly up-regulated 

signals from microarray data in the disease group while the signal from the majority may 

not necessarily change. Since the majority of cancers have heterogeneous activation for 

different individuals, it appears that the application of this method using the “subset” idea 

where some cancers respond to the humoral response and others do not respond may 

result in an improved performance for microarray data. Of the two outlier sum methods, 

COPA identifies pairs of biomarkers with mutually exclusive up-regulated samples 

because it was designed to search for gene activation with a mutually exclusive 

mechanism, while the protein biomarkers in this work may not have the same feature. OS 

identifies outliers in a similar manner as COPA, but it calculates an outlier score for each 

individual. Therefore, OS is the preferred method in this study. 

After OS analysis was applied to the dataset, we found 9 fractions (listed in Table 

1) that ranked in the top 5% in both of the comparisons of cancer/normal and 

cancer/pancreatitis. The reactivity profiles for the top 3 fractions are shown in bar graphs 

in Figure 4. It appears that only subsets of the cancer group show increased reactivity 

against these fractions, while the signals from the other samples remain the same. The 

signals of subsets with increased reactivity in the cancer group are much higher than the 
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range of the non-cancer groups, which remain close to the baseline. Such an outlier 

pattern for these fractions indicates that they contain proteins that are only immunogenic 

for a subgroup of the cancer samples and not immunogenic for all the non-cancer samples.  

In clinical application, these fractions can provide information for accurate diagnosis as 

the immunogenic cancer samples distinguish themselves with a high signal.   

The results from Wilcoxon Rank-Sum test and Outlier Sum analysis are compared, 

where the lists of marker fractions do not overlap. We are more interested in the 

candidates given by OS, as those fractions exhibiting an outlier pattern exclusively in the 

cancer group would be more useful in diagnosis. The list of candidate fractions from the 

OS were thus identified with mass spectrometry and their IDs and performance were 

validated with the recombinant protein array. 

5.3.3 Mass Spectrometry Identification 

LC-MS/MS is used to identify the proteins in these fractions and their adjacent fractions. 

As expected, multiple proteins were identified in each of the fractions. The identified 

proteins were screened based on an assumption that their reactivity profile should be 

consistent with their appearance in the neighboring fractions. The resulting protein IDs 

are listed in Table 1 for each of the fractions.  

5.3.4 Recombinant protein validation:  

Due to the large number of fractions from the 2-dimension separation, a set of only 91 

serum samples was used to search for the fractions that could be potential biomarkers, 

where a larger set is usually required for confident biomarker discovery. It is also 

necessary to confirm the protein IDs identified for the candidate fractions. To pre-

validate these potential markers, recombinant proteins were used to validate the result 
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with a different sample set and also confirm the protein IDs for the candidate fractions. 

Five commercially available recombinant proteins were selected for the validation 

experiment with 48 samples from the cancer group and 40 samples from each of 

pancreatitis, diabetes and normal control groups. Type 2 diabetes samples are included 

since some pancreatic patients also develop this condition which might be responsible for 

the autoimmune reactivity.  

In order to measure the auto-antibody response that is elicited against the 

recombinant proteins correctly, care must be taken to avoid saturating the signal. Hence, 

the serum must be diluted sufficiently so that the amount of available auto-antibody in the 

serum  is lower than the binding capacity of the specific recombinant protein.  Therefore, 

a saturation curve was made using different dilutions of serum to hybridize against 

identical blocks of the recombinant proteins.  The result of the saturation test showed that 

with ten-fold dilution, the recombinant proteins were not saturated and  yielded  a 

signal/background ratio of >5.  Higher or lower dilution resulted in partial saturation or 

decreased signal intensity.  A tenfold dilution factor was therefore used in the current pre-

validation experiment using recombinant proteins. The microarray data (background 

subtracted) was also adjusted by the average signal of control blocks on each slide and 

standardized for each recombinant protein.  

In Figure 5, we show the plot of the distribution of the reactivity for each of the 

recombinant proteins against the sera. The recombinant protein that produces the best 

result is Phosphoglycerate kinase 1 (PGK1), where 10 outliers out of 48 total samples are 

observed in the cancer group, while no outlier is present in the other three non-cancer 

groups. PGK1 protein is a kinase in the glycolytic pathway and can be up-regulated by 
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HIF-1α in the cellular response to hypoxia to provide energy for tumor cell proliferation 

[29]. Genomics-based studies have found that it acts as a suppressor of proangiogenic 

factor such as, VEGF and triggers metastasis due to its effect on the increased expression 

level of β-catenin, chemokine CXCR4 and CXCL12 [30-32]. At the protein level, PGK-1 

has been found overexpressed in pancreatic cancer tissue versus adjacent controls and 

also elevated significantly in the sera of pancreatic cancer patients (19% strongly up-

regulated, 50% weakly-moderately up-regulated) [33]. The performance of PGK-1 in the 

prevalidation experiment using recombinant protein indicates that a lower percentage of 

patients elicit auto-response.  In the future study, it would be interesting to see whether 

there is a correlation between serum level of PGK-1 and auto-antibody level and how the 

production of antibody affects the development of the cancer.  

For both Malate dehydrogenase (MDH1) and ADP-ribosylation factor interacting 

protein 2 (ARFIP2), there are 4 such outliers in the cancer group. The absence of outliers 

in the non-cancer group indicates that these 3 recombinant proteins are exclusively 

antigenic in cancer sera and could be tumor-associated. In Table 2, the performance of 

these 3 biomarkers used together to distinguish cancer is estimated. A cutoff equal to the 

highest signal in a certain non-cancer group is applied to define the reactive samples in 

the cancer group. The 3 recombinant proteins together distinguish more than 40% of the 

cancer samples from the normal and diabetes group, while only 29.2% from the 

pancreatitis group.  

For Annexin A2 (ANXA2), the cancer group only has one outlier that is above all 

the other groups. This is not consistent with the OS analysis which showed differential 

humoral response in the fraction where ANXA2 was identified in pancreatic cancer sera. 
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It could be due to the use of the recombinant proteins, which may lack the required PTMs 

to induce a humoral response or the protein may not be in a form to induce a humoral 

response [17]. Also, since multiple proteins are identified in the fraction, the protein that 

was responsible for the observed humoral response may not be ANXA2. Heterogeneous 

nuclear ribonucleoprotein A2 (HNRPA2) produced more unexpected result in the 

validation where it showed a universal increase in the reactivity against diabetes samples, 

while the signals of the other three groups remained at the same level.  

5.4 Conclusion 

We have presented a study of the cancer-related humoral response on pancreatic 

adenocarcinoma using 2-dimensional separation and protein microarray techniques. After 

analyzing the data with two statistical tools, the fractions showing outlier patterns in 

Outlier Sum Test was chosen for identification of the proteins and prevalidation using 

recombinant proteins. In the prevalidation experiment, 20.8% of the cancer samples 

demonstrated strongly elevated  reactivity for PGK-1,while no proteins in the non-cancer 

groups were found to react. This result suggests that auto-antibody level of PGK-1 in the 

serum is useful as a diagnostic biomarker indicating the presence of cancer. Future study 

of the correlation between the protein level and auto-antibody level of PGK-1 in cancer 

patients may provide better understanding of the role of PGK-1 in cancer development.  
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Figure 5.1 Flowchart of the experiment. 
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Figure 5.2 Heatmap with dendrogram of the microarray data. The colors of the bands 

indicate the normalized intensities of the microarray signal of the fractions. Only the 

fractions with a p-value less than 0.02 in the pairwise comparisons using Wilcoxon Rank-

Sum Tests are shown in the heatmap. The fractions appear with their adjacent ones are 

red-circled. a. cancer vs. normal; b. cancer vs. pancreatitis. 
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Figure 5.3 Combined ROC curves for the top-ranked fractions in the Wilcoxon Rank-

Sum Tests. a) top 2 fractions combined, cancer vs. normal; b)  top 2 fractions combined, 

cancer vs. pancreatitis; c)  top 10 fractions combined, cancer vs. normal; d) top 10 

fractions combined, cancer vs. pancreatitis; e) top 20 fractions combined, cancer vs. 

normal; f) top 20 fractions combined, cancer vs.  pancreatitis. 
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Figure 5.4 Colored bar graphs of three fractions found responded exclusively to some 

cancer sera in both pairwise comparisons between cancer vs. normal and cancer vs. 

pancreatitis.  The y-axis is the normalized microarray signal for each sample.  
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Figure 5.5 Distribution of the level of reactivity of five biomarker candidates examined in 

the pre-validation experiment. The plots present the normalized fluorescent intensities of 

the auto-antibody capture by the five recombinant proteins.  
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Table 5.1 Lists of differentiated fractions picked by OS analysis in both pairwise 

comparison between cancer vs. normal and cancer vs. pancreatitis. The information about 

the identified proteins in these fractions is also included.  
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Table 5.2 Numbers of samples with reactivity above the cutoff (cutoff = highest signal in 

the non-cancer group) against recombinant proteins in the cancer group compared to 3 

non-cancer groups. The numbers in the parentheses are the percentage of the positive 

reactors in the cancer category i.e. sensitivity at 100% specificity.    
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Chapter 6 

Conclusion 

Non-invasive protein biomarkers for early stage cancer detection and cancer therapy have 

attracted a significant attention from clinicians.  They bring a great motivation and 

support for proteomic study, and as well as some critical challenges to the current 

techniques. The first problem for clinical proteomic study is the complexity of the clinical 

samples, which is often referred to as “dirty sample”. As typical clinical sample, resected 

malignant tissue often contains a mixture of different kinds of cells and intercell media 

which cause difficulty in protein extraction and compromise the specificity of the 

analysis. Multiple types of samples clean-up or isolation of specific cells can be done at 

the cost of introducing technical bias and extra time and labor. Sample clean-up results in 

reduced amount of sample which in some cases requires highly sensitive protein assay. 

Higher sensitivity in protein detection has been pursued since the very beginning and still 

under intense development.  The CIEF-RPLC-MS 2-D shotgun technique described 

previously in this thesis is an effort of further lowering the limit of sample needed for a 

protein profiling experiment.  

Besides digging deeper into the once forbidden area of low abundance proteins, 

people also look into the PTM that the proteins carry, such as glycosylation. The 

complexity of carbohydrate structures and their derivatives makes the study of the 

glycome a challenging subset of proteomic research. The microarray platform has 

become an essential tool to characterize glycan structure and to study glycosylation-

related biological interactions, by using probes as a means to interrogate the spotted or 

captured glycosylated molecules on the arrays. Antibody-lectin sandwich microarray 
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measures glycosylation change on specific proteins captured from complex samples with 

lectin probes in a high-throughput array format. Compared to HPLC-MS, it is not only a 

simple and reproducible way of investigating large number of samples but also a type of 

assay that analyzes proteins in their native form which can be crucial for understanding 

the functional role of glycoproteins in the biological environment. Although the antibody-

lectin sandwich microarray platform is able to distinguish glycoforms with different 

glycan structures, the use of fluorescence provides less detailed structural information 

than MS/MS. The introduction of mass spectrometry-based label-free detection would 

provide a means for further characterization of the glycan structure. It should be noted 

that, insufficient blocking efficiency with some of the lectins such as ConA limits the 

detection of several interesting glycan structures. To reduce the noise or background, we 

are searching for other chemical blocking strategies and even other platforms for the next 

generation of antibody-lectin assays.   

 Autoimmune response is another field with many remaining questions to answer. 

There is no doubt about the existence of tumor specific antigens. However, when the 

auto-antibodies are exploited for biomarkers to distinguish cancer, the serum level of 

auto-antibody against tumor specific antigens presents significant variation among 

individual patients. Auto-antibodies are typically up-regulated in a subset of the patient 

group, while the percentage of patient with positive response varies from 10-40%. 

Though the sensitivity of single auto-antibodies is not very satisfactory, combining 

several positive ones increases the performance of distinguishing cancer cases 

significantly. Unlike the protein glycosylation, the generation of auto-antibody is not 

regulated by certain enzymes, but rather randomly occurs in patients presenting abnormal 
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proteins from the tumor. Thus the overlapping positives between the different auto-

antibodies are low. Down-regulation of some auto-antibodies has also been observed in 

some cancer patients with a specific stage of tumor. It is unclear that whether the 

production of auto-antibodies against tumor specific antigens is beneficial or harmful to 

the patients. Though auto-antibodies can already be used as excellent biomarker to help 

cancer diagnosis, the potential of auto-antibodies as biomarkers can only be fully opened 

up after more relevant biological experiment is done to unveil the mechanism underneath 

the initiation of auto-immune response which produces circulating auto-antibodies.  
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