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ABSTRACT 

 

Genome-wide association (GWA) studies provide an extensive assessment of 

common genetic variants across the human genome for disease association. However, due 

to variation in allele frequencies and disease prevalence across populations, combining 

samples from different geographic or ethnic groups may lead to spurious evidence for 

association or diminish the true association signals. In part one of this dissertation, I 

propose a novel approach to correct for population stratification that makes use of the 

large amount of genetic information available in a GWA study. Based on allele-sharing 

identity-by-state (IBS) measures, I develop similarity scores that can describe genetic 

similarity between individuals, and match cases and controls accordingly. Association 

tests can then be performed conditional on the matched case-control groups. I apply our 

approach to the Pritzker bipolar GWA study. 

 

In part two, I extend our matching approach to families of arbitrary structure. I first 

apply similarity score-based matching to selected members from each family and then 

assign other family members to the same matched group. I modify a corrected chi-square 

test [Bourgain et al., 2003] following the Mantel-Haenszel procedure to account for 

correlations both between the family samples and between the matched cases and 

controls. 
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ix 
 

The rapid advance in next-generation sequencing technologies allows a near-complete 

survey of genomic regions of interest and even whole genomes, enabling more extensive 

genetic association studies of rare variants. As we plan such re-sequencing studies of a 

complex disease, it is useful to consider the range of plausible genetic models, e.g., risk 

allele frequency (RAF) and genotype relative risk (GRR) of rare or less common causal 

variants, based on results of previous genetic linkage and association studies for the trait. 

In part three, I compute the power to detect linkage and/or association as a function of 

genetic model, and summarize the range of models likely to yield results that are 

consistent with existing GWA and/or linkage studies. 

 



CHAPTER 1 

INTRODUCTION 

 

1.1 Complex Diseases and Previous Linkage Analysis 

 

Unlike “Mendelian” diseases, most of which are rare and show a simple Mendelian 

inheritance pattern (dominant, recessive, X-linked), complex diseases often have relatively high 

population prevalence and show familial aggregation without following a simple Mendelian 

pattern. Complex diseases, such as coronary heart disease, hypertension, type 2 diabetes, obesity, 

various cancers, and Alzheimer’s disease, are likely to be caused in part by a combination of 

multiple low-penetrance genetic variants together with environmental and behavioral factors, 

which makes mapping the disease predisposing variants difficult. Other factors that may 

contribute to disease susceptibility include rare genetic variants, structural variants including 

insertion-deletion polymorphisms or copy number variants (CNV), non-inheritable genetic 

effects, and epistatic interaction. For some diseases, such as psychiatric disorders, ambiguities in 

defining disease phenotype can also contribute to the difficulty of studying the genetic factors 

that underlie complex diseases. 

 

Given the high incidence of many complex diseases, localizing and identifying the 

predisposing genetic variants could be of great public health importance. Geneticists have put 
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enormous efforts into understanding the underlying biology and etiology of such diseases. 

Earlier efforts focused on linkage analysis, which assesses the co-transmission within families of 

variant marker alleles and disease. A genome-wide linkage scan typically examines several 

hundred to a few thousand genetic markers on families ascertained to include multiple affected 

individuals. Due to the small number of recombination events on each chromosome per meiosis, 

there is noticeable dependence of transmission for loci as much as 10-20 cM (typically 

equivalent to ~10-20 Mb) apart. Therefore, even if linkage is found, it is necessary to carry out 

subsequent fine mapping and positional candidate gene studies, in which a denser set of genetic 

markers is scrutinized across the linked regions, to narrow down the search for the disease 

predisposing variant(s). Linkage analysis has achieved remarkable successes in the last 30 years 

in mapping the genetic defects for >1000 Mendelian traits [Bostein and Risch, 2003]. 

 

For the complex diseases, however, linkage analysis has not proven nearly as successful.  

For type 2 diabetes, for example, >20 genome-wide linkage studies have been carried out, but 

only a few studies have reported significant linkage results, and meta-analysis has failed to 

identify any single location in the genome with convincing evidence of linkage [Guan et al., 

2008].  Even for other diseases and traits for which convincing evidence for linkage has been 

identified, there has been only limited success in identifying the true genetic causal variants 

under the linkage peak.  

 

Complex diseases typically involve predisposing variants with small effects, which linkage is 

often underpowered to detect. In addition, large numbers of family samples are difficult to 

collect. Because of these difficulties Risch and Merikangas [1996] suggested given the same 
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sample size, association tests may have greater power to detect common variants predisposing to 

complex diseases than linkage analysis, if a large number of genetic markers across the genome 

could be identified and genotyped. 

 

1.2 Genome-wide Association (GWA) Studies 

 

High-throughput genotyping and DNA sequencing have made huge advances in the 

intervening years. With the completion of the Human Genome Project in 2003 [International 

Human Genome Sequencing Consortium, 2004] and the International HapMap Project in 2007 

[The International HapMap Consortium, 2007], deep surveys of the human genome providing 

good coverage of the entire genome or specific genetic regions of interest have become feasible. 

These advances have made the sort of study envisioned by Risch and Merikangas a reality, 

allowing investigators to (with high probability) genotype genetic markers that are in linkage 

disequilibrium (LD) with the disease predisposing variants, or even the disease predisposing 

variants themselves. These technologies make it possible and cost effective to phenotype and 

genotype unrelated individuals and carry out large-scale association studies instead of linkage 

studies, providing more power and greater accuracy to pinpoint common disease-predisposing 

variants. 

 

With these advances, genome-wide association (GWA) studies have become the standard 

approach to map genes for complex diseases [Altshuler et al., 2008; Manolio et al., 2008; 

McCarthy et al., 2008; www.genome.gov/gwastudies]. GWA studies typically assay hundreds of 

thousands of SNPs across the genome representing, directly or indirectly 80-90% of known 
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common human genetic variants. By comparing allele frequencies between different phenotypic 

groups (such as cases and controls), GWA studies can detect SNPs that are associated with the 

disease. GWA studies are preferred by many researchers not only because they potentially 

provide more accurate localization of causal genes than linkage studies, but because they provide 

an unbiased (“hypothesis-free”) search of the entire genome for association compared to 

candidate-gene studies. Furthermore, GWA studies are more flexible in terms of study design, 

not being restricted to family samples as in linkage studies. It is often possible to collect 

thousands of samples with collaborative efforts from multiple research groups, increasing the 

chance to detect disease predisposing variants with small to modest effects. 

 

1.3 The Scope of this Dissertation 

 

Epidemiological and genetic studies have shown that disease prevalence and allele 

frequencies can vary across human populations. Combining samples from different geographic 

or ethnic groups may then lead to confounding due to population stratification, which can result 

in spurious evidence for association or mask true association signals. In practice, ethnicity 

information is often not collected or not accurately recorded. In Chapter 2, we propose a novel 

approach to correct for population stratification that can make good use of the large amount of 

relationship information provide by GWA studies. Based on allele-sharing identity-by-state (IBS) 

measures, we develop similarity scores that quantify the degree of genetic similarity between 

individuals, and match cases and controls accordingly. An association test can then be performed 

conditional on the matched case-control groups. This individual-based matching scheme is 

flexible in that it does not require pre-determining the number of subpopulations in the samples, 
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and has advantages in controlling for potential outliers. 

 

GWA studies are not necessarily restricted to unrelated samples. Due to sample availability or 

historical reasons (such as association studies based on previous linkage studies), family samples 

are often used for association studies. In Chapter 3, I extend our matching approach proposed in 

Chapter 2 to adapt to families of arbitrary structure. The similarity score-based matching can be 

applied to selected members from each family and then be extended to other family members. 

Bourgain et al. [2003] proposed a corrected chi-squared test for disease-marker association when 

related samples are present. We modify this test statistic following a Mantel-Haenszel procedure 

to account for correlations both between the family samples and between the matched cases and 

controls. Results from this work will help to correct for population stratification in GWA studies 

while efficiently utilizing all available samples. 

 

Although GWA studies have been successful in identifying hundreds of common variants that 

are very likely to be associated with real biological causation in complex diseases, for most 

diseases, these variants account for a small proportion of disease risk, in aggregate often <10% 

[Visscher et al., 2008]. While studies with larger sample sizes are being undertaken in hopes of 

finding additional common disease predisposing variants, the search for less common genetic 

variants has now accelerated, owing to the rapid development in DNA sequencing technology. It 

is therefore of great interest to explore the plausible range of genetic models underlying common 

diseases, particularly for variants not well covered in current GWA studies, such as those with 

minor allele frequency (MAF) of .05 or less. Genetic risk variants with very low allele frequency 

could be in linkage equilibrium (LD) with common SNPs and potentially be responsible for the 
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association results in GWA studies [Dickson et al., 2010]. They could also be directly detected by 

linkage analysis due to joint inheritance with the genotyped markers during meiosis. However, 

linkage studies of many complex diseases have not reported significant results or the findings 

could not be replicated. In Chapter 4, we address the range of genetic models, incorporating 

genotype relative risk (GRR) and risk allele frequency (RAF) of the rare or less common causal 

variants, consistent with results of existing linkage and GWA studies. We perform power 

calculations for linkage and association tests for a range of genetic models. We evaluate the 

range of models that could result in little evidence for linkage, and/or little or strong evidence for 

association. From the range of consistent models, we provide guidance for the design and 

analysis of future large-scale sequencing studies. 
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CHAPTER 2 

GENOTYPE-BASED MATCHING TO CORRECT FOR POPULATION 
STRATIFICATION IN LARGE-SCALE CASE-CONTROL GENETIC 

ASSOCIATION STUDIES 
 

 Genome-wide association studies are helping to dissect the etiology of complex diseases. 

Although case-control association tests are generally more powerful than family-based 

association tests, population stratification can lead to spurious disease-marker association or 

mask a true association. Several methods have been proposed to match cases and controls prior 

to genotyping, using family information or epidemiological data, or using genotype data for a 

modest number of genetic markers. Here, we describe a genetic similarity score matching (GSM) 

method for efficient matched analysis of cases and controls in a genome-wide or large-scale 

candidate gene association study. GSM is comprised of three steps: 1) calculating similarity 

scores for pairs of individuals using the genotype data; 2) matching sets of cases and controls 

based on the similarity scores so that matched cases and controls have similar genetic 

background; and 3) using conditional logistic regression to perform association tests. Through 

computer simulation we show that GSM correctly controls false positive rates and improves 

power to detect true disease predisposing variants. We compare GSM to genomic control using 

computer simulations, and find improved power using GSM. We suggest that initial matching of 

cases and controls prior to genotyping combined with careful re-matching after genotyping is a 

method of choice for genome-wide association studies. 
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Joint Work with Liming Liang 

This chapter was a joint work with Liming Liang, PhD candidate in the Department of 

Biostatistics at the University of Michigan. While all work were done interactively with 

discussion, exchanging ideas, motivations from findings of each other and sharing codes with 

each other, I have been focusing on the design and evaluation of different similarity scores, 

implementation of the optimal matching and conditional logistic regression for disease-marker 

association, evaluation of the simulation results, and application of our method to real data (e.g., 

HapMap and bipolar data). 

 

2.1 Introduction 

 

 With the success of the International HapMap Project [The International HapMap 

Consortium, 2007], a dense set of single nucleotide polymorphisms (SNPs) throughout the 

human genome is now available for genetic studies of complex diseases, and many genome-wide 

association studies are being undertaken and published [Klein et al., 2005; Maraganore et al., 

2005; Cheung et al., 2005; Sladek et al., 2007; Scott et al., 2007; Saxena et al., 2007; Zeggini et 

al., 2007]. 

 

Although case-control association tests are in principle more powerful for detecting disease 

variants than family-based association tests, population stratification can lead to spurious 

disease-marker association or mask true association [Li, 1972]. In genome-wide association 

studies, thousands of samples are typically used to ensure adequate power to identify disease 

predisposing variants, making it difficult to guarantee genetic homogeneity of the sample 
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[Freedman et al., 2004]. Ancestry information on the sampled individuals may be unavailable to 

the researchers, and even when available, may not fully specify the underlying population 

genetic structure, due to vague definitions of ancestry groups and imperfect accuracy of 

self-report information.  

 

Several methods have been proposed to adjust for the possible confounding effects of 

population substructure. Family-based association tests, such as the transmission/disequilibrium 

test (TDT) [Spielman et al., 1993], assess the transmission of alleles from parents to affected 

offspring. Comparisons are made within parent-offspring trios, and the resulting association test 

is immune to potential genetic heterogeneity between families. However, collecting trios can be 

difficult and expensive, and may simply be impractical for late-onset diseases. For unrelated 

case-control samples, approaches have been proposed to adjust the standard chi-square 

contingency test statistics according to a non-central χ2 distribution [Devlin et al., 1999; 

Gorroochurn et al., 2006], to infer population structure [Pritchard et al., 2000], or to cluster the 

similarity estimates into several components [Zhang et al., 2002]. A few more recent approaches 

[Price et al., 2006; Epstein et al., 2007; Kimmel et al., 2007; Luca et al., 2008] focus specifically 

on genome-wide association studies. 

 

In this paper, we propose a different approach, genetic similarity score matching (GSM), to 

correct population stratification using individual-based matching rather than clustering. The huge 

amounts of data in genome-wide association studies have the potential to provide extremely 

accurate matching of individuals who share similar ancestries. We match cases with controls 

based on genetic (dis)similarity scores calculated from the genotype data available in a 
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genome-wide association study or a large-scale candidate gene study and test the resulting 

matched sets for disease-marker association by conditional logistic regression. This 

matching-association framework builds on our previous work [Guan et al. 2005] and is similar to 

that of Luca et al. [2008]. Luca et al. [2008] derive the dissimilarity (distance) scores based on 

principal components of the variance matrix of genotypes, while our approach obtains the 

dissimilarity scores based on identity-by-state (IBS) measures. Simulations show that GSM 

results in false positive rates at the desired nominal level while retaining high power to detect 

disease associated markers. We find that with large-scale association data, the calculated genetic 

similarity scores differentiate subpopulations well, and that matching can be done with high 

accuracy even for samples that are mixtures of genetically similar populations. We further 

demonstrate that when population stratification is present, association tests based on 

GSM-matched case-control data can have a higher power than those that rely on either the 

standard trend test or the genomic-control method. 

 

2.2 Methods 

 

2.2.1 Outline 

 

GSM includes three basic components:  

1) Genetic similarity score: We calculate genetic similarity scores between pairs of cases and 

controls across all loci. Large scores should reflect pairs with similar genetic backgrounds. 

2) Matching: Based on the matrix of similarity scores calculated in 1), we conduct optimal 

full matching [Rosenbaum, 2002] which groups one case with one or more controls, or one 
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control with one or more cases to maximize the overall similarity of matched cases and controls. 

3) Association tests: We use conditional logistic regression to assess the association between 

candidate markers and disease status. For ease of exposition, we consider here only single 

marker association tests, but other genetic or environmental factors can be easily incorporated 

into the regression. 

 

2.2.2 Genetic Similarity Score 

 

We define a genetic similarity score for a pair of individuals which measures the degree of 

similarity of their genotype data. Individuals with similar genetic backgrounds will generally 

have higher scores. For simplicity, we consider M biallelic genetic markers each with alleles “A” 

and “a”; the scores can easily be generalized to multiallelic markers. We consider three similarity 

scores. 

 

The first score calculates the proportion of marker alleles shared identity-by-state (IBS), a 

simple measure for the number of alleles shared between pair of individuals. If IBSk is the 

number of alleles shared at marker k (Table 2.1), then  

*

*
1

1
2

M

IBS k
k

S
M =

= ∑ IBS         (1) 

where *1 M M≤ ≤  is the number of markers that are successfully genotyped in both 

individuals. 

 

 While SIBS has the virtue of simplicity, we may want to allow different markers to make 

different contributions to measure similarity. For example, we may wish to weight sharing a rare 
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allele more strongly than sharing a common allele. We define our second score as: 

*

,*
1 { , }

1 log( )
2

M

,freq k i k i
k i A a

S IBS
M = ∈

= − ⋅∑ ∑ q      (2) 

where qk,i is the frequency of allele i at marker k, and IBSk,i is the number of copies of allele i at 

marker k shared by the pair of individuals (Table 2.1). We can estimate qk,i using our sample or 

from the results of previous studies. 

 

In a random mating population, markers are expected to follow Hardy-Weinberg 

Equilibrium (HWE). When population subdivision is present, tests of HWE tend to be significant 

owing to excess homozygosity. Our third score takes advantage of this by weighting markers 

based on their one-sided (excess homozygosity) HWE test p-value pk [Wigginton et al., 2005]: 

*

*
1

1 log( )
2

M

HWE k k
k

S IBS
M =

= − ⋅∑ p      (3) 

To avoid the impact of genotyping error that may lead to strong deviation from HWE, we 

exclude the markers that fail quality control; practically speaking, this might mean using markers 

with HWE p-value satisfying p>10-6. 

 

As an example, suppose 3 cases and 3 controls are genotyped at 3 loci, as listed in Table 2.2. 

Then the similarity scores SIBS are as listed in Table 2.3. 

 

For matching, we may use all genotyped markers, or a selected subset. For example, we 

might pick the markers with the smallest p-values in a HWE test for excess homozygosity, 

excluding those that fail quality control, in the hope that the selected markers provide maximal 

information about population stratification in the sample. Further, to avoid selecting markers 
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which are highly correlated, we might choose at most one marker in every n-marker window or 

per linkage disequilibrium group. 

 

In our analyses, matching relies on a transformed dissimilarity score, defined as: 

2max
( )

max min
ij

ij ij

S
D f S

−⎛ ⎞
= = ⎜ −⎝ ⎠

⎟       (4) 

where max = maxi,j Sij and min = mini,j Sij, the maximum and minimum similarity scores among 

all case-control pairs. 

 

2.2.3 Matching 

 

 We use the chosen (dis)similarity score to identify optimal matches between cases and 

controls. The simplest matching scheme is a 1:1 match in which each case is matched to a unique 

control. This approach is widely used but has obvious drawbacks. For example, when the 

numbers of cases and controls are not equal, some subjects must be discarded, resulting in a loss 

of information. Further, samples from various subpopulations often are not equally represented 

among the cases and controls, leading to forced mismatches if only 1:1 matching is allowed. 

 

Instead, we consider an optimal matching approach that minimizes the total dissimilarity 

score: 

1 ,s s

S

ij
s i A j B

T D
= ∈ ∈

=∑ ∑  

Here, As and Bs are the sets of cases and controls in a matched set s, and S is the total number of 

matched sets. It has been shown that an optimal solution to this minimization problem is a full 
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matching, in which each matched set contains one case and one or more controls, or one control 

and one or more cases, that is, a 1:m or m:1 matching [Rosenbaum, 1991]. Given n cases and n 

controls, the summation can in principle contain as few as n terms for 1:1 matching to as many 

as 2(n-1) terms for 1:n-1 and n-1:1 matching. Since large sets result in larger numbers of terms, 

optimization tends to favor small matched sets. This helps mitigate any potential power loss due 

to unbalanced matching, i.e., 1:m or m:1 matching with m>>1 (see Discussion). 

 

The problem of minimizing the total dissimilarity score T is analogous to the classic 

minimum cost flow (MCF) problem in computer science [Rosenbaum, 1991; Hansen, 2004; 

Hansen et al., 2006] (Appendix), and can be solved using the RELAX-IV algorithm [Bertsekas et 

al., 1994; Frangioni et al., 2006]. Given pre-calculated dissimilarity scores and an upper bound 

on m, determining the optimal matched set takes on the order of n3 log n operations, where n is 

the total number of subjects. The choice of parameter m constrains the size of matched sets and is 

somewhat arbitrary; we typically require m≤5 when numbers of cases and controls are 

comparable (see Discussion). Prior to matching, we may exclude a few individuals with 

maximum similarity scores that are extremely small (this is the caliper parameter recommended 

by Hansen et al., 2006). In datasets including ~2,000 individuals, the matching typically takes <1 

minute on a modern PC workstation. 

 

 To continue with the previous example, we calculate the dissimilarity scores in Table 2.3, 

and perform both 1:1 matching and optimal matching. In 1:1 matching, the best match yields 

three pairs: (1, 4), (2, 5), and (3, 6). The total dissimilarity score is 1/36 + 16/36 + 0 = 17/36. In 

contrast, the optimal full match has two matched sets: (1, 2, 4) and (3, 5, 6). The matched sets 
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include 4 case-control pairs: (1, 4), (2, 4), (3, 5), and (3, 6). The total dissimilarity score is 1/36 + 

0 + 1/36 + 0 = 2/36. In this example, the individuals within group (1, 2, 4) and (3, 5, 6) are 

similar to each other, and less similar to the individuals in the other group. Full matching offers 

an obvious matching advantage over 1:1 matching here. In the general case, full matching is 

guaranteed to produce a total dissimilarity score that is no greater than that obtained using 1:1 

matching. 

 

2.2.4 Conditional Logistic Regression 

 

 Once matching is done, a natural choice for matched-set analysis is to use conditional 

logistic regression to test for disease-marker association. We employ an additive model for 

association by assigning values of 0, 1, and 2 to genotypes AA, Aa, and aa, respectively. Other 

genotyping coding schemes could be considered, corresponding for example to dominant, 

recessive, or general models. The regression can easily incorporate genotype, covariate, and 

interaction effects. 

 

 In a genome-wide association scan, we apply conditional logistic regression analysis to each 

marker separately. The multiple testing problem can be addressed using Bonferroni correction, 

permutation, or false-discovery rates. 

 

2.3 Simulation 

 

We simulated case-control data influenced by genotypes at a disease locus with alleles D and 
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d, under six additive disease models (Table 2.4). We assumed sampling from a population that 

consisted of two subpopulations. We randomly sampled 500 cases and 500 controls from this 

mixed population. For each model, the relative risk (RR) of the predisposing variant allele is set 

to be the same in different populations. For models 1 and 2, the disease prevalences K1=K2 and 

predisposing variant allele frequencies q1=q2; these models represent the scenario of no 

population stratification. For models 3 and 4, K1<K2, creating population stratification in the 

simulated data. For models 5 and 6, K1<K2 and q1≠q2. For model 5, the first population has lower 

prevalence but higher predisposing variant allele frequency (K1=.07, q1=.55), than the second 

population (K2=.13, q2=.45). For model 6, the population with higher prevalence also has higher 

predisposing variant allele frequency (K2=.13, q2=.55) than the other population (K1=.07, q1=.45). 

For each model, we simulated 500 datasets. 

 

We simulated autosomal SNPs using GENOME, a coalescent-based simulator [Hudson, 

1983; Hudson, 1990; Donnelly et al., 1995; Liang et al., 2007]. Assuming discrete generations, 

GENOME simulates the genealogy of a sample of sequences. As the algorithm proceeds 

backwards in time, coalescence, recombination, and migration events are simulated. Multiple 

events can occur in the same generation. We set the effective population size as 10,000, the 

recombination rate as 10-8 per base pair, and the mutation rate as 10-9 per base pair, assuming the 

infinite-site mutation model [Kimura, 1969]. We set the rate of migration between 

subpopulations to .0025 per individual per generation, which resulted in a distribution of allele 

frequency differences similar to that observed when comparing HapMap Han Chinese (HCB) 

and Japanese (JPT) samples (www.hapmap.org). In particular, the mean allele frequency 

difference between the two simulated populations is .0470, compared to .0477 between the HCB 
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and JPT samples. The simulated genome scans surveyed autosomal genomes of ~2866 Mb 

comprised of 22 chromosomes, whose lengths approximate the actual lengths of the human 

autosomes (NCBI build 33, www.ncbi.nlm.nih.gov/genome/seq/). We randomly selected 300,000 

SNPs with minor allele frequencies > .05, and choose a disease liability locus with the desired 

allele frequencies. 

 

To calculate the similarity scores, we used 10,000 markers with the smallest one-sided HWE 

p-values, choosing no more than one marker from each 10-marker window. We set the maximum 

size of matched groups (m) to 6. We compared the type I error and power of GSM, the trend test, 

genomic control, and EIGENSTRAT for each simulated setting. Given that the simulated 

samples were drawn from two subpopulations, we used the first principal component to adjust 

for stratification in EIGENSTRAT; using additional principal components gave similar results. 

The estimated type I error rates are the proportion of simulated SNPs in which the association 

test p-value is less than the nominal value 10-6, a significance threshold similar to that typically 

used in genome-wide scans. In this evaluation of type I error rates, we only considered SNPs that 

were effectively unlinked to the disease locus. We calculated power as the proportion of 

simulated replicates where the empirical p-value is < 10-6 at the disease locus using a threshold 

obtained by inspection of test statistics at the null loci. 

 

2.4 Bipolar data 

 

 We applied GSM to genome-wide association data from the Pritzker Consortium bipolar 

study [Scott et al. 2009]. We selected 717 independent bipolar I European American cases and 
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779 independent European American controls from NIMH Human Genetics Initiative 

(www.nimhgenetics.org); controls were carefully matched to cases by self-reported ethnicity 

prior to genotyping. In addition, we downloaded genotype data on 3,182 independent European 

American controls from Illumina iControlIDB database 

(www.illumina.com/pages.ilmn?ID=231). All individuals were genotyped using the Illumina 

HumanHap550 BeadChip. 505,796 autosomal SNPs passed quality-control criteria in the 

Prtizker bipolar study: 1) HWE p-values > 10-5; 2) genotype call rate > 95%; and 3) no more 

than 1 non-mendelian inheritance or inconsistency among 15 father-mother-offspring trios and 

30 duplicate samples. Of these, we excluded 1,632 SNPs due to allele frequency 

differences > .05 between the Illumina and Pritzker control samples. We applied GSM and trend 

tests for association on the Pritzker samples alone and then on the combined Pritzker and 

Illumina samples. In GSM, we used the 100,000 markers that passed quality control and have the 

smallest p-values from the one-sided HWE test to calculate the similarity scores. Given the 

relatively large control:case ratio of 3,961/717≈5.5, we set the upper limit of the group sizes (m) 

to 30. 

 

2.5 Results 

 

2.5.1 Similarity score performance in HapMap 

 

We first examined the performance of our similarity scores in the HapMap dataset. We 

calculated our three similarity scores for all pairs of the 89 independent Han Chinese (CHB) and 

Japanese (JPT) individuals in the HapMap sample, using 100,000 HapMap phase I autosomal 
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SNPs with MAF>.05, selected based on one-sided Hardy-Weinberg equilibrium test p-values of 

4.3×10-6 to .11. In Figure 2.1, we showed plots from using multidimensional scaling (MDS) on 

the similarity score matrices. All three scores showed good separation between the two 

populations, except for one JPT individual residing in between the two clusters in the plots. The 

same individual is at a similar position in principal component analysis when plotting the first 

two principal components. While SIBS and Sfreq provided similar separation, SHWE provided less 

separation with that JPT individual much closer to the CHB cluster instead of the JPT cluster. 

The relatively poorer performance of SHWE arises because of the heavy weighting of the small 

subset of markers with very small p-values from the one-sided HWE test, even after we have 

excluded markers with HWE p-value<10-6. 

 

Our experiences in simulations and real data (unpublished results) suggest that Sfreq may 

perform slightly better than SIBS in matching the samples. In the following simulations and 

analyses, we report results using Sfreq as our measure of genetic similarity. Although the p-values 

from one-sided HWE test may not be the best weights for the similarity score as in SHWE, they 

can still be employed to select a subset of markers for the score computation. In so doing we 

assume that markers with small HWE p-values but still passing quality control provide more 

information about population heterogeneity than randomly selected markers. In the following 

analyses, the matching is usually based on a subset of markers (10,000-100,000 markers) which 

had the smallest p-values from one-sided HWE test among those passing quality control filters. 

 

2.5.2 False positive rate and power 
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 For the six simulation models, mismatch rates are calculated as the proportion of individuals 

from population 1 matched to individuals from population 2. The minimal degree of mismatch in 

the simulations (Table 2.5) suggests accurate matching given the similarity measures and 

numbers of markers used.  

 

In the absence of population stratification (models 1 and 2), all three methods give false 

positive rates close to the nominal value of 10-6. The power of our GSM method is typically ~2% 

lower than the trend test and genomic control, assumedly due to the unnecessary grouping of 

samples. When population stratification is present (models 3-6), the type I error rate of the trend 

test is ~30 times greater than the nominal value, while GSM and genomic control maintain the 

type I errors at or lower than the nominal value. Using empirical type I error rates, the power of 

the trend test is equal to that of genomic control, but significantly lower than that of GSM for 

models 3-4. For models 5 and 6, where population stratification is present, the variation of 

disease variant frequency may mask the association (model 5) or increase the power to detect 

association (model 6). For model 5, power of the trend test and genomic control drop ~30% 

compared to model 3, while GSM maintains the same level of power. For model 6, although the 

type I error is inflated, the trend test has adjusted power comparable to that of GSM. 

EIGENSTRAT has power similar to GSM in all simulation settings examined. 

 

We also compared the frequency with which the disease variant is the most strongly 

associated marker, or among the most strongly associated 10, 100, and 1000 markers, in the trend 

test or GSM (Figure 2.2). The results are consistent with the observations above. In the absence 

of population stratification (models 1 and 2), the trend test identifies the disease variant slightly 
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more frequently than GSM. When population stratification is present, GSM picks the correct 

disease variant more frequently for models 3-5. For model 6, GSM picks the correct disease 

variant almost as frequently as the trend test. 

 

2.5.3 Bipolar data 

 

 We first applied standard trend tests to the Pritzker bipolar case and control samples. The 

estimated genomic control variance inflation factor λ of the test statistics was 1.03, close to the 

expected value of 1 when there is no population stratification [Devlin et al., 1999], arguing that 

the matching based on self-reported ethnicity resulted in a sample with only limited population 

stratification. Applying GSM reduced the estimated λ slightly to 1.02. However, when we added 

the Illumina control samples to the analysis, the estimated λ from standard trend tests became 

1.51 (Figure 2.3), indicative of strong population stratification between the cases and controls. 

We then applied our GSM method on the combined samples, excluding one Illumina control 

sample that had a noticeably high similarity score with one Pritzker case sample (SIBS=0.85), 

consistent with a first degree relationship. Using GSM, the estimated λ dropped to 1.072 when 

we used Sfreq as our similarity measure (Figure 2.3) and 1.088 using SIBS, suggesting that GSM 

using either score provided good correction for the stratification problem. Using Sfreq, each of the 

712 cases was matched to one or more controls (i.e., 1:m matching only): 316 cases were 

matched to 1 control, 207 cases to 2-5 controls, 79 cases to 6-10 controls, and 115 cases to 10-30 

controls. To check the appropriateness of setting the maximum number of controls (m) at 30, we 

repeated our analysis by changing m to 10 or 50, resulting in estimated λ values of 1.23 and 

1.067, respectively. This suggests that some controls may be matched to dissimilar cases when 
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we only allow up to 10 controls per case, while increasing m from 30 to 50 resulted in little 

improvement on the matching. Since the combined sample contains many more controls than 

cases, we considered removing some controls with relatively high dissimilarity by restricting the 

total number of controls to be matched from 3,960 to 3,500, and the estimated λ dropped slightly 

to 1.065. We also repeated the matching using 50,000 markers instead of 100,000, and in this 

setting the estimated λ increased slightly to 1.086, as expected. 

 

As a comparison, we also applied EIGENSTRAT and another principal component-based 

method (Luca et al. [2008], GEM) to the bipolar data, using 10 principal components. Without 

removing any potential outliers, EIGENSTRAT gave an estimated λ of 1.074, comparable to our 

results. GEM removed 132 samples as outliers and gave a slightly better estimated λ of 1.063. 

When we applied our method to the same set of samples used in GEM, we obtained an estimate 

λ of 1.065. Although the removal of these samples decreased the inflation of type I error rates, its 

impact on power requires further investigation. 

 

2.6 Discussion 

 

Population stratification, which can result in high false-positive rates and mask true 

associations, poses a potential problem for case-control association studies. In this paper, we 

propose GSM, a practical approach to correct for population stratification for large-scale 

association studies that uses information at thousands of genotyped genetic markers to group 

case and control subjects according to their similarity. Simulation studies show that GSM can 

control the false positive rates in the presence of population substructure, while maintaining 

22 
 



power to detect disease loci. 

 

GSM is computationally efficient. The computational time for similarity score calculation is 

linear in the number of markers used and in the number of all case-control pairs, and 

approximately cubic in the number of individuals. 

 

We have compared the performance of GSM to the commonly used genomic control method 

[Devlin et al., 1999]. Genomic control assumes that a scaled test statistic (dividing the standard 

test statistic by a global correction factor λ) has an approximate central χ2 distribution. When 

stratification is modest, the genomic control procedure is able to control the false-positive rate at 

the nominal level through λ, but does not change the relative order of the test statistics along the 

genome. As shown in our simulations (model 3-5), when stratification masks the association, 

genomic control can be quite conservative. Another popular approach to correct for population 

stratification is structured association [Pritchard et al., 2000] which infers population structure 

using a set of independent makers. We did not evaluate this method in our simulations due to its 

computational intensity. Structured association also requires an assumption about the number of 

underlying subpopulations in the sample. EIGENSTRAT [Price et al., 2006] is an approach for 

genome-wide association studies based on principal components analysis (PCA). It has been 

shown that the K-1 principal components can be related to the solution to the K-way clustering 

solution [Ding et al., 2004]. EIGENSTRAT is less sensitive to the number of components than 

structured association (if the number is sufficiently large) because of orthogonality of the axes of 

variation, but the interpretation of the axes is less intuitive. 
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Our new GSM method tackles the stratification problem by matching at the individual level, 

without assuming an explicit population structure. Effectively, it treats every sample as a single 

population and compares it to the most similar counterparts. For samples from clearly 

distinguished subpopulations, such as the HapMap HCB and JPT populations or the two 

subpopulations in our simulations, GSM performs almost as well as cluster-based matching or 

EIGENSTRAT, with little loss of power. In real GWA studies, where sampled individuals may 

often derive from continuous mixtures of ancestral populations, the individual-based matching in 

GSM should be more flexible than cluster-based matching. Luca et al. [2008] (GEM) also 

applied full matching to correct for population stratification, but used a different score calculated 

from the top eigenvectors from PCA. They showed that outliers may greatly inflate type I errors 

of association tests using EIGENSTRAT and need to be carefully removed beforehand. The 

similarity scores in GSM can be used like the GEM scores to identify outliers, but are more 

intuitive in measuring genetic similarity, compared to the abstract measures from eigenvectors 

used in GEM. In addition, PCA analysis is very sensitive to the independence of samples, while 

GSM can actually help to identify related samples through IBS scores. In our Pritzker study 

example, we checked the pairwise IBS measure between samples and found one pair of 

individuals with large similarity score of 0.85 (SIBS), which strongly suggested a potential 

first-degree relative. Although the two samples showed strong correlation in their PC scores, they 

were not identified as outliers by EIGENSTRAT or GEM because their scores did not show 

strong deviation from the center of the score distributions in the top 10 PCs. 

 

The success of our GSM procedure depends on the accuracy of matching. Incorrectly 

grouping individuals from different populations could inflate the type I error rate, decrease the 
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power to detect the susceptibility genes, or both. To ensure correct matching, a well-defined 

similarity measure and a substantial number of markers in which to compute this measure are 

both important. We have considered both IBS and IBD-based scores, which are commonly used 

in genetic studies to describe genetic similarity between pairs of individuals. IBS-based scores 

are simple to calculate and do not require much computing power. Our simulations analysis and 

practical experience show that such scores can provide an effective means of matching 

individuals. Furthermore, we found that weighting IBS estimates by a function of the marker 

allele frequencies (Sfreq) improved the accuracy of matching. We also considered similarity scores 

based on pairwise IBD estimates calculated using an E-M algorithm; the average mismatch rates 

using IBD-based scores were slightly higher than those for IBS-based scores. A weakness of IBD 

based scores is that they are truncated at zero: when many pairs of individuals are assigned IBD 

~0, it becomes difficult to select optimal pairings. Figure 2.4 demonstrates the relationship 

between the IBD scores and IBS scores (Sfreq) computed on the HapMap HCB and JPT samples. 

Other score metrics to describe similarity of samples can also be easily incorporated into our 

approach. 

 

The number of markers used in score calculation is another factor that affects the matching. 

We prefer to calculate the scores based on a large set of markers (typically including 10,000 – 

100,000 SNPs). However, using too many markers increases the computational load while not 

necessarily improving the accuracy of matching. In our simulations, 10,000 markers with the 

smallest p-values from one-sided HWE test can correctly match the individuals from closely 

related populations such as Han Chinese and Japanese, with zero or almost zero mismatch (Table 

2.5). In this example, using 30,000 markers worked as well as using 10,000 markers, while using 
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only 1,000 markers led to incorrect grouping of individuals from different populations with up to 

~10% mispaired individuals. For samples with subtle differences in genetic ancestry, such as the 

European American samples in the bipolar data, more markers (50,000 to 100,000, passing 

quality control) may help to obtain better matching. Inspecting the genomic control parameter λ 

on its closeness to the expected value of 1 from different analysis strategies can help to 

determine the appropriate number of markers for controlling stratification. To select the subset of 

markers, we usually prefer those with smaller p-values from one-sided HWE tests, because they 

tend to be more informative about population structure. However, we need to be cautious 

regarding data quality, since markers with high error rates may show strong deviation from HWE 

and then give incorrect information about the genetic background of sampled individuals. A 

reasonable compromise is to exclude SNPs with extreme deviations from HWE (say, p<10-6) but 

focus on those with mild deviations (say, 10-2<p<10-6) to evaluate stratification. GSM does not 

require that all markers should be independent of disease status, since in a typical genome-wide 

setting the vast majority of markers will meet this criterion and the impact of disease-associated 

markers on the similarity scores is negligible and can be ignored. For the bipolar data, we have 

excluded the top 100 SNPs with the smallest p-values and re-ran our GSM program. The new 

results are highly correlated with the original ones (Pearson correlation coefficient = 0.98 

between the test statistics). Furthermore, since our similarity scores are a function of the mean 

(weighted) IBS values across a large number of markers, it is also not critical that the assessed 

SNPs should be independent of each other. 

 

The application of GSM to the bipolar data showed great reduction of the false positive 

signals (Figure 2.3). The estimate GC λ dropped from 1.51 of the trend test to 1.07 using GSM. 
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The PCA-based method implemented in EIGENSTRAT gave similar reduction. Although the 

reduction is significant, the estimated λ is still a little off from the ideal value of 1. One possible 

reason for this slight inflation of false positive rates is due to outliers in the sample, e.g., 

individuals with other ethnic background were mislabeled as European Americans. We have 

performed outlier removal procedures implemented in EIGENSTRAT and GEM, and caliper 

matching in GSM, but the further reduction on λ is minimal (from 1.07 to 1.06). We suspect that 

there might be slight systematic difference between the NIMH and Illumina samples that can 

cause more false positives than expected, since the two datasets were collected and genotyped by 

different groups at different time periods.  

 

We chose not to include X-linked markers in our matching scheme to avoid any possible 

biases due to differences by gender. Given genome-wide association data, the autosomal markers 

provide ample information for accurate matching. 

 

When there is no population stratification, our simulations showed a small loss of power in 

GSM due to unnecessary matching. Studies have shown that when the population is indeed 

homogeneous, random matching by pairs (1:1) can do almost as well as the unmatched test 

[Chase, 1968]. Additional power may be lost when the matching is not balanced, so that multiple 

controls are compared to a single case subject or multiple cases are compared to a single control 

(i.e., 1:m or m:1 when m > 1). However, when stratification is present, larger values of m are 

preferred to decrease the chance of matching errors. It is then a trade-off of efficiency and bias 

that we need to consider in practice. In our GSM method, the objective function (T) we choose 

for optimal matching favors smaller groups, minimizing loss of efficiency. Although the original 
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optimal matching [Rosenbaum, 1991] is unconstrained (m = ∞) so that all controls are allowed to 

be matched to a single case or all cases to a single control, Hansen [2004] showed that the 

matching with restriction on m can reduce the variance of estimated parameters with little 

increase in bias, and suggested a linear search for good values of m that are as close to 1 as 

possible. In our simulations, a large proportion of the matched sets are 1:1 matches even when 

the proportions of the two populations in cases and controls are not equal, and the average size of 

matched sets does not vary much for different values of the upper bound of m. For example, for 

simulated setting 3, the average matched set size is 2.44 and 2.47 when the upper limits of m are 

set as 2 and 5, respectively. 

 

Although the full matching scheme is flexible, cases (or controls) from a population without 

a corresponding partner among the controls (or cases) will decrease power and may lead to 

spurious association if matching is forced. Further, 1:1 matching is more efficient than m:1 for 

m>1. Therefore, we still strongly encourage careful sample selection during the study design. 

Skol et al. [2005] showed that the self-reported ethnicity can be a good predictor for population 

structure, consistent with our results based on the NIMH case and control samples alone. 

 

In summary, we propose a new framework to match case and control samples by their 

genetic similarity and adjust for the underlying population substructure. Our GSM method is 

specifically designed to use the full information provided by the large number of genotypes in 

genome-wide association studies or large-scale candidate gene studies. Our method can correctly 

control the false positives, while maintaining considerable power to detect the disease-marker 

association. Our individual-based matching scheme can reflect the continuous mixing of 
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ancestral populations. By comparing each case to one or more controls sharing the most genetic 

backgrounds, we hope our method may increase the chance to identify the genetic variants that 

influence disease risk. Our GSM software is available freely with C++ source code at 

http://www.sph.umich.edu/csg/liang/gsm/. The package allows the users to automatically 

calculate matching score matrices, conduct full matching with a range of parameter choices, and 

carry out association analyses. We expect our method will aid analyses of large-scale 

genome-wide association studies. 
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Appendix 

 

In a minimum cost flow (MCF) problem, we define a directed graph consisting of nodes, 

i∈N , and arcs connecting the nodes, ( , )i j ∈A . For each arc (i, j), an integer aij denotes the 

cost and a positive integer cij the capacity. For each node i, an integer si denotes the exogenous 

supply. A solution of the MCF problem is a set of arc flows xij that minimizes: 
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It is easy to see the equivalence between the MCF and the optimal matching (Figure 2.5). 

The nodes in a directed graph correspond to the cases and controls, aij is the dissimilarity 

measure between i and j, and the capacity of the flow, cij, is 1 between case and control nodes, 

and 0 between two cases or two controls. The optimal solution of the MCF problem is equivalent 

to an optimal matching. The nodes connected by arcs with non-zero flow are assigned to the 

same matched set.  

In full matching, the numbers of case-control pairs vary across matched sets, so the supply 

of nodes (si) cannot be predetermined. To deal with this complication, we include an “overflow” 

node to the graph to balance the flows from or to the case or control nodes. Parameters U and Uc 

control the maximum flows going to “overflow” from each node, which correspond to the 

maximum number of cases or controls allowed in each matched set, i.e., the upper limit of m in 

1:m or m:1 match. For each case node, there are m connected control nodes and U-m arcs 

connecting it to “overflow”; for each control node, there are m connected case nodes and m arcs 
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connecting to “overflow”. The cost for arcs entering “overflow” is set as 0, so these extra arcs do 

not affect the total cost. Similarly, another node, “sink”, may also be added to control the total 

number of controls to be matched, and the cost for arcs entering “sink” is also 0 (Hansen et al., 

2006). 

The translation is demonstrated in Figure 2.5. The MCF problem is then solved by 

iteratively updating a dual cost vector and the flow vector x (Bertsekas et al., 1994; Frangioni et 

al., 2006). 
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Table 2.1 Values of IBSk and IBSk,i for calculation of similarity scores. 

Genotype Pair kIBS  AkIBS ,  akIBS ,  
aa  aa 2 0 2 
aa  Aa 1 0 1 
aa  AA 0 0 0 
Aa  Aa 2 1 1 
Aa  AA 1 1 0 
AA  AA 2 2 0 
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Table 2.2 Example genotypes. 
Cases Controls 

Individual Genotype Individual Genotype 
1 aa, aa, AA 4 aa, aa, Aa 
2 aa, aa, Aa 5 Aa, AA, aa 
3 AA, AA, aa 6 AA, AA, aa 
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Table 2.3 Similarity (dissimilarity) scores for individuals in Table 2.2. 
 Controls 
Cases 4 5 6 

1 5/6  
(1/36) 

1/6 
(25/36) 

0 
(1) 

2 1 
(0) 

2/6 
(16/36) 

1/6 
(25/36) 

3 1/6 
(25/36) 

5/6 
(1/36) 

1 
(0) 
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Table 2.4 Characteristics of simulated disease models: samples drawn from two subpopulations 
in 1:1 ratio. 

Model Population 1 Population 2 
K1 p1 RR1 K2 p2 RR2 

1 .10 .5 1.6 .10 .5 1.6 
2 .10 .2 1.6 .10 .2 1.6 
3 .07 .5 1.6 .13 .5 1.6 
4 .07 .2 1.6 .13 .2 1.6 
5 .07 .55 1.6 .13 .45 1.6 
6 .07 .45 1.6 .13 .55 1.6 

Ki: disease prevalence in population i. 
pi: predisposing variant allele frequency in population i. 
RRi: relative risk of the predisposing variant allele in population i. 
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Table 2.5 Average false positive rate and power of GSM, trend test (Chisq), and genomic control 
(GC) given 500 cases and 500 controls, 300,000 SNPs with MAF > .05, significance level = 10-6. 

 
Setting 

Mismatch 
(%) λ§ 

Average false positive rate  
(×10-6) 

 
Power* 

GSM Chisq GC EIGEN GSM GC EIGEN 
1 0 1.01 1.08 1.29 1.19 0.93 .80 .82 .82 
2 0 1.01 1.10 1.16 1.10 0.97 .55 .56 .56 
3 0.016 1.39 1.17 31.8 0.73 1.03 .75 .53 .76 
4 0.015 1.38 1.15 30.7 0.47 1.07 .54 .28 .55 
5 0.010 1.37 1.14 31.2 0.64 0.90 .72 .22 .72 
6 0.010 1.38 1.09 33.0 0.66 0.87 .79 .78 .81 

 
§. The global correction parameter in genomic control (GC), averaged over simulation replicates. 
*. Power adjusted for the nominal false positive rates. 
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Figure 2.1 Multidimensional Scaling plots using dissimilarity scores as distance measure 
(calculated from 100,000 SNPs) for Han Chinese (HCB) and Japanese (JPT) HapMap samples. 
Red: HCB; blue: JPT. 
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Figure 2.2 The frequencies of disease predisposing variant being identified among the best 
markers by similarity score matching method (GSM), EIGENSTRAT and trend test (Chisq). 
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Figure 2.3 QQ-plot of the association results for the bipolar data (1 sibling per family) combined 
with Illumina controls. Red: the trend test; Black: GSM using 100,000 markers and Sfreq as the 
similarity score.
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Figure 2.4 Similarity scores (calculated from 888,071 SNPs) between each pair of Han Chinese 
(HCB) and HCB-Japanese (JPT) in HapMap. Red: HCB-HCB pair; blue: HCB-JPT pair. 
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Figure 2.5 Solve optimal full matching problem as a minimum cost flow (MCF) problem. U 
denotes the maximal number of controls each case can match, Uc the maximal number of cases 
each control can match, nc the number of controls to match, and n the total number of cases and 
controls. 
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CHAPTER 3 

GENETIC SIMILARITY MATCHING FOR GENOME-WIDE 
ASSOCIATION STUDIES WITH RELATED INDIVIDUALS 

 

In genome-wide association (GWA) studies, family samples are often used.  We previously 

proposed a similarity score matching method that matches independent cases and controls based 

on their identity-by-state similarity scores using the large amount of genotype data from GWA 

studies. We now extend our method to the analysis of related cases and controls. We apply a new 

test statistic, based on our own work and that of Bourgain et al. [2003], to account for correlation 

both between the related samples and between matched case-control pairs. Through computer 

simulations, we demonstrate that in the context of family data, our method correctly controls 

type I error, and has improved power compared to genomic control in the presence of 

stratification. We illustrate our method with data from the Pritzker Consortium Bipolar GWA 

study. 

 

3.1 Introduction 

 

Genome-wide association (GWA) studies have identified >2000 common human genetic 

variants that are reproducibly associated with common diseases and traits [Altshuler et al., 2008; 

Manolio et al., 2008; www.genome.gov/gwastudies]. Unlike candidate gene studies which focus 

on pre-selected list of genes, GWA studies test for disease association in an unbiased way across 
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the entire genome. Current GWA studies typically genotype 500,000 to 1 million SNPs, covering 

the majority of the known common variants (~80-90%). For complex diseases, predisposing 

variants typically have modest effects on disease risk, requiring genotyping and analysis of large 

number of samples in GWA studies.  

 

Most GWA studies focus on unrelated individuals – for example, cases and controls for a 

disease or a population cohort unselected for disease status. However, in some GWA studies, 

related individuals are genotyped. Ignoring sample relatedness can lead to spurious evidence for 

disease-marker association [Newman et al., 2001]. For continuous traits, variance component 

models can be used to test for association [Abecasis et al., 2000]. For dichotomous traits, 

(non-linear) variance components models may not always be appropriate due to impossibility in 

estimating within-family variance, when all members of the same family have concordant 

phenotype. For example, many studies sample affected sib-pairs and unrelated controls. As one 

alternative to variance component methods, Bourgain et al. [2003] proposed a corrected 

chi-square association test, in which they derived the correct variance term for allele frequency 

difference between cases and controls in presence of arbitrary family structures. 

 

When the GWA samples are of heterogeneous ancestry, differences in allele frequencies and 

disease prevalence across ancestry groups may result in spurious association. Multiple 

approaches have been developed to correct for this population stratification problem. Devlin et al. 

[1999] developed the genomic-control (GC) method to rescale the test statistics according to a 

non-central χ2 distribution. Price et al. [2006] and others developed methods based on principal 

components analysis (PCA), which adjust for the top principal components calculated from a 
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matrix of genotype data and account for population substructure. Alternatively, different study 

designs can be employed.  For example, family-based association tests, such as the 

transmission/disequilibrium test (TDT) [Spielman et al., 1993], assessing the transmission of 

alleles between family members and so are immune to population substructure. 

 

When family data are included in GWA studies, both these types of correlation must be 

considered when assessing disease-marker association: the relatedness of family members and 

the shared ethnic background within subpopulations. It is important to develop analysis tools that 

can deal with both population stratification and family samples. In Chapter 2, we proposed a 

genetic similarity score matching (GSM) method, to correct for population stratification in the 

analysis of case-control GWAS data using genotype-based matching. In this chapter, we describe 

how to extend this approach to handle related samples in GWA studies in presence of population 

substructure. Assuming all family members share the same ancestry, we perform the case-control 

matching using one member from each family and apply the matching result to other family 

members. Instead of conditional logistic regression, we propose a new chi-squared test based on 

the corrected chi-squared test following the Mantel-Haenszel procedure. Our simulations show 

that this new approach results in false positive rates at the desired nominal level while retaining 

high power to detect disease associated markers. We further demonstrate that when population 

stratification and related samples are present, association tests based on GSM-matched control 

data can have higher power than those that rely on either the corrected chi-squared test [Bourgain 

et al., 2003] or genomic-control method [Devlin et al., 1999]. 

 

3.2 Methods 
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For M genetic markers, we previously defined similarity scores between a pair of individuals 

based on allele sharing identity-by-state (IBS) measure: 

 
1

1
2

M

IBS k
k

S
M =

= ∑ IBS  (1) 

or IBS measure weighted by allele frequency: 

 ,
1 { , }

1 log( )
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,freq k i k i
k i A a
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M = ∈

= − ⋅∑ ∑ q  (2) 

where qk,i is the frequency of allele i at marker k, and IBSk,i is the number of copies of allele i at 

marker k shared by the pair of individuals.  

Suppose our data are comprised of N families, with family j having kj members, j = 1, 2, …, 

N. Each family can contain arbitrary number of cases and controls. Assuming all individuals 

from the same family share similar genetic background, we first select N samples, one member 

from each family randomly, and calculate similarity scores between every case-control pair 

among the N samples. 

 

We transform the similarity scores to dissimilarity scores using a monotone decreasing 

function, and then perform optimal full matching [Rosenbaum, 1991] to match cases and 

controls according to similarity for SIBS or Sfreq in the N selected samples. Optimal full matching 

results in G independent matched groups, each containing one case and one or more controls, or 

one control and one or more cases, that is, a 1:m or m:1 matching, by maximizing the overall 

similarity of matched cases and controls. If a selected individual j = 1, 2, …, N, is assigned to 

group g, we then assign j 's relatives to the same group g. All samples in the data are therefore 

matched, and individuals from the same family are always assigned to the same group. 
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To test for disease-marker association, we first consider the situation without population 

substructure. Suppose we collect a total of n samples from N families, among which there are nc 

cases . Let 1 denote a column vector of 1s with length n, 1c a column vector of length n with ith 

entry 1 if individual i is a case or 0 if i is a control, and Φ  the kinship matrix. To test for 

association while taking into account relatedness of family members, Bourgain et al. [2003] 

proposed the corrected chi-squared ( ) statistic:  2
corr

W
χ
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Here ˆ testp  is the estimated frequency of a specific allele in the case group, ˆ nullp is the estimated 

allele frequency in combined case-control data, and is the estimated frequency in the 

population (often replaced by

p̂

ˆ nullp ), all ignoring family relatedness.  

When population substructure exists, we match cases and controls based on IBS information. 

We then need to consider the correlations both within the families and within the matched sets, in 

which samples share common ancestry, in the association test. We calculate a new test statistic 

following Mantel-Haenszel procedure: 
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where ng is the number of samples in matched set g, nc,g is the number of cases in g, and , 

, 1g, 1c,g, 

,ˆ test gp

,ˆ null gp gΦ  are the corresponding estimates as in (3), but calculated separately in each 
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set g. Given the matched sets are independent, this test statistic approximately follows a 2χ  

distribution with 1 df, under the null hypothesis of no disease-marker association. 

 

3.3 Simulations 

 

We simulated case-control data influenced by genotypes at a single disease locus, under three 

additive disease models (Table 3.1). We assumed sampling from a population consisting of two 

subpopulations. We randomly sampled 300 affected sib-pairs and 300 unrelated controls from 

this mixed population. For each model, the relative risk (RR) of the predisposing variant allele is 

set to be the same in the two subpopulations (RR=1.6). For model 1, the disease prevalences 

K1=K2 and predisposing variant allele frequencies q1=q2; these models represent the scenario of 

no population stratification. For model 2, the first population has lower prevalence but higher 

predisposing variant allele frequency (K1=.07, q1=.55) than the second population (K2=.13, 

q2=.45). For model 3, the population with higher prevalence also has higher predisposing variant 

allele frequency (K2=.13, q2=.55) than the other population (K1=.07, q1=.45). For each model, we 

simulated 1000 datasets. 

 

We simulated autosomal chromosomes using GENOME, a coalescent-based simulator [Liang 

et al., 2007]. We set the effective population size as 10,000 for each subpopulation, the 

recombination rate as 10-8 per base pair, and the mutation rate as 10-9 per base pair, assuming the 

infinite-site mutation model [Kimura, 1969]. We set the rate of migration between 

subpopulations to .0025 per individual per generation, which resulted in a distribution of allele 

frequency differences similar to that observed when comparing HapMap Han Chinese (HCB) 
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and Japanese (JPT) samples (www.hapmap.org). We randomly selected 300,000 SNPs with 

minor allele frequencies > .05 on 22 chromosomes whose lengths approximated the lengths of 

the human autosomes (NCBI build 33, www.ncbi.nlm.nih.gov/genome/seq/), and chose a disease 

liability SNP with the desired allele frequencies. 

 

We first simulate the first affected siblings and the controls as independent cases and controls, 

by calculating the probability of each genotype at the disease locus given the affection status, 

based on the genotype penetrance, disease prevalence, and desired risk allele frequency. The 

parents of an affected sibling pair were then simulated by randomly picking one chromosome 

from the simulated sibling and pairing it with a randomly drawn chromosome from the general 

population. The second affected sibling was then generated conditional on the parental genotypes 

at the disease locus and the genotype penetrance. 

 

To calculate the similarity scores, we chose 10,000 markers with the smallest one-sided 

HWE p-values, choosing no more than one marker from each 10-marker window. We set the 

maximum value of m in 1:m or m:1 matching to be 6. We compared the type I error and power of 

GSM, the test, and the test after genomic control for each simulation model.  2
corr

W
χ 2

corr
W

χ

We calculated estimated type I error rates as the proportion of simulated SNPs in which the 

association test p-value is less than the nominal value 10-6, a significance threshold similar to that 

typically used in genome-wide scans. In this evaluation of type I error rates, we only considered 

SNPs that were effectively unlinked to the disease locus, defined operationally as 100 markers 

away from the disease locus. We calculated power as the proportion of simulated replicates 

where the empirical p-value is < 10-6 at the disease locus using a threshold obtained by 
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inspection of test statistics at the null loci. 

 

3.4 Bipolar data 

 

We applied GSM to GWA data from the Pritzker Consortium bipolar study [Scott et al. 2009].  

We selected 1217 independent bipolar I European American cases, which included 489 affected 

sib-pairs, and 779 independent European American controls from NIMH Human Genetics 

Initiative (www.nimhgenetics.org); controls were carefully matched to cases by self-reported 

ethnicity prior to genotyping. In addition, we downloaded genotype data on 3,182 independent 

European American controls from Illumina iControlIDB database 

(www.illumina.com/pages.ilmn?ID=231). All individuals were genotyped using the Illumina 

HumanHap550 BeadChip. 505,796 autosomal SNPs passed quality-control criteria in the 

Pritzker bipolar study: 1) HWE p-value > 10-5; 2) genotype call rate > 95%; and 3) no more than 

1 non-mendelian inheritance or duplicate genotype inconsistency among 15 

father-mother-offspring trios and 30 duplicate samples. In addition, we excluded 1,632 SNPs due 

to allele frequency differences > .05 between the Illumina and Pritzker control samples. We 

applied GSM and the corrected chi-squared ( ) tests for association on the Pritzker samples 

alone and then on the combined Pritzker and Illumina samples. In GSM, we used the 100,000 

markers that passed quality controls and had the smallest p-values from the one-sided HWE test 

to calculate the similarity scores. Given the relatively large control:case ratio of 5:1, we set the 

upper limit of the group sizes (m) to 30. 

2
corr

W
χ

 

3.5 Results 
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3.5.1 False positive rate and power 

 

Table 3.2 summarizes the average false positive rates and power for the three simulation 

models. In the absence of population stratification (model 1), GSM, , and after 

genomic control all give false positive rates very close to the nominal value of 10-6. The power of 

our GSM method is similar to that of the test before and after genomic control. When 

population stratification is present (models 2 and 3), the type I error rate of the  test is ~30 

times greater than the nominal value, while GSM and genomic control maintain the type I errors 

at or lower than the nominal level. For model 2, the test has power comparable to that of 

GSM, after adjusting for inflated type I errors. For model 3, the risk allele frequency is lower in 

the subpopulation with higher disease prevalence, and population stratification may therefore 

mask the association. We observe that powers of the  test and genomic control drop ~30% 

compared to model 2, while GSM maintains the same level of power by correctly matching the 

samples with common ancestry. 
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3.5.2 Bipolar data 

 

We first applied the tests to the Pritzker bipolar case and control samples. The 

estimated genomic control variance inflation factor λ of the test statistics was 1.02, close to the 

expected value of 1 when there is no population stratification. However, when we added the 

Illumina control samples to the analysis, the estimated λ from the  tests became 1.44, 
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suggesting strong population stratification between the cases and controls. We then applied our 

GSM method on the combined samples.  The GC λ dropped to 1.071 when we used Sfreq (Figure 

3.1) as our similarity measure and 1.080 when we used SIBS, suggesting that GSM using either 

score provided useful correction for the stratification problem. To check the impact of setting the 

maximum number of controls per case or cases per control (m) to 30, we repeated our analysis by 

changing m to 10 and 50, resulting in estimated λ values of 1.20 and 1.065, respectively. This 

suggests that some controls may be matched to dissimilar cases when we only allow up to 10 

controls per case, while increasing m from 30 to 50 resulted in little improvement on the 

accuracy of matching. We also repeated the matching using 50,000 markers instead of 100,000, 

and the estimated λ increased slightly to 1.079, consistent with the 100,000 markers providing 

slightly more information on the genetic background of samples than 50,000 markers. 

 

3.6 Discussion 

 

In Chapter 2, we proposed a new approach, genetic similarity matching (GSM), to correct 

for population stratification for large-scale association studies with independent cases and 

controls. In this chapter, we extended GSM for association studies that allow any type of family 

relationship. Simulation studies showed that the extended method can control the false positive 

rate in the presence of population substructure, while maintaining power to detect disease loci, 

when related samples are included in association studies. We applied our approach to the Pritzker 

bipolar GWA study in which an external control dataset was included, and showed that it can 

substantially improve control of the false positive rate. 

 

51 
 



We have compared the performance of the extended GSM to the commonly used genomic 

control method [Devlin et al., 1999]. As shown in our simulations (model 3), when stratification 

masks the association, genomic control showed less power than our approach to detect the 

disease-marker association. Another approach is based on the principal components analysis 

(PCA) as implemented in the EIGENSTRAT software [Price et al., 2006]. A typical strategy is to 

calculate the principal components for the independent samples first, and impute the scores for 

the other family members (e.g., Zhu et al., 2008), analogous to the approach we propose that 

starts the matching on unrelated samples. We applied this PCA-based approach to the bipolar 

data, and performed association tests using the robust variance (“sandwich”) estimator [White, 

1982] to account for the violation of independence in the family samples. We observed similar 

reduction of the false positives to our approach. Using the top 10 principal components, we 

obtained an estimated λ of 1.074. 

 

When we match family members, we randomly select an individual to represent the entire 

family. When large families are collected, such random selection scheme may lose information. 

To reduce the variability caused by this selection scheme, one alternative is to calculate the 

similarity scores using all family samples. We calculate the pairwise similarity scores between 

families, which are defined as the average score between all pairs of members of the two families. 

We can then match families by treating each family as a single node in Figure 2.5. This modified 

approach should increase the accuracy of matching by paying extra cost on computing. In 

addition, for large families with roughly equal numbers of cases and controls, it could be more 

efficient to treat them as individuals groups without being matched with others. 
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It has been shown that 1:1 matching will generally lead to higher power than other matching 

schemes [Chase, 1968]. In addition to information loss, another disadvantage of picking one 

sample per family for matching is that an unbalanced number of cases and controls could occur 

when other family members are added to the matched sets. Some adjustments could be added to 

the matching scheme to reduce the power loss from unbalanced matching. For example, we 

could preferentially match families that contain more cases to families that contain more 

controls. 

 

Although our method can be applied to families of arbitrary size and phenotypes, it is most 

useful for matching families with homogeneous phenotypes, i.e., case-only or control-only 

families. For families containing both cases and controls, especially when the numbers of cases 

and controls are approximately equivalent, each family can serve as a matched set without being 

matched to other samples, assuming members of these families sharing the same ancestry. 

 

The test statistic we employed in our association test is based on a chi-squared test corrected 

for correlation between family members. Although it is computationally simple, it is difficult to 

incorporate other covariates, such as environmental factors. When the trait is continuous, or the 

family members are discordant in their affection status, we may consider variance component 

models that can take into account multi-level correlations. However, when all family members 

have the same affection status, it becomes difficult to estimate the variance component within 

families. An alternative is to treat the genotypes as a continuous response variable and the 

disease status along with other covariates as explanatory variables. We can then apply linear 

mixed model to handle the multi-level correlations.  

53 
 



 

In our approach, we assume that all members of each family share the same ancestry. This is 

often but not always the case. When the family members are of different ancestry, such as one 

parent with European ancestry while another parent with African ancestry, we may have to 

consider either the independent samples only, such as the parents in nuclear families, or 

alternative approaches that can deal with the complicated correlation between the samples that 

are related and between the samples that are from the same ancestral populations. 

 

In summary, we extend our GSM approach to adjust for the underlying population 

substructure when related samples are collected in GWA studies. It inherits the merits of our 

original approach, with a chi-squared test statistic for the association that is easy to compute. We 

expect our method will aid analyses of large-scale GWA studies for arbitrary types of samples. 
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Table 3.1 Characteristics of simulated disease models: samples drawn from two subpopulations 
in 1:1 ratio. 

Model Population 1 Population 2 
K1 p1 RR1 K2 p2 RR2 

1 .10 .50 1.6 .10 .50 1.6 
2 .07 .45 1.6 .13 .55 1.6 
3 .07 .55 1.6 .13 .45 1.6 

Ki: disease prevalence in population i. 
pi: predisposing variant allele frequency in population i. 
RRi: relative risk of the predisposing variant allele in population i. 
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Table 3.2 Average false positive rate and power of similarity score matching (GSM), test, 

and test after genomic control (GC) given 300 affected sib-pairs and 300 controls, 300,000 

SNPs with MAF > .05, significance level = 10-6. 

2
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2
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Setting λ§ 

Average false positive rate 
(×10-6) Power* 

GSM 2
corr
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 GC GSM GC 
1 1.01 1.06 1.18 1.10 .48 .49 
2 1.34 1.12 26.7 0.70 .48 .48 
3 1.36 1.10 28.3 0.65 .49 .23 

§. The global correction parameter in genomic control (GC), averaged over simulation replicates. 
*. Power adjusted for the nominal false positive rates. 
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Figure 3.1 QQ-plot of the association results for the bipolar data combined with Illumina 
controls. Red: the trend test; Black: GSM using 100,000 markers and Sfreq as the similarity score. 
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CHAPTER 4 

ESTIMATION OF THE CONTRIBUTION OF RARE CAUSAL VARIANTS 
TO COMPLEX DISEASES 

 

Rapid advances in next-generation sequencing technologies are providing ever more 

complete surveys of genomic regions of interest and even whole genomes, and these advances 

are facilitating genetic association studies of an increasingly wide array of common and rare 

variants. As we plan re-sequencing studies, it is interesting to consider constraints on the range of 

plausible genetic models based on results of previous genetic studies of complex traits. In 

particular, results of genome-wide association (GWA) studies and previous linkage studies 

provide information on the range of causal variant risk allele frequencies (RAF) and effect sizes 

(genotype relative risk, or GRR) that might underlie common GWA signals and might, more 

broadly, exist in a given genomic region. In this study, we use power calculations to evaluate the 

range of models that would result in little evidence for linkage in a linkage scan (a typical 

finding) and different degrees of evidence for association at genotyped markers in an association 

study, assuming a multiplicative model of disease risk. We find that prior negative linkage or 

association results can help to restrict the plausible range of GRR, and significant evidence for 

association can reduce the plausible ranges of both GRR and RAF given little or no evidence for 

linkage in the corresponding region. We apply our approach to large-scale linkage and GWA 

meta-analyses for type 2 diabetes, and suggest ranges of plausible models for 15 loci identified 

as genome-wide significant. 
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4.1 Introduction 

 

GWA studies allow investigators to test for disease or trait association with common single 

nucleotide polymorphisms (SNPs) throughout the human genome. For common variants (say 

minor allele frequency (MAF) >.05), today's commercial GWA platforms typically cover 80-90% 

of known common genetic variants when combined with genotype imputation [Li and Abecasis, 

2006; Browning and Browning, 2007; Marchini et al., 2007; Purcell et al., 2007]. In recent years, 

GWA studies have been conducted for many complex diseases or traits [Altshuler et al., 2008; 

Manolio et al., 2008, Hindroff et al., 2009, and http://www.genome.gov/gwastudies/]. For many 

diseases or traits, such as type 2 diabetes, large numbers of significant disease-SNP associations 

have been reported [Scott et al., 2007; Saxena et al., 2007; Zeggini et al., 2007, Zeggini et al., 

2008] while for some others, such as bipolar disorder, fewer significant associations have been 

identified [Sklar et al., 2008; Scott et al., 2009]. For most diseases and traits, the combined 

effects of associated SNPs explain only a small proportion of the genetic variation [Manolio et 

al., 2009]. Explaining this "missing heritability" remains an important challenge. 

 

Results to date suggest that most common complex traits associated variants have modest 

effect. Other types of genetic variants including rare (MAF < .005) and less common (.005 < 

MAF <.05) polymorphisms have not yet been studied extensively and may be associated with 

larger effects. With the recent advances in sequencing technology, it has become feasible to 

identify and genotype these variants in individual genomes. While many re-sequencing studies 

are being undertaken, our understanding of the contribution of rare variants to complex diseases 

remains limited. 
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Most linkage analyses of complex diseases have reported limited evidence for linkage, and 

even in studies with positive linkage results, most of the genome provides no evidence for 

linkage. These negative linkage results may limit the range of plausible effect sizes for disease 

predisposing variants. Rare or less common variants may in principle be responsible for some of 

the significant evidence for association observed in GWA studies through linkage disequilibrium 

(LD). Evidence for association or lack of such evidence in a region of interest could also reduce 

the set of plausible models, particularly if we assume high LD (e.g., D’ = 1) between causal and 

genotyped variants. 

 

In this chapter, we seek to identify the range of genetic models for rare or less common 

variants, parameterized in terms of genotype relative risk (GRR) and risk allele frequency (RAF), 

and consider the following scenarios: 

1) Little or no evidence for linkage; 

2) Significant evidence for association; 

3) Little or no evidence for association; 

4) Significant association, but little or no evidence for linkage; 

5) Little or no evidence for either linkage or association. 

To do so, we calculate the power to detect linkage and association analytically for given genetic 

models and sample sizes. We then summarize the ranges of models that appear consistent with 

results from linkage and/or association studies, as listed above in 1) - 5).  

Our results show that for scenarios 1, 3, and 5), all RAFs are in principle plausible, but the 

effect sizes (GRR) of causal variants are bounded. For scenario 2 and 4), causal variants with 
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small RAF can be identified as implausible, assuming high LD (D'=1) between the causal and 

genotyped variants. For 15 T2D loci identified through large scale GWA and meta-analysis 

[Scott et al., 2007; Zeggini et al., 2008], taking advantage of linkage results from a large linkage 

study [Guan et al., 2008] allows us to identify association signals that are unlikely to be 

explained by rare or less common variants and suggest ranges of allele frequencies and effect 

sizes for all these signals. 

 

4.2 Methods 

 

To understand the genetic architecture underlying a complex disease, we seek to obtain a set 

of models parameterized by the genotype relative risk (GRRC) and risk allele frequency (RAFC) 

of a causal variant (C) which are plausible given prior results from linkage and association, 

usually GWA, studies. Specifically, we consider the situation of a prior affected sib pair (ASP) 

linkage study, and/or a case-control association study. We assume a multiplicative model for 

disease penetrance [Risch, 1990a] and a dense set of linkage markers so that IBD can be 

observed for the ASPs, and initially assume a standardized LD coefficient D'=1 between the 

causal SNP C and a nearby genotyped SNP M, and disease prevalence 10%. We restrict GRRC to 

be smaller than 10, because for a disease with 10% prevalence, GRRC > 10 suggests that 

genotype with 1 or 2 rare or less common risk alleles are fully penetrant, which is unlikely for 

complex diseases. 

 

4.2.1 Power to detect linkage using ASP test 
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Given a sufficiently dense panel of genotyped markers, we assume that identity-by-state 

(IBD) sharing between siblings is known throughout genome. Let Ni be the number of ASPs 

sharing i alleles IBD. Under the null hypothesis of no linkage, the number of alleles shared IBD 

at a specific locus between N affected sibs is distributed as binomial on 2N trials with probability 

of success 0.5. We calculate the maximum LOD score (MLS) [Risch, 1990b] as: 
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Assuming a multiplicative model, the power to detect linkage using ASPs depends on the 

locus-specific relative risks, λ1R, for relatives of type R (Risch, 1990b). Specifically, under the 

alternative hypothesis, N1 + 2N2 is distributed as binomial(2n, .5z1+z2), where zi = P(IBD=i | 

ASP), and 
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where O = parent-offspring pair, M = monozygote (MZ) twins, and S = sibling pair. The three 

types of relative risk, λ1O, λ1M and λ1S, are all functions of GRRC and RAFC. 

 

We calculate power to detect linkage for studies of 500, 1000, and 5000 ASPs. For the causal 

variant C, we assume RAFC in range of .001 to .05, but the calculation can be generalized to 

more common frequencies. Given RAFC, we determine the value of GRRC that leads to 95% 

power to detect linkage with specific MLS cut-off using the false position method [Press et al., 

1992], a computer algorithm for root finding. We report results for MLS cut-off values of .05 and 
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1, representing essentially no evidence for linkage or modest evidence, respectively. 

 

4.2.2 Power to detect association at genotyped variant that is in high LD with causal 

variant 

 

We assume a GWA study of common variants with equal numbers (n) of cases and controls. 

Let C be a causal variant, which is in high LD (D’ = 1) with a genotyped variant M in the GWA 

study. Denote the risk allele frequency at M as RAFM and genotypes at C and M as gC and gM, 

respectively. Given RAFC, RAFM, and D’, we calculate the conditional probability of genotypes, 

P(gC | gM). For specific genetic model and disease prevalence, we can then compute the 

penetrance of gM: 

( ) ( ) ( ) ( ) ( )| | , | |
C C

M M C C M C C
g g

P Y g P Y g g P g g P Y g P g g= =∑ ∑ | M  

and genetic relative risk at M, GRRM. Note that we bound the penetrance, P(Y | gC), at 1 in our 

calculation, when the assumed GRRC is large. 

 

We test for disease association at M using the Cochran-Armitage trend test. The power of the 

trend test can be calculated at a specific significance level α, by estimating the variance of test 

statistic under the alternative hypothesis [Freidlin et al., 2002]. 

 

We consider GWA studies with n = 1000, 10000, and 50000 cases and the same number of 

controls. For causal variant C and genotyped variant M, we assume RAFC and RAFM in range 

of .001 to .05, and .05 to .95, respectively. Given RAFC and RAFM, we estimate the value of 

GRRC that leads to 5% or 95% power to detect association. We focus on significance level 
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5×10-8, representing genome-wide significant evidence for association in a GWA studies, or 10-4 

representing no strong significance evidence for association in a GWA study. 

 

4.2.3 D'=1 assumption and 1000 Genomes Project data 

 

The 1000 Genomes Project (http://www.1000genomes.org/) is an international research effort 

to catalog human genetic variation. As of March, 2010, 56 European samples have been 

sequenced at ~4X coverage as part of the first pilot project. To assess the plausibility of our 

assumption of the existence of a marker M in strong LD (D'=1) with the causal variant C, we 

evaluate the values of D’ between less common variants identified in the 1000 Genomes Project 

and common variants that are likely genotyped or imputed in GWA studies. Specifically, we 

evaluate D’ between variants of frequency .01 to .03 (2 or 3 copies of the rarer allele in the 56 

1000-Genomes samples) and common variants (MAF > 5%) genotyped in Phase 2 of the 

International HapMap Project (http://www.hapmap.org/). We limit our attention to common 

variants within a 1500-SNP window (approximately ~500 kb) of each less common variant. To 

reduce the computational load, we further limit our analysis to chromosome 1. 

 

4.2.4 Application to type 2 diabetes (T2D)  

 

To illustrate how existing linkage and GWA studies could provide information on rare or less 

common variants underlying complex diseases, we use type 2 diabetes as an example. We carried 

out a joint linkage analysis of 23 individual studies as part of the International Type 2 Diabetes 

Linkage Analysis Consortium [Guan et al., 2008, Nancy Cox, personal communication], with a 
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combined sample of 9,455 affected individuals and the equivalent of ~6500 ASPs, using the 

approximation that m affected siblings correspond to m-1 ASPs [Hodge 1984]. No genome-wide 

significant linkage result was found, and the largest MLS is approximately 1.7. Two 

meta-analyses of T2D GWA results [Scott et al., 2007; Zeggini et al., 2008] identified 15 

T2D-associated loci (Table 4.1), using total samples of up to 14586 cases and 17968 controls and 

28645 cases and 39397 controls with multiple-stage study designs, respectively, approximately 

equivalent in information to case/control samples of n ~ 16000 and ~32000, respectively. To 

estimate genetic models consistent with these results, we calculate power to detect linkage using 

6500 ASPs and to detect association using n cases and n controls, where n corresponds to the 

sample size of GWA at each locus. In addition, we use the observed association p-values from 

the corresponding GWA as significance level α, and observed MLS scores from the linkage study 

as MLS cut-off for power calculation at each locus. 

 

4.3 Results 

 

Here we address the range of plausible model parameters (RAFC and GRRC) for rare or less 

common variants (MAF < .05), assuming a multiplicative genetic model for a genomic region 

and given results from prior linkage and/or association studies. To do so, we compute the power 

to detect linkage and/or association as a function of genetic model, for the five scenarios listed in 

“Introduction”. To initially explore the plausible models, we assume a single causal variant C in 

a region of interest which is in D’=1 with the genotyped variant M. 

 

4.3.1 Range of plausible models given no evidence for linkage 
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Linkage studies generally reveal little or no evidence for linkage for most of the genome, and 

in the case of complex diseases, often all of the genome. We explore the range of genetic model 

parameters consistent with this observation. Figure 4.1 displays values for GRRC that result in 95% 

power to detect at least modest evidence for linkage (MLS > 1) given analysis of N = 500 to 

5000 ASPs as a function of RAFC. Assuming a causal variant exist in such region, models (RAFC, 

GRRC) above the lines have high probability (p > 95%) of being detected by linkage at MLS > 1 

given N ASPs, and therefore are unlikely in regions in which MLS < 1. For example, given N = 

5000 ASPs, causal variants with RAFC = .01 or .05 have ≥95% power to achieve MLS>1 if 

GRRC > 3.9, or 2.4, respectively, suggesting these models are unlikely given no evidence for 

linkage in the region. As expected, larger linkage studies with little or no evidence for linkage 

(MLS < 1) result in a more extensive set of implausible models than do smaller studies. 

 

Although in Figure 4.1, all models under the lines are mathematically consistent with little or 

no evidence for linkage, some of these models may still be questionable given our knowledge of 

complex diseases. For example, when RAFC = .001, the power calculation suggests that a single 

variant with GRRC ~ 9.9 may not be identified in a linkage study using 5000 ASPs. However, for 

a complex disease with population prevalence of 10%, such high GRRC implies that any 

genotype carrying at least one risk allele has penetrance close to 1, unlikely for a complex 

disease. 

 

4.3.2 Range of plausible models given significant evidence for GWA association 

 

66 
 



Significant associations have been reported for many common diseases/traits 

(http://www.genome.gov/gwastudies/). We explore the range of models that could explain these 

findings by single rare or less common causal variants. Figure 4.2 shows values of GRRC that 

lead to 5% power to detect association (p < 5×10-8) at M with RAFM = .05-.95, assuming a study 

of n cases and n controls (n = 1000 to 50000). The models below the lines have low probability 

(< 5%) to achieve significant association (p < 5×10-8) for a genotyped marker M in high LD 

(D'=1) with the causal variant C. For a given RAFC, significant associations are more likely to be 

observed at genotyped variants M with low RAFM. For example, when n = 10000, RAFC = .01 

and GRRC = 3.9, a significant association at M that can be explained by C would require RAFM 

< .4. Note that due to the “winner’s curse”, GRRM may be overestimated (particularly for 

markers where the association test p-value is close to significance thresholds) that results in an 

excessively narrow estimate for bound of RAFM (See “Discussion”). 

 

Not surprisingly, Figure 4.2 also shows that significant evidence for association observed in a 

smaller scale GWA study leads to a more limited set of plausible models than does the same 

association evidence in a larger study. In addition, given fixed GRRC and RAFM, variants with 

RAFC ~ .01-.05 are more likely than those with RAFC ~ .001-.005, to be detected via GWA. 

 

4.3.3 Range of plausible models given no evidence for GWA association 

 

Over most of the genome, little or no evidence for association is observed in a GWA study 

(say p > 10-4). Figure 4.3 shows values of GRRC that lead to 95% power to detect association (at 

p < 10-4) at genotyped variant M, for given RAFC and sample size. Compared to Figure 4.2, we 
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have changed the power cut-off from .05 to .95 and the significance threshold from 5 x 10-8 to 

10-4, the combination of which yields similar curves. Assuming a single causal variant exists in 

such region with no SNP showing association p-value < 10-4, and the causal variant is in D’=1 

with the genotyped GWA variants, the models above the lines are unlikely for a rare or less 

common causal variant C given little or no evidence for association in GWA. For example, when 

n = 10000, RAFC = .01 and RAFM = .2, causal variants with GRRC > 3.6 are unlikely to be 

present in regions with little or no evidence (p > 10-4) for association. 

 

4.3.4 Range of plausible models given evidence for association but not for linkage 

 

For complex diseases for which linkage and association scans have been carried out, we 

expect no or limited evidence for linkage (MLS < 1) in most regions of the genome. In some 

such regions, there will be genome-wide significant association results (p < 5×10-8). Figure 4.4 

shows results for this scenario, specifically, values of GRRC that lead to 5% power to detect 

association (p < 5×10-8) at genotyped variant M or 95% power to detect linkage (MLS < 1), for 

given RAFC and sample size. The models above the line for association and below the line for 

linkage, for specific sample size, are consistent with strong evidence for evidence but little 

evidence for linkage in the corresponding region. For example, a significant association (p ~ 

5×10-8) observed at M with RAFM = .5 in a GWA study (n = 10000) would require RAFC > .015, 

given no linkage signal of MLS > 1 using 5000 ASPs. 

 

For a causal variant C with specific RAFC, it is interesting to find the maximum RAFM, for 

which significant association at M could be explained by C in D'=1, conditional on MLS < 1. 
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Table 4.2 gives the upper bounds of RAFM for GWA studies with n = 1000 to 50000, given 

negative linkage results using N = 500 to 5000 ASPs. The lower the RAFC, the lower the upper 

bound on RAFM that is consistent with the lack of linkage and presence of GWA association 

results. For example, in regions where MLS < 1 in a linkage study using 5000 ASPs, significant 

associations at M with RAFM ≤ .25 using 50000 cases and 50000 controls could be consistent 

with underlying C with RAFC = .001. Again, RAFM in Table 4.2 could be overestimated due to 

“winner’s curse” (see “Discussion”). 

 

4.3.5 Range of plausible models given no evidence for association or linkage 

 

Most of the genome typically shows little or no evidence for association (p > 10-4) or linkage 

(MLS < 1). In these regions, we again combine information from linkage and GWA studies to 

infer the set of plausible models. Figure 4.5 shows GRRC that lead to 95% power to detect 

association (p < 10-4) at genotyped variant M or 95% power to detect linkage (MLS < 1), for 

given RAFC and sample size. Assuming a single causal variant C is present in the region of 

interest, the models below both the linkage and association lines are consistent with no evidence 

for linkage and association. For example, lack of evidence for linkage (MLS < 1, N = 5000) and 

no significant association observed at any M with RAFM < .3 (p > 10-4, n = 10000) suggest that 

GRRC < 2.9 for C with RAFC = .01, assuming C is present in the region and in high LD (D'=1) 

with M. 

 

4.3.6 D' for common and less common variants in the 1000 Genomes Data 
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In our analyses, we have assumed D'=1 between the causal variant C and the GWA 

genotyped variant M. To explore the validity of this assumption, we used sequencing data on 54 

European subjects currently available from the 1000 Genomes Project 

(http://www.1000genomes.org/). Specifically, we calculated D' between less common SNPs (.01 

< MAF < .03) and common SNPs (MAF > .05) that are also present in HapMap Phase 2 

(HapMap2) data (http://hapmap.ncbi.nlm.nih.gov/) (Figure 6) to mirror the imputation and 

testing of HapMap SNPs in published GWA studies. On chromosome 1, there are 80,408 less 

common SNPs and 173,964 common HapMap2 SNPs. Among the less common SNPs, 79,676 

(99.1%) are within ~500kb of at least one common HapMap2 SNP, and the majority of these 

SNP pairs (~72%) have standardized LD coefficient D’ 1. This suggests that less common SNPs 

are very likely to be in high LD with common HapMap2 SNPs. 

 

There could be multiple common HapMap2 SNPs in high LD with a single less common 

SNP. We examine the common SNPs that would be more likely to be identified (i.e., higher D’ 

and smaller RAFM) in GWA, if the less common SNPs were causal. Specifically, for each less 

common SNP, we identify the best pairing SNP that has the highest value of D’ and smallest 

pairing allele frequency (PAF). Figure 6b shows that among the 79,676 less common SNPs on 

chromosome 1, ~53%, 31%, and 10% SNPs have a best pairing SNP with PAF in .05-.1, .1-.2, 

and .2-.3, respectively. This suggests that, if we genotype or impute all common HapMap2 SNPs 

with high accuracy in a GWA study, most of the less common SNPs (~94%) will be in D'=1 with 

at least one common SNP with PAF < .3 (but see “Discussion”).  

 

4.3.7 Example: type 2 diabetes (T2D) 
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Many linkage and association studies have been carried out for type 2 diabetes. A linkage 

meta-analysis using ~6500 ASPs [Guan et al., 2008; Nancy Cox, personal communication] did 

not find genome-wide significant evidence for linkage (no MLS > 3), while two GWA-based 

meta-analysis [Scott et al., 2007, Zeggini et al., 2008] using total samples approximately 

equivalent to 16000/16000 and 32000/32,000 cases/controls reported SNPs in 15 genomic 

regions significant at p < 5×10-8 (Table 4.1). For these T2D-associated loci, we use the 

corresponding GWA sample size at each locus to find the range of plausible RAFC. Signals with 

less frequent risk alleles (CDC123 and TSPAN8) could plausibly be explained by a wide range 

RAFC that may require sequencing studies to pinpoint the causal variants. For other associated 

SNPs, the associations are unlikely to be explained by a single causal variant with RAFC < .01, 

and for two (CDKN2A/B and THADA), RAFC would need to be larger (> .05). In these regions, a 

GWA study with dense marker set (say, a good coverage for SNPs with MAF > .01) might well 

be sufficient to insure that the causal variant would be genotyped. 

 

4.4 Discussion 

 

In this paper, we have sought to determine the range of genetic models consistent with 

existing linkage and/or GWAS results, focusing on less common and rare variants. Specifically, 

we examine the range of plausible models assuming weak or no evidence for linkage, in regions 

with or without strong evidence of association from GWA studies. Our results show that, under 

the assumption of a single causal variant in the region of interest, little or no evidence for either 

linkage or association restricts the likely magnitude of GRRC, although all RAFC in the range we 
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consider (.001 - .05) are possible. Combining results of linkage and GWA can substantially 

reduce the set of plausible models. In loci with significant evidence for association, negative 

results in a linkage study typically makes unlikely causal variants with small risk allele 

frequencies (say RAFC < .01), especially when the association is detected with a marker M with 

high RAFM. 

 

We applied our approach to explore plausible models for type 2 diabetes (T2D). Given the 

linkage results from a combined study with equivalent sample size of ~6500 ASPs, we estimated 

the range of plausible models for T2D-associated loci reported in two GWA meta-analyses. Our 

results suggest that several association signals can only be explained by relatively common 

causal variants (RAFC > .01), while other signals are consistent with a wide range of RAFC and 

GRRC. 

 

Our analyses show that for a fixed D’ value with the same rare or less common causal variant 

C, a genotyped variant M with low RAFM will have higher power to be identified in association 

test than variant with high RAFM. However, we do not observe excess number of T2D-associated 

SNPs with .1 < RAFM <.3 compared to .3 < RAFM < .9, a range in which GWA study well suited 

to detect. This suggests that common causal variants are likely to underlie at least some of the 

T2D signals. 

 

In our analysis, we assume a single causal variant that is in high LD with genotyped variant 

M. When multiple causal variants are present within a short region, multiple risk alleles could lie 

on the same haplotype with a specific ("risk") allele of M and therefore increase the effective 
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value of RAFC. However, Dickson et al. [2010] showed, through a computer simulation of 

genealogical trees, that when a large number of causal variants (say ≥ 5) exist, the risk alleles are 

likely to be distributed on different haplotypes with "risk" allele of M, which leads to decreased 

power to detect association at M, compared to that with a smaller number of variants. In contrast 

to tests of association, linkage analysis tests the co-transmission of risk allele and genotyped 

marker, and we would see increased effective value of RAFC when multiple causal variants exist 

in the region of interest. If each individual variant considered has the same frequency, when 

RAFC is increased due to the presence of multiple causal variants, the plausible range of genetic 

model will become wider compared to our results based on single-variant assumption. 

 

Another assumption we make when assessing the results of association is that the causal 

variant C and the genotyped variant M have a standardized LD coefficient D' = 1. We examined 

sequence data on 54 individuals currently sequenced as part of the 1000 Genomes Project. We 

find that among 80,408 less common SNPs (.01 < MAF < .03) on chromosome 1,>94% have at 

least one pairing common SNP (MAF > .05) in D’ = 1 with pairing allele frequency (PAF) < .3, 

so the assumption of D’ = 1 is likely true for a large proportion of the identified less common 

SNPs. However, the current 1000 Genomes Project has a relatively small sample size, which will 

have resulted in an overestimate of D', for example in Figure 4.6(a). In Figure 4.6(b), we 

estimate D’ between the less common SNP (Cr) and best pairing SNP (Mp) that has the lowest 

PAF. When most of PAFs are small, as suggested in this figure, the overestimation is likely to be 

less severe. For example, when PAF = .1, the chance of two minor alleles of Cr sharing a 

haplotype with the same pairing allele of Mp is only 10%×10% = 1%, if the two minor alleles of 

Cr are randomly assigned. But in Figure 4.6(b), we observed ~53% best pairing alleles with PAF 
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< .1, much greater than 1% due to randomness. As more sequencing data becomes available, we 

will obtain more accurate estimate for the distribution of D' between less common and common 

variants. For a given allele frequency, if the best pairing SNP has D' < 1, significant associations 

in GWA studies would require higher RAFC and/or GRRC to be consistent models. In contrast, 

negative association results would correspond to a wider range of models than our current 

conclusion. For example, 1000 Genomes Project data show that ~0.9% of less common variants 

(.01 < MAF < .03) on chromosome 1 have D' = 0 with all common HapMap2 SNP in a ~500 kb 

window. We will obtain no information for such variants given current GWA results. 

 

When we explore the plausible range of models based on significant GWA results, the 

estimated RAFC and/or GRRC are conditional on the association tests passing a given p-value 

cut-off. Particularly if analyses result in p-values just beyond these cutoffs, the resulting effect 

size estimates are likely to be inflated due to the “winner’s curse”. To address this issue will 

require a fully specified formulation for the distribution of genetic models and the probability of 

observing significant association given models, similar to that of Xiao and Boehnke [2009]. 

 

For significant evidence of association (scenarios 2 and 4), we used a power value of 5% to 

estimate the plausible range of models. Because there almost certainly exist many causal variants 

across the genome, many of these of very modest effect, associations may often be detected even 

for low power models. Whether 5% power is sufficiently low for a definition of plausible models 

is therefore uncertain. Choosing a lower power value (say, 1%) rather than 5% will of course 

result in a wider range of plausible models. 
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In our analyses here, we assume the minor allele of variant C, denoted by A, is causal. When 

RAFC is small (say < .01), C is relatively unlikely to be consistent with significant association 

result at genotyped variant M that has large risk allele frequency (say RAFM > .5). However, if 

allele A is protective rather than causal, it will appear more in the controls than in the cases in a 

GWA study. The allele at M that does not share the same haplotype with A will appear to be the 

causal allele in association test, and can have a large RAFM. 

 

The set of plausible models depends on sample size. Evidence for linkage or association 

based on small samples more strongly restricts the range of plausible disease models (increased 

lower bound for RAFC and decreased upper bound for GRRC) than evidence based on large 

samples. Similarly, evidence against linkage or association based on large samples more strongly 

restricts the range of plausible models. In particular, as we carry out association studies based on 

increasingly large samples, our ability to restrict the range of models for newly detected loci will 

decrease. 

 

In our analysis of negative linkage results, we calculate the power of the ASP test. In fact, 

many linkage studies collected nuclear families or larger pedigrees. Given the same number of 

samples, larger families often provide higher power to detect linkage than ASPs. The set of 

plausible models therefore might be reduced given little or no evidence for linkage in a similar 

sized study. Our work could be extended to calculate power for linkage based on the equivalent 

number of fully informative meioses [Edwards, 1988]. 

 

For linkage analysis, we assume IBD sharing between affected siblings is known. We 
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therefore ignore the uncertainty during IBD estimation, especially when the set of markers is not 

sufficiently dense. This estimation uncertainty reduces the power to detect linkage, and therefore 

raises the upper bound of plausible GRRC than our current estimation. We also assume a 

multiplicative model [Risch, 1990a] for disease penetrance, which allows us to focus on 

locus-specific GRRC and RAFC when calculating power to detect linkage. Impact of this 

modeling assumption needs to be further explored. 

 

Exploring genetic architecture underlying complex diseases/traits is of great interest to 

researchers. Purcell et al. [2009] used a score analysis and simulations to estimate the consistent 

models for the entire genome, specifically a combination of large numbers of common and rare 

causal variants, which could explain the observed association results in a GWA study of 

schizophrenia and the disease heritability. Their results suggested that rare or less common 

causal variants cannot be the sole source to explain genetic variation observed in schizophrenia. 

Dickson et al. [2010] studied the genetic architecture of rare or less common variants (.005 < 

MAF < .02) through simulations of genealogical trees, and showed that common variants 

identified in GWA studies could have been caused by multiple rare variants in high LD. Both of 

these studies mainly focused on the results from GWA studies. Purcell et al. [2009] did not use 

information provided by linkage analysis, while Dickson et al. [2010] used knowledge of linkage 

result to impose a general upper bound for GRRC, specifically, GRRC < 6, for all causal variants 

in their simulations. 

 

To determine if disease etiology is due to rare or less common variant, our ideal goal would 

be to estimate the probability of genetic models given results from GWA and/or linkage studies, 
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say P(model | data). In this paper, we calculate the power to detect association and/or linkage for 

assumed genetic models, i.e., P(data | model), and use it as proxy to study P(model | data). To 

achieve this goal, we would need to examine the marginal distribution of models, i.e., P(model). 

Our knowledge about genetic models is still limited, but more information will be available over 

time as we learn more about the effect sizes and allelic spectrum of less common and rare causal 

variants. 

 

In summary, we estimate ranges of plausible genetic models based on results from GWA 

and/or linkage studies for complex diseases. Given negative linkage or association results for a 

region of interest, we show that the effect size of rare or less common variants can be bounded, 

assuming such variants exist. Presence of both significant association and negative linkage 

results can further exclude genetic models for causal variants with small frequency. Our results 

may serve as a starting point for modeling genetic architecture of complex diseases as more 

information on disease etiology becomes available in the near future. The knowledge of plausible 

genetic models for a given region may allow more efficient design of sequencing studies to 

identify causal variants. 
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Table 4.1 T2D susceptibility loci reported in two GWA meta-analyses [Scott et al., 2007; Zeggini 
et al., 2008]. The value of RAFC is an approximate lower bound, for which there is 5% power to 
detect association at observed p-value at M in a GWA study of corresponding sample size, and 
95% power to detect linkage at observed MLS value using 6500 ASPs. 
Nearby gene(s) RAFM OR p MLS Minimum 

RAFC 
GRRC

†

CDC123, CAMK1D 0.18 1.11 1.20×10-10 0.0 .004 3.90 
TCF7L2 0.18 1.34 1.30×10-08 1.0 .019 2.95 
TSPAN8, LGR5 0.27 1.09 1.10×10-09 0.5 .004 4.51 
IGF2BP2 0.30 1.14 8.90×10-16 0.3 .018 2.72 
CDKAL1 0.36 1.12 4.10×10-11 0.0 .019 2.44 
FTO 0.38 1.17 1.30×10-12 1.5 .013 3.43 
KCNJ11 0.46 1.14 6.70×10-11 0.0 .027 2.23 
JAZF1 0.50 1.10 5.00×10-14 1.6 .012 3.56 
HHEX 0.52 1.13 5.70×10-10 0.2 .024 2.45 
SLC30A8 0.61 1.12 5.30×10-08 1.0 .017 3.05 
NOTCH2 0.73 1.13 4.10×10-08 0.0 .026 2.26 
ADAMTS9 0.76 1.09 1.20×10-08 0.3 .025 2.50 
PPARG 0.82 1.14 1.70×10-06 0.5 .038 2.31 
CDKN2A/B 0.85 1.20 7.80×10-15 0.5 .154 1.74 
THADA 0.90 1.15 1.10×10-09 0.2 .087 1.82 
*. For MLS = 0, we use 0.05 as cut-off to calculate power to detect linkage 
§. The TCF7L2 signal and corresponding power calculation are based on a smaller GWA (Fusion 
1+2), which contains 2,376 cases and 2,432 controls.  
†. GRRC values correspond to minimum RAFC. 
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Table 4.2 An approximate upper bound of RAFM, for which genome-wide significant association 
(p < 5×10-8) at M in a GWA of n cases and n controls could be explained by a rare or less 
common variant (with given RAFC) in D'=1, conditional on no or modest linkage evidence (MLS 
< 1) using N ASPs. 

RAFC 

Linkage (N) 
500 1000 5000 

GWA (n) 
1000 10000 50000 1000 10000 50000 1000 10000 50000 

0.001 <0.05 0.18 0.53 <0.05 0.13 0.43 <0.05 <0.05 0.25 
0.005 0.09 0.53 0.85 0.06 0.43 0.79 <0.05 0.24 0.62 
0.01 0.17 0.7 0.92 0.12 0.61 0.88 0.05 0.4 0.77 
0.05 0.54 0.92 0.95 0.44 0.89 0.95 0.24 0.78 0.94 
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Figure 4.1 Genotype relative risks at causal variant C (GRRC) that result in 95% power to detect 
linkage (MLS>1). The graphs are truncated at GRRC = 10. 
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Figure 4.2 Genotype relative risks at causal variant C (GRRC) that result in 5% power to detect 
association (p < 5×10-8) at genotyped variant M using n cases and n controls. We assume disease 
prevalence 10%, and D'=1 between M and C. The graphs are truncated at GRRC = 10. 
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Figure 4.3 Genotype relative risks at causal variant C (GRRC) that result in 95% power to detect 
association (p < 10-4) at genotyped variant M using n cases and n controls. We assume disease 
prevalence 10%, and D'=1 between M and C. The graphs are truncated at GRRC = 10. 
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Figure 4.4 Genotype relative risks at causal variant C (GRRC) that result in 95% power to detect 
linkage (MLS > 1) using N ASPs and 5% power to detect association (p < 5×10-8) at genotyped 
variant M using n cases and n controls. We assume disease prevalence 10%, and D'=1 between 
M and C. The graphs are truncated at GRRC = 10. 

83 
 



 
Figure 4.5 Genotype relative risks at causal variant C (GRRC) that result in 95% power to detect 
linkage (MLS > 1) using N ASPs and 95% power to detect association (p < 10-4) at genotyped 
variant M using n cases and n controls. We assume disease prevalence 10%, and D'=1 between 
M and C. The graphs are truncated at GRRC = 10. 
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Figure 4.6 Distribution of D' between less common SNPs (.01<MAF<.03) in 1000 Genomes 
Project data and common SNP (MAF>.05) in HapMap2 on chromosome 1: (a) evaluate for all 
less common-common (HapMap) SNP pairs; (b) for each less common SNP, choose one paired 
common SNP with the highest D' and smallest allele frequency. 
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CHAPTER 5 

SUMMARY AND DISCUSSION 

 

A major goal of human genetic studies is to identify and characterize the variants that 

predispose to complex diseases or are responsible for variation of human quantitative traits. The 

basic strategy is to examine the relationship between the trait of interest and the genetic markers 

across human genome from sampled individuals. However, complex diseases may involve many 

genetic and environmental factors. Previous linkage and association studies have identified some 

but a far from complete set of the genetic variants underlying the complex diseases/traits. To 

achieve our goal, we need to employ efficient study designs, control for confounding factors 

such as environments and ethnicity, carry out powerful statistical analyses, and have good 

understanding of underlying genetic architecture. The work presented in this dissertation focuses 

on two aspects of the problems: confounding due to population stratification, and better 

understanding of genetic architecture and more efficient resequencing study design. 

 

5.1 Summary of previous chapters 

 

In Chapter 2, I presented a novel approach that can match unrelated cases and controls based 

on their genetic similarity calculated from genotypes in large-scale association studies. This 

approach takes advantage of the large amount of genetic information provided in GWA studies to 

make adequate assessment of ancestry. It is especially useful when samples are collected from 
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different geographic regions but their ethnicity information is not reported or may be inaccurate. 

I demonstrated that a carefully designed similarity score can distinguish individuals from 

different ancestry groups. Simulation results showed that with optimal matching our method can 

efficiently match individuals with similar genetic background, and therefore can achieve correct 

type 1 errors while maintaining the power to detect genetic predisposing variants in the presence 

of population substructure. I then applied our method to a GWA study of bipolar disorder. Using 

the unrelated case and control samples from this study, I showed that inflated type 1 error rates 

can be controlled when the samples were collected from two different sources. I believe that our 

approach will aid researchers in controlling for population stratification in GWA studies and 

reducing potential false positive results. 

 

Many GWA studies include not only unrelated cases and controls, but family samples. To 

address potential population stratification in such a study design, in Chapter 3 I extended our 

matching approach to general family structures. With the extended matching, I proposed a test 

statistic that takes into account correlations between family members and between matched cases 

and controls that share the same ancestry. Using simulations of genetic data from affected sibling 

pairs, I showed that this approach can control for false positive rates and maintain the power of 

the association test in the presence of family data. I applied this extended approach to our GWA 

study of bipolar disorder which includes affected siblings. This approach greatly reduces the 

inflated false positive signals observed in the original study, and can make full use of the 

available samples. This approach adds flexibility to our previous genetic similarity matching 

method, and can be applied to any type of family samples to correct for population stratification 

in GWA studies. 
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Although GWA studies have achieved great success in identifying > 600 common genetic 

variants associated with common diseases and traits [http://www.genome.gov/gwastudies/], for 

most diseases the proportion of genetic variation explained by those variants is limited. With the 

rapid advances in biotechnology, especially the recently emerging next-generation sequencing, 

geneticists now can genotype and analyze a large variety of genetic variants that cover most of 

the human genome. It is of great interest to explore the genetic architecture underlying the 

complex diseases/traits. In Chapter 4, I describe power calculations for linkage and association 

tests, and estimate the range of plausible models (GRR and RAF) for rare or less common 

variants (.001 < RAF < .05) which are consistent with the results from previous linkage and/or 

GWA studies. Our results showed that given little or no evidence for linkage or association we 

can put upper bounds on the GRRC of causal variants for a given MAFc (examined MAFc 

=.001-.05). Presence of significant association in GWA study combined with negative linkage 

results in the region of interest can reduce the plausible ranges of both GRRC and RAFC. I also 

evaluated results from a large-scale linkage study and two GWA meta-analyses for type 2 

diabetes, and suggested ranges of plausible GRRC and RAFC for 15 loci identified as 

genome-wide significant in GWA. Our findings may provide insights on the plausible models 

underlying complex diseases, and help to design more efficient genetic studies. 

 

5.2 Future work 

 

For our genetic similarity matching method, when family data are present, multiple levels of 

correlation raise challenges for appropriate analysis. Our current approach in Chapter 3 can be 
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further improved. First, we propose a chi-square test statistic to compare the allele frequency 

between cases and controls. While this test can adjust the correlations between family members 

and between matched samples sharing the same ancestry, it cannot easily incorporate other 

covariates, such as environmental factors, into the analysis. One alternative is to test the 

association using a regression-based method. For example, we may regress the genotypes on the 

affection status and other covariates, using a linear mixed model framework. We will also 

compare its power to that of the proposed chi-square test in absence of other covariates. 

Alternatively, we can consider another regression model that regresses the estimated IBD sharing 

on the trait squared sums and squared differences among all pairs of relatives, similar to that 

proposed by Sham et al. [2001]. 

 

Secondly, when we match the family data, we currently choose one individual from each 

family randomly which loses information from other family members. There can be other 

matching schemes that will make better use of the data. For example, we might compute the 

average similarity from all pair-wise scores between samples in two families, and use the average 

scores as the distance measure for matching families. We will carry out simulations to evaluate 

the potential gains on matching accuracy using the new type of scores, and the expense on 

computing pair-wise scores using all family samples. 

 

In chapter 4, we estimate the range of plausible models (GRR and RAF) for rare or less 

common variants underlying complex diseases and other human traits, given existing results 

from linkage and GWA studies. In power calculations for association tests at a genotyped variant, 

we assume that the association could be explained by a nearby single causal variant in high LD 
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(D’ = 1). Compared to the single-variant assumption, it is possible that multiple causal variants 

exist in a region of high LD. We would like to extend our analysis to the case of multiple variants, 

most likely by computer simulation. In addition, we examine the assumption of D’ = 1 between 

causal and genotyped variants using data from ongoing 1000 Genomes Project. Due to the small 

sample size currently available, we are only able to evaluate less common variants with 

MAF > .01, and may overestimate D’. As more sequencing data become available soon, we 

would like to re-run our analysis to obtain more accurate estimate for D’ and extend the analysis 

to variants with smaller frequencies. Alternatively, we could evaluate the distribution of D’ using 

computer simulations based on coalescence theory, similar to that in Dickson et al. [2010]. 

 

Ideally, we would like to calculate the probability of specific genetic model given linkage 

and/or association results. To do so, we would need knowledge about the marginal distribution of 

models, specifically, the frequency spectrum for rare or less common variants and distribution of 

GRR. It is of interest to explore different assumptions on such distributions, for example, 

uniform/exponential distribution for GRR and U-shaped distribution for RAF, and evaluate their 

impact on our conclusions. 

 

5.3 Conclusion 

 

In summary, I proposed new approach to correct for population stratification in GWA studies. 

My approach can make use of the large amounts of genotype data available in GWA studies and 

correctly match individuals with similar genetic background. With the extended version of the 

method, we can also analyze family data. I also explored the range of plausible genetic models 
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(in terms of GRR and RAF) for rare or less common variants underlying complex diseases and 

traits, which are consistent with existing GWA and/or linkage results. We hope that our findings 

will contribute to more effective design of future genetic studies, and inspire the development of 

novel statistical tools to identify disease causal variants. 
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