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Abstract  

There is overwhelming evidence that the circadian timekeeping system is 

sensitive to gonadal hormones during perinatal development and adulthood. However, 

there is a noticeable lack of research in animal models focusing on circadian rhythms 

during puberty, a developmental window of dramatic hormonal change.  This dissertation 

addresses this research gap using experiments in both fast-developing and slow-

developing rodent species (Rattus norvegicus and Octodon degus).  

 The results indicate that the circadian system continues to develop across the 

post-weaning and pubertal periods in both species in a manner that exhibits strong sex 

differences. In males, pubertal changes in activity rhythms were robust, involving a 

switch from bimodal to unimodal activity patterns as well as a 3-5 hr magnitude phase-

advance of activity rhythms relative to the environmental light-dark cycle. Pre-pubertal 

gonadectomy diminished these changes in both species, indicating that pubertal 

hormones were involved in producing the changes. Overall, females showed smaller 

circadian phase changes than males during puberty. In the degu, these sex differences 

were extreme, with female degus almost completely lacking phase changes during 

puberty. 

Results suggest that pubertal hormones could act on multiple components of the 

circadian system. For example, preliminary data from the degu suggest that a 

photosensitive rhythmic component of the central circadian oscillator (Per1) exhibits 

phase changes during puberty that parallel phase changes in behavioral rhythms. 

However, pubertal rats exhibited a reorganization of activity rhythms under constant 

conditions, independent of photic entrainment. Thus, both the photic entrainment 

pathway and downstream circadian elements may be altered during puberty.    

Taken in tandem with growing evidence from multiple species, as well as sleep 

electrophysiological studies from our own lab, it appears that the processes governing 

daily sleep and activity rhythms continue to develop far into the pubertal period in many 
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mammals. This conclusion is discussed in the context of the developmental ecology of 

these rodent species. The ramifications of these results for the wide-spread use of young 

animals by the scientific community for patch-clamp experiments of the circadian system 

are also discussed. Finally, this evidence can inform the national debate regarding 

teenage sleep patterns and high school start times. 
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Chapter 1 
 

Introduction  

 

Overview of Adolescent Sleep Patterns in Humans 

Sleep deprivation amongst adolescents is epidemic. Recent studies show that many 

American adolescents maintain schedules during the school year that result in insufficient 

and ill-timed sleep. A poll by the National Sleep Foundation found that over 45% of 

adolescents in the United States report that they obtain inadequate sleep, defined as 8 

hours on school nights (National Sleep Foundation 2000). Similar trends have been 

observed in other modern societies, including Korea, Brazil, and Italy (Andrade and 

Menna Barreto 2002; Giannotti and Cortesi 2002; Yang, Kim, Patel, and Lee 2005). In 

Iceland over 70% of individuals between the ages of 16-21 reported frequent daytime 

sleepiness (Thorleifsdottir et al. 2002). Not surprisingly, the prevalence of the 

phenomenon may cause problems in identifying sleep disorders and appropriate 

treatments in the adolescent age group since symptom criteria were generated from 

clinical studies of adult patients with such instruments as the Epworth Sleepiness Scale 

(Johns 1991). Such findings also suggest a novel etiology for the stereotypical “teenage” 

traits of mood lability, impulsivity, and irritability.  

At the root of this chronic sleep deprivation is the adolescent tendency to stay up late. 

Many studies indicate that teenagers maintain later bedtimes than younger adolescents, 

even when wake times are constrained by school or work (Figure 1.1; Crowley, Acebo 

and Carskadon 2007; Thorleifsdottir et al. 2002). The delayed timing of sleep has been 

attributed to many external influences, ranging from evening work schedules and 

increased academic responsibilities to late night television and social opportunities 

(Carskadon, Mancuso, and Rosekind 1989; Manber et al. 1995; Van Den Bulk 2004). 

Current evidence demonstrates, however, that social factors do not completely account 
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for the adolescent shift towards a “night-owl” behavior, otherwise known as an evening 

chronotype. 

The developmental timing of the adolescent transition into a more evening 

chronotype suggests physiological underpinnings. Girls begin to show a delay in the 

timing of sleep one year earlier than boys, paralleling their younger pubertal onset. 

Similarly, girls show maximum delay at the age of 19.5 years, and boys show maximum 

delay later at 20.9 years (Roenneberg et al. 2004). The magnitude of this delay also 

exhibits sex differences (Figure 1.2; Roenneberg et al. 2004). In other cultures, similar 

developmental timing is observed, although the peak delay may occur as early as 15-16 

years of age (Crowley, Acebo and Carskadon 2007; Russo et al. 2007; Thorleifsdottir et 

al. 2002; Yang, Kim, Patel, and Lee 2005). Most important, a delay in the timing of sleep 

during the second decade of life has been observed in over 16 countries on 6 continents, 

in cultures ranging from pre-industrial to modern (as reviewed in Carskadon 2008). 

Although most studies have been cross-sectional, retrospective longitudinal measures 

also indicate that the timing of sleep is delayed during adolescent development 

(Roenneberg et al. 2004). 

Adolescents continue to show a delayed circadian (or “internal clock”) phase as 

indicated by daily endocrine rhythms even after several weeks of regulated schedules that 

allow for sufficient sleep. This delay is maintained under controlled laboratory conditions 

in which there is limited possibility for social influence (Carskadon, Acebo, and Jenni 

2004; Carskadon et al. 1997).  Moreover, both home-based and laboratory studies of 

adolescents show that delayed circadian phase correlates with secondary-sex 

development (Carskadon, Acebo, and Jenni 2004; Carskadon et al. 1997; Carskadon, 

Viera, and Acebo 1993; Sadeh et al. 2009). This correlation holds true for subjective 

ratings of chronotype and puberty even when grade level in school is held constant 

(Carskadon, Viera, and Acebo 1993). If we assume that teenagers attending the same 

grade in school are exposed to a similar social environment, this evidence suggests that a 

biological component drives adolescent changes in sleep patterns.   

 

Physiological Determinants of the Timing of Sleep and Activity 



 

3 
 

Traditionally, the timing of sleep is thought to derive from three primary 

components: an endogenous circadian timing system, a homeostatic drive, and other 

external constraints (this is often referred to as masking). The homeostatic drive for sleep, 

or “sleep pressure,” increases with the duration of waking and dissipates during sleep. In 

humans, the circadian timing system promotes wakefulness in the evening, and promotes 

sleep in the early morning (Achermann and Borbely 2003). These circadian rhythms are 

generated endogenously by a pacemaker in the suprachiasmatic nucleus (SCN) of the 

hypothalamus (Ralph et al. 1990). Under normal conditions, the endogenous circadian 

rhythm must be regularly entrained by external time cues (such as sunlight) to maintain a 

stable phase relationship with the outside world (Roenneberg, Daan, and Merrow 2003).  

The Carskadon laboratory developed a model of delayed sleep phase during 

adolescence that incorporates developmental changes in homeostatic drive and circadian 

timing (Carskadon 2008). According to this model, human adolescents develop a 

resistance to sleep pressure that permits them to stay up later. At the same time, their 

circadian phase becomes relatively delayed, which provides them with a drive to stay 

awake later in the evening and to sleep later in the morning (Carskadon 2008).   There is 

evidence from human adolescents supporting both components of this model. Sleep 

electrophysiology studies indicate that more mature adolescents are able to tolerate 

somewhat longer waking episodes than pre-pubertal adolescents (Jenni, Achermann, and 

Carskadon 2005; Taylor et al. 2005), though the similarity in dissipation rates indicates 

that the sleep recovery process is developmentally stable (Jenni, Van Reen, and 

Carskadon 2005).  The circadian timekeeping system also appears to have a delayed 

phase in human adolescents, as measured indirectly by using daily rhythms in the 

hormone melatonin (Carskadon, Acebo, and Jenni 2004; Crowley et al. 2006). The 

circadian pacemaker closely times the nightly onset of pineal melatonin production, and 

this onset is relatively unaffected by activity levels or sleep deprivation (Dewy and Sack 

1989).  Thus, the phasing of plasma or saliva melatonin rhythms can be used as a proxy 

for the phasing of the circadian pacemaker.  

These results are provocative, but their interpretation is limited by several factors. 

First, most of the data come from cross-sectional studies, due to the difficult and 

intensive nature of conducting longitudinal studies in humans. Therefore, there remains a 
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possibility for cohort effects. Also, there is a limited degree of experimental control that 

can be ethically exerted over adolescents. This is important, because any age-related 

differences in the behavior of the adolescent subjects regarding daily light exposure 

before they arrive in the laboratory (e.g,. regular evening exposure to bright florescent 

lights while studying or working a part-time job) could have long-lasting effects on 

circadian data collection because the phase of the endogenous circadian pacemaker is 

slowly entrained by regular exposure to environmental time cues.  Finally, these studies 

necessarily relied on peripheral indicators of circadian pacemaker phasing in the brain.  

  The experiments presented in this dissertation were originally conceived to 

complement the human literature and to address some of its limitations by using animal 

models. Specifically, we focused on pubertal changes in the circadian timekeeping 

system because of its already well-known sensitivity to gonadal hormones. Presented 

elsewhere are animal studies on pubertal changes in sleep homeostasis that were 

conducted simultaneously in our laboratory (for more detail, see Perryman 2010).  

 

Introduction to Circadian Rhythms 

 Evolutionarily, circadian timekeeping is very old. Some of the very first 

organisms on earth, the cyanobacteria, are thought to have developed circadian rhythms 

in order to protect their DNA from UV light during replication and to allow efficient 

photosynthesis.  As life diversified and multiplied, there was a constant competition for 

existence. Species made ever more sophisticated use of their time-keeping capabilities to 

adapt to a specific temporal niche (or chronotype).  The timing of hunting, breeding, and 

hatching became just as important as their location. Plants timed their blooms to match 

the presence of pollinators, and pollinators adapted activity so as to seek out particular 

flower-types (DeCoursey 2004). 

 As organisms became more complex, the body’s internal clock also became a 

mechanism that could coordinate activity in tissues in disparate locations, and regulate 

such essential functions as cell division, hormone release, growth, metabolism, and 

reproduction (Kennaway 2005; Sahar and Sassone-Corsi 2009; Turek and Van Cauter 

1994).  Even on the cellular level, circadian rhythms now coordinate and organize a 

remarkable variety of rhythmic processes.  For example, within one microarray study of 
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the mouse liver, over 8% of the transcriptome was found to be rhythmically expressed.  

Similar percentages have been found in other mammalian tissues, ranging from 

connective tissue to the liver (Akhtar et al. 2002). Within the experiments of this 

dissertation, we will focus primarily on behavioral rhythms, but it should be noted that 

any characterization of circadian changes during puberty will remain incomplete until we 

determine their generalizability to the wide assortment of rhythms present in mammalian 

physiology.   

 

Characteristics of Circadian Rhythms 

 In the laboratory, circadian rhythms are often modeled as sinusoidal oscillations 

(Figure 1.3).  As mentioned earlier, these rhythms are endogenously-generated.  Thus, 

under conditions in which there are no time cues from the outside world (also referred to 

as constant or “free-running” conditions), the circadian system will continue to generate 

daily rhythms. These rhythms will appear to “drift” a little each day, because the period 

(or day length, τ) of the rhythms only approximates 24 hours (ranging from 23–25 hrs, 

varying by species and previous light cycle). Under normal conditions, the endogenous 

rhythm must be entrained by external time cues (or “zeitgebers,” such as light, food 

availability, or daily arousal) to maintain a periodicity that matches environmental 

rhythms (called a T-cycle, e.g,. the 24-hr light-dark cycle in a laboratory, Moore-Ede, 

Sulzman, and Fuller 1982; Roenneberg, Daan, and Merrow 2003) 

After a rhythm is entrained, there is a stable phase relationship between phase 

markers for the rhythm (e.g., rhythm onset, peak, offset, and trough) and the zeitgeber 

time cue.  Light is the dominant environmental zeitgeber, and under laboratory conditions 

the phase of biological and physiological rhythms is traditionally characterized by the 

relationship of phase markers to the laboratory light-dark (LD) cycle. Therefore, instead 

of referencing clock time, discussions of circadian rhythms frequently reference zietgeber 

time (ZT), which is the hours of the day relative to zeitgeber exposure (e.g,. lights-on = 

ZT0).  If the phase of the rhythm shifts so that phase markers are occurring at a relatively 

earlier ZT, this is known as a phase-advance, whereas a shift that causes phase-markers to 

occur at a later ZT is known as a phase-delay (Moore-Ede, Sulzman, and Fuller 1982).  

Phase can also be compared between individuals or groups, for example the sleep 
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rhythms of human adolescents are described as being delayed in phase relative to those of 

pre-pubertal children or adults (Roenneberg et al. 2004).  

Under constant conditions, when there are no zietgebers, time is referenced relative to 

the subjects’ own activity rhythm (circadian time, CT).  For diurnal (day-active) animals, 

CT0 is frequently defined as the time of activity onset, whereas for nocturnal animals the 

time of activity onset is defined as CT12. Circadian hours are then defined in respect to 

the subject’s own endogenous period (τ/24; Johnson 1992). 

Despite the traditional modeling of circadian rhythms as sinusoidal waves, most 

rhythms also contain components (or harmonics) with shorter periodicities referred to as 

ultradian rhythms. The most common ultradian rhythm is bimodal (a rhythm with two 

peaks, or 12-hr harmonic).  This is because most organisms, whether diurnal or nocturnal, 

increase activity around the transition times of sunrise and sunset (or lights-on and lights-

off in the laboratory; Aschoff 1966). Animals that exhibit activity predominantly at these 

transition times are referred to as having a crepuscular chronotype (DeCoursey 2004). 

 

Entrainment Mechanisms 

Circadian entrainment is thought to occur by two different mechanisms: discrete (or 

non-parametric) entrainment and continuous (or parametric) entrainment (Roenneberg, 

Daan, and Merrow 2003).   Discrete entrainment corrects for the difference between the 

period (τ) of the circadian pacemaker and the 24-hr day-length of the external world by 

daily phase-resetting (Moore-Ede, Sulzman, and Fuller 1982; Pittendrigh and Daan 

1976). To measure the circadian system’s sensitivity to the discrete effects of light, 

researchers experimentally produce a photic behavioral phase response curve (PRC). A 

photic PRC illustrates the magnitude of circadian phase-shift in response to a brief light 

exposure (e.g., a 20 min pulse) that is presented at any particular circadian time (CT) 

under conditions of constant darkness (Johnson 1992). Figure 1.4 illustrates the photic 

PRC for adult male and female degus, a diurnal rodent species that we used as one of the 

model organisms in this dissertation (Lee, unpublished data). Light exposure during the 

subjective morning (when the degu begins its daily active period) produces a phase 

advance of circadian rhythms, whereas light exposure during the subjective evening 

produces a phase delay (Kas and Edgar 2000).  
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This general phenomenon is central to photic entrainment and common across 

species: morning light produces phase advances and evening light, phase delays.  For 

example, in order for the circadian pacemaker of an adult male degu (period = 23.3 h) to 

entrain to a typical 24-hr day, light needs to reset the clock mechanism daily by causing a 

phase delay of 0.7 h. Entrainment to a LD cycle occurs when circadian rhythms shift until 

light exposure encompasses the end of the degu’s active period to produce a daily phase 

delay (Goel and Lee 1997). This mechanism is thought to account for most of the 

entrainment of adult mammals (Moore-Ede, Sulzman, and Fuller 1982; Pittendrigh and 

Daan 1976a). 

Continuous (or parametric) entrainment occurs when light exposure modifies τ so that 

it approaches the 24-hr day-length (T) without daily resetting (Roenneberg, Daan, and 

Merrow 2003). Although continuous mechanisms of entrainment are frequently ignored 

in many circadian studies, they are found in most species and hypothesized to be 

especially important for the entrainment of diurnal mammals (Hut, van Oort, and Daan 

1999). The circadian system’s sensitivity to the continuous effects of light can be 

measured in several ways. Since these effects are long-lasting, the aftereffects of a light-

dark (LD) cycle on τ can often be observed for days after transferring an animal into 

constant conditions. The continuous effects of light on τ can also be observed by 

measuring τ under constant conditions with different lighting intensities. Finally, during a 

protocol for determining the light-induced PRC, changes in τ are sometimes observed as 

well as a phase shift following the light pulse (Pittendrigh and Daan 1976b). 

 

The Physiology of the Circadian System 

Circadian rhythms in mammals are generated within individual cells in the SCN by a 

transcriptional-translational feedback loop involving a group of genes commonly referred 

to as “Clock Genes” (Hastings and Herzog 2004; Figure 1.5). The core feedback loop 

consists of a positive arm, which contains proteins (BMAL1 and CLOCK) that drive 

transcription, and a negative arm, which contains proteins (PER, CRY, REVERBα) that 

inhibit transcription. To initiate the cycle, a heterodimer of BMAL1 and CLOCK proteins 

drives the transcription of Per, Cry, and Reverbα. The protein REVERBα then feeds 

back to inhibit the transcription of Bmal1.  The PER and CRY proteins (PER1, PER2, 
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PER3, CRY1, CRY2) form heterodimers that inhibit their own transcription and the 

transcription of Reverbα (Bae et al. 2001; Zheng et al. 2001; for review see Hastings and 

Herzog 2004).  

These oscillations are cell-autonomous, with cell-specific periodicities. Thus, in order 

for a high-amplitude, coherent rhythm to emerge from the SCN, cellular oscillations need 

to be coupled together (Yamaguchi et al. 2003). To do this, molecular oscillations are 

translated into oscillations of membrane potential and firing rate. Coupling then occurs 

via electrical gap junctions between SCN cells and synaptic communication (especially 

involving the neurotransmitters GABA and vasoactive intestinal polypeptide or VIP; 

Aton and Herzog 2005; Kuhlman 2010).  

Light can influence oscillations in the SCN via three known pathways: a direct 

pathway between the retina and ventrolateral SCN (vlSCN) called the retinohypothalamic 

tract and two indirect pathways via the intergeniculate leaflet and raphe nuclei (Morin 

and Allen 2006). The retinohypothalamic tract is the primary pathway mediating photic 

entrainment. Light exposure on the retina causes a rapid release of glutamate in the 

vlSCN.  This glutamate binds to NMDA receptors, producing an intracellular cascade of 

second messenger signaling. These signaling pathways then induce the transcription of 

immediate early genes, such as cFos (Meijer and Schwartz 2003), as well as two 

components of the clock gene feedback loop, Per1 and Per2 (Miyake et al. 2000; 

Shigeyoshi et al. 1997).  

 If this light exposure occurs during the evening and early morning hours, when Per1 

and Per2 transcript levels are low, induction of Per1 and Per2 causes an overall phase-

shift of the molecular feedback loop (Shigeyoshi et al. 1997; Figure 1.6) as well as 

rhythms in membrane potential (Kuhlman 2010). This phase-shift propogates to the 

endogenously-rhythmic dorsomedial (dm) SCN (Antle and Silver, 2005; Nakamura et al. 

2005; Yan and Silver 2002) and eventually to circadian output pathways. Consequently, 

phase-shifts in the molecular feedback loop in the SCN are thought to underlie the photic 

phase-shift of behavioral rhythms (Akiyama et al. 1999; Albrecht et al. 2001; Shigeyoshi 

et al. 1997; Tischkau et al. 2003). Thus, it has become common to examine the phasing of 

Per1 and Per2 rhythms within the SCN as a manner of characterizing the entrainment of 
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the central circadian pacemaker (e.g. Abe, Honma, and Honma 2007; Yamanaka, Honma, 

and Honma 2008).  

However, it should be noted that the entrainment of the circadian pacemaker is not 

the only determinant of the final phase of circadian output. Substantial evidence now 

indicates that adult diurnal and nocturnal species have a similar phasing of many aspects 

of SCN physiology (Hagenauer and Lee 2008; Smale, Lee, and Nunez 2003). For 

example, the phase of the transcriptional-translational feedback loop in the SCN is very 

similar in the nocturnal rat, diurnal degu (Vosko et al. 2008; Figure 1.7A), and diurnal 

grass rat (Caldelas et al. 2003). Rhythms in deoxyglucose metabolism (Schwartz et al. 

1983), photic sensitivity (Figure 1.7B, Mahoney, Bult, and Smale 2001; Slotten, 

Krekling, and Pevet 2005), and neuropeptide expression (e.g., VIP and arginine 

vasopressin (AVP); Mahoney et al. 2009) are also similar in diurnal and nocturnal 

species.  

Therefore, the downstream coupling (or phase relationship) between the circadian 

pacemaker and central or peripheral systems plays an important role in determining the 

phase of behavioral and endocrine rhythms (Smale, Nunez, and Schwartz 2008). Recently 

it has been shown that many areas of the brain outside of the SCN (e.g,. cortex, striatum, 

hippocampus, amygdala) as well as other tissues in the body (e.g., liver, heart, adrenals, 

ovaries) contain daily rhythms in clock gene expression. These semi-autonomous or slave 

oscillators are thought to be entrained by output from the SCN as well as by non-photic 

zeigebers such as food (Guilding and Piggins 2007). Previous work indicates that the 

phase relationship between the central SCN oscillator and slave oscillators in other 

regions of the brain closely relates to the phase of behavioral activity rhythms (Abe et al. 

2001; Masubuchi et al. 2000; Mrosovsky et al. 2001; Vosko et al. 2009; Wakamatsu et al. 

2001; Figure 1.8), suggesting that these regions may be important for expressed 

chronotype. 

 

Circadian Rhythms Regulate the Reproductive Axis 

Circadian rhythms regulate many aspects of reproduction, including the timing of 

hormone release, ovulation, mating, and parturition (Kennaway 2005; Turek and Van 

Cauter 1994). The circadian system also mediates the effects of photoperiod (day length) 
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on seasonal reproduction (Turek and Van Cauter 1994). In turn, reproductive hormones 

feed back on the circadian system (Karatsoreos and Silver 2007).   

 In mammals, the reproductive system is controlled by hormones within the 

hypothalamic-pituitary-gonadal (HPG) axis. The hypothalamus releases pulsatile 

gonadotropin-releasing hormone (GnRH). GnRH then drives the release of luteinizing 

hormone (LH) and follicle stimulating hormone (FSH) by the anterior pituitary. LH and 

FSH stimulate the gonads to prepare gametes (spermatazoa, oocytes) as well as a 

hormonal environment conducive to reproduction (Johnson and Everitt 2000). The 

primary steroid hormones produced by the testes are androgens (e.g., testosterone, 

dihydrotestosterone (DHT)), and the primary steroid hormones produced by the ovaries 

are estrogens (e.g., estradiol), and progestins (e.g., progesterone; Johnson and Everitt 

2000). However, both sexes produce all three hormone classes and their steroidal 

precursors, as well as other non-steroidal hormones such as the inhibins (Nottelmann et 

al. 1987). These hormones feed back on the hypothalamus and pituitary to regulate their 

own production (Johnson and Everitt 2000).   

 In adult females, hormone production varies over the course of the reproductive 

cycle.  In humans, this cycle lasts for around 28 days and contains two major phases: 

follicular and luteal.  During the early follicular stage, estrogen and progesterone levels 

are low and the uterine lining is shed in preparation for a new cycle (menstruation).  As 

follicular development proceeds, estrogen levels increase. When estrogen levels reach 

peak production, they cause positive feedback on the GnRH system, driving a surge of 

LH and, consequently, ovulation.  Following ovulation, the follicle converts into a 

secretory luteal body and begins to produce progesterone as well as estrogen.  

Progesterone levels remain high for most of the luteal phase (Johnson and Everitt 2000; 

McCarthy and Becker 2002).   

In laboratory animals, the female reproductive cycle follows a different 

progression. With the exception of primates, menstruation does not occur, and therefore 

the cycles are referred to as estrous cycles instead of menstrual cycles.  For some species 

(e.g., the degu), the estrous cycle contains both a follicular and luteal phase (Mahoney et 

al. submitted).  However, in most traditional laboratory rodents (rats and mice), estrous 

cycles are short (4-5 days) and do not contain a true luteal phase, except following 
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vaginocervical stimulation (pseudopregnancy). In these species, estrogen peaks on the 

day of proestrus around 12 hours prior to ovulation, and is followed several hours later by 

a peak in progesterone. Ovulation occurs that night, and is followed by a period of sexual 

receptivity (estrus), despite a concurrent drop in steroid hormone levels (McCarthy and 

Becker 2002).      

 In traditional laboratory rodents (rats, mice, hamsters), circadian regulation of the 

HPG axis has received particular attention because lesions of the SCN eliminate 

ovulation and produce a state of persistent estrus (Raisman and Brown-Grant 1977; 

Chappell 2005). Further investigation revealed that the SCN sends a signal daily to 

GnRH neurons. When estrogen levels are high, this signal helps drive the GnRH/ LH 

surge that leads to ovulation. The nature of the SCN signal is currently unknown, but two 

prime suspects are the neurotransmitters VIP and AVP (Chappell 2005).  Therefore, 

arguably in these species the SCN is actually an integrated component of the HPG axis.  

 

Circadian Rhythms are Sensitive to Gonadal Hormones 

Gonadal hormones can influence the brain in several ways. The activational 

effects of hormones are direct and transient. If a hormone is functioning activationally, 

then at any time an experimenter should be able to remove the hormone from the system 

or block its receptor and the effect will disappear. Activational effects can occur due to 

hormones binding to their traditional receptors (McCarthy and Crews 2002), or due to 

hormonal modulation of the efficacy of neurotransmitter receptors (e.g., progesterone 

metabolites can alter the function of GABA or NMDA receptors; Lambert et al. 2003; 

Rupprecht 2002). Organizational (long term/permanent) effects can also occur in 

response to steroid hormones. These effects are due to steroid hormones binding at 

nuclear receptors to produce long-term changes in the transcription of particular genes 

(McCarthy and Crews 2002). Organizational effects typically occur during a sensitive 

period of development, known as a critical period. Although some organizational changes 

cause direct functional effects, others may alter hormone receptor distribution and 

sensitivity. In this case, the organizational effects will not be observed unless hormones 

are present (Sisk and Zehr 2005). 
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Due to the circadian regulation of ovulation in traditional laboratory rodents, there 

has been substantial interest in the influence of gonadal hormones on the circadian 

system. This research shows that gonadal hormones can affect the circadian system both 

activationally and organizationally. One of the best-known activational effects is on 

activity rhythms during the female reproductive cycle in rodents. On the day of estrus, 

following elevated estrogen, female rodents exhibit increased activity and begin their 

activity earlier in the day.  The next day, after hormone levels drop, the females phase-

delay activity onset and decrease overall activity levels (Figure 1.9A, Axelson, Gerall, 

and Albers 1981).  During the human menstrual cycle, circadian rhythms in cortisol and 

sleep onset also shift their phasing (Manber and Bootzin 1997; Parry et al. 1994; Parry et 

al. 2000). Indeed, in adult laboratory rodents a wide variety of gonadal hormones can 

affect the phase of circadian rhythms, including estrogens, progestins, androgens (Figure 

1.9B), and non-traditional neuroactive steroids (e.g., rats: Albers, Gerall, and Axelson 

1981; Axelson, Gerall, and Albers 1981; hamsters: Davis, Darrow, and Menaker 1983; 

Morin, Fitzgerald, and Zucker 1977; de Tezanos Pinto and Golombek 1999; mice: Daan, 

Damassa, Pittendrigh, and Smith 1975; Iwahana et al. 2008; Karatsoreos et al. 2007; 

degus: Jechura, Walsh, and Lee 2000; Labyak and Lee 1995).   

Gonadal hormones can influence other circadian parameters as well, including τ 

(Albers 1981; Daan et al. 1975; Davis, Darrow, and Menaker 1983; Karatsoreos et al. 

2009; Morin, Fitzergald, and Zucker 1977; Zucker, Fitzgerald, and Morin 1980), rhythm 

amplitude (Labyak and Lee 1995), range of entrainment (Davis, Darrow, and Menaker 

1983), zeitgeber sensitivity (de Tezanos Pinto and Golombek 1999; Jechura and Lee 

2004; Jechura, Walsh, and Lee 2003) and oscillator coupling (Thomas and Armstrong 

1989). Many of these parameters also exhibit sex differences.  For example, both 

hamsters and degus show sex differences in their phase-response to light (Davis, Darrow, 

and Menaker 1983, unpublished data Figure 1.4). Although some of these sex 

differences arise activationally from the contrasting hormonal milieu of adult males and 

females, the sensitivity of circadian parameters to steroidal hormones also exhibits sex 

differences. These sex differences are determined in some species by the organizational 

effects of gonadal hormones during the perinatal period (rat: Albers 1981; hamster: 

Zucker, Fitzgerald and Morin 1980).  
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SCN Physiology is Altered by Gonadal Hormones 

Some of the effects of gonadal hormones on circadian rhythms are due to modulation 

of the circadian pacemaker in the SCN.  Gonadal hormones can alter key aspects of SCN 

physiology, including those necessary for circadian rhythm generation, entrainment, and 

coupling (Figure 1.10).  For example, both androgens and estrogens can activationally 

increase photic sensitivity within the entrainment pathway, as measured by the induction 

of immediate early gene expression (Abizaid, Mezei, and Horvath 2004; Karatsoreos et 

al. 2007). The phasing and amplitude of rhythmic components in the molecular feedback 

loop (Per2, Cry2) are sensitive to estrogen in females (Nakamura et al. 2001; Nakamura 

et al. 2005). Estrogen can also alter the phasing of neurotransmitter rhythms in the SCN 

(Figure 1.11, Cohen and Wise 1988; Krajnak et al. 1998; Mahoney et al. 2009) as well as 

increase electrical intercellular coupling (Shinohara et al. 2000; Shinohara et al. 2001) in 

a manner that is opposed by progesterone (Shinohara et al. 2001). Gonadal hormones 

alter SCN neuron excitability in both sexes.  In females, estrogen increases the sensitivity 

of SCN neurons to the neurotransmitters serotonin (5-HT) and acetylcholine (ACh; Kow 

and Pfaff 1984). In males, estrogen alters the excitability of SCN neurons by depolarizing 

resting membrane potential and increasing spontaneous firing rate (Fatehi and Fatehi-

Hassanabad 2008). Hormonal manipulations in males (castration, excessive testosterone 

treatment) also increase the number of astrocytes in the dmSCN (Satriotoma et al. 2004), 

although the functional relevance of these results is unknown.  

 

Puberty and Adolescence 

 Although colloquially the terms “Puberty” and “Adolescence” are used 

interchangeably, scientifically they refer to separate concepts (Sisk and Zehr 2005). 

Traditionally, puberty is defined as the process leading to the attainment of sexual 

maturation (Spear 2000), beginning with the activation of the HPG axis, and ending with 

reproductive competency (Plant 1994; Sisk and Foster 2004). Reproductive competency 

is rarely used as a developmental marker in neuroscience research, however, because it is 

unreasonable to run mating and pregnancy tests in the middle of an experimental 

procedure. Therefore, most researchers measure the physiological correlates of sexual 
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maturation – the development of the hypothalamic-pituitary-gonadal (HPG) axis, 

increases in circulating gonadal hormones (e.g., testosterone, estrogen), and the 

maturation of the testes, ovaries, uterus, and external genitalia (Richardson and Tate 

2002). 

Adolescence, on the other hand, is defined as the period of social, emotional and 

cognitive transition between childhood and adulthood (Sisk and Foster 2004; Sisk and 

Zehr 2005). Adolescence encompasses puberty, and typically human neuroscience 

studies will discuss the period of “adolescence” instead of “puberty,” since human 

subjects remain embedded in their social environment. In animal studies, the term 

“adolescence” is traditionally used specifically to refer to research focusing on the neural 

and behavioral changes accompanying the transition from juvenile dependence into the 

relative independence of adulthood (Spear 2000). This transition includes both the 

hormone-dependent and hormone-independent remodeling of cortical and limbic circuitry 

necessary for adult decision-making, cognition and social interaction (Sisk and Zehr 

2005). As this dissertation focuses primarily on interactions between pubertal hormones 

and the circadian system, a regulator of the HPG axis, we will only use the term 

“adolescent” when referring to human studies.  

It should be noted that the progression of puberty in laboratory species is not 

necessarily analogous to that of humans. To begin with, human puberty is commonly 

preceded by eight or more years of gonadal “quiescence” following infancy. During this 

time, gonadotropin releasing hormone (GnRH) pulsatility is suppressed and gonadal 

steroidogenesis is nearly absent (Plant 1994). Puberty is initiated when the HPG axis is 

released from juvenile inhibition (Plant 1994). Some mammalian species, such as the 

rhesus macaque, show a similar developmental pattern (Plant 1994), but rodents typically 

do not (Ojeda and Urbanski 1994).  Most rodent species show low levels of 

steroidogenesis and secondary sex development throughout the juvenile period that then 

accelerates near the time that reproductive competence develops (Ojeda and Urbanski 

1994).   

Another key difference between the progression of puberty in humans and other 

species is the role of seasonality. Season plays a crucial role for determining the timing 
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and rapidity of secondary sex development in many species. Photoperiod is typically the 

environmental signal that indicates season physiologically (Gorman and Lee 2004). 

 

Pubertal Hormones Influence the Circadian System 

There is growing evidence that puberty is not only a time for the onset of the 

activational effects of hormones, but also a critical period for organizational changes 

(Sisk and Zehr 2005). Although there has been little work done examining the influence 

of pubertal hormones on the circadian system, there is some evidence for both types of 

effects.  One study from the degu observed phase changes during puberty that were 

eliminated by prepubertal gonadectomy. They also observed a permanent sexual 

differentiation of τ that occurred in response to estrogen exposure during a critical period 

in young adulthood (degu: Hummer et al. 2007).  An earlier study in hamsters also hinted 

that sex differences in the range of entrainment of the circadian system occurred due to 

gonadal hormone exposure during puberty (Davis, Darrow, and Menaker 1983).  Little 

work has examined pubertal hormone effects on the SCN, but there are indications of 

anatomical changes (growth in nuclear size and nucleoli size) around mid-puberty in rats 

(Anderson, 1981; Morishita et al. 1978; Morishita et al. 1974), as well as an increased 

number of cells expressing a neuropeptide that is important for photic entrainment (VIP) 

and oscillator coupling during late adolescence in humans (Swaab et al. 1994).   

 

 

Do Animal Studies Demonstrate Delayed Circadian Rhythms During Puberty? 

In response to the overwhelming evidence that the circadian system is sensitive to 

gonadal hormones, we hypothesized that the delayed sleep patterns observed in humans 

might represent the influence of pubertal hormones on circadian phase. In this case, a 

similar phenomenon might be observed in other mammalian species.    

As a preliminary test of this hypothesis, we reviewed data from existing studies that 

examined daily rhythms of animals during pubertal development. To compare 

appropriately across species, we had to address several challenges. The first regarded the 

definition of puberty. During circadian behavioral studies, most invasive measurements 

are problematic. Thus, in the studies that we reviewed, sexual development was typically 
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examined using only external genitalia development and growth (although one study, 

Hummer et al. 2007, ran spermatogenesis assessment and blood hormone sampling in a 

parallel group of animals). In most cases, reproductive development was not monitored at 

all. For the purposes of this review we have inferred the timing of puberty by referencing 

previously published reproductive studies for each species (Nelson et al. 1990; Ojeda and 

Urbanski 1994; Plant 1994; Safranski et al. 1993; Windmill et al. 2007). We defined 

“puberty” as the age interval between the first indication of secondary-sex development 

and the achievement of reproductive competency.  

However, comparisons to previously published reproductive studies are only a rough 

estimate of pubertal timing. Since photoperiod is typically the environmental signal that 

indicates season physiologically (Gorman and Lee 2004), within a laboratory situation, 

the lighting conditions (daily light duration and intensity) of a circadian experiment can 

alter pubertal progression (e.g., Gunduz and Stetson, 1994). Other conditions of a 

circadian experiment (e.g., stress caused by social isolation or invasive blood draw) can 

also alter the timing of puberty (Drickamer 1990).   

Second, in fast-developing rodent species (e.g,. rats, mice) weaning and puberty 

occur in close proximity. This fact is important because these species are altricial (born 

blind, hairless, and helpless) and thus the timing of nursing, not light, is the primary 

influence on the phase of activity rhythms in young pups (Shimoda et al. 1985; Sugishita 

et al. 1991; Thiels, Alberts, and Cramer 1990). Female rats and mice nurse their pups 

primarily during the species’ rest period, so young pups are active at the opposite phase 

of adults. At the age of weaning, when the pups begin to consume solid food and engage 

in independent activity, they temporarily develop more ultradian rhythms, and then 

transition into an overall phasing of activity rhythms that resembles that of adults (Levin 

and Stern 1975; Thiels, Alberts, and Cramer 1990; Weinert 2005).  Thus, circadian 

changes observed during the time of puberty in these species may represent the influence 

of pubertal hormones or the gradual transition from maternal to photic entrainment 

mechanisms (for full review see Weinert 2005).  

 

Preliminary Conclusions from a Cross-Species Comparison. We found evidence 

for delayed circadian phase during puberty in all studies that we reviewed, which 
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included five mammalian species: Macaca mulatta  (rhesus macaque), Octodon degus 

(degu), Rattus norvegicus (laboratory rat), Mus musculus (laboratory mouse), and 

Psammomys obesus (fat sand rat).  Overall, this evidence indicated that the delayed 

timing of sleep during human adolescence is likely to represent a developmental change 

common across mammalian species (Table 1.1).   

Several themes emerged while comparing different species. The first concerned 

the magnitude of the phase-delay: with the exception of fat sand rats maintained under 

short, winter-like photoperiods (Neuman et al. 2005), all other species and all 

experimental conditions provided evidence for a 1-4 hr change in circadian phase during 

puberty. The phenomenon was robust. The daily rhythms measured were diverse and 

included such behavioral rhythms as sleep and activity, and physiological rhythms, such 

as endocrine (corticosterone, melatonin) and metabolic (temperature, oxygen 

consumption) rhythms.  This delay appeared regardless of the chronotype of the species: 

both diurnal (human, macaque, degu, sand rat) and nocturnal species (rat, mouse) showed 

a delayed phase of daily rhythms during puberty.  

In several species delayed phase during puberty was accompanied by increased 

crepuscularity, or activity around the transition times of dawn and dusk. In well-rested 

human subjects, the Carskadon laboratory found that adolescents showed a decreased 

propensity to fall asleep in the evening hours (Taylor et al. 2005), as well as an increase 

in midday sleepiness as measured by the multiple-sleep latency test (Carskadon et al. 

1980). These results indicated that well-rested adolescents were most awake during the 

morning and evening hours. Pubertal rats and mice also showed more crepuscular or 

ultradian rhythms than adults (Cambras and Diez-Noguera 1988; Castro and Andrade 

2005; Diez-Noguera and Cambras 1990; Ibuka 1984; Joutsinemi et al. 1991; Kittrell and 

Satinoff 1986), but it is unclear whether this age-related consolidation of activity is 

related to pubertal hormones or the shift from maternal entrainment to full photic 

entrainment (Weinert 2005). 

Finally, and most intriguing, is the issue of the relationship between the timing of 

delayed phase and pubertal development. In the human literature, both home-based and 

laboratory studies of adolescents show that delayed circadian phase correlates with 

secondary-sex development (Carskadon, Acebo, and Jenni 2004; Carskadon et al. 1997; 
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Carskadon, Viera, and Acebo 1993; Sadeh et al. 2009), even after controlling for social 

environment (Carskadon, Viera, and Acebo 1993). Similar correlations are present in the 

animal literature. For example, a study comparing the activity rhythms of rhesus 

macaques with normal or disturbed pubertal development reported a strong correlation 

between pubertal timing and circadian phase delay (Golub, Takeuchi, and Hoban-Higgins 

2002). Another study in degus found that delayed phase during puberty was eliminated 

by pre-pubertal gonadectomy (Hummer et al. 2007).  

The developmental timing and structure of pubertal phase change seemed to differ 

by species (Table 1.1).  In humans, peak phase delay occurs between 15-21 years of age 

(Crowley, Acebo and Carskadon 2007; Roenneberg et al. 2004; Russo et al. 2007; 

Thorleifsdottir et al. 2002; Yang, Kim, Patel, and Lee 2005), whereas regular overt 

cyclicity is usually established in girls and spermatogenesis in boys before 16 years of 

age (Plant 1994). Thus, the human peak phase delay occurs either during or following the 

final stages of gonadal development, although before the completion of the development 

of other neural systems (Giedd 1999).  In several other species (macaques, degus, fat 

sand rats), peak phase delay appeared to occur in the middle of secondary sex 

development. Thus peak delay occurred in females between the first overt indications of 

cyclicity and the establishment of regular ovulation and in males during the establishment 

of spermatogenesis (Table 1.1). For the fast-developing, altricial laboratory rodents (rats, 

mice), chronotype changes related to the transition from maternal to photic entrainment 

were well-documented (for review see Weinert 2005) but detailed measurements of 

circadian phase in independent pre-pubertal animals was lacking. One study showed a 

phase-delay between weaning and puberty (Alfoldi, Tobler, and Borbely 1990), but it 

was unclear if these changes were just due to recovery from surgery and a change in the 

LD cycle on the day of weaning. Another study commented that phase stabilized between 

the pubertal ages of P31-36, but did not discuss the nature of the phase changes before 

that point. The lack of quantification of phase in that study may have been due to the 

presence of strong ultradian rhythms following weaning (Kitrell and Satinoff 1985).  

Thus, we can really only infer that circadian phase in these rodents is relatively more 

delayed during puberty and advanced during adulthood (McGinnis et al. 2007; Weinert 

1994; Weinert and Waterhouse 1999). 
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Adding to a Cross-Species Comparison: Examining the Gonadal Dependence of 

Circadian Changes During Puberty (A Preview of Chapters 2&3). This evidence 

provides support for the hypothesis that delayed circadian phase around the time of 

puberty is a common phenomenon across mammalian species. However, several 

weaknesses are present that make it difficult to concretely compare animal data to the 

human literature. First, many of the studies were not intentionally designed to observe 

this phenomenon, and therefore they only measured circadian phase at 1 or 2 pubertal 

timepoints (Alfoldi, Tobler, and Borbely 1990; Hummer et al. 2007; McGinnis et al. 

2007; Neuman et al. 2005; Weinert et al. 1994; Weinert and Waterhouse 1999). This 

inconsistency makes it difficult to compare the time course or magnitude of the 

developmental change across species or to verify that rhythms that did not show a 

significant developmental change were not missed by the sampling window (e.g., 

temperature rhythms in Weinert and Waterhouse 1999; rhythms in melatonin synthesis 

and metabolism in Neuman et al. 2005; or activity rhythms in gonadectomized degus in 

Hummer et al. 2007). Third, many of these studies were only performed on one sex and 

did not simultaneously monitor pubertal development (McGinnis et al. 2007; Neuman et 

al. 2005; Weinert et al. 1994; Weinert and Waterhouse 1999), which is problematic 

because developmental time course can vary by laboratory and experimental condition 

(Ojeda and Urbanski 1994). Finally, it is unclear whether any of the changes occurring 

during puberty in fast-developing altricial rodents (rats, mice) are specifically due to 

puberty instead of the transition from maternal to photic entrainment (McGinnis et al. 

2007; Neuman et al. 2005; Weinert et al. 1994; Weinert and Waterhouse 1999).  

To address these weaknesses, during the first two experiments of this dissertation 

(Chapters 2&3) we followed the within-subjects development of activity rhythms during 

puberty while simultaneously measuring secondary sex development in two species: the 

fast developing, altricial rat, and slow-developing, precocial degu. Both species had 

previously demonstrated changes in circadian phase during puberty (Hummer et al. 2007; 

McGinnis et al. 2007; Tate et al. 2002), but the developmental time course and sex 

differences had not been explored in detail. By comparing both species, we were able to 

not only develop animal models that were conducive to both time-intensive circadian 
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experimentation and rapid physiological measures, but also compare pubertal changes in 

two species with different natural histories and developmental trajectories (precocial vs. 

altricial). To determine which changes were specifically related to pubertal hormones, we 

simultaneously followed rhythm development in a group of rats and degus that were 

gonadectomized prior to puberty.  

 

 

The Mechanism Underlying Pubertal Changes in the Circadian Timekeeping: 

Altered Photic Entrainment of the Circadian Pacemaker? 

The second goal of this dissertation research was to take advantage of animal 

models to gain a better understanding of the mechanism driving pubertal changes in the 

phase of circadian rhythms. Growing evidence supports the conjecture that the 

endogenous circadian period and photic sensitivity of the circadian system are altered 

during puberty in humans and animals. Such changes could explain the development of 

delayed sleep phase observed during puberty in human adolescents. We propose: 

An Elongated τ: An elongated τ  would cause the circadian pacemaker and its 

rhythmic output to delay relative to the light cycle (Roenneberg, Daan, and Merrow 

2003; Figure 1.12A). In support of this hypothesis, the Carskadon lab found that human 

adolescents have a τ of 24.27 hr. This period length is significantly longer than that found 

in adults using similar protocols (24.12 hr), even after taking into account the variability 

present in both samples (Carskadon, Acebo and Jenni 2004; Carskadon et al. 1999). Of 

course, longitudinal data would provide stronger support for this hypothesis, and such 

research, though difficult in humans due to the long pubertal phase, is currently underway 

in the Carskadon laboratory (Hagenauer et al. 2009). One recent rodent study, in which 

the shorter maturational course facilitates such research, found that τ in pubertal male rats 

was longer than in adults (McGinnis et al. 2007). However, a careful developmental 

analysis of the degu did not find changes in τ during puberty at the age of the delay in 

entrained phase (Hummer et al. 2007). 

Enhanced Light-Elongation of τ : This discrepancy between the results of human, 

rat, and degu studies might be explained by the presence or absence of light exposure 

during the free-running protocols. The pubertal rodents were exposed to constant 
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darkness (DD, Hummer et al. 2007) or very dim red light (0.1 lux RR, McGinnis et al. 

2007) while their τ was measured. On the other hand, humans were exposed to a light 

(LD; 20 lux vs. 0 lux) cycle with a day-length (T) that was outside of the range of 

entrainment for the circadian system (T=28 hrs). This procedure allowed the melatonin 

rhythm to free-run so that τ could be measured (Carskadon et al. 1999). Previous 

experiments have shown that light exposure can lengthen free-running period in four 

species that have delayed phase during puberty (degu: Lee and Labyak 1997; macaque: 

Martinez 1972; rat: Summer, Ferraro, McCormack 1984;  human: Tokura and Aschoff 

1978). Therefore, τ may not be longer during puberty, but the circadian pacemaker may 

be more sensitive to the continuous effects of light. In support of this hypothesis, one 

study found that the aftereffects of photoperiod on τ are more prolonged in pubertal than 

adult rodents (Hummer et al. 2007).  

Increased Sensitivity to the Phase Delaying Effects of Light: An increase in the 

circadian pacemaker’s relative sensitivity to the phase-delaying effects of light could also 

produce a pacemaker delay relative to the light cycle (Roenneberg, Daan, and Merrow 

2003; Figure 1.12B). To provide a preliminary test for this hypothesis, the Carskadon 

laboratory examined the suppression of melatonin secretion by 1-h light-pulses in early 

pubertal and late pubertal human adolescents. Melatonin is secreted by the pineal gland at 

night and its suppression by light is mediated by the same photic pathways in the SCN as 

the discrete resetting of circadian rhythms. They found that late adolescents were 

significantly less sensitive to dim light exposure (15 lux) in the morning (03:00-04:00) 

than early adolescents, suggesting that a change in the phase-dependent photic sensitivity 

of the circadian system may have occurred during puberty (Carskadon, Acebo, and 

Arnedt 2002). Furthermore, additional data were recently acquired in adolescent humans 

(ages 15-17 years) who were asked to maintain a schedule that permitted a 2-hr later 

bedtime on weekends. Under these conditions, the adolescents showed a significant acute 

phase delay (0.6-0.75 hrs) of melatonin rhythms that persisted even when rise time was 

delayed by only one hour (sleep recovered with a mid-day nap) or when morning bright 

light was administered to anchor circadian phase (Crowley 2009).  These studies indicate 

that pubertal humans may have a blunted ability to phase advance in response to morning 

light and an exaggerated ability to phase delay in response to evening light. 
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In the animal literature, one previous study tangentially characterized the phase-

response curve of pubertal female mice (49 days of age) as well as late pubertal (63 days 

of age) and adult mice (Weinert and Kompauerova 1998). If we separate out the data 

specific to the 49-day old (P49) pubertal mice and compare it to the late pubertal and 

adult mice (Figure 1.13) an interesting trend emerges. First, the phase-delay portion of 

the phase-response curve has greater amplitude in the P49 pubertal mice. The phase 

advance and daytime portions of the phase response curve also appear to have a different 

shape, but it is difficult to draw conclusions due to the few sample points taken during 

these times. An earlier study by the same research group showed that pubertal mice (42 

days of age) adjust to a phase delay of the light-dark cycle (similar to jet lag from a plane 

flight headed West) much faster than adult mice (Weinert et al. 1994).  These results 

indicate that pubertal animals may be relatively more sensitive to the circadian phase-

delaying properties of light.  

 

Elucidating Mechanism: Determining Whether the Central Circadian Oscillator is 

Phase-Delayed During Puberty and the Role of Photic Entrainment in Developmental 

Changes (A Preview of Chapters 2&4). To test the hypothesis that circadian phase 

changes during puberty are due to differential photic entrainment of the circadian 

pacemaker we performed three initial analyses. During the first analysis, we analyzed τ 

under constant conditions in both sexes in the rat to determine whether it was indeed 

longer in pubertal animals. Simultaneously, we examined developmental changes in the 

phasing and organization of activity rhythms under constant conditions. We reasoned that 

if the developmental changes in the phasing and organization of activity rhythms 

occurred under both entrained and constant conditions, then these changes are not due to 

a developmental effects on the photic entrainment of rhythms. Finally, in the degu we 

examined whether a photo-responsive component of the molecular feedback loop in the 

SCN (Per1) was delayed during puberty in a manner that resembled the delay in 

behavioral rhythms.  
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Figure 1.1. The timing of adolescent sleep is delayed at ages 16-19 years.  Bedtimes 
are plotted in black and rise times are plotted in grey. Note that bedtimes continue to 
delay on weekdays despite regulated wake times. This leads to an overall shorter sleep 
duration during adolescence. (This figure was adapted from Thorleifsdottir et al. 2002, a 
longitudinal survey of 950 Icelandic children and adults.) 
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Figure 1.2. Chronotype changes with age. Individuals showed a transition into a more 
evening chronotype during adolescence (ages 10-20 yrs), as determined by self-reported 
mid-sleep phase. This trend then reversed for the rest of adult life. Males were more 
evening-type than females from the age of late puberty through menopause. (This figure 
was adapted from Roenneberg et al. 2004, a cross-sectional survey of 25,000 individuals 
in Germany and Switzerland). 
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Figure 1.3. An illustration of commonly-used circadian terminology.  Depicted on top 
is a simple sinusoidal model of a subject’s behavioral or physiological rhythm (e.g. 
locomotor activity), and depicted below is the environmental cycle to which the subject 
was exposed (e.g. a light-dark cycle). 
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Figure 1.4. A PRC representing the circadian phase response of male and female 
degus to a light pulse. Degus (n=8 per sex) were housed in constant darkness (DD) for a 
day preceding the pulse. Pulse times were defined in reference to the former light cycle 
(previously, lights were on during hrs 0-12, Aschoff II methodology). The magnitude of 
circadian phase shift in response to a 30-min light pulse was determined by comparing 
activity rhythms following the light-pulse to those under control conditions (DD). Phase 
shift magnitude was measured in hours, with positive values indicating phase-advance, 
and negative values indicating phase delay. Degus were allowed several weeks to re-
entrain to a light-cycle between measurements (Lee TM, unpublished data). 



 

28 
 

 
 
 
 
 
 
 
Figure 1.5. An illustration of the transcriptional-translational feedback loop that 
generates circadian rhythms in the SCN. Arrows with a plus sign (+) indicate that an 
element drives the transcription of another element, whereas arrows with a negative sign 
(-) indicate transcriptional inhibition.  
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Figure 1.6. A light pulse increases Per1 transcript and causes a phase shift in its 
daily rhythm in the SCN.  Per1 mRNA was quantified using in situ hybridization in 
mice. Each point represents the mean of two animals. Brains were collected for two days, 
with a 30-min light pulse presented in the subjective evening (CT16) on the first day (A).  
Control animals remained in constant darkness for both days (B).  The bidirectional 
arrow indicates that the peak in Per1 transcript is delayed on the second day following 
the light pulse relative to control conditions.  (adapted from Shigeyoshi et al. 1997) 
 



 

30 
 

Figure 1.7.  A comparison of the daily rhythms and photic-sensitivity of period 
genes in the SCN of the diurnal degu and nocturnal rat.  A-B. Relative Period gene 
mRNA levels in the SCN of the degu (black) and rat (grey) at each time point were 
compared using in situ hybridization. The mean hybridization signal for each time point 
(n=3–5, +/-SE) is normalized as %peak, with the trough given the value of 0. ZT0 is 
double-plotted as ZT24. A black and white bar at the bottom illustrates the light-dark 
cycle. Both species demonstrate daily fluctuation (degu: P<0.001, rat: P <0.001) in Per1 
(A) and Per2 (B) mRNA levels in the SCN that differed between the two species 
(P<0.05) and varied by time point (P<0.001). In the rat Per2 dataset, ZT16 is absent, and 
ZT18 is not shown due to only having data from one animal.  (Adapted from Vosko,* 
Hagenauer,* Hummer, and Lee 2009). C) Light exposure increases Per1 transcript in 
the degu during the subjective night (ZT12 – ZT24).  Grey bars illustrate Per1 mRNA 
levels in the SCN of degus kept in constant darkness (mean +/-SE), whereas white bars 
show those of degus kept in constant darkness and then exposed to a 30-min light pulse 
1.5-2 hrs prior to sacrifice. Per1 was  measured by in situ hybridization. The x-axis 
indicates the timepoint when the animal was sacrificed (extended from the previous LD 
cycle). (Adapted from Koch, Hagenauer, and Lee 2009).  This rhythm in photic 
sensitivity resembles that already published for the rat (Miyake et al. 2000).  
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Figure 1.8 

Figure 1.7 
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Figure 1.8. Period mRNA rhythms in brain regions outside of the SCN show 
dramatically different phasing in the diurnal degu and nocturnal rat.  A) 
Representative autoradiographs showing Per2 mRNA levels outside of the SCN in the 
diurnal degu and nocturnal rat. Per2 mRNA levels in the putative striatum and cingulate 
and parietal cortices at each time point were visualized using in situ hybridization and 
autoradiography. The circles illustrate the specific locations on coronal slices that were 
used to sample hybridization signal from each brain region. B-C) Relative Per2 mRNA 
levels at each time point were compared using in situ hybridization. The mean 
hybridization signal for each time point (n =3–5, +/-SE, LD 12:12) is normalized as 
%peak, with trough given the value of 0 (A and B). B) The degu demonstrated daily 
fluctuation of Per2 mRNA levels in the putative parietal cortex and cingulate cortex (P < 
0.05). C) The rat demonstrated daily fluctuation of Per2 in the parietal cortex and 
striatum (P < 0.05).  (Adapted from Vosko,* Hagenauer,* Hummer, and Lee 2009). 
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 Figure 1.8 
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Figure 1.9. Two prominent examples of gonadal hormones influencing activity 
rhythms.  A) In many rodent species, the day of estrus is accompanied by elevated 
wheel-running that begins earlier in the day (phase-advanced). Shown are two examples 
of estrus-typical wheel-running activity from a degu, with the alleged day of estrus 
marked with an “E.” The activity is graphed as a double-plotted actogram, with each 
horizontal line sequentially representing 2 days of activity (# wheel turns/10 min bin) and 
the light-dark cycles for both days indicated by bars at the top of the figure. The grey line 
in the middle of the actogram represents a one-week break in recording, and the estrous 
cycle length for each female is noted at the bottom. B) Castration delays activity rhythm 
phase in male mice and androgen treatment restores normal rhythms. (top) Double-
plotted actograms show the free running locomotor activity of male mice housed in 
constant darkness. The horizontal axis is 48 h and the vertical axis is consecutive days. 
Each box shows the rhythms of a mouse before and after hormonal manipulation. The bar 
graphs below show the distribution of activity across the day (+/-SE) for mice treated 
under several conditions: INT means intact, GDX means gonadectomized, +TP means 
treated with testosterone propionate, and DHT means treated with dihydrotestosterone. 
(Adapted from Iwahana et al. 2008). 
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Figure 1.9 
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Figure 1.11. Ovariectomy causes an 8hr phase delay in the timing of peak VIP 
mRNA in the SCN of the diurnal grassrat (Arvicanthis niloticus).  Illustrated are daily 
patterns in the VIP mRNA levels in the SCN of males, intact females, ovariectomized 
(OVX) females and OVX females given two estradiol capsules for 2 days. VIP mRNA 
was measured using in situ hybridization. Values are expressed as mean ± standard error. 
White and black bars indicate the time of lights-on and lights-off, respectively. (Adapted 
from Mahoney, Ramanathan, Hagenauer, Thompson, Smale, and Lee 2009). Note that 
these rhythms and hormonal dependencies resemble those already observed in the 
nocturnal rat (Krajnak et al. 1998).  
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Figure 1.12. Two potential mechanisms underlying delayed circadian phase during 
puberty. A. An elongatation of τ during puberty would cause the circadian pacemaker 
and its rhythmic output to phase delay relative to the light cycle. The delay would provide 
more light exposure at a phase when the pacemaker is sensitive to advancing phase shift 
(represented above using a degu PRC), and thus allow entrainment (because τ - 24 hrs = 
φ, with φ, representing the magnitude of necessary daily phase-resetting). B. An increase 
in the circadian pacemaker’s relative sensitivity to the phase-delaying effects of light 
would also cause the pacemaker to delay relative to the light cycle. This delay would 
result because the pacemaker would need more light exposure at a phase when it is 
sensitive to advancing phase shift. (Adapted from Hagenauer et al. 2009) 



 

40 
 

 
 
 
 
 
 
Figure 1.13. Pubertal mice exhibit an exaggerated delay in circadian phase in 
response to evening light. Female mice were placed into constant darkness (DD) for two 
weeks and then exposed to a 15 min light pulse (150 lux). Circadian phase shift in 
response to the pulse was calculated in reference to sham (no pulse) conditions, and 
circadian time was defined in reference to the activity rhythms of the individual mice 
(activity onset = CT12, Aschoff I methodology). The dotted line represents the phase 
response of mice that were likely to be pubertal at the time of the light-pulse (P49, n=34) 
and the dark line represents the phase response of adults (P140, n=34).  Each point 
represents the average phase shift produced by light presented during a 1.5 hr bin. The 
sample size for each bin is represented by the size of the data point (n=1-8). (Hagenauer 
et al. 2009, Adapted from Weinert and Kompauerova 1998). 
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Chapter 2 
 

Changes in Circadian Rhythms During Puberty in Rattus Norvegicus: 
 Developmental Time Course and Gonadal Dependency 

 
 

Abstract  

 During puberty, human adolescents begin to show a delayed timing of sleep and 

other daily physiological rhythms. To explain this phenomenon, we hypothesized that 

pubertal increases in gonadal hormones affect the phasing of the circadian timekeeping 

system. To test this hypothesis, we tracked the phasing and distribution of wheel-running 

activity rhythms during post-weaning development in rats that were gonadectomized 

before puberty or left intact. We found that intact peripubertal rats had activity rhythms 

that were phase-delayed relative to adults. Young rats also exhibited a bimodal nocturnal 

activity distribution. As puberty progressed, bimodality diminished and late-night activity 

phase-advanced until it consolidated with early-night activity. By late puberty, intact rats 

showed a strong, unimodal rhythm that peaked at the beginning of the night. These 

pubertal changes in circadian phase were more pronounced in males than females. 

Gonadal hormone increases during puberty partially accounted for these changes, as rats 

that were gonadectomized before puberty demonstrated smaller phase changes than intact 

rats and maintained ultradian rhythms into adulthood. We then investigated whether these 

developmental changes were due to altered photic entrainment. We compared circadian 

development in intact animals under constant and entrained conditions. We found that the 

period (τ) of free-running activity rhythms developed sex differences during puberty. 

However, these changes in τ did not account for pubertal changes in circadian phase, as 

the consolidation of activity at the beginning of the subjective night persisted under 

constant conditions in both sexes.  We conclude that the circadian system remains highly 

plastic and hormone-sensitive during puberty.  
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Introduction 

 Human adolescents exhibit dramatically different sleep patterns than adults. Most 

notable is their propensity towards night-owl behavior, or “evening chronotype” (e.g. 

Crowley et al., 2007; Roenneberg et al., 2004; Thorleifsdottir et al., 2002; Yang et al. 

2005).  As puberty progresses, the timing of sleep grows later, such that the latest, or 

most delayed, sleep patterns occur around the time of achieving sexual maturity (between 

the ages of 15-21; Crowley et al., 2007; Roenneberg et al., 2004; Thorleifsdottir et al., 

2002; Yang et al. 2005).  Although adolescent sleep patterns are influenced by social 

factors, changes in the timing of sleep are at least partially rooted in hormonal influences 

on the body’s circadian timekeeping system.  In support of this assertion, a delayed 

phasing of both sleep and endocrine rhythms relative to daily light exposure persists in 

adolescents housed under controlled, laboratory conditions (Carskadon et al., 2004; 

Carskadon et al., 1997). Later sleep times also correlate with secondary-sex development, 

even after taking into account age and related social influences (Carskadon et al., 1993; 

Sadeh et al. 2009). Moreover, similar to other pubertal changes, girls begin to show 

delayed chronotype earlier than boys. The magnitude of these developmental changes 

exhibits sex differences as well, and by late adolescence boys are more evening-type than 

girls (Roenneberg et al., 2004). This evidence strongly implicates a role for gonadal 

hormones in adolescent changes in sleep patterns.  

 The sensitivity of the circadian timekeeping system to gonadal hormones during 

early development and adulthood is already well-documented.  In humans, daily rhythms 

in cortisol and sleep onset shift their timing during different stages of the menstrual cycle 

(Manber and Bootzin, 1997; Parry et al., 1994; Parry et al., 2000). In adult laboratory 

rodents, a wide variety of gonadal hormones affect the phase of circadian rhythms, 

including estrogens, progestins, androgens, and non-traditional neuroactive steroids (rats: 

Albers et al., 1981; Axelson et al., 1981; Kent et al., 1991; Li and Satinoff, 1996; 

hamsters: Davis et al., 1983; Morin et. Al, 1977; de Tezanos Pinto and Golombek, 1999; 

mice: Daan et al., 1975; Iwahana et al., 2008; Karatsoreos et al., 2007; degus: Jechura et 

al., 2000; Labyak and Lee 1995).  The sensitivity of the adult circadian system to these 

steroidal hormones exhibits sex differences that are determined by the organizational 
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effects of gonadal hormones during the perinatal period (rat: Albers, 1981; hamster: 

Zucker et al., 1980).  The influence of gonadal hormones on the circadian system during 

puberty is less understood, although it is reported that pubertal hormones can alter 

circadian phase (degu: Hummer et al., 2007) as well as produce organizational effects on 

the circadian system (hamster: Davis et al., 1983).  Indeed, in some species, there is a 

critical window of sensitivity to the organizational effects of gonadal hormones as late as 

young adulthood (degu: Hummer et al. 2006). 

 Despite these indications that adolescent sleep patterns are likely to be partially 

due to pubertal increases in gonadal hormones, there has been little attempt to determine 

how common these developmental changes are across mammalian species or to elucidate 

their hormonal or neural bases using animal models (Hagenauer et al., 2009).  Evidence 

from five species suggests that pubertal changes in circadian phase are not uniquely 

human (rhesus macaque: Golub and Takeuchi, 2002; laboratory mouse: Weinert et al., 

1994; Weinert and Waterhouse, 1999; laboratory rat: McGinnis et al., 2007; Kittrell and 

Satinoff, 1986; Octodon degus (degu): Hummer et al., 2007; Tate et al., 2002; 

Psammomys obsesus: Neuman et al., 2005). However, only three of the studies (using the 

slow-developing, diurnal species of the macaque and degu) have attempted to thoroughly 

characterize the full developmental progression of circadian phase change in relation to 

secondary-sex development (Golub & Takeuchi 2002, Tate, Richardson, and Carskadon 

2002, Hummer et al. 2007), and only one study directly examined the role of pubertal 

hormones (Hummer et al. 2007). Similar to humans, the macaque and degu show a 

delayed circadian phase during puberty (around the time of first menarche in the rhesus 

macaque, and first vaginal or prepucial opening in the degu) that reverses by adulthood. 

These developmental changes do not occur following pre-pubertal gonadectomy 

(Hummer et al., 2007). Therefore, pubertal elevations in sex hormones are likely to drive 

circadian phase changes.   

 To produce phase changes during puberty, these hormones may act on several 

different components of the circadian system. Circadian rhythms in mammals are 

generated by an endogenous pacemaker (Ralph et al., 1990). Therefore, under conditions 

in which there are no time cues from the outside world (also referred to as constant or 

“free-running” conditions), the circadian system continues to generate daily rhythms. 
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These endogenously-generated rhythms have a period (or day length, τ) that only 

approximates 24 hours (ranging from 23–25 hrs). Consequently, under normal 

conditions, the endogenous rhythm must be entrained by external time cues (or 

“zeitgebers,” such as light) to maintain a stable phase relationship with the outside world 

(Moore-Ede et al., 1982).  

If this entrainment mechanism were altered during puberty, it could produce a 

change in the phasing of daily rhythms in a manner that resembles the delayed sleep of 

human teenagers.   Research indicates that everything from the circadian system’s 

responsiveness to time cues (Hummer et al., 2007; Weinert et al., 1994; Weinert and 

Kompauerova, 1998) to the coupling of oscillators within the pacemaker (Cambras and 

Diez-Noguera, 1988; Diez-Noguera and Cambras, 1990) may be altered during pubertal 

development. One popular theory is that the endogenous period of the circadian 

pacemaker (τ) elongates during puberty, producing a delay in circadian phase (Carskadon 

et al., 2004).  In support of this theory, τ appears to elongate during puberty in humans 

and shorten during adulthood in a manner that parallels changes in the timing of sleep 

(Carskadon, et al., 1999; Carskadon et al., 2004). Male rats in one study also showed a 

longer τ during late puberty (postnatal age P47-59 days, τ=23.89 hrs) than during 

adulthood (age P105-P115, τ=23.75 hrs; McGinnis et al., 2007). However, this study only 

examined one sex and sampled at one late-pubertal time point. These features are 

important because pubertal changes in circadian phase in the degu are not dependent on 

changes in τ.  In degus, τ remained stable until a critical period in young adulthood when 

it underwent a final sexual differentiation in which the males developed a shorter τ but 

the females did not (Hummer et al., 2007). Thus, it is desirable to replicate the original 

findings in the rat (McGinnis et al., 2007) using both sexes and a larger number of 

sampling time points during puberty before concluding that pubertal phase change in the 

rat is caused by changes in τ. 

 The rat is a useful  animal model for examining the mechanism underlying 

circadian phase change during puberty because of the wide-assortment of anatomical and 

physiological tools available for this species, as well as previous indication that male rats 

undergo a 3 hr magnitude phase change during puberty (McGinnis et al., 2007).  

However, it should be noted that the progression of puberty in this fast-developing 
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species exhibits several major differences from that of humans. Human puberty is 

commonly preceded by eight or more years of gonadal “quiescence” following infancy 

(Plant, 1994).  The rat does not show this period of quiescence and continues to show a 

low level of steroidogenesis and secondary-sex development throughout the juvenile 

period that accelerates at the time of puberty (Ojeda and Urbanski, 1994).  

Also, due to the short life-span of this species, puberty closely follows weaning. 

Under the gentle conditions of the laboratory, secondary-sex characteristics typically first 

appear around the postnatal age (P) of P30 in females and P45 in males, with mature 

sexual characteristics evident by around P60 (Ojeda and Urbanski, 1994; the specific age 

depends on the strain of rat and the health of the laboratory colony). This close proximity 

between weaning and puberty means that our data from the rat illustrates both the effects 

of pubertal hormones, as well as the already well-documented changes in circadian 

rhythms that occur as young rats develop independence and switch from maternal to 

photic entrainment mechanisms (for review see Weinert, 2005). In order to distinguish 

between these two events, we have also extensively examined the influence of pubertal 

hormones on circadian phase in the slow-developing diurnal species, the degu (Chapter 

3).   

 Both experiments initially characterize the developmental time course and sex 

differences present in changes in circadian phase under entrained conditions across 

pubertal development.  In Experiment 1, we further evaluated the correlation between 

phase change and sexual maturation in both sexes, and then determined the dependency 

of phase change on pubertal exposure to gonadal hormones. In Experiment 2, we 

examined the relationship between developmental changes in circadian phase and 

changes in the endogenous period of the circadian pacemaker under constant conditions 

(τ) in both sexes. Additionally, as several previous studies have commented on the 

prevalence of ultradian components in the circadian rhythms of rats around the age of 

puberty (Cambras and Diez-Noguera, 1988; Castro and Andrade, 2005; Diez-Noguera 

and Cambras, 1990; Ibuka, 1984, Joutsinemi et al., 1991; Kittrell and Satinoff, 1986), in 

both studies we also characterized the changing contribution of these components to 

circadian phase measurements across development.  
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We hypothesized that pubertal rats would show a delay in circadian phase that 

peaks around mid-puberty, similar to what is observed in slow-developing mammalian 

species (the degu and macaque; Golub & Takeuchi, 2002; Hummer et al., 2007). We 

further hypothesized that, as in the degu, these changes in phase would be dependent on 

gonadal hormones but independent of pubertal changes in τ. Finally, we expected that the 

development of delayed phase during puberty might be accompanied by a decrease in the 

ultradian components prevalent in the rhythms of newly-weaned young rats.  

  

Methods 

All procedures specified below were conducted in accordance with the guidelines 

established for the care and use of laboratory animals by the National Institute of Health 

and under approved by local animal use and care committees (IACUC). 

Experiment 1: Pubertal Changes in Circadian Rhythms under Entrained Conditions 

 Animals:  Four iterations of the same experiment were conducted with a total 

sample size of 62 Sprague-Dawley rats. These rats were obtained from breeding colonies 

at the University of Michigan, comprising eight litters from eight dams and sires. The 

dams and sires were purchased from Charles-River Laboratories (Wilmington, MA). 

Litters were reduced to 8 rats by postnatal day 3 (P3) with roughly balanced sex ratios. 

The pups used in iteration 1 were raised under a 14:10 light-dark (LD) cycle (lights on 

05:00-19:00) until the age of P8-P14, when they were moved to the testing environment 

(12:12 LD, lights on 06:00-18:00). All other rats were raised and tested on a 12:12 LD 

cycle (lights on 06:00-18:00).  

Within the testing environment, cages were kept on tables to standardize light 

exposure.  During the lighted part of the LD cycle, the testing environment was dimly lit 

(40 lux measured at cage level, provided by fluorescent house light) to reduce photic 

masking.  The rats were placed in the testing environment before weaning, and a subset 

of the rats were provided with running wheels during this time as well. At weaning (age 

P19-P22), rats were placed in individual opaque plastic cages (42.5 x 46 x 19.5 cm) with 

Nalgene running wheels (9 x 34.5 cm, Mini Mitter, Bend, OR) and free access to food 

(5001 Rodent Diet, PMI Nutrition) and water. They remained there for the duration of the 

experiment. Wheel-running data from the first two days after weaning was not used to 
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avoid artifacts due to the adjustment of the pups to the running wheel and social isolation. 

All rats had been exposed to the testing environment for 5-16 days before their activity 

data was used for analysis (beginning P22-P24).   

Surgery: Approximately half of the animals in a litter underwent gonadectomy 

(GDX) surgery prior to puberty at age P12-P15. The rest of the animals in the litter 

underwent SHAM surgery. A second control included females and males that underwent 

no surgery. Any GDX animals that developed secondary-sex characteristics (e.g., vaginal 

openings) were removed from the analysis (n=3), as were two females (no surgery) that 

exhibited low wheel-running counts, leaving a final sample size of 58 rats. (8 SHAM 

males, 8 SHAM females, 12 GDX males, 11 GDX females, 7 no-surgery males, and 15 

no-surgery females). 

During surgery, rats were anesthetized with 4% isoflurane. Castrations and 

ovariectomies were performed using procedures similar to those previously described in 

Hu and Becker (2003). Due to the young age of the rats, several additional measures were 

performed to ensure health. For ovariectomies, a 1-1.5 cm dorsal incision was made 

bilaterally below the ribs.  For castrations, a single incision was made in the scrotal sac 

and the testes were visualized via palpation. The major blood vessels of the testes and 

ovaries were cauterized prior to organ removal. Then, the skin and the abdominal wall (in 

the case of the ovariectomies) were sutured closed. Post-operative care included 

subcutaneous saline injection and the application of Nolvasan antiseptic ointment (Fort 

Dodge Labs, Madison, NJ) on the incision. Sham operations included incisions and 

suturing similar to gonadectomy, but no organ removal. Animals were placed back in 

their cage with mother and siblings for at least 5 days of recovery before weaning.  

Circadian Data Collection: Running wheel activity data was collected in 10-

minute bins using VitalView software (Minimitter, Bend, OR) from an age just prior to 

the onset of puberty (P19-P23) until animals were post-pubertal (P60-P70). To prevent 

circadian rhythm disruptions, routine procedures involving handling of the animals 

occurred at random times during the lighted period of the LD cycle. For iterations 2 and 

3, a plastic rod was inserted in the wheel during routine procedures to prevent handling-

elicited wheel-running.   



   

  58 

Monitoring Pubertal Development:  Two secondary-sex characteristics, the 

development of a vaginal opening in female rats and a prepucial opening in male rats, 

were monitored daily around the typical age of puberty (around P27 to P40 for females, 

P33 to P65 for males). The androgen-dependent development of the prepucial opening is 

marked by the separation of the sheath from the glans of the penis (Ojeda and Urbanski, 

1994). The development of vaginal opening is estrogen-dependent and one of the first 

indications of puberty in female rats (Ojeda and Urbanski, 1994). Testicular volume was 

measured in male rats twice weekly (around P32 to P65) and was calculated by 

multiplying the testicular length and width in millimeters as defined by existing 

parameters (Hummer, et al., 2006). Weight was also recorded twice weekly for all rats 

during the testing period (around P25 to P65).  

Analysis: Circadian parameters were measured via wheel running activity and 

analyzed using ActiView software (Minimitter, Bend, OR). Automated analysis was used 

to determine daily mean activity (average wheel turns/10 min bin).  The timing of peak 

activity was also automatically generated via cosinor analysis. Other indicators of 

circadian phase (initial activity (1°) onset, onset of the second (2°) major activity bout, 

and final offset) were scored by researchers blinded to the sex and gonadal status of the 

animals. The “threshold” for all analyses of circadian phase was defined as each day’s 

mean activity so as to avoid the confounding effects of developmental and estrus-related 

changes in activity level. 1°activity onset and final activity offset were defined 

respectively as the first and last three consecutive bins of activity exceeding this 

threshold around the time of lights off (hours ZT12-18 in zeitgeber time, which is defined 

as hours relative to lights on), and lights on (between ZT18-24). Visual inspection 

revealed that young rats exhibited a bimodal activity pattern with a short, initial (1°) 

activity bout that begins almost immediately following the time of lights off and rarely 

lasts longer than 2 hours. Thus, to track changes in the second (2°) major activity bout, 

we also tracked the onset of this bout (2°onset), which was defined as three consecutive 

bins of activity exceeding this threshold following two hours of lights off (ZT14). On 

days where three consecutive bins of activity did not occur during the designated time 

periods of interest a circadian parameter could not be calculated. These null values were 

replaced by the latest 1°onset or earliest offset allowable (ZT18), or by the mean 2°onset 
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for ages P24-P60. Null values accounted for 10% of daily activity 1°onset and final offset 

scores, and 2.4% of 2°onset scores.  

To better visualize changes in bimodality, data were plotted as a percent of 

nightly activity so as to control for age-related changes in activity levels. To produce 

these figures, raw vitalview activity data from the dark period (ZT12-ZT24) was 

averaged by hour. Activity data from the light period was ignored because the activity 

counts were so minimal that it provided little information about bimodal activity 

distribution. The hourly bins were then divided by the overall average activity for the 

night to produce a percent of nightly activity. These hourly percentages were averaged 

over five four-day sampling periods that evenly spanned the developmental period (P25-

28, P33-36, P41-44, P49-52, P57-60). 

Statistics:  Initially, all intact animals (SHAM and no-surgery) were pooled and 

circadian parameters were analyzed for normal developmental changes over time and sex 

differences using a repeated measures ANOVA.  Subsequently, all data were analyzed for 

the effects of gonadectomy surgery and sex on change over time using a 3x2 repeated 

measures ANOVA (GDX x Sex). A Huynh-Feldt correction was used for most analyses 

because the assumption of sphericity was violated. For post-hoc analyses of the effect of 

surgery type (no surgery, SHAM, GDX) on age-related changes in circadian parameters, 

individual repeated measures comparisons were run by group followed by Bonferonni 

correction. Between-subjects effects were also examined using 3x2 ANOVA, and 

significant effects were followed-up using Dunnett’s T3 post-hoc comparisons.  Two sets 

of analyses were run: one using data averaged bi-daily, to detect fast developmental 

changes, and one using weekly data averaged weekly to decrease variance. In the end, 

both analyses illustrated similar developmental changes and group effects, but these 

effects were stronger in the weekly data set, as expected. Therefore, the results section 

only presents analyses from the weekly data analysis, although the bi-daily data is 

presented graphically for comparison.     

 

Experiment 2: A Comparison of Pubertal Changes in Circadian Rhythms Under 

Entrained and Constant Conditions  
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Animals: Thirty-two juvenile Sprague-Dawley rats (16 male, 16 female, 45-50 g) 

were purchased from Charles River laboratories (Wilmington, MA).  Upon arrival, the 

rats were immediately placed in individual, transparent plastic cages (47 × 27 × 20 cm) 

with a 34 cm diameter running wheel (age P23). The rats were maintained under a 12:12 

LD cycle (lights on at 08:00-20:00). During the lighted period, the light intensity at the 

bottom center of the cages averaged 59 lux and was provided by overhead fluorescent 

lights.  Cages were arranged on open racks in the testing environment so that they 

alternated by sex.  Food and water were provided ad libitum.  

Procedure: After four days of baseline 12:12 LD recording, half of the rats (8 

males, 8 females) were placed in constant conditions (constant red light or RR, < 1 lux at 

cage level) for six weeks (P29-P70). The red light was provided by three safelights in a 

light-tight room, each with a number one Kodak red monochromatic filter and a 15 W 

bulb. The other 16 rats were kept under the 12:12 LD condition for the same duration of 

time.  The rats were weighed at the end of the experiment to ensure normal growth.   

Analyses: Running wheel activity data was collected and analyzed in a manner 

identical to Experiment 1 with the following exceptions. First, the phase variables of 

1°onset, 2°onset, and final offset were not monitored, but another phase variable, light-

dark activity (LD) ratio, was evaluated. A lower LD Ratio score indicated greater 

nocturnality.  Second, period (τ) was analyzed under both entrained and constant (RR) 

conditions using a periodogram analysis that considered a window of 22-26 hrs while 

sampling successive 1-min intervals.  Third, for initial analyses, data from the initial 

entrainment period (P24-P28) were binned; other data were averaged in two week bins: 

P29-P42, P43-56, P57-P70.  

In order to better compare developmental changes in the distribution of activity 

under entrained and constant conditions, the percent of daily activity occurring during 

each 10 min bin was quantified for several ages: P27-P28 (when all animals were still 

entrained to a 12:12 LD cycle), P29-P30  (the first two days in RR, useful for determining 

the influences of photic masking), P35-36, P43-P44, P51-P52, P67-68. To subtract out 

the influence of free-run, only two days were included in each sample and the onset of 

the active period was aligned for all RR animals, such that the average onset of the active 

period for a sample (e.g. P67-68) was made equivalent to that found under entrained 
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conditions (P27-P28).  The onset of the active period (CT12) was defined as the 

beginning of the 12 hrs during the day when the most activity occurred as identified by 

moving window analysis. The time of peak activity was also measured relative to the 

onset of the active period under both RR and LD conditions.  

Statistics:  Circadian parameters specific to entrained conditions (time of peak 

activity, LD ratio) were analyzed for age-related change and sex differences using 

repeated measures ANOVA.  General circadian parameters characterizing entrained and 

constant conditions (mean activity and τ) were analyzed for age-related change and 

effects of sex and condition using a 2x2 repeated measures ANOVA. For post-hoc 

analyses, if there was no main effect of condition but a main effect of sex, then individual 

comparisons were run by sex for each time point using independent samples T-tests 

followed by a Bonferonni correction. If there was a main effect of both condition and sex, 

then individual 2x2 ANOVAs (sex x condition) were performed by time point followed 

by Bonferonni correction.  A Huynh-Feldt correction was used for most repeated 

measures analyses because the assumption of sphericity was violated.  

A separate analysis was run to analyze the effect of masking on the distribution of 

pre-pubertal activity in both sexes. This analysis examined the within-subjects change in 

the timing of peak activity relative to the onset of the active period (CT12) during the last 

two days in LD conditions (P27-P28) and the first two days in RR (P29-30). These 

changes were compared to the control animals that remained in LD conditions at both 

ages using a 2x2 repeated measures ANOVA (sex x condition at 2 ages).    

The progression of developmental changes in the distribution of activity under 

entrained (LD) or constant (RR) conditions was also further analyzed statistically by 

comparing the timing of peak activity relative to the onset of the active period in both 

sexes at 5 ages (P29-P30, P35-36, P43-P44, P51-P52, P67-68) using a 2x2 repeated 

measures ANOVA (sex x condition at 5 ages). 

  

Results 

Experiment 1: Pubertal Changes in Circadian Rhythms under Entrained Conditions 

Secondary-sex development and circadian rhythms in wheel-running activity were 

monitored in rats of both sexes that received gonadectomy (GDX) or SHAM surgery 
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prior to puberty as well as rats that had not received surgery (“no-surgery”). These data 

were collected from an age just prior to the typical onset of puberty (P19-P23) to 

maturation (P60-P70)  

Developmental Changes in Circadian Phase in Intact Animals: Both male and 

female intact animals (no-surgery and SHAM) demonstrated a bimodal activity pattern 

during early puberty, with increased activity around both times of transitioning light. This 

bimodality disappeared by late to post-puberty (Figure 2.1, Figure 2.2) due to the later 

(2°) activity bout phase-advancing until it merged with the initial (1°) activity bout. This 

change was reflected in a phase advance in the 2°onset, final activity offset, and the time 

of peak activity as indicated using repeated measures ANOVA (2°onset: F(2.367, 

78.098) =52.542, p<0.001; the timing of peak activity: F(3.327, 123.099)=6.417, 

p<0.001; activity offset: F(3.331, 123.243)=10.642, p<0.001). These changes were 

particularly pronounced in no-surgery intact males, which showed a 4.03 hour phase 

advance in 2°onset across the pubertal period. In all animals, the 1°onset at the beginning 

of the dark period held constant across the developmental period (F(4, 148)=1.228, 

p=0.302). Consequently, by the time of maturation the rats showed a unimodal activity 

rhythm that peaked during the early portion of the dark period (Figure 2.1E&F, Figure 

2.2E&F).  

Sex Differences in Circadian Phase in Intact Animals:  Similar to human 

adolescents, male rats demonstrated greater within-subjects change in circadian phase 

over development than females (Figure 2.3). This sex difference in the magnitude of age-

related change reached significance for 2°onset (Figure 2.3B, F(3.392, 125.491)=3.021, 

p=0.027) and final activity offset (Figure 2.3D, F(3.331, 123.243)=4.593, p=0.003) but 

not for the time of peak activity (F(3.327, 123.099)=1.772, p=0.150) or 1°onset (F(4, 

148)=1.925, p=0.109). There was also a between-subjects main effect of sex on 2°onset 

(F(1, 37)=4.835, p=0.034), with males showing an overall more delayed phase than 

females (Figure 2.3B). Main effects of sex were not seen for any of the other phase 

variables (p>0.10). 

There were also sex differences in the developmental timing of circadian phase 

changes in intact animals that paralleled sex differences in the developmental timing of 

secondary-sex development.  Delayed phase in males was most prominent between the 
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ages of P31-P37, as indicated by 2°onset, the time of peak activity, and final activity 

offset, whereas delayed phase in females was most prominent at ages P24-P30, as 

measured by 2°onset. Similarly, females showed 50% of their age-related change in 

2°onset by P37, whereas males showed 50% of their age-related change in 2°onset by 

P41 (Figure 2.3). 

The Effect of Gonadectomy on Circadian Phase: The GDX animals exhibited a 

similar bimodal activity pattern as intact animals around the typical age of pre-puberty 

and early puberty. This bimodality lessened over time, but remnants still persisted into 

adulthood (Figure 2.4, Figure 2.5). GDX animals also demonstrated a phase advance in 

some of their circadian markers by late- to post- puberty, but again to a lesser extent than 

the intact animals (e.g. Figure 2.6C-D). Thus, GDX surgery had a significant effect on 

within-subject change in 2°onset (F(5.860, 149.420)=4.451, p<0.001) and final offset 

(F(6.926, 179.615)=2.682, p<0.001). Overall, GDX animals exhibited a later 2°onset 

than intact animals, as indicated by a main effect of GDX between-subjects (F(1, 

51)=5.619, p=0.022). 

The manner with which gonadectomy altered age-related change was different 

between the sexes: in males, gonadectomy consistently decreased the amount of age-

related change in circadian phase parameters (Figure 2.6D, F, H), whereas in females 

gonadectomy had variable effects. The effects of gonadectomy in the females included: 

a) a decrease in age-related change (2°onset, Figure 2.6C), b) little effect where change 

in intact animals was already minimal (final offset and time of peak activity, Figure 

2.6G&E), c) an increase in age-related change (1°onset, Figure 2.6A). Therefore, several 

of the circadian parameters showed a significant interaction (or a trend towards an 

interaction) between the influence of sex and gonadectomy on within-subjects change 

(offset: F(6.926, 176.615)=3.086, p=0.004; time of peak activity: F(5.961, 

145.132)=1.856, p=0.096). These sex differences were particularly striking for age-

related change in 1°onset (F(3.944, 201.157)=3.027, p=0.019). Whereas males and no-

surgery females exhibited almost no change in 1°onset, SHAM and GDX female rats 

were relatively phase-advanced during pre-puberty, phase delayed during puberty, and 

finally phase-advanced again during late- and post-puberty (effect of gonadectomy: 

F(11.542, 201.157)=2.384, p=0.018; Figure 2.6A). Overall, GDX females also exhibited 
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an earlier offset than intact females whereas GDX males had a later offset than intact 

males, statistically producing a significant between-subjects interaction between the 

influences of sex and GDX (F(2, 51)=3.308, p=0.045). 

 These data suggest that the effects of gonadectomy may be partially accounted for 

by the surgery itself, in addition to the hormonal changes produced by removing the 

gonads. The developmental changes that occurred in intact animals appeared dampened 

in those with SHAM surgery (e.g. Figure 2.4 C, D, F, H). When comparing no-surgery 

and SHAM animals using individual post-hoc comparisons there were no circadian phase 

parameters that were significantly affected by surgery. However, the amount of age-

related change exhibited by SHAM’s appeared intermediate between that of no-surgery 

and GDX animals.  There was a significant difference between GDX and no-surgery 

animals in within-subjects change in 1°onset, 2°onset, and final offset (p<0.05), as well 

as sexually diergic effects of gonadectomy on the time of peak activity, final offset (both 

p<0.05), and 2°onset (p=0.054*trend).  However, SHAM and GDX groups only showed 

differences in within-subjects change in final activity offset, and this variable was 

influenced in a sex-specific manner (p<0.05, overall main effect of GDX: 

p=0.069*trend).   

Mean Activity: There were significant age-related changes in mean activity 

(F(1.848, 94.239)=64.708, p<0.001; Figure 2.7 A&B). These age-related changes were 

affected by sex (F(1.848, 94.239)=11.779, p<0.001), with females showing much greater 

increases in wheel running activity over development than males. These age-related 

changes were also affected by gonadectomy (F(3.696, 94.239)=10.359, p<0.001). GDX 

animals maintained a relatively constant mean daily activity throughout development. 

Individual post-hoc comparisons revealed that SHAM and no-surgery animals 

demonstrated a greater age-related increase in mean daily activity than GDX animals 

(p<0.05). The manner with which gonadectomy affected age-related change depended on 

sex (F(3.696, 94.239)=3.060, p=0.023), with females showing a much larger effect of 

GDX than males (Figure 2.7 A&B). 

 As previously shown in other studies, between-subjects comparisons revealed 

overall sex differences in mean activity levels (F(1, 51)=8.891, p=0.004), with females 

demonstrating a greater mean activity than males. There was also an overall effect of 
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gonadectomy (F(2, 51)=7.943, p=0.001). Individual post-hoc comparisons indicated that 

GDX rats were different from SHAM or no-surgery animals (p<0.05), showing much 

lower overall mean activity levels (Figure 2.7 A&B). This between-subjects effect varied 

by sex (F(2,51)=3.537, p=0.036), with females showing much larger effects of GDX on 

overall mean activity levels (Figure 2.7 A&B).  

Pubertal Development:  The development of vaginal and prepucial openings 

around the time of mid-puberty provides us with a developmental marker for comparison 

with the circadian data. Similar to humans, female rats showed overt signs of puberty at 

an earlier age than males (Figure 2.7E). The average day of first vaginal openings was 

P33.1 (+/-0.38 SE), with all females exhibiting vaginal openings by P36. The average day 

of first prepucial openings was P43.1 (+/-1.42 SE), with all males exhibiting prepucial 

openings by P59. There was no significant difference in the timing of pubertal onset 

between SHAM and no-surgery animals, although SHAM males showed a trend towards 

developing prepucial openings later than no-surgery males (T(8.121)=-1.872, p=0.098). 

Testicular volume showed a linear increase across pubertal development (r2=0.487, 

p<0.001) in a manner that was similar in SHAM and no-surgery males (F(1, 126)=0.418, 

p=0.519 , Figure 2.7F).  

 The timing of development was also monitored via weight gain (Figure 2.7C, D). 

Measures of body weight for both males and females showed a linear within-subjects 

increase throughout development with little variability (F(2.173, 112.991)=1378.033, 

p<0.001). Males showed a greater age-related increase in weight than females (F(2.173, 

112.991)=36.773, p<0.001). There was significant effect of gonadectomy on within-

subjects change in weight (F(4.346, 112.991)=5.683, p<0.001), with no-surgery animals 

showing a slower weight gain than SHAM or GDX animals. This effect of gonadectomy 

on weight gain differed by sex (F(4.346, 112.991)=5.590, p<0.001), with males showing 

more effect of surgery than females.  Males were also heavier overall than females (F(1, 

52)=21.552, p<0.001), and GDX and SHAM animals were heavier than no-surgery 

animals (F(2, 52)=6.082, p=0.004), leading to a trend towards an interaction between the 

influences of gonadectomy and sex on weight (F(2, 52)=2.973, p=0.060). 
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Experiment 2: A Comparison of Pubertal Changes in Circadian Rhythms Under 

Entrained and Constant Conditions  

Rhythms in wheel-running activity were monitored in pre-pubertal rats of both 

sexes under a standard light cycle (12:12 LD; P23-28). Then half of the animals were 

placed in constant conditions (dim RR) and half were kept under entrained conditions 

until maturation (P70). 

 Circadian parameters under entrained conditions: The rats’ entrained activity 

rhythms showed a similar pattern of developmental change across puberty as those 

observed during Experiment 1. Activity rhythms showed a pronounced bimodal activity 

distribution during early/mid-puberty that disappeared around the age of maturation 

(Figure 2.8A, Figure 2.9B-D).  This bimodality dissolved as the later activity bout 

phase-advanced until it merged with activity occurring earlier in the evening. Thus, we 

found that the daily timing of peak activity phase-advanced by approximately 3 hrs 

between ages P24-P70 (Figure 2.9A, within-subjects change: F(1.735, 24.294)=33.890, 

p<0.001). These changes in circadian phase were accompanied by a relative decrease in 

daytime activity, as reflected by within-subjects change in the light/dark (LD) activity 

ratio during ages P24-P70 (Figure 2.9B, F(1.599, 22.385)=6.693, p=0.008). Neither of 

these age-related changes differed by sex (time of peak activity: F(1.735, 24.294)=0.800, 

p=0.445; LD Ratio: F(1.599, 22.385)=1.387, p=0.266), nor was there an overall sex 

difference for either variable (time of peak activity: F(1, 14)=2.946, p=0.108; LD Ratio: 

(F(1,14)=2.265, p=0.155). 

 Circadian parameters under constant conditions: Immediately upon placement in 

constant conditions, the initial activity bout diminished slightly leading to a delay in the 

time of peak activity. These changes did not occur when the animals were left in an LD 

cycle (Figure 2.8B & C, Figure 2.10). This resulted in a significant main effect of 

lighting condition on within-subjects change in the time of peak activity relative to the 

onset of the active period (CT12, as defined by the beginning of the 12 hour period 

during the day which contained the highest mean activity, F(1, 28)=7.431, p=0.011). 

Then, under both entrained and constant conditions, the later (2°) activity bout phase 

advanced and consolidated into a unimodal rhythm, such that the time of peak activity 

grew closer to the onset of the active period (Figure 2.10H, F(4, 112)=36.351, p<0.001).  
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This phase advance occurred faster under constant conditions, leading to an overall effect 

of lighting condition (RR vs. LD) on within-subjects change in the time of peak activity 

relative to the onset of the active period (F(4, 112)= 7.630, p<0.001).  This phase advance 

was also slightly smaller in females (F(4, 112)=3.372, p=0.017), in a manner that 

depended on lighting condition (F(4, 112)=2.672, p=0.036). Females in general showed 

an earlier time of peak activity relative to the onset of the active period than males (F(1, 

28)=9.835, p=0.004) and this sex difference was exaggerated under entrained conditions 

(F(1, 28)=5.879, p=0.022). 

Under constant conditions, free running-period (τ) changed over development in a 

manner that depended on sex (Figure  2.9C). We also measured τ under entrained 

conditions to make sure that age-related phase changes were biasing periodogram 

analyses, and τ was shown to hold steady around 24 hrs (data not shown). Therefore, 

within-subjects change in τ was affected by an interaction between sex and lighting 

condition (F(2, 56)=3.549, p=0.035, but no main effect of sex or condition p<0.05). 

Around the age of mid-puberty (P29-P42) both males and females had a τ that was close 

to 24 hrs in duration (24.07 +/- 0.15 SE and 23.911+/- 0.16 SE, respectively).  Post-hoc 

comparisons indicated that τ at this age did not differ in either sex from τ under entrained 

conditions (sex x condition: p>0.05). As puberty progressed, females developed shorter 

τ’s, eventually plateauing at 23.75 (+/- 0.08 SE) and males developed longer τ’s, 

eventually plateauing at 24.21 (+/- 0.08 SE).  Post-hoc comparisons indicated that a sex 

difference developed under constant conditions by ages P43-P56, and continued into ages 

P57-P70 (sex x condition: p<0.05). Overall, females had a shorter τ than males, as 

indicated by a main effect of sex (F(1, 28)=5.101, p=0.032; sex x condition(LDvs.RR): 

F(1, 28)=3.989, p=0.056*trend). 

 Activity level: Under both entrained and constant conditions activity levels 

increased over development (Figure 2.9D; within-subjects change: F(2.212, 

61.946)=71.928, p<0.001). This within-subjects change varied by sex (F(2.212, 

61.946)=9.940, p<0.001), with females showing greater age-related increases in mean 

activity than males. There was no main effect of lighting condition on age-related change 

(LD vs. RR, F(2.212, 61.946)=1.065, p=0.356) or interaction between sex and condition 

(F(2.212, 61.946)=1.631, p=0.202). Post-hoc comparisons indicated that this sex 
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difference only reached significance at age P43-56 (p<0.05).  Overall, females were more 

active than males, as indicated by a main effect of sex (F(1, 28)=9.360, p=0.005). 

Weight:  Predictably, there was a main effect of sex on final body weight, with 

females weighing less than males (F(1, 28)=125.629, p<0.001). There was a non-

significant trend towards rats under constant conditions weighing more than those under 

entrained conditions (F(1, 28)=3.743, p=0.063, data not shown) in a manner that did not 

vary by sex (F(1,28)=1.090, p<0.305). 

 

Discussion 

These experiments indicate that circadian activity remains highly plastic during 

post-weaning and pubertal development in the fast-developing, nocturnal rat.  Under both 

entrained and free-running conditions, we observed a crepuscular distribution of activity 

during early post-weaning, with the majority of activity occuring near the end of the 

active phase.  As male rats progressed through puberty, this later bout of activity phase-

advanced 4 hrs until it consolidated into a strong, unimodal rhythm that peaked near the 

beginning of the animal’s active phase. These pubertal changes in circadian phase were 

smaller in females, with female rats showing (at most) a 3.5 hr magnitude phase advance 

during puberty.  

 These results complement previous developmental sleep and activity data in post-

weaning rats. For example, a small sleep electrophysiology study that monitored male 

rats across post-weaning development (n= 1 rat per age group, Ibuka, 1984) found that 

total sleep followed a mostly ultradian pattern in juveniles (3-4 weeks of age). Between 

4-5 weeks of age these ultradian rhythms developed two pronounced crepuscular periods 

of decreased sleep around the beginning and end of the dark period. These two periods of 

decreased sleep eventually consolidated into a unimodal rhythm in adults, with very little 

sleep occurring at the beginning of the dark period. Slow-wave sleep followed a similar 

trend (Ibuka, 1984). Behavioral studies of sleep and activity in young rats similarly 

indicated that rats grow more nocturnal across the post-weaning period (Norton, 1975; 

Thiels et al.,1990), although one low-resolution study of activity using group recordings 

showed that rats were fully nocturnal even during the fourth week of life (P21-27, 

Joutsiniemi et al., 1991). Our previous developmental research on wheel-running rhythms 



   

  69 

in rats also suggested a more bimodal activity pattern in the pubertal rats, which 

consolidated by adulthood, producing an overall 3hr phase advance in the timing of peak 

activity (McGinnis et al., 2007). Taken collectively, this evidence indicates that processes 

governing the daily sleep and activity cycles of rats mature during the pubertal period. 

Previous research in the slow-developing degu suggested that changes in 

circadian phase during puberty are dependent on gonadal hormones (Hummer et al., 

2007). Our experiments in the rat support this conclusion on two counts.  First, we found 

that the reorganization of activity rhythms during puberty in the rat exhibited sex 

differences in timing and magnitude in a manner that strongly indicated a role for gonadal 

hormones in circadian development. Our data from rats gonadectomized prior to puberty 

also supported this hypothesis. Gonadectomized (GDX) animals maintained a more 

dispersed activity distribution and delayed phase into adulthood.  The organization of 

circadian rhythms in the castrates as well as in pre-pubertal intact animals strongly 

resembled that of castrated adult rodents in previous studies (mice: Daan et al., 1975; 

Iwanahana et al., 2008; Karatsoreos et al., 2007; hamsters: Davis et al., 1983; Morin et 

al., 1981; although not the degu: see Jechura et al., 2000). In these studies, castrated adult 

males showed an altered distribution of activity under entrained and free-running 

conditions such that activity was more dispersed across the active period, leading to less 

cohesive activity at the onset of the active period (Morin et al., 1981), or such that the 

initial activity bout was diminished, lost, or delayed (Karatsoreos et al., 2007; Iwanahana 

et al. 2008, Daan et al. 1975; Davis et al. 1983). The administration of testosterone or di-

hydrotestosterone was able to restore adult castrates to their original circadian activity 

patterns (Karatsoreos et al. 2007; Iwanahana et al. 2008, Daan et al. 1975; hamsters: 

Morin et al. 1981), indicating a role for the androgen receptor in maintaining vigorous 

activity at the beginning of the active period (Iwanahana et al. 2008; although the role of 

aromatized testosterone can certainly not be completely ruled out: Hummer et al. 2006). 

Thus, our observation that as rats mature they develop increasingly unimodal rhythms 

that peak at the beginning of the active period may reflect the activational effects of 

increasing testosterone during puberty.   

We also observed a similar, although smaller magnitude, circadian reorganization 

during puberty in female rats. Previous results have been divided as to the effect of adult 
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ovariectomy on the organization of female circadian rhythms. All studies acknowledge 

the disappearance of cyclic estrus-related elevations of activity (a pattern described as 

“scalloping” by Morin et al. 1977) following ovariectomy (Morin et al. 1977, Davis, 

Darrow, and Menaker 1983; Labyak and Lee 1997; Iwanahana et al. 2008). However the 

effect of ovariectomy on overall circadian phase or activity distribution appears to be 

species specific.  In the mouse and degu, ovariectomy had little overall effect on activity 

phase or the distribution of activity across the active period (Iwanahana et al. 2008, 

Labyak and Lee 1997), whereas ovariectomy in hamsters led to an overall delay in 

activity onset (Davis et al. 1983). In hamsters, this delay was reversed by treatment with 

estradiol, which consolidated activity within the early hours of the subjective night 

(Morin et al. 1977), similar to our observations across puberty in intact female rats. Two 

studies in female rats also noted an increase in the ultradian components of activity 

rhythms following ovariectomy, as well as a reconsolidation of rhythms following 

estrogen treatment (Wollnik and Döhler 1986; Thomas and Armstrong 1989). Therefore, 

the circadian changes we observe during puberty in female rats may depend on the 

activational effects of increasing estrogen during puberty, but such changes may be 

species-specific. This interpretation coincides with data from the slow-developing degu 

(Hagenauer, Ku, and Lee, in preparation). In this species, females do not show the 

significant changes in activity phase or distribution during puberty seen in males, but 

adult ovariectomy also does not affect the overall distribution of activity (Labyak and 

Lee, 1997).   

Interestingly, GDX rats of both sexes still continued to show some circadian 

change at the typical age of puberty. This raised the possibility that a similar magnitude 

of change might still be occurring in GDX rats, but with a delayed developmental time 

course, perhaps due to the stress of surgery. To address this question, we examined the 

onset of the later (2°) activity bout in a subset of intact and GDX animals that we 

recorded for an additional ten days (up to P68). We found that in GDX animals the 

developmental changes in 2° activity bout stabilized by P49, and the circadian phase 

from P49-P68 was reliably more delayed than that of intact animals (Supplemental 

Figure 2.11). This indicated that the developmental changes in GDX animals were 
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indeed smaller in magnitude than those found in intact animals, and that overall phase 

differences between the two groups were long-lasting.  

The presence of some circadian change in GDX rats around the typical age of 

puberty contrasts with what we found in the slow-developing, precocial degu.  In the 

degu, GDX males did not show any changes in circadian organization or phase that 

resembled intact males (Chapter 3).  One possibility is that the hormone-independent 

circadian changes that we observe in the fast-developing rat are due to the gradual 

transition from maternal to photic entrainment mechanisms that accompanies weaning in 

altricial species (for review see Weinert, 2005). In fast-developing species, weaning and 

puberty occur in close proximity. In most laboratories (including our own) weaning is 

performed artificially at age P21 by moving the pups into a separate cage from the dam. 

However, rats may continue to show nursing behavior until around ages P28-P40 when 

allowed to remain with the dam (Calhoun 1962; Cramer, Thiels, and Alberts 1990).  

Therefore, at the time of weaning in the laboratory (P21) the juvenile rat is at an 

age when it would still be heavily dependent on the dam in the wild. As an altricial 

species, this dependence extends into the realm of circadian entrainment. Although rat 

pups can respond to photic time cues soon after birth in the lab (Weaver and Reppert 

1995), in the wild the nursing dam seals off burrow entrances with leaves and mud 

(Calhoun 1962). Thus, pups are unlikely to be exposed to regular photic cues until they 

venture from the burrow during the third week of life (Calhoun 1962; Weinert 2005). 

Consequently, the primary influence on the phasing of activity rhythms in young rats is 

the diurnal nursing pattern of the dam (Shimoda et al. 1985; Sugishita et al. 1991; Thiels, 

Alberts, and Cramer 1990). If pups are kept in the presence of the dam, they exhibit this 

diurnal activity pattern until around age P18, at which point they begin to consume solid 

food (Bolles and Wood 1964) and develop a more ultradian rhythm (Thiels, Alberts, and 

Cramer 1990). When isolated from the dam, the pups can exhibit nocturnal rhythms as 

early as P15-19 (Anderson and Smith 1986; Levin and Stern 1975; Teicher and Flaum 

1979), but the light-dark cycle doesn’t trump the influence of the dam until age P22 

(Levin and Stern 1975). Even after this point, the dam serves as an effective zeitgeber 

until the 4th or 5th week of life (approximately P28-P35; Levin and Stern 1975; 

Takahashi, Hayafuji, and Murakami 1982). Thus, the earliest part of our sample (P21-
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P30) overlaps with the typical time of transition from maternal to photic entrainment, as 

well as from dependent, diurnal activity to independent, exploratory nocturnal activity. 

These changes would occur regardless of the hormonal condition of the animal.  

Similarly, the high metabolic demands on young, fast-growing animals would be likely to 

promote ultradian rhythms of sleep and activity that would diminish with age regardless 

of hormonal environment (Alfoldi et al. 1975).  

Animals that received SHAM surgery showed significant pubertal circadian 

changes, but they were dampened compared to those of no-surgery animals.  Males also 

showed a trend towards delayed secondary-sex development.  It seems unlikely that these 

differences between SHAM and no-surgery rats were directly due to continued stress 

from the surgery, as both groups showed healthy weight gain throughout the recording 

period and almost identical activity levels. Perhaps instead there was a secondary effect 

of surgery on maternal care (Barnett & Burn 1967), or a sexually-diergic long-term effect 

of isoflurane anesthesia (Siegal and Dow-Edwards, 2009; McCann et al. 2009).  

It is unclear what aspect of the circadian mechanism is affected by pubertal 

hormones to produce changes in circadian phase. Originally, we hypothesized that 

hormones altered the entrainment of the circadian system to the LD cycle to produce 

pubertal changes in daily activity rhythm phase and distribution. This altered entrainment 

could be produced by changes in the photic sensitivity of the circadian pacemaker or via 

an elongation of the endogenous free-running period (τ).  Indeed, under conditions of 

constant darkness we observed developmental changes in τ: Male rats developed a longer 

τ and female rats developed a shorter τ.  However, these changes seem unlikely to 

explain pubertal changes in the phasing and distribution of activity under entrained 

conditions for several reasons.  First, both males and females showed similar changes in 

the phase of rhythms during puberty despite showing divergent developmental changes in 

τ.  Second, the changes that we observed in τ during puberty in males in this study are 

actually the opposite of what we found in our earlier study (McGinnis et al. 2007). In the 

earlier study, males showed a shortening of τ such that, when first placed in constant 

conditions during mid-puberty (P47-59), they showed a τ that was close to 24 hrs. Later, 

when placed in constant conditions again during adulthood (P105-115), their τ dropped to 

23.75 hrs (McGinnis et al. 2007). In the current study, τ again is near 24 hrs (24.07) when 
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the male rats are first placed in constant conditions at P29-P42, but then lengthens to 

24.21 hrs by P43-P70.  One possible explanation for the discrepancy between results in 

the two studies is the duration of time the rats were placed in constant conditions.  In an 

earlier study in pubertal degus, younger animals were found to maintain a free-running 

period close to 24 hrs for almost 2 weeks after placement in DD.  These pronounced 

aftereffects disappeared as the animals matured (Hummer et al. 2007).   Thus, it may be 

that the τ of 24 hrs that we observed in male and female rats at the earliest samples in 

both studies also reflects aftereffects of the photoperiod.  

Either way, these changes in the entrainment mechanism are unlikely to fully 

explain pubertal changes in activity rhythm phasing because our data also indicate that 

rats undergo a redistribution of activity rhythms under constant conditions. Pre-pubertal 

rats continued to exhibit a strongly bimodal activity rhythm with most activity at the end 

of their active period even after they entered constant conditions. Placement in constant 

conditions actually produced a small immediate decrease in the proportion of activity 

occurring during the activity bout at the beginning of the subjective night, suggesting that 

the light-dark cycle was masking a more delayed phase of pre-pubertal activity. This 

activity then consolidated into a unimodal rhythm that peaked near the beginning of the 

subjective night in a manner that resembled circadian development under entrained 

conditions. These results resemble those of an earlier report that used a periodogram 

analysis of the activity rhythms of rats born and raised under conditions of constant light 

(Diez-Noguera and Cambras, 1990). Within that study, a primary 24-hr circadian 

harmonic didn’t fully emerge until 1-3 weeks post-weaning. Our data also strongly 

resemble data from previous studies that showed an affect of gonadectomy and hormone 

replacement on the distribution of activity rhythms under constant conditions (e.g. Daan 

et al. 1975; Iwahana et al. 2008; Karatsoreos et al. 2007). These studies showed that 

gonadal hormones could restore vigorous activity to the beginning of the subjective night. 

Thus, despite evidence that pubertal hormones might affect the τ and photic sensitivity of 

the circadian pacemaker (Carskadon et al. 2004; Hummer et al., 2007; Weinert et al., 

1994; Weinert and Kompauerova, 1998), our data suggest that pubertal hormones in this 

species affect the phasing and distribution of activity rhythms in a manner that is 

independent from τ and the photic entrainment mechanism. Likewise, our data strongly 
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indicate that changes in activity rhythms during the pubertal period are not due to the 

passive masking of rhythms by direct behavioral responses to the light-dark cycle; 

instead, masking may dampen the expression of these changes.   

Our results add to growing evidence that circadian plasticity during puberty is 

common across the mammalian kingdom. It is well-known that human teenagers show 

dramatic changes in the phasing of sleep and activity (e.g. Crowley, Acebo, and 

Carskadon 2007; Roenneberg et al. 2004; Thorleifsdottir et al. 2002; Yang et al. 2005), 

and that these changes exhibit sex differences, with males showing larger changes than 

females (Roenneberg et al. 2004).  Less well-known is the fact that circadian phase-

changes during the pubertal period have also been observed during studies of mice, 

degus, fat sand rats, and rhesus macaques ((rhesus macaque: Golub & Takeuchi 2002, 

laboratory mouse: Weinert et al. 1994, Weinert and Waterhouse 1999, laboratory rat: 

Kittrell & Satinoff 1986; McGinnis et al. 2007; Octodon degus (degu): Hummer et al. 

2007; Tate, Richardson, and Carskadon 2002; Psammomys obsesus: Neuman et al. 2005; 

for full review see Hagenauer et al. 2009).   

The structure of these changes differs somewhat by species.  Diurnal primates 

(humans and rhesus macaques) show a relatively advanced phase of activity during pre-

puberty, phase-delay during puberty, and then phase advance again during adulthood 

(Thorleifsdottir, Roenneberg, Golub et al. 2002). Our previous study in the degu also 

reported a more advanced phase during pre-puberty (Hummer et al. 2007), as did 

preliminary data in the degu and rat (Hagenauer et al. 2009).  However, in the current 

study we discovered that a more advanced, unimodal rhythm was occasionally observed 

during adjustment to the experimental conditions regardless of what age the activity 

recording was initiated.  Once the initial days of recording were removed from the 

analysis, this advanced phase during pre-puberty statistically disappeared. Thus, from our 

current study in the fast-developing rat, it seems clear that during the post-weaning period 

in this species, rhythms progress simply from a more phased-delayed, bimodal 

distribution to one that is relatively phase-advanced and unimodal.   

These species differences suggest that a relatively advanced phase of activity 

during pre-puberty is characteristic of species that develop slowly and progress through a 

pre-pubertal quiescent period, such as humans and macaques. However, since the species 
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diversity in reproductive behaviors and sex differences is already well-acknowledged 

(Crews, 2002) it should not be surprising that the structure of pubertal changes in 

circadian rhythms is similarly diverse.  More interesting then might be questions 

regarding the evolutionary pressures driving a widespread sensitivity of activity rhythms 

to gonadal hormones. It seems paradoxical that such precise timekeeping capabilities 

would be so sensitive to an element of physiology that fluctuates in response to a wide 

variety of social and environmental stimuli.  In a previous review of hormonal affects on 

the circadian system, Karatsoreos and Silver argued that this sensitivity reflects a 

feedback loop from circadian modulation of the hypothalamic-pituitary-gonadal axis 

(2007).   

In the context of our developmental data in the rat, we suggest an additional 

purpose for hormonal influences on circadian rhythms. In the wild, rats of lower social-

status exhibit activity rhythms that differ from those of dominant individuals, presumably 

as a manner of gaining access to resources during a time when there is less personal risk 

(Calhoun 1962).  Similar within-species temporal partitioning has been observed in 

bellbirds, toads, and trout (Alanara et al. 2001; Craig & Douglas 1984; Freeland and 

Kerin, 1991).  In all of these species, the dominant individuals claim the hours when the 

greatest rewards are available, which frequently corresponds to the beginning of the 

active period. Pre-pubertal animals in most species will be lower-ranking than adults. 

Thus, pre-pubertal rats exhibit an activity distribution typical of lower-status animals: 

active at times of the night when there is less reward. As they progress through puberty, 

their rhythms develop characteristics similar to those found in more dominant 

individuals. Since gonadal hormones are already well-known to signal competitive status 

(Hirschenhauser and Oliveira, 2006), it makes evolutionary and ecological sense that 

gonadal hormones would play a role in eliciting these changes in activity distribution.  

Future pubertal circadian studies that include the social housing (such as those performed 

by Paul and Schwartz, 2007) of developing rats could help distinguish between these two 

possibilities.   
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Figure 2.1. Intact males demonstrate a bimodal activity pattern during pre-puberty 
that disappears by late puberty due to a phase advance of the later activity bout. (A) 
Average percent of nightly activity (+/- SE) for animals during pre puberty P25-P28, (B) 
pre/early puberty P33-P36, (C) early/mid puberty P41-P44, (D) mid/late puberty P49-P52 
and (E) late/post-puberty P57-P60 from zeitgeber time (ZT) 12 to 24 (the dark period). 
(F) Example actogram of wheel-running activity across pubertal development. The x-axis 
shows the clock time for one full day, with the light-dark bar illustrating the time of lights 
off and lights on. Each line on the y-axis represents one day’s worth of activity as 
measured by wheel-running and has an upper threshold set at 200 wheel turns per 10-
minute bin. The arrow indicates first day of prepucial opening, an androgen-dependent 
secondary-sex characteristic. The solid dark bar within the actogram on the 5th day 
indicates a power surge.  
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Figure 2.2.  Intact females demonstrate a bimodal activity pattern during pre-
puberty that disappears by late puberty due to a phase advance of the later activity 
bout and increase in early night activity.  (A) Average percent of nightly activity (+/- 
SE) for animals during pre/early puberty P25-P28, (B) early/mid puberty P33-P36, (C) 
mid/late puberty P41-P44, (D) late/post-puberty P49-P52 and (E) post-puberty P57-P60 
from zeitgeber time (ZT) 12 to 24 (the dark period). (F) Example actogram of wheel-
running activity across pubertal development. The x-axis shows the clock time for one 
full day, with the light-dark bar illustrating the time of lights off and lights on. Each line 
on the y-axis represents one day’s worth of activity as measured by wheel-running and 
has an upper threshold set at 200 wheel turns per 10-minute bin. Intact females begin to 
show an increase in activity approximately every 4 days during puberty due to the 
initiation of estrous cycles. The arrow indicates first day of vaginal opening, an estrogen-
dependent secondary-sex characteristic. The solid dark bar within the actogram on the 5th 
day indicates a power surge. 
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Figure 2.3. Sex differences in circadian phase changes during puberty.  Graphs 
depict bi-daily mean values +/- SE for intact males (grey squares) and females (open 
squares). Values are given in zeitgeber time (ZT, lights off at ZT12) for the daily (A) 
initial (1°) activity onset, (B) onset of the second (2°) major activity bout, (C) time of 
peak activity, and (D) final activity offset. All variables except 1°onset show significant 
age-related change (p<0.001). Asterisks indicate that age-related changes in 2°onset and 
final offset have significant sex differences (p<0.05).
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Figure 2.4. Males gonadectomized (GDX) prior to puberty demonstrate an activity 
pattern that is bimodal during post-weaning and that remains dispersed into 
adulthood. The later activity bout diminishes and phase advances, but never fully 
consolidates with early evening activity. (A) Average percent of nightly activity (+/- SE) 
for animals during age of pre puberty P25-P28, (B) age of pre/early puberty P33-P36, (C) 
age of early/mid puberty P41-P44, (D) age of mid/late puberty P49-P52, (E) age of and 
late/post-puberty P57-P60 from zeitgeber time (ZT) 12 to 24 (the dark period). (F) 
Example actogram of wheel-running during post-weaning development. The x-axis 
shows the clock time for one full day, with the light-dark bar illustrating the time of lights 
off and lights on. Each line on the y-axis represents one day’s worth of activity as 
measured by wheel-running and has an upper threshold set at 200 wheel turns per 10-
minute bin.
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Figure 2.5. Females gonadectomized (GDX) prior to puberty demonstrate an 
activity pattern that is bimodal during post-weaning and that remains dispersed 
into adulthood. The later activity bout diminishes and phase advances, but never fully 
consolidates with early evening activity. (A) Average percent of nightly activity (+/- SE) 
for animals during the age of pre/early puberty P25-P28, (B) age of early/mid puberty 
P33-P36, (C) age of mid/late puberty P41-P44, (D) age of late/post-puberty P49-P52, (E) 
age of post-puberty P57-P60 from zeitgeber time (ZT) 12 to 24 (the dark period). (F) 
Example actogram of wheel-running during post-weaning development. The x-axis 
shows the clock time for one full day, with the light-dark bar illustrating the time of lights 
off and lights on. Each line on the y-axis represents one day’s worth of activity as 
measured by wheel-running and has an upper threshold set at 150 wheel turns per 10-
minute bin. 
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Figure 2.6.  Effect of pre-pubertal gonadectomy surgery on developmental changes 
in circadian phase parameters. The left column of graphs illustrates age-related 
changes in circadian phase parameters in females, the right column of graphs illustrates 
males. The points on all graphs represent the mean for a six-day sample (+/- SE), with the 
age-range for the sample presented on the x-axis in postnatal-days. The line colors 
indicate gonadal status: Gonadectomized (GDX, light grey), SHAM gonadectomized 
(dark grey), or no-surgery (black). The y-axis for all graphs is given in zeitgeber time 
(ZT, lights off at ZT12). Asterisks indicates significant effects (p>0.05), whereas # 
indicates a non-significant trend (p<0.10). (A&B) The time of initial (1°) activity onset 
shows changes in SHAM and GDX females but not males or no-surgery females. (C&D) 
The onset of the second (2°) major activity bout phase advances across development in 
both males and females. These changes are larger in males, and smaller following 
gonadectomy surgery. (E&F) The time of peak activity phase advances across 
development in no-surgery and SHAM males but not in females or GDX males. (G&H) 
The time of final activity offset phase advances across development in no-surgery and 
SHAM males but not in females or GDX males. 
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Figure 2.7. Indicators of health and maturation in Experiment 1. Asterisks indicates 
significant effects (p>0.05). (A&B) Daily mean activity increases across development for 
females (A) and males (B). Females are more active than males, and no-surgery and 
SHAM animals are more active than GDX. The points on both graphs represent the mean 
daily wheel turns/10 min bin for a six-day sample (+/- SE), with the age-range for the 
sample presented on the x-axis in postnatal-days. The line colors indicate gonadal status: 
Gonadectomized (GDX, light grey), SHAM gonadectomized (dark grey), or no-surgery 
(black). (C&D) Weight increases linearly over development for females (C) and males 
(D). Males weighed more than females after early-mid puberty. No-surgery animals 
showed the lowest weights. The x-axis shows postnatal age in days (+/- SE) and the y-
axis shows weight in grams (+/- SE). (E) The timing of puberty as determined by the age 
of first prepucial opening for intact males (solid line) and by first vaginal opening for 
intact females (dashed line). The x-axis shows age in postnatal days and the y-axis shows 
percent of total animals showing opening. No-surgery rats are depicted in black and 
SHAM rats are in grey. (F) Testes volume (cm2) increases in a linear fashion across 
postnatal age (x-axis) in both no-surgery (black) and SHAM males. Each point represents 
a measurement from a single animal. 
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Figure 2.9. Developmental changes in circadian parameters are compared in 
parallel under entrained and constant conditions. Error bars represent +/-SE. A.  The 
timing of peak activity phase-advances across pubertal development (P24-P70) under 
entrained conditions (12:12 LD, p<0.001). This change occurs similarly in both sexes 
(males = filled squares, females = open squares).  The timing of peak activity is 
represented on the y-axis in zeitgeber time (hrs, lights-off=ZT12).  B. Nocturnality 
intensifies across pubertal development (p=0.008) as indicated by light-dark activity 
ratio. A lower score indicates greater nocturnality. Differences between the sexes did not 
reach significance.  C.  Under constant conditions (RR), free-running period changes in a 
sex-specific manner across pubertal development (males = filled triangles, females = 
open triangles, p=0.035).  Asterisks indicate specific ages at which this sex difference 
reaches statistical significance (p<0.05).  D. Daily mean activity increases across pubertal 
development under both entrained (squares) and constant (triangles) conditions 
(p<0.001). Overall activity levels differed by sex (p<0.001; the asterisk indicates the 
specific age at which the difference reached significance (p<0.05). 
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Figure 2.11. When considering additional data collected at later ages, 
gonadectomized animals (GDX: open circles, dashed lines) continue to lack typical 
age-related changes in the timing of the onset of the second (2°) major activity bout. 
Any males and females that had data extending out to P68 were averaged to produce this 
figure. The intact group (closed circles, black line) includes both no-surgery and SHAM 
rats. Graphs depict mean 2°onset (+/- SE) for every two days across ages P22-P68 in 
terms of zeitgeber time (ZT, lights off at ZT12).   
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Chapter 3 

 
Circadian Reorganization during Puberty Depends on Gonadal Hormones in the 

Slow-Developing Rodent, Octodon degus 
 

Abstract 

 Human adolescents exhibit dramatically different sleep patterns than adults. 

Growing evidence suggests that these differences may be related to pubertal changes in 

the circadian timekeeping system.  To test this hypothesis, we carefully tracked daily 

activity rhythms across puberty in the slow-developing rodent Octodon degus.  We 

confirmed that male degus showed a dramatic reorganization of activity rhythms that 

correlated with secondary sex development during puberty, including a loss of bimodality 

and 3-5 hr phase-advance. Similar to humans, this circadian reorganization showed 

distinct sex differences, with females showing little change during puberty in two 

separate experiments. Prepubertal gonadectomy (GDX) eliminated the changes, whereas 

SHAM gonadectomy had little impact. Therefore, sex hormones likely play an essential 

role in pubertal circadian reorganization in this rodent species.  Using evidence from a 

variety of species, including our recent studies in the rat, we conclude that circadian 

plasticity during puberty is a well-demonstrated phenomenon across the mammalian 

kingdom. Therefore the pronounced phase-delay exhibited by human teenagers is 

unlikely to be exclusively of social origin. 
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Introduction 

Recent studies show that most American adolescents maintain schedules during 

the school year that result in insufficient and ill-timed sleep (National Sleep Foundation 

2000). At the root of this chronic sleep deprivation is the delayed sleep onset 

characteristic of adolescents. Teenagers maintain later bedtimes than younger adolescents, 

even when wake times are constrained by school or work (Thorleifsdottir et al., 2002; 

Crowley, Acebo, and Carskadon, 2007). The timing of sleep grows later as puberty 

progresses, such that the latest, or most delayed, sleep patterns occur around the time of 

achieving sexual maturity (between the ages of 15-21; Roenneberg et al., 2004; 

Thorleifsdottir et al., 2002; Yang et al., 2005; Crowley, Acebo, and Carskadon, 2007).   

The delayed timing of sleep has been attributed to many external influences, 

including increased academic responsibilities and late night social opportunities (e.g., 

Yang et al., 2005; Carskadon, 2002), but there is strong reason to believe that these 

changes in the timing of sleep are partially rooted in pubertal influences on the body’s 

circadian timekeeping system. Late adolescents continue to exhibit a more delayed (later) 

phasing of both sleep and endocrine rhythms than early adolescents even under controlled, 

laboratory conditions (Carskadon, Acebo, and Jenni, 2004; Carskadon et al., 1997).  

These delayed rhythms of sleep correlate with secondary-sex development, even after 

taking into account social influences (Carskadon, Viera, and Acebo, 1993; Sadeh et al., 

2009).  Moreover, the timing of circadian changes during adolescence exhibits sex 

differences in the same manner as the timing of other pubertal events: girls begin to show 

delayed chronotype earlier than boys. The magnitude of these developmental changes 

shows sex differences as well, and by late adolescence boys are more evening-type than 

girls (Roenneberg et al., 2004).  

This evidence strongly implicates a role for gonadal hormones in adolescent 

changes in sleep patterns.  Indeed, the sensitivity of the circadian timekeeping system to 

gonadal hormones is already well-documented. In humans, daily rhythms in cortisol and 

sleep onset shift their timing during different stages of the menstrual cycle (Manber and 

Bootzin, 1997; Parry et al., 1994; Parry et al., 2000).   In adult laboratory rodents, a wide 

variety of gonadal hormones affect the phase of circadian rhythms, including estrogens, 
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progestins, androgens, and non-traditional neuroactive steroids (e.g., rats: Albers, Gerall, 

and Axelson 1981; Axelson, Gerall, and Albers, 1981; hamsters: Davis, Darrow, and 

Menaker, 1983; Morin, Fitzgerald, and Zucker, 1977; de Tezanos Pinto and Golombek, 

1999; mice: Daan, Damassa, Pittendrigh, and Smith, 1975; Karatsoreos, Wang, Sasanian, 

Silver, 2007; Iwahana, Karatsoreos, Shibata, and Silver, 2008; degus: Labyak and Lee, 

1995; Jechura, Walsh, and Lee, 2000).  The sensitivity of the circadian system to these 

steroidal hormones exhibits sex differences.  These sex differences are determined in 

some species by the organizational effects of gonadal hormones during the perinatal 

period (rat: Albers 1981; hamster: Zucker, Fitzgerald and Morin, 1980).    

The influence of gonadal hormones on the circadian system during puberty is less 

understood, although it is known that pubertal hormones can alter circadian phase (degu: 

Hummer et al., 2007; Hummer and Lee, unpublished data) as well as produce 

organizational effects on the circadian system (hamster: Davis, Darrow, and Menaker, 

1983).  Indeed, in the degu, there is even a critical window of sensitivity to the 

organizational effects of gonadal hormones as late as young adulthood (Hummer et al., 

2006). 

 Despite these indications that adolescent sleep patterns are likely to be influenced 

by a circadian sensitivity to pubertal increases in gonadal hormones, there has been little 

attempt to determine how common these developmental changes are across mammalian 

species or to elucidate their hormonal or neural bases using animal models (Hagenauer et 

al., 2009).  Evidence from five species suggests that pubertal changes in circadian phase 

are not uniquely human (rhesus macaque: Golub and Takeuchi 2002; laboratory mouse: 

Weinert et al., 1994; Weinert and Waterhouse, 1999; laboratory rat: McGinnis et al., 

2007; Kittrell and Satinoff, 1986; Octodon degus (degu): Tate, Richardson, and 

Carskadon, 2002; Hummer et al., 2007; Psammomys obsesus: Neuman et al., 2005).  

However, only three of the studies (using the slow-developing, diurnal species of the 

macaque and degu) have attempted to thoroughly characterize the full developmental 

progression of circadian phase change in relation to secondary-sex development (Golub 

and Takeuchi, 2002; Tate, Richardson, and Carskadon, 2002; Hummer et al., 2007), and 

only one study directly examined the role of pubertal hormones (Hummer et al., 2007). 

Similar to humans, the macaque and degu show a delayed circadian phase during puberty 
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(around the time of first menarche in the rhesus macaque, and first vaginal or prepucial 

opening in the degu) that reverses by adulthood. This developmental change does not 

occur following pre-pubertal gonadectomy (Hummer et al., 2007). Therefore, pubertal 

elevations in sex hormones are likely to drive circadian phase changes.   

This current study is designed to follow-up on previous work in the degu with 

more complete measurements of circadian phase and activity distribution across the 

pubertal period and additional experimental controls of phase-influencing environmental 

variables (e.g., lighting intensity).  The previous study regarding hormonal dependency 

was provocative but only examined circadian phase at one mid-pubertal time point 

(Hummer et al., 2007). To gain a better understanding of how well pubertal changes in 

circadian phase occur and compare to other well-characterized species (human; 

Roenneberg et al., 2004; Thorleifsdottir et al., 2002; macaque: Golub and Takeuchi, 

2002) it was necessary to sample more frequently across the pre-pubertal and pubertal 

periods. This more frequent sampling also allowed for a careful examination of any sex 

differences present in the timing or magnitude of the phenomenon, such as those seen in 

humans (Roenneberg et al., 2004). Finally, we wished to confirm that the lack of 

developmental change observed in animals gonadectomized prior to puberty in the 

previous study (Hummer et al., 2007) was not merely due to a developmental delay, 

placing circadian changes outside of the sampling window.  

The degu may be a particularly useful animal model for researching the role of 

pubertal hormones in circadian development for several reasons. Unlike other commonly-

used laboratory rodents, degu females exhibit spontaneous, long reproductive cycles 

containing both follicular and luteal phases (Mahoney et al., submitted).  Thus, the 

hormonal environment of the degu is perhaps a better approximation to that of human 

females. The degu’s longer reproductive cycles also provides a less-interrupted record of 

circadian activity, as many rodents show elevated activity levels during estrus (e.g., 

Axelson, Gerall, and Albers, 1981; Labyak and Lee, 1995). The degu is slower-

developing than most laboratory rodent species. In both the wild and the laboratory, 

weaning does not take place until ~4-7 weeks after birth (Reynolds and Wright, 1979; 

Kenagy, Place and Veloso, 1999). The pubertal period follows weaning, and by 2-3m of 

age in the wild, 60% of male juveniles have testosterone levels that resemble those of 
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adults (Kenagy, Place, and Veloso, 1999), and by 6m of age, male degus in the wild 

exhibit high testosterone (Soto-Gamboa, 2004, as cited in Soto-Gamboa, 2005). In the lab, 

males and females begin to exhibit secondary sex characteristics between 2-3.5m of age, 

with full maturity reached by 5m (Hummer et al., 2007).  This long developmental period 

allows for a more complete analysis of pubertal circadian development. Additionally, 

unlike most laboratory rodents, degus are precocial. On the day of birth their eyes are 

already open and they are fully furred and ambulatory. They can consume solid food after 

6 days of life (Reynolds and Wright, 1979). Thus, juvenile degus are relatively 

independent and by 2-3 weeks of age in the wild they begin to emerge from their burrows 

(Jesseau, 2004). Thus, the circadian changes that occur during puberty in this species are 

dissociated from other well-characterized developmental changes in the circadian system 

related to juvenile rodents gaining independence from the dam (Weinert et al., 2005). 

Finally, wild degus are day-active (diurnal) similar to humans, although during 

the hot summer months they exhibit a more crepuscular pattern of activity when living in 

conditions that lack sufficient shade (Fulk, 1976; Kenagy et al., 2002; Bacigalupe et al., 

2003). More dramatic chronotype flexibility is reported in the laboratory (e.g,. Kas and 

Edgar, 1999; Ocampo-Garces, 2005). This chronotype flexibility in the laboratory 

appears to be related to thermoregulatory constraints due to running wheel access (Kas 

and Edgar, 1999; Ocampo-Garces, 2005) and housing temperatures (Hagenauer and Lee, 

2008). In this experiment we also found an effect of lighting intensity on degu activity 

distribution when the degus were housed directly under the light source (i.e., exposed 

conditions that lacked the cover of shelving).  

 

Methods 

General Methods 

Subjects: The degus were obtained from a breeding colony at the University of 

Michigan. All animal handlings including cage changes were performed at random times 

during the lighted period of the day. All procedures for the housing and handling of the 

degus were approved by the University Committee on Use and Care of Animals at the 

University of Michigan. 
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In the colony, breeding degus were kept in large (42.5 x 46 x 19.5 cm) transparent 

acrylic cages containing one sire, two dams, and their respective young. One side of each 

cage was kept on a heating pad at low heat in a room maintained at 20 +/- 1°C with a 

12:12-h light-dark (LD) cycle (light intensity 250 lx). During breeding, pregnancy, and 

early development (0-90 days of age) the breeding animals and pups were provided ad 

libitum with Prolab Laboratory Animal Diet Product 5P06 and acidified water (2.5 x 10-

5% HCl) to prevent infections. They were also given generous handfuls of dried alfalfa 2 

times weekly. This was reduced to once weekly for pups after weaning, which took place 

between ages P35-P64. At the age of 3 months (90 days), pups began receiving adult 
chow (5001 Rodent Diet, PMI Nutrition) and tap water.  

Testing environment: The testing environment consisted of two light-tight white 

wooden environmental chambers. These chambers were maintained on a 12:12 LD cycle 

(at 21 +/- 1°C). The location of the cages was exposed (no shelving, cages maintained 
within 1m of the light source), so as to maintain even light exposure. After weaning, the 
degus were moved to smaller opaque plastic cages (42.5 x 22 x 19 cm) equipped with 

Nalgene running wheels (9 x 34.5 cm) for individual daily activity recordings. In order to 

prevent abnormal development due to social isolation (e.g,. Ovtscharoff and Braun, 2001), 

on alternating weeks the degus were housed with a same-sex sibling. During these weeks, 

the animals were still kept in the testing environment but activity data were not recorded. 

During Experiments 1 and 2, the degus were allowed access to a running wheel during 

this time. This change in protocol was intended to eliminate drifts in circadian phase that 

were observed during the weekly recording sessions during the pilot experiment (Suppl. 

Experiment 1), as wheel exposure can exert fast influence on degu chronotype under 

laboratory conditions (Kas and Edgar, 1999). 

Monitoring activity rhythms: Activity rhythms were quantified using the number 

of running wheel turns per 10 min bin and stored using Vitalview Software (Mini mitter, 

Bend OR). These data were visualized as double-plotted actograms using Actiview 

Software (Mini mitter, Bend OR). Days with disruptions in data collection, while rare, 

were discarded from analysis. 

The distribution of daily wheel-running activity was characterized for each degu’s 

weekly recording session by averaging the activity counts for each of the ten minute bins 



 

 107 

(i.e., data from the 06:10-06:20 bin would be averaged across 7 days of recording). To 

control for between-subjects variation in overall activity level, these average bins were 

converted to a percentage of daily activity for the weekly recording session.  In order to 

examine pubertal changes in the distribution of daily activity, we averaged these 

distributions for animals in each of the experimental groups using two-week age bins 

across pubertal development. 

We also quantified several parameters indicative of circadian phase relative to the 

LD cycle. These parameters varied a little depending on the experiment, but typically 

included activity onset, activity offset, the time of peak activity, and the ratio of activity 

during the light period to activity during the dark period (LD ratio). The time of peak 

activity, the LD ratio, and the mean activity level for each degu’s weekly recording 

session were calculated automatically using Actiview Software (Mini mitter, Bend OR). 

Within this program, the time of peak activity is determined using cosinor analysis, with 

the peak defined as the acrophase of a cosine curve fit to the activity data.   

The time of activity onset and activity offset were calculated either blindly by 

hand (Experiment 1, Supp. Experiment 1) or semi-automatically (Experiment 2, Supp. 

Experiment 2). In all experiments, if the time of either onset of offset was ambiguous 

(containing two times that met the definition presented below), then both potential values 

were averaged.  When scored by hand, activity onset and offset were scored by two 

experimenters blind to experimental treatment. Morning activity onset was defined as the 

first three consecutive bins of data which contained activity levels that exceeded the 

weekly mean activity level and that followed at least two hours of early morning 

inactivity (generally falling between ZT20-ZT23). Evening activity offset was defined as 

the last three consecutive bins of data which contained activity levels that exceeded the 

weekly mean activity level and preceded at least two hours of early morning inactivity. If 

a degu was found to have a strongly nocturnal activity pattern (LD Ratio <0.5) then it 

was scored as if it were a nocturnal animal, with onset defined as the first three 

consecutive bins surpassing the weekly mean activity level around the time of lights-off, 

and offset defined similarly but in proximity to lights-on.  

When activity onset and offset were scored semi-automatically the parameters 

were calculated using the activity distribution produced for each degu’s weekly recording 
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session.  Morning activity onset was defined as the first three consecutive bins of activity 

that surpassed the weekly mean activity level following a period of relative inactivity in 

the early morning. The time of evening activity offset was calculated similarly, and was 

defined as the end of the last three consecutive bins that surpassed the weekly mean 

activity level. The predominant active period was calculated using a moving-window 

analysis of the activity distribution produced for each degu’s weekly recording session. 

The twelve-hour period that contained the highest average activity was defined as being 

the animal’s predominant active period, and the first bin of this period was defined as the 

onset of that active period 

Statistical Analyses: All analyses were reviewed by the Center for Statistical 

Consulting (CSCAR) at University of Michigan to ensure proper interpretation. These 

analyses were performed using SPSS 17.0 software (SPSS, Chicago IL) with an alpha of 

0.05.  To determine if there was a relationship between pubertal development and 

circadian parameters, two statistical models were used for each experimental data set: 

1) Linear model: The variable of age was best treated as a continuous variable, 

because it contained individual variations in startpoint, endpoint, and full sampling 

duration (e.g., Supplementary Table 1). Therefore, to examine age-related change in 

each of the circadian variables, as well as group differences in the circadian variables, we 

examined the slope and intercept of a linear model fit to the data. The linear fit was 

performed using a “Random Coefficients Model” so that each animal had its own random 

intercept and slope with unstructured covariance within the linear mixed model function 

of SPSS. 

The individual intercept term takes into account each degu’s individual variability 

in chronotype. It seemed most appropriate to control for this variability using circadian 

data from a relatively stable time period, thus the intercept was always centered around a 

post-pubertal age (e.g,. P150). Depending on the experiment, intercept and slope terms 

were also included to provide group-related comparisons. For any particular model, if 

there was not sufficient variability in a term to run the model (for example, the individual 

intercept), that term was removed from the model and the conclusions for that term were 

treated as being clearly non-significant.  
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2) Marginal model: The linear model makes full use of the variable of age, but relies 

on the assumption that age-related changes fit a linear form. To provide a second 

analysis of age-related variation in the circadian variables we also ran a marginal 

model that defined the circadian variables as repeated measures. For this model, 

the variable of age was treated as categorical and divided into two week sampling 

bins.  Bins that contained data from less than 70% of the animals were deleted 

from the analysis.  To properly control for the correlated error terms produced by 

a repeated measures protocol, the appropriate covariance structure for the 

marginal model was determined by comparing the Akaike Information Criterion 

(AIC) for several different model types that are commonly used for repeated 

measures data sets: Diagonal, First-Order Autoregressive (AR(1)), and Compound 

Symmetry. 

Activity from the first week the animals had access to a wheel was removed when 

constructing figures in order to exclude any possible behavioral changes the animals 

might have exhibited while adjusting to the testing environment. Similarly, all statistical 

analyses were performed twice using data that included the first week of recording as 

well as data that excluded it.  

 

Experiment 1 

 This experiment tracked activity rhythms of male degus across pubertal 

development. Initial pilot work (Supp. Figures 3.6&3.7) indicated that pubertal changes 

might be diminished when the light phase of the LD cycle was of high intensity, therefore 

this experiment also explored two lighting intensities. All variables that might alter the 

chronotype of the degus (housing temperature, proximity to light source, wheel exposure, 

handling times) were controlled. 

 Subjects and Housing: Eight male Octodon degus (P61-P66) were selected from 

two litters the first week following weaning. To examine the effects of lighting condition 

on pubertal changes in circadian rhythms, degus were divided evenly between two light-

sealed boxes that were maintained at different light intensities within a 12:12 LD cycle.  

Four degus were exposed to dimmer lighting levels (10 lux as measured from cage 

bottom) and kept in opaque dark grey plastic cages.  The other four degus were exposed 
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to brighter lighting levels (60 lux as measured from cage bottom) and kept in opaque 

white plastic cages. These lighting intensities were chosen because our pilot experiment 

(Suppl. Experiment 1) indicated that higher intensity (>250 lux) conditions could drive 

the wheel-running rhythms of young degus towards a nocturnal chronotype. To control 

for confounding genetic effects, we divided siblings from each litter in this experiment 

evenly between the two lighting conditions. The location of the degus within the chamber 
and in relationship to the lights was recorded, and great care was taken to make sure that 
all lighting and temperature conditions remained stable throughout the course of the 
experiment.  

Monitoring pubertal development:  Males were examined weekly for the growth 

of spikes on the glans of the penis. Penile spikes are an androgen-dependent sign of 

pubertal development of the male degu (Hummer et al., 2007). To measure penile spike 

growth, the prepuce was gently retracted. The number, color, and length of the spikes 

were recorded.  Spike length was measured from the base to the tip, and if the spikes 

were multiple lengths, the shortest length was recorded, or, if the difference between the 

shortest and longest spikes was greater than 1.5 mm, an average length was recorded.  

Statistical Analyses: After confirming that all males had undergone puberty 

during our recording period, we ran both a linear and marginal model analysis to 

determine if there was a relationship between postnatal age and circadian parameters, as 

well as to determine if this relationship varied with the intensity (lux) of the daily LD 

cycle. The marginal model was run using all age bins because there were circadian data 

for all animals in each bin. The linear equation used to fit these data was: 

Yit = β0 + β1Age + β2Lightlux + β3 (Lightlux*Age) + b0i +b1iAge + εit 

 In this linear equation, Yit represents the value of a circadian parameter for any 

particular individual (i) during a sampling period at age (t): β0 is the overall intercept, β1 

is the overall slope of within-subject age-related changes in the circadian parameter, Age 

is the average postnatal age for each of the week-long sampling periods (in days), β2 is 

the main effect of lighting intensity (Lightlux: dim or dimmer), and β3 is the effect of the 

interaction between lighting intensity and age.  The final variables stand for the 

individual variation in the model fit: b0i and b1i  represent the random deviations of an 

individual’s (i) intercept and slope from the overall intercept and slope terms in the model, 
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respectively, and εit  is the residual deviation of the subject’s (i) data at each of the 

sampling points (t) from the subject’s linear model fit.  To have intercept terms that 

reflected group differences at the age of maturity, the variable of “Age” was centered 

around P150, which means that 150 was universally subtracted from all age values so that 

the linear fit would cross the y-axis at a meaningful location.  

 

Experiment 2 

This experiment examined sex differences in pubertal changes in circadian 

rhythms, as well as the role for pubertal gonadal hormones.  In addition to the procedural 

controls used during Experiment 1, some of these animals were maintained in the testing 

environment with wheel exposure in a cage with dam and siblings before weaning in 

order to confirm that the changes observed during puberty did not just reflect an overall 

adjustment to a new housing environment (Supplementary Table 1). 

Subjects: This experiment examined the pubertal development and circadian 

rhythms of 23 male and 27 female Octodon degus (degus) from weaning (P39-50) until 

maturity (~P156-194) under different hormonal conditions. It was conducted in three 

waves (Jul-Oct, Jan-Apr, May-Sept), with each wave containing degus from 3-4 litters to 

ensure genetic diversity.  

Gonadectomy surgery: To examine the influence of pubertal hormones on 

circadian parameters degus were either 1) gonadectomized (GDX) or 2) SHAM 

gonadectomized prior to weaning. These surgeries occurred before external evidence of 

pubertal onset (between ages P22-P47) during the light phase of the LD cycle. To control 

for genetic effects, same-sex siblings were evenly divided between GDX and SHAM 

groups when possible. During the procedure, degus were anesthetized with 4% isoflurane 

gas and a saline injection was given in order to prevent dehydration. In the females, two 

1-2 cm long dorsal incisions were made. Then, if a female was assigned to the GDX 

group, the ovarian blood supply was cauterized and the ovaries were removed.  In the 

males, one 1-2 cm long ventral incision was made. Then, if a male was assigned to the 

GDX group, the blood supply to the testes was cauterized and the testes and epididymis 

were removed.  All internal incisions were sutured using dissolvable suture, and skin 

incisions were closed using surgical staples.  External wounds were coated in Nolvasan 
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antiseptic (Fort Dodge Labs, Madison, NJ) and the animals were kept on a heating pad 

until regaining consciousness.  During recovery, the degus were placed back in the home 

cage with siblings and dam. Staples were removed 8-11 days after surgery.   

Testing environment: During recovery from surgery, the dam and litter were 

moved into the testing environment. The 12:12 LD cycle had a light intensity of ~100 lx 
at cage level.  After at least six days of recovery from surgery, the degus were provided 
with running wheels. At weaning, the degus were moved to individual dark gray, opaque 

cages equipped with running wheels. 

Monitoring Pubertal Development: The progress of puberty was monitored by 

examining secondary sex development. All animals were also weighed every week to 

monitor their growth. 

Males:  Males were examined weekly for the development of a prepucial opening, 

and, later, for the growth of spikes on the glans of the penis. The development of 

prepucial opening was defined as the first observation of a full separation between the 

prepuce (or sheath) and glans of the penis as determined by gently pulling on the skin 

external to the urethral cone.  The development of a prepucial opening is androgen-

dependent in degus (Jechura TJ and Lee TM, unpublished data) and one of the first 

visible signs of puberty in male rodents (Hummer et al., 2007; Korenbrot, Huhtaniemi, 

Weiner, 1977). The growth of penile spikes was recorded in a manner identical to 

Experiment 1.   

Females:  Intact female degus are sexually receptive for one day during their 

three-week estrous cycles. They maintain vaginal openings only during a few days of 

elevated estrogen. Therefore, pubertal development cannot be monitored using vaginal 

cytology as is typical in other rodents (Labyak and Lee, 1995). Instead, we monitored 

pubertal development by examining female degus three times weekly for the presence of 

vaginal opening beginning between ages P25-58.  We also blindly scored running wheel 

activity records for dates that contained the altered activity rhythms typical of estrus: 

persistent or elevated activity occurring for 1-2 days with an elongated active period (α, 

Labyak and Lee, 1995). Typically these dates also contained activity at hours when the 

degu would normally be inactive, as well as a relative decrease in activity and delayed 

active phase during the following day. Circadian analyses were later run with data that 
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both included and excluded dates with estrus-typical wheel-running that was predictive of 

vaginal opening.   

Statistical Analysis: To determine if there was a relationship between pubertal 

development and circadian parameters, we first ran separate linear and marginal model 

analyses for the SHAM male and females. Within the marginal model, due to limited 

sample size, data from the first and last age bins (before P55 and after P180, respectively) 

was removed from the analysis.   The linear equation used to fit these data was: 

Yit = β0 + β1Age + b0i +b1iAge + εit  

In this linear equation, the variables are defined in an identical manner as in 

Experiment 1, except that depending on the analysis the variable of Age can be defined 

either as postnatal age or as pubertal stage (age relative to either first prepucial or vaginal 

opening).  

After confirming that circadian variables exhibited developmental changes in the 

intact animals, we ran a full linear and marginal model analysis using all four groups 

(SHAM and GDX males and females) to determine sex and gonadal dependency. Within 

the marginal model, due to limited sample size, data from the first and last age bins 

(before P55 and after P180, respectively) was removed from the analysis. The linear 

equation used to fit these data was: 

Yit = β0 + β1Age + β2Sex + β3GDX + β4 (Sex*GDX) + β5(Sex*Age) + β6(GDX*Age) + 

 β7(Sex*GDX*Age) + b0i +b1iAge + εit 

In this linear equation, many variables are defined in an identical manner as for 

Experiment 1 (β0, β1, Age, b0i , b1i, εit). In addition, there are several variables that 

characterize group effects on the circadian parameter: β2 is the main effect of sex (male or 

female), β3 is the main effect of gonadal status (GDX: GDX or SHAM), and β4 is the 

effect of the interaction between Sex and GDX.  The next set of variables represents the 

effect of group variables on the slope of within-subject age-related changes in the 

circadian parameter: β5 is the effect of sex on age-related changes, β6 is the effect of 

GDX on age-related changes, and β7 represents the effect of the interaction of Sex and 

GDX on age-related changes. The intercept terms reflected group differences at the age 

of maturity by centering the variable of “Age” around P150, which means that 150 was 
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universally subtracted from all age values so that the linear fit would cross the y-axis at a 

meaningful location. 

 

Results 

Pubertal Development 

Weight: Both sexes gained weight rapidly until around age P80. At this point, 

weight gain slowed, and finally plateaued by P155. Males weighed more than females (an 

average of 10 grams across the pubertal period), but GDX and SHAM animals within 

each sex did not differ (Figure 3.1A).   

 Penile Maturation: All eight males without surgery (Experiment 1) and all eleven 

SHAM males (Experiment 2) developed both a full prepucial opening and complement of 

spikes on the glans of the penis. Eleven of the CAST males showed neither characteristic, 

although 10 temporarily showed a small or partial prepucial opening.  One CAST male 

developed a full prepucial opening on the day of surgery and was subsequently removed 

from the data analysis.  

 All males without surgery (Experiment 1) had a full prepucial opening by the first 

time they were examined between age P61-66, and six of the eight already had their full 

complement of spikes. These spikes continued to grow at a linear rate until ~P90, at 

which point the growth plateaued, with final lengths reaching 2-3 mm (mean 2.6 mm +/-

0.14 SE, Figure 3.1C).  

Full prepucial opening developed in the SHAM males between P38-65, with a 

median age of P58 (Figure 3.1B).  Within a week of developing a full prepucial opening, 

most males showed small white nubs on the tip of the glans that were the beginning of 

spikes. These spikes grew at a linear rate (Figure 3.1C).  For 45% of the males, the 

spikes also increased in number, reaching a full complement of 4-6 spikes between ages 

P52-P95 (median age P73). Spike length plateaued between ages P100-P135, with final 

lengths reaching 1.8-3 mm (mean: 2.55 mm +/-0.51 SE).  

Estrous Cycles: Twelve SHAM degus showed clear signs of estrous cyclicity as 

evidenced by both the cyclical presence of vaginal opening and estrus-typical wheel-

running activity. The median age of first vaginal opening was P74 (ranging from P33-P89, 

Figure 3.1B). Five animals with relatively early openings exhibited first opening less 
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than one cycle length from when we first started monitoring. In these cases, it is not clear 

that the first observed opening was truly the first opening that the female experienced, 

although it seems likely, since over 50% of the sample clearly demonstrated a first 

opening at an older age (>P74).  Of the remaining two SHAM degus, one died following 

her first vaginal opening and the second showed two intermediate cycles (dimpling but 

no full opening), and then ceased to show any indications of cyclicity. Circadian data 

from these two degus were removed from the data set. Three of the ovariectomized 

females eventually developed small vaginal openings and were also removed from the 

data set. All other ovariectomized females (n=10) showed no sign of vaginal opening or 

cyclic patterns of estrus-typical wheel running. 

    

Pubertal Changes in Circadian Rhythms  

 Intact Males:  There was a dramatic reorganization of activity rhythms during 

puberty in the males that never received surgery (Experiment 1). At the youngest age, 

males showed a strongly crepuscular activity distribution, with a large percentage of 

activity occurring during the evening hours. As the males grew older, this evening 

activity bout diminished and daytime activity increased (Figure 3.2A, B).  Therefore, 

using a linear fit, three circadian phase parameters were found to advance with age: 

activity onset (F(1, 9.763)=4.889, p=0.052), the time of peak activity (F(1, 

17.549)=15.511, p=0.001), and activity offset (F(1, 10.470)=12.558, p=0.005). The light-

dark activity (LD) ratio also increased with age (F(1, 19.196)=8.060, p=0.010), 

confirming that older males were more diurnal (Figure 3.2C). Mean activity (mean # of 

wheel turns/day) peaked around mid-puberty and then decreased over the rest of the 

recording period. It did not show linear change with age (F(1, 12.714)=0.196, p=0.665), 

but a marginal model found significant overall within-subject variability across age (F(6, 

35.461)=5.664, p=0.000).  All other circadian variables similarly showed significant 

within-subject variability across age using a marginal model (onset: F (6, 12.853)=3.700, 

p=0.023; time of peak activity: F(6, 33.283)=4.484, p=0.002), p<0.023;  offset: F(6, 

31.763)=3.120, p=0.016), with the exception of the LD ratio (F(6, 33.761)=1.740, 

p=0.142). None of the circadian phase variables were significantly affected by lighting 

intensity (p>0.10 using both marginal and linear models), nor did lighting intensity alter 
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age-related changes in any of the variables (p>0.10 using both marginal and linear 

models, data not shown).  

 The reorganization of activity rhythms that occurred during puberty in SHAM 

males (Experiment 2) was identical to that found for males without surgery (Experiment 

1). At the youngest ages, males showed a strongly crepuscular activity distribution. This 

crepuscularity disappeared across pubertal development as the evening activity bout 

diminished and daytime activity increased (Figure 3.3A). Therefore, using a linear fit, 

three circadian phase parameters were found to advance with age: the onset of the active 

period (F(1, 10.937)=4.795, p=0.051), the time of peak activity (F(1, 10.028)=14.253, 

p=0.004), and the offset of the evening oscillator (F(1, 10.437)=4.873, p=0.051, Figure 

3.3B). The LD ratio also increased with age (F(1, 19.063)=10.339, p=0.005, Figure 

3.3B), confirming that older males were more diurnal. The onset of the morning oscillator 

remained relatively stable across pubertal development (F(1, 50.091)=1.788, p=0.187).  

Mean activity (wheel turns/10 min) peaked around mid-puberty and then decreased over 

the rest of the recording period. It therefore did not show any linear change (F(1, 

10.527)=1.678, p=0.223), but a marginal model did find significant overall within-subject 

variability across age (F(8, 73.108)=2.982, p=0.006). For all other circadian variables, the 

marginal model lacked sufficient power to detect age-related changes (p>0.15). 

It was ambiguous whether these developmental changes were specifically related 

to pubertal timing. To test this hypothesis, we compared developmental timing by using 

age adjusted to first prepucial opening in our statistical models.  Most of the circadian 

variables which exhibited significant relationships with age also showed significant 

relationships with developmental timing (active period onset: F(1, 10.964)=4.880, 

p=0.049; peak activity: F(1, 10.010)=14.121, p=0.004; evening offset: F(1, 

10.407)=4.999, p=0.048), but LD ratio only exhibited a trend towards a relationship with 

developmental timing (F(1, 11.222)=3.552, p=0.086). However, developmental timing 

did not produce a better model fit than age using the criteria of p-value or model fit (as 

determined by Akaike’s Information Criterion (AIC)). 

 Intact Females:  Similar age-related changes were not observed in the circadian 

rhythms of SHAM Females, even after removing the day of estrus from the analyses 

(Figure 3.3C). If anything, there was a trend towards both the onset of the active period 
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(F(1, 6.195)=5.022, p=0.065) and the time of peak activity (F(1, 8.004)=3.784, p=0.088) 

drifting later as the animals grew older. All other variables showed no within-subject 

change (morning onset: F(1, 93.647)=0.120, p=0.730; evening offset: F(1, 9.579)=0.040, 

p=0.847, LD ratio: F(1, 16.661)=0.263, p=0.615, Figure 3.3D).  When pubertal timing 

was included in the model using age in relationship to first vaginal opening, females 

continued to lack significant age-related changes in circadian phase (p>0.10). Similar to 

males, mean activity did not show a linear change during puberty when examined in 

relationship to age (F(1, 10.345)=1.479, p=0.251) nor to age in relationship to first 

vaginal opening (F(1, 9.347)=1.038, p=0.334), and the females showed no within-subject 

variability across age using the marginal model (F(8, 76.663)=1.626, p=0.131). For all 

circadian phase variables, the marginal model lacked sufficient power to detect age-

related changes (p>0.35). 

 

Hormonal Dependency 

 The activity rhythms of both males and females gonadectomized (GDX) prior to 

puberty followed developmental trends that resembled those of SHAM females. As the 

animals grew older, the rhythms were essentially stable, although slightly more 

crepuscular and evening type (Figure 3.3E,G).  There was no significant within-subject 

change in the GDX males for any of the circadian phase variables using a linear model 

(Figure 3.3F; active period onset: F(1, 10.776)=1.576, p=0.236; peak activity: F(1, 

10.430)=0.558, p=0.472; evening offset: F(1, 9.888)=1.623, p=0.232; LD ratio: F(1, 

25.512)=0.925, p=0.345; morning onset: F(1, 21.351)=2.200, p=0.153). The marginal 

model indicated a trend towards GDX males showing a delay in the onset of the active 

period (F(8, 69.619)=2.036, p=0.055) but all other variables showed no change (p>0.18). 

In GDX females, there was a significant delay in evening offset as indicated using the 

linear model (F(1, 8.328)=5.191, p=0.051) but no change in any of the other phase 

variables (Figure 3.3H; active period onset: F(1, 8.736)=0.147, p=0.711; peak activity: 

F(1, 8.635)=0.089, p=0.773; LD Ratio: F(1, 31.309)=0.157, p=0.695; morning onset: (F(1, 

35.838)=2.019, p=0.164). The marginal model confirmed the within-subject change in 

evening offset in the GDX females (F(8, 58.599)=2.293, p=0.033) and the lack of change 

in any of the other variables (p>0.36)  
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Therefore, a linear model including all four groups indicated that GDX 

significantly influenced age-related change in most circadian phase variables. There was 

a main effect of GDX on age-related changes in evening offset (F(1, 39.409)=8.085, 

p=0.007; but not peak activity: F(1, 38.207)=2.580, p=0.116; active period onset: F(1, 

38.414)=1.130, p=0.294; LD Ratio: F(1, 40.573)=2.346, p=0.133; morning onset: F(1, 

36.081)=2.364, p=0.133 Figure 3.4). There was also an interaction between the effects of 

GDX and sex on age-related changes in the timing of peak activity (F(1, 38.207)=7.162, 

p=0.011) and onset of the active period (F(1, 38.414)=4.995, p=0.032; but not evening 

offset: F(1, 39.409)=0.941, p=0.338; morning onset: F(1, 36.081)=0.279, p=0.601; or LD 

Ratio: F(1, 40.573)=2.133, p=0.152). Surprisingly, age-related changes in mean activity 

were not affected by GDX (F(1, 39.617)=0.189, p=0.666) even after accounting for sex 

(F(1, 39.617)=0.301, p=0.586).  The marginal model lacked sufficient power to detect 

group differences, but it did identify overall within-subject change in the offset of 

evening activity (F(8, 262.509)=1.977, p=0.050) and the timing of peak activity (F(8, 

282.457)=1.924, p=0.056*trend). 

 In addition to effects of GDX, a linear model fit including all groups (male and 

female, GDX and SHAM) also indicated that the effect of age on circadian phase was 

dependent on sex with males showing greater changes than females, as indicated by sex 

differences in the changes in the time of peak activity (F(1, 38.207)=6.154, p=0.018). 

Age-related changes in other circadian phase variables were not found to show sex 

differences within the linear model (active period onset: F(1, 38.414)=2.953, p=0.094; 

evening offset: F(1, 39.409)=2.440, p=0.126; LD ratio: F(1, 40.573)=0.534, p=0.469; 

morning onset: F(1, 36.081)=0.338,  p=0.564). A marginal model again lacked sufficient 

power to detect sex-related effects on any of the circadian phase variables (p>0.19). 

Sex differences were clear in overall mean activity. Mean activity peaked at mid-

puberty and then decreased over the rest of the recording period in both sexes, but the 

duration of this pubertal period of elevated activity was longer in males, leading males to 

have overall higher activity during the recording period even though post-pubertal 

activity levels were almost identical between the sexes. Therefore, mean activity in all 

groups showed some overall linear age-related change (Figure 3.5; F(1, 39.617)=4.524, 

p=0.040), in a manner that did not differ by sex (F(1, 39.617)=0.474, p=0.495), but a 
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marginal model found that sex influenced within-subject variability across age in activity 

levels (F(8, 281.579)=2.921, p=0.004), as well as showed a trend towards influencing 

activity levels overall (F(1, 48.829)=3.569, p=0.065).  

 

  Controlling for wheel adaptation 

 To control for wheel adaptation, any recordings performed within the first week 

of wheel exposure were removed from the analysis. For Experiment 1, the conclusions 

were mostly unchanged when using a linear model, although the age-related effects in 

diurnality and activity onset were weakened and lost significance (LD ratio: F(1, 

14.122)=3.003, p=0.105, activity onset: F(1, 8.182)=1.893, p=0.205). Conclusions using 

a marginal model were weakened regarding the age-related change in activity onset (F(5, 

14.025)=2.124, p=0.123), activity offset: (F(5, 28.538)=1.924, p=0.121) and LD ratio 

(F(5, 29.093)=0.919, p=0.483). 

For Experiment 2, removing the first week of wheel exposure from the data set 

had little overall effect on the developmental changes discussed above.  In the SHAM 

males, age-related changes in two circadian variables became trends (active period onset: 

F(1, 10.339)=3.961, p=0.074); evening offset: F(1, 10.522)=3.868, p=0.076).  For SHAM 

females, trends towards age-related change in the onset of the active period and the 

timing of peak activity dissolved (time of peak activity: F(1, 8492)=1.928, p=0.200; onset 

of the active period: F(1, 7.394)=2.459, p=0.159).  The delay in offset in GDX females 

weakened to a trend using the linear model (F(1, 7.440)=3.895, p=0.087). All conclusions 

regarding the effects of GDX and sex on age-related change remained strong and 

unchanged. 

 

Discussion 

These experiments in the slow-developing degu indicate changes in daily activity 

distribution and circadian rhythm phase over the course of pubertal development that are 

dependent on sex.  In four separate experiments (Experiments 1&2, Supplemental 

Experiments 1&2) we found that male degus exhibited a profoundly crepuscular 

distribution of activity between post-weaning and pubertal onset, with the majority of 

activity occurring at the beginning of the dark period. As the males progressed through 
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puberty, evening activity diminished and phase-advanced, and daytime activity increased. 

By the age of maturity (5 months), the activity rhythms of male degus were strongly 

diurnal. Females, in contrast, showed a crepuscular rhythm during the post-weaning 

period that remained stable into maturity. Male and female animals gonadectomized 

(GDX) prior to puberty maintained a more delayed, crepuscular activity distribution 

across development similar to intact females. These results indicate that pubertal 

hormones drive circadian changes in intact male degus.   

 These results closely parallel data regarding the development and sex differences 

in sleep in this species. Perryman (in preparation) examined sleep in mid- and late-

pubertal male degus using electrophysiology. She found that mid-pubertal male degus 

spent less time in NREM sleep around the crepuscular transitions than their late-pubertal 

or adult counterparts, and spent significantly more time in NREM during the light phase.  

These data complement the current results indicating that pubertal male degus are more 

active at the crepuscular transitions and less active during the day. Perryman also found 

that adult females maintained a more crepuscular distribution of sleep than adult males. 

Collectively, these sleep data indicate that the sex differences in pubertal changes in 

activity distribution that we observed in these experiments are unlikely to represent 

artifacts due to running wheel exposure (such as seen in Kas and Edgar, 1999).  These 

sex differences are also unlikely to be a side-effect of surgery, as they were present in 

both SHAM animals (Experiment 2) and animals that had not undergone surgery 

(Experiment 1, Supplemental Experiment 2).  Sex differences were also not due to estrus-

induced wheel-running, as circadian analysis including and excluding the days of estrus 

produced similar results (data not shown).   

 The pubertal changes in activity distribution and circadian phase exhibited by the 

degu also strongly resemble our recent data in the developing nocturnal rat (Chapter 2). 

In that study, we found that rats showed a phase-delayed, bimodal activity distribution 

during post-weaning that consolidated into a more phase-advanced, unimodal rhythm by 

maturity. These pubertal changes in the rat showed sex differences in magnitude, with 

males showing larger circadian phase changes than females. However, females still 

continued to exhibit some developmental changes in circadian phase. Pre-pubertal 
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gonadectomy diminished these developmental changes in both sexes, causing a more 

distributed and delayed activity distribution (Hagenauer et al. in preparation).  

The similarity between the pubertal circadian development of these two species 

suggests that these changes are not limited to animals from a particular temporal niche or 

developmental trajectory. These data also suggest that circadian changes during puberty 

are not limited to animals that are known for exhibiting chronotype flexibility. Indeed, 

the circadian changes observed during puberty in both species are remarkably similar to 

those observed in other laboratory rodents in response to differing levels of testosterone 

(mice: Daan et al., 1975; Iwanahana et al., 2008; Karatsoreos et al., 2007; hamsters: 

Davis et al., 1983; Morin et al., 1981). In those studies, castrated adult males showed an 

altered distribution of activity under entrained and free-running conditions such that 

activity was dispersed across the active period and less cohesive at activity onset (Morin 

et al., 1981), or the initial activity bout was diminished, lost, or delayed (Karatsoreos et 

al., 2007; Iwanahana et al., 2008; Daan et al., 1975; Davis et al., 1983). The 

administration of testosterone or di-hydrotestosterone was able to restore the adult 

castrates to their original circadian activity patterns (Karatsoreos et al., 2007; Iwanahana 

et al., 2008; Daan et al. 1975; hamsters: Morin et al. 1981).  Earlier studies with the adult 

male degu showed different effects of castration on circadian phase (Jechura et al., 2000), 

in which activity onset advanced instead of delayed. Thus, the pubertal effects of male 

gonadal hormones on circadian phase and activity distribution in degus may be specific 

to this developmental time period. Future hormone replacement studies during puberty 

are required to distinguish between these possibilities.  

 In should be noted that the female degus in the current experiment, as well as in 

the sleep studies, were more crepuscular than is typically observed in previous studies in 

our lab or in the wild (e.g., for review see Hagenauer and Lee, 2008). The reason for this 

appears to be related to housing conditions. In the current study, the degus were housed 

directly under the light source in order to prevent variability in light exposure. In our 

recent sleep studies, degus were also housed in more exposed conditions (transparent 

cages) to allow the animals to be visually monitored. These housing conditions are likely 

to influence activity distribution, since we found in our pilot experiment that exposed 

conditions combined with relatively bright light (250 lux) drive degus towards a more 
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crepuscular/nocturnal chronotype (this was further confirmed in Lee and Hagenauer, in 

preparation). Thus, we dimmed the lights for Experiments 1 & 2, and the majority of 

male degus showed a highly diurnal activity pattern by maturity.  

However, this leaves open the possibility that the more crepuscular activity 

distribution observed in the females may represent sex differences in the sensitivity of 

degu chronotype to environmental variables like housing and lighting conditions. This 

seems possible, as Hummer et al. (2007) observed a delayed phase during mid-puberty in 

both male and female degus, which disappeared upon reaching maturity.  In that earlier 

study, the degus were housed on shelves which provided overhead cover (and therefore 

they were more diurnal overall) but lighting intensity was also less controlled, which 

could have produced artifacts in the phase-angle results. Similarly, in our recent study in 

the developing rat, we found that both males and females showed circadian changes 

during puberty, although these circadian changes exhibited sex differences in magnitude 

(Hagenauer et al., in preparation). As a preliminary test of the possibility that photic 

masking could account for the lack of developmental changes in the activity rhythms of 

female degus, we examined the activity records of nine female degus that were placed in 

DD during mid-puberty or late/post-puberty (Supplementary Experiment 2). The first two 

days after placement in DD, we observed an immediate increase in activity during the 

subjective day and a 1-3.5 hr phase-advance of circadian parameters, suggesting that 

rhythms were masked at both ages. However, a comparison of these “unmasked” rhythms 

gave little indication of pubertal change. Masking also seemed unlikely to account for the 

lack of circadian phase-advance that we observed during the development of GDX 

animals in the current study, as our previous studies in the degu under less exposed 

housing conditions (Hummer et al., 2007) as well data in the rat (Hagenauer et al. in 

preparation) similarly indicated that pre-pubertal gonadectomy inhibited circadian phase 

changes during puberty. Collectively, these results support our interpretation that the 

pubertal reorganization of activity rhythms arises from a gonadal-hormone sensitive 

circadian system.  

Interestingly, earlier reports in the degu reported a more advanced phase during 

pre-puberty (Hummer et al., 2007), as did preliminary data in the degu and rat 

(Hagenauer et al., 2009), in a manner that better resembled the sleep patterns of children 
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(e.g., Thorleifsdottir et al., 2002).  However, in these current studies we discovered that a 

more advanced, unimodal rhythm was occasionally observed during adjustment to the 

experimental conditions regardless of what age the activity recording was initiated.  Once 

the initial days (for the rat) or week (for the degu) of recording were removed from the 

analysis, this advanced phase during pre-puberty statistically disappeared (e.g., 

Supplementary Pilot Experiment). Early exposure to the testing environment also 

diminished this advanced phase (e.g,. Experiment 2). Whether this artifact can fully 

account for the discrepancies between our current data and that of Hummer et al. (2007) 

is unclear.  During our current study puberty occurred almost a month earlier than in 

Hummer et al. (2007) due to the overall improved health and rapid growth of our colony. 

Thus, during these new studies the earliest data may have been collected when the 

animals were already undergoing the initial neuroendocrine changes associated with 

puberty.  Indeed, in the wild newly-emerged juvenile degus (approximately 2-4 weeks 

old) exhibit rhythms of extra-burrow activity that are more unimodally diurnal and phase-

advanced than those of their adult counterparts (Fulk, 1976). We should be able to 

address this issue in the future by tracking the development of degu rhythms prior to 

weaning using new technology that allows for the simultaneous recording of co-housed 

animals (Paul and Schwartz, 2007).  

Our results add to growing evidence that circadian plasticity during puberty is 

common across the mammalian kingdom. Dramatic changes in the phasing of sleep and 

activity occur during puberty in humans, mice, rats, degus, fat sand rats, and rhesus 

macaques (e.g., Roenneberg et al., 2004; Thorleifsdottir et al., 2002; Yang et al., 2005; 

Crowley, Acebo, and Carskadon, 2007; Golub and Takeuchi, 2002; Weinert et al., 1994; 

Weinert and Waterhouse, 1999; McGinnis et al., 2007; Kittrell and Satinoff 1986; Tate, 

Richardson, and Carskadon, 2002; Hummer et al., 2007; Neuman et al., 2005; for full 

review see Hagenauer et al., 2009). Thus, the tendency for teenagers to stay up late likely 

has both biological and social impetus. In this case, to reduce the epidemic of adolescent 

sleep deprivation (National Sleep Foundation, 2000), it may not be sufficient to 

recommend that teenagers go to bed earlier. Perhaps more useful would be public health 

efforts that acknowledge that the phenomena may have similarities to jet-lag, and that 

therefore encourage circadian interventions, such as increased exposure to morning 
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sunlight, dimmer light in the evening, and overall sleep hygiene (National Sleep 

Foundation, 2000).  
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Figure 3.3.  The reorganization of circadian activity during puberty is dependent on 
pubertal gonadal hormones. A. As the SHAM male degus (n=11) grew older their 
activity during the hours immediately following lights-off  (evening) diminished and their 
daytime activity increased. Depicted is the average percent of daily activity occurring 
during each 10 min bin across the day is presented for several ages during pubertal 
development. Cool colors represent data from the youngest week-long recording sessions 
(early pubertal), and warm colors represent the oldest recording sessions (post-pubertal). 
The white and black bar at the top of the figure illustrates the time of lights on and lights 
off.  B. These changes are reflected in the phase advance of several circadian parameters 
shown by SHAM males during pubertal development. Depicted is the average within-
subject change in each circadian phase-parameter across development. Positive values on 
the y-axis indicate that the parameter is more advanced than the individual’s mean for the 
recording period (P75-P152). To avoid potentially introducing artifacts, the first week in 
the wheel (before age P55) is disregarded in all calculations and left off the graph, 
although parameters followed the same developmental trends. In the case of the LD ratio, 
positive values indicate a relatively more diurnal activity distribution.  X- and Y-error 
bars represent +/-SE. C, E, G.  SHAM females (n=12), castrated (CAST) males (n=11), 
and ovariectomized (OVX) females (n=10) did not show the same developmental 
changes in activity distribution as SHAM males.  In general, their evening activity 
increased and daytime activity decreased across pubertal development. D, F, H.  Unlike 
SHAM males, degus from all other groups (SHAM females, Castrated (CAST) males, 
and Ovariectomized (OVX) females) showed either a small delay or no change in 
circadian phase parameters across development.  
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Figure 3.4.  Circadian phase parameters exhibit sex differences during puberty that 
depend on gonadal hormones. Degus of both sexes that were gonadectomized prior to 
puberty (GDX) appear similar for almost all parameters. Circadian phase is presented in 
terms of zeitgeber time (ZT), with ZT12 equal to the time of lights-off and ZT0 or ZT24 
equal to the time of lights on. X-  and Y- error bars represent +/-SE. Asterisks indicate 
significant within-subject change (p<0.05). A. Pre-pubertal GDX prevented males from 
developing a phase-advanced onset to their active period. Their daily active period was 
defined as the 12 hrs of the day containing the highest mean activity. B. Neither SHAM 
nor GDX females showed significant changes in the onset of the active period. C, D. The 
onset of the morning activity showed little change over development in any of the groups 
studied. E. Pre-pubertal GDX prevented males from developing a phase-advanced time 
of peak activity. F. Neither SHAM nor GDX females showed significant changes in the 
time of peak activity. G. Pre-pubertal GDX prevented males from developing a phase-
advanced offset of evening activity. H. SHAM females did not show age-related changes 
in offset, whereas GDX females showed a significant delay. I.  Pre-pubertal gonadectomy 
prevented males from developing a more diurnal activity pattern as determined by LD 
ratio. J. Neither SHAM nor GDX females showed age-related changes in LD ratio.
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Figure 3.4 
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Figure 3.5.  Mean activity levels decrease across development (p=0.040) in a manner 
that depends on sex (p=0.004). The daily mean activity (wheel turns/10 min bin) is 
illustrated for SHAM and castrated males (left) and SHAM and ovariectomized females 
(right). X-  and Y- error bars represent +/-SE. 
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Supplementary Material 

Supplemental Experiment 1:  Pilot Methods 

This experiment tracked activity rhythms in degus across the time period that had 

previously been identified as puberty (Hummer et al., 2007). Earlier work indicated that 

there were no sex differences in circadian phase changes during this period (Hummer et 

al., 2007), so both sexes were used indiscriminately in these preliminary experiments. 

Subjects and Housing: Eight Octodon degus (P55-66) were selected from four 

litters within a week following weaning. The degus were placed into an environmental 

chamber that was maintained at a light intensity of 250 lux during the lighted phase of the 

12:12 LD cycle. After several weeks of recording, it became clear that the majority of 

these animals (7/8) fit a nocturnal/crepuscular chronotype, which is unusual in our colony. 

We suspected that this unusual chronotype might have been produced by the bright, 

exposed housing conditions (the degus were kept directly under the lights (within 45 cm) 

in the boxes in order to maintain relatively equal light exposure). Therefore, we 

continued to record from the first set of animals but began a second set of eight degus 

(P60-72, selected from three litters within two weeks of weaning) under dimmer lighting 

conditions (around 100 lux, in dark grey opaque cages).  Besides lighting intensity, both 

sets of degus were treated equivalently.  

Monitoring activity rhythms: Pubertal changes in activity distribution and 

circadian parameters were quantified in an identical manner to Experiment 1.  In the case 

of the brightly-lit animals, only mean activity, the time of peak activity, and LD ratio 

were scored because almost all animals (7/8) were found to be nocturnal and negatively 

masked by light. Therefore, even quick review demonstrated that their activity onset and 

offset were stably set at ZT12 and ZT0, respectively.   

Statistical Analyses: To determine if there was a relationship between pubertal 

development and circadian parameters, we ran a linear and marginal model analyses. 

Within the marginal model, due to limited sample size, data from the earliest and latest 

age bins (before P71 and after P189 for the brightly housed animals, and before P71 and 

after P148 for the dimly lit animals) was removed from the analysis. The linear equation 

used to fit these data was: 

 Yit = β0 + β1Age + b0i +b1iAge + εit 
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 In this linear equation, the variables are defined in an identical manner as in 

Experiment 1. The intercept terms reflected differences at the age of maturity by having 

the variable of “Age” centered around P140, which means that 140 was universally 

subtracted from all age values so that the linear fit would cross the y-axis at a meaningful 

location. 

 

Supplemental Experiment 1:  Pilot Results 

 The brightly-lit degus showed a nocturnal chronotype with strong negative 

masking, whereas the dimly-lit degus showed the diurnal chronotype typical of our degu 

colony. These differences in chronotype due to lighting are thoroughly discussed in 

another paper (Lee and Hagenauer, in preparation). However, it should be noted that the 

overall light intensity, as measured at cage-bottom, for the exposed, dimly-lit degus was 

more similar to the light intensity at the bottom of a cage on a shelf in the colony room 

than the light intensity for the exposed, brightly-lit degus.  

 Therefore, with the exception of the first week in the testing chambers, 7/8 of the 

brightly-lit degus were thoroughly masked and showed little change in phase over the 

recording period. With the first week included in the analysis, there was a trend towards 

the timing of peak activity changing with age (F(1, 7.003)=4.776, p=0.065), with daytime 

activity disappearing during the first week and nighttime activity increasing. LD Ratio 

was not found to change with age (F(1,7.343)=1.303, p=0.289), nor was mean activity 

(F(1, 100)=1.590, p=0.210). With the first week of adjustment to the new lighting 

conditions removed from the analysis, the time of peak activity lost its significant 

relationship with age (F(1, 7.022)=1.759, p=0.226, Supplemental Figure 3.6). None of 

the circadian variables showed a significant relationship with age when analyzed using 

the marginal model, regardless of whether data from the first week of recording was 

included or not (p>0.1). 

The dimly-lit degus showed changes in activity rhythm chronotype during puberty. 

The degus became more diurnal, as indicated by an increase in the proportion of activity 

occurring during the lighted period of the LD cycle (F(1, 7.989)=5.733, p=0.044), 

Simultaneously, there was a trend towards the timing of daily peak activity advancing 

(F(1, 6.856)=4.547, p=0.071), as well as the time of activity offset (F(1, 6.612)=4.263, 
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p=0.080). Supplemental Figure 3.7). Activity onset and mean activity did not change 

during this time period (activity onset F(1,12.102)=0.481, p=0.501, mean activity: F(1, 

11.219 )=1.817, p=0.204). These conclusions continued to hold true when the first week 

of recording was removed from the data set (α=0.05), although the trend towards age-

related change in the timing of peak activity dissolved. None of the circadian variables 

showed a significant relationship with age when analyzed using the marginal model, 

regardless of whether data from the first week of recording was included or not (p>0.1). 

 

Supplemental Experiment 2:  Methods 

These data were drawn from the baseline wheel-running data under a 12:12 LD 

cycle from two pilot experiments examining the entrainment mechanisms of pubertal and 

post-pubertal degus. Similar to both Experiment 1 and the Pilot Experiment, these 

animals were weaned around P60. 

Subjects and Housing: Eleven of the animals (3 males, 9 females) came from an 

experiment that examined the phase response of degus to light at several points during 

development using a brief, Aschoff II style protocol (8-9 days in a baseline LD cycle, 10 

days in constant darkness (DD) with a 15min-1 hr light pulse on the third day). Only LD 

recordings made between P66-104 (pubertal) and P135-220 (late/post-pubertal) were 

used for this comparison. During the protocol, these animals were housed in the brightly-

lit chambers used in the Pilot Experiment.  Between sampling periods, the degus were 

housed in cages on shelves in the colony room with siblings where they were exposed to 

dimmer lighting (an estimated 40-150 lux at cage bottom). Degus were always given at 

least 2 weeks recovery in the colony room between recording periods.  

 Fifteen of the animals (6 males, 9 females) came from an experiment that 

examined the free-running period of pubertal and post-pubertal degus under conditions of 

constant light. During this experiment, the animals were exposed to 3 weeks of constant 

light during the pubertal ages of P80-P110 and the post-pubertal ages of P172-P199. 

These sessions were preceded by 7-8 days in a baseline LD cycle. During the protocol, 

the animals were housed in cages on exposed tables directly below the light source (~250 

lux).  Puberty was carefully monitored using methodology identical to Experiment 2.  
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Activity Rhythm Monitoring and Analysis: The last four days of the LD baseline 

recording period was analyzed for both experiments. Pubertal changes in activity 

distribution and circadian parameters were quantified in an identical manner to 

Experiment 2. Statistical analysis was performed using a 2x2 Repeated Measures 

ANOVA (sex x age). 

To address the question of whether masking could account for the lack of pubertal 

changes in circadian rhythms in the females, activity distribution and phase parameters 

from the entrained conditions were compared to those from the first two days after 

placement in DD for nine females.  This analysis was possible because degus of this age 

typically do not free-run immediately after placement in constant darkness (Hummer et al. 

2007).  A similar analysis was done with males but they were not included in the final 

statistical comparisons because their sample size was small (n=3).  Degus placed in 

constant light were also not included in this analysis because they frequently free-ran 

immediately. Several of the females were found to reverse their chronotype in response to 

placement in DD.  Under these circumstances, it was ambiguous whether the phase shift 

for some variables should be scored as an advance or delay. Therefore, for consistency, a 

shift to a more diurnal pattern was scored as an advance, and a shift to a more nocturnal 

pattern was scored as a delay.  The effects of masking (LD vs. DD) and age (pubertal vs. 

late/post-pubertal) were evaluated using a 2x2 Repeated Measures ANOVA. 

 

Supplemental Experiment 2: Results 

 As males exited puberty they showed a decrease in evening activity and an 

increase in daytime and morning activity (Supplemental Figure 3.8A). Females 

remained strongly crepuscular across the developmental period (Supplemental Figure 

3.8B). Therefore, age-related changes were found to show significant sex differences for 

the time of peak activity (F(1, 24)=4.661, p=0.041), and there was a trend towards sex 

differences in the change in the onset of the active period (F(1, 24)=3.575, p=0.071) and 

LD ratio (F(1, 24)=3.011, p=0.096). Overall, there was a main effect of development on 

the LD ratio (F(1, 24)=6.734, p=0.016) and offset of the evening oscillator (F(1, 

24)=9.364, p=0.005), as well as a trend towards age-related changes in the onset of the 

active period (F(1, 24)=3.676, p=0.067) and the time of peak activity (F(1, 24)=3.021, 
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p=0.095). Four variables were found to show overall sex differences: the onset of the 

active period (F(1, 24)=5.137, p=0.033), the time of peak activity (F(1, 24)=7.322, 

p=0.012), the offset of the evening oscillator (F(1, 24)=6.533, p=0.017), and the LD ratio 

(F(1, 24)=6.385, p=0.019; Supplemental Figure 3.8C).  The onset of the morning 

oscillator and mean activity level were not affected significantly by either sex or 

development (p>0.10). 

 Both pubertal and late/post-pubertal females were found to have masked activity 

rhythms.  During the first two days in DD, females shifted to a more diurnal activity 

pattern (Supplemental Figure 3.9A&B).  This shift was reflected in an overall increase 

in the amount of activity occurring during the subjective day (as extended from the 

former LD cycle, F(1, 8)=10.293, p=0.012), as well as a phase-advance in the offset of 

evening activity (F(1, 8)=7.878, p=0.023) and the onset of the active period (F(1, 

8)=5.084, p=0.054; Supplemental Figure 3.9C).  Significant changes were not observed 

in the timing of peak activity (F(1, 8)=3.551, p=0.096), and morning onset (F(1,8)=3.011, 

p=0.121).  When the “unmasked” activity distributions from the first two days in DD 

were compared between pubertal and late/post-pubertal females there was still no 

indication of age-related changes (Supplemental Figure 3.9D).  Therefore, age did not 

have an effect on any of the circadian phase variables (p>0.54), nor did it have an 

interacting effect with lighting condition ( p>0.55; Supplemental Figure 3.9E).  

Although suggestive, these results demonstrating a lack of phase-change under 

“unmasked” conditions should be taken tentatively, as degus demonstrate a great deal of 

individual variability in how they adapt to DD. Similarly, it is not yet clear that the 

pubertal change that occurs in male rhythms could be detected using this technique, 

although there seemed to be indications of it in the three males that we monitored.  

 

 

 

 

 

 

 



 

 139 

Cohort 

1st 
day in 

box 

1st 
day 
in 

wheel 
1st day 

recorded 
Last day 
recorded 

#  of 
Sham 

M 

# of 
Cast 

M 

# of 
Sham 

F 

# of 
OVX 

F 
A 58 58 59 178 2 2 1 1 

B 55 55 63 169     1 1 

C 51 51 59 132(1), 165 1 1   1 

D 54 54 58 122 1       

E 54 54 55 156     1 1 

F 38-40 43-45 46-48 194-196 2 2 1 1 

G 40, 42 45, 47 55, 57 188, 190 2 2 2 2 

H 35 40 43 188     1   

I 25 30 39 184 1 1   1 

J 19 29 40 173 2 2 2 2 

K 19 29 47 165, 178   1 3   
TOTAL         11 11 12 10 

 
 
Table 3.1. The developmental cohorts of degus included in the final analysis of 
Experiment 2.  Ages are presented in postnatal days.  For cohorts #I-K, wheel-access was 
allowed before weaning.  Grey boxes indicate that the first day of recording occurred less 
than 1 week after initial wheel access.  
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Figure 3.9. Female degus may have masked activity rhythms under a bright LD 
cycle in exposed housing conditions. This masking does not appear to account for their 
lack of pubertal change in activity distribution.  A&B. The average percent of daily 
activity occurring during each 10 min bin across the day is presented for female degus 
(n=9) under a light dark cycle (LD, black line) and during the first two days after 
placement in constant darkness (DD, grey line). The grey and black bar at the top of the 
figure illustrates the time of lights on and lights off under the LD conditions. Note that 
the females demonstrate a nocturnal/ crepuscular activity distribution under LD 
conditions, but after placement in DD their activity increases during the subjective day 
and decreases in the evening. This same response to placement in DD occurs at A. a mid-
pubertal age (black line, age 66-104) or B. a late- or post-pubertal age (grey line, age 
135-165). C. The average within-subject change during the “unmasking” of rhythms in 
response to placement in DD is illustrated for each of five circadian phase parameters. 
Positive values indicate that the parameter phase-advances immediately after placement 
in DD, except in the case of the LD ratio, where positive values indicate an increase in 
the amount of activity during the subjective day. Asterisks indicate significant within-
subject change (LD vs. DD, p<0.05).  Error bars represent +/-SE. D. When the activity 
distributions for pubertal and late-/post-pubertal females during the first two days in DD, 
there is little indication for age-related change despite the fact that the rhythms are now 
free of the masking influences of the LD cycle. E. None of the circadian phase 
parameters show significant within-subject change when comparing mid-pubertal and 
post-pubertal females under a LD cycle or during the first two days in DD. Error bars 
represent +/-SE. 
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Chapter 4 
 

Period1 Rhythms in the Suprachiasmatic Nucleus Are 
Delayed during Puberty in the Degu (Octodon degus)  

 
 

 

Abstract 

Human adolescents exhibit a dramatically different timing of sleep than children or 

adults. We recently demonstrated that two laboratory rodents, the degu and rat, similarly 

show significant changes in the distribution and phasing of activity rhythms during 

puberty.  These changes were partially due to pubertal increases in gonadal hormones, 

and the circadian timekeeping system in the suprachiasmatic nucleus (SCN) of the 

hypothalamus is known to be sensitive to gonadal hormones. Thus, using in situ 

hybridization we examined the phasing of daily rhythms of Per1, a photosensitive 

element in the self-sustaining molecular feedback loop in the SCN that is essential for the 

production of circadian rhythmicity.  We collected tissue at 3 hr intervals across the day 

in mid-pubertal (P83-98) and post-pubertal (P145-204) degus maintained in a 12: 12 

light-dark (LD) cycle.  Preliminary results indicate that the Per1 rhythms in the SCN of 

pubertal degus are phase-delayed relative to those of post-pubertal degus or adults in a 

manner that parallels developmental changes in the phasing of activity rhythms.   
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 Introduction 

Human adolescents exhibit a well-characterized change in the timing of sleep 

during puberty. The timing of sleep grows later as puberty progresses, such that the latest 

sleep patterns occur around the time of achieving sexual maturity (between the ages of 

15-21; Crowley et al. 2007; Roenneberg et al. 2004; Thorleifsdottir et al. 2002; Yang et 

al. 2005). These changes in the timing of sleep correlate with secondary-sex development 

(Carskadon et al. 1993; Sadeh et al. 2009). Thus, several authors have proposed that these 

changes may partially reflect pubertal influences on the circadian timekeeping system 

(e.g., Carskadon, Acebo, and Jenni 2004).  

Circadian rhythms are generated by an endogenous pacemaker located in the 

suprachiasmatic nucleus (SCN) of the hypothalamus (Ralph et al. 1990). Endogenously 

generated circadian rhythms have a period (or day length, τ) that only approximates 24 

hours. Consequently, under normal conditions, the endogenous rhythm must be entrained 

by external time cues (or “zeitgebers”) to maintain a stable phase relationship with the 

outside world (Moore-Ede et al. 1982). Light is the dominant environmental zeitgeber, 

and under laboratory conditions the phase of behavioral and physiological rhythms is 

characterized by the relationship of phase markers – such as the onset, peak, or offset of a 

rhythm – to the laboratory light-dark (LD) cycle. An advance in circadian phase means 

that phase markers occur earlier during the LD cycle, whereas a delay means that phase 

markers occur later. Therefore, the sleep rhythms of human adolescents would be 

described as being delayed in phase relative to those of pre-pubertal children or adults.  

We have found that pubertal changes in the timing of physiological rhythms do not 

occur exclusively in humans, but are instead common among other mammalian species as 

well (for review see Hagenauer et al. 2009). Our recent detailed reports on two laboratory 

rodent species, the slow-developing, diurnal degu and fast-developing, nocturnal rat, 

demonstrate that the phasing and distribution of daily activity rhythms is altered by 

pubertal development (Chapter 2; Chapter 3; Hummer et al. 2007). In both species, we 

observed that juvenile and pubertal animals had a phase of activity rhythms that was 3-5 

hrs delayed compared to that of post-pubertal animals or adults. This delayed phase was 

due to the younger animals having a crepuscular (or bimodal) distribution of activity, 

with the majority of activity clumping near the end of the active phase (late 
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afternoon/early evening for degus; late night/early morning for rats). As the males 

progressed through puberty, this secondary bout of activity phase-advanced until it 

consolidated into a strong, unimodal rhythm that peaked near the beginning of the 

animal’s active phase. These developmental changes in activity rhythms showed sex 

differences, and were smaller in females as well as animals that had been 

gonadectomized in pre-puberty. Thus, these developmental changes in activity rhythms 

were likely to be caused by pubertal increases in gonadal hormones (Chapter 2; Chapter 

3; Hummer et al. 2007).   

By using animal models, we can explore which aspects of the circadian timekeeping 

system might be altered by pubertal hormones. It is already well-known that gonadal 

hormones can alter key aspects of SCN physiology (for review see Karatsoreos and 

Silver 2007). Circadian rhythms in mammals are generated in the SCN by a 

transcriptional-translational feedback loop involving a group of genes commonly referred 

to as “Clock Genes” (Hastings and Herzog 2004). The core feedback loop consists of a 

positive arm, which contains proteins (BMAL1 and CLOCK) that drive transcription, and 

a negative arm, which contains proteins (PER, CRY, REVERBα) that inhibit 

transcription. To initiate the loop, a heterodimer of BMAL1 and CLOCK protein drives 

the transcription of Per, Cry, Reverbα. The protein REVERBα then feeds back to inhibit 

the transcription of Bmal1.  The PER and CRY proteins (PER1, PER2, PER3, CRY1, 

CRY2) form heterodimers that inhibit their own transcription and the transcription of 

Reverbα (Bae et al. 2001; Zheng et al. 2001; for review see Hastings and Herzog 2004). 

The phasing and amplitude of rhythmic components in this feedback loop (Per2, Cry2) 

are known to be sensitive to estrogen in females (Nakamura et al. 2001; Nakamura et al. 

2005). 

Gonadal hormones can also alter aspects of the photic entrainment pathway.  Light 

influences the SCN via a direct pathway between the retina and ventrolateral SCN 

(vlSCN, Morin and Allen 2006). Light exposure on the retina causes a rapid release of 

glutamate in the vlSCN, which binds to NMDA receptors, producing a cascade of second 

messenger signaling. These signaling pathways then quickly induce the transcription of 

immediate early genes, such as cFos (Meijer and Schwartz 2003), as well as two 

components of the clock gene feedback loop, Per1 and Per2 (Miyake et al. 2000; 
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Shigeyoshi et al. 1997). Induction of Per1 and Per2 causes an overall phase-shift of the 

molecular feedback loop (Shigeyoshi et al. 1997) as well as rhythms in membrane 

potential (Kuhlman 2010). This phase-shift propagates to the dorsomedial (dm) SCN 

(Antle and Silver 2005; Nakamura et al. 2005; Yan and Silver 2002) and eventually to 

circadian output pathways. Consequently, phase-shifts in the molecular feedback loop in 

the SCN are thought to underlie the photic phase-shift of behavioral rhythms (Akiyama et 

al. 1999; Albrecht et al. 2001; Shigeyoshi et al. 1997; Tischkau et al. 2003). Thus, it has 

become common to examine the phasing of Per1 and Per2 rhythms within the SCN as a 

manner of characterizing the entrainment of the central circadian pacemaker (e.g. Abe, 

Honma, and Honma 2007; Yamanaka, Honma, and Honma 2008). 

Both androgens and estrogens can reversibly increase photic sensitivity within the 

entrainment pathway, as measured by the induction of immediate early gene expression 

(Abizaid, Mezei, and Horvath 2004; Karatsoreos et al. 2007). Estrogen can also alter the 

phasing of neurotransmitter rhythms in the SCN (Cohen and Wise 1988; Krajnak et al. 

1998; Mahoney et al. 2009) as well as increase electrical intercellular coupling 

(Shinohara et al. 2000; Shinohara et al. 2001) in a manner that is opposed by 

progesterone (Shinohara et al. 2001). Gonadal hormones can modulate SCN neuron 

excitability in both sexes as well (Fatehi and Fatehi-Hassanabad 2008; Kow and Pfaff 

1984).  Little work has examined pubertal hormone effects on the SCN, but there are 

indications of anatomical changes (growth in nuclear size and nucleoli size) around mid-

puberty in rats (Anderson 1981; Morishita et al. 1978; Morishita et al. 1974), as well as 

an increased number of cells expressing a neuropeptide that is important for photic 

entrainment (VIP) during late adolescence in humans (Swaab et al. 1994).  Behavioral 

data also suggests that pubertal rodents have an altered sensitivity to light (Hummer et al. 

2007; Weinert and Kompauerova 1998), 

We were interested in determining whether the large hormone-driven phase shifts in 

behavioral rhythms during puberty were reflected in the phase of components of the 

central circadian pacemaker in the SCN.  Previous developmental studies in rodents 

suggest that clock gene rhythms in the SCN may change during the pubertal period. In 

traditional laboratory rodents, components of the central oscillator (Per1, Per2, Bmal1, 

Cry1) gradually develop pronounced rhythmic gene expression between the late prenatal 
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period and the second week of postnatal life (Isobe, Tauchi, and Kawaguchi 2005; 

Shimomura et al. 2001; Sladek et al. 2004). After this age, the phasing of Per1 and Per2 

rhythms appear to shift by several hours before reaching their adult pattern of expression 

(Shimomura et al. 2001; Yamazaki et al. 2009). The amplitude of Per1 rhythms also 

significantly increases (Shimomura et al. 2001). However, to our knowledge no studies to 

date have explicitly examined the development of central molecular oscillator during 

postnatal development following weaning.   

As previous evidence suggests that elements of the photic entrainment pathway are 

altered during puberty (Hummer et al. 2007; Weinert and Kompauerova 1998), we 

hypothesized that the phase-advance that occurs during puberty in male rodents would be 

reflected in a phase-advance of transcript rhythms for the photosensitive clock gene Per1. 

We chose to use the degu as an animal model for two primary reasons.  First, large 

behavioral phase-shifts had already been well-characterized during puberty in male 

degus, and these phase-shifts were clearly related to pubertal hormones (Hummer et al. 

2007; Chapter 3). Second, degus are a slow-developing, precocial species, and therefore 

we were able to collect tissue from mid-pubertal degus that had already been weaned for 

over a month. This meant that any developmental changes we observed in Per1 rhythms 

were unlikely to be due to lingering influences of the dam or sire on the entrainment of 

the youngest animals (Weinert 2005).  Finally, we had already carefully characterized 

rhythms of Per1 transcript in the SCN of adults of this species (>1 year of age) under 

entrained conditions (Vosko et al. 2009), as well as its photic sensitivity (Koch, 

Hagenauer and Lee 2009).  

 

 

Methods 

As a preliminary analysis of whether the central circadian pacemaker is phase-

delayed in during puberty, we examined the expression of Per1 RNA in the SCN across 

the day in mid-pubertal and post-pubertal degus.  Extensive details regarding animal 

husbandry can be found in Hagenauer et al. (Chapter 3), and the methodology used for 

tissue preparation and in situ hybridization is similar to that used by Vosko et al. (2009). 

Animals and Housing 
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Male degus (n=72) were obtained from the University of Michigan breeding 

colony. In the colony, breeding degus were kept in large (42.5 x 46 x 19.5 cm), 

transparent acrylic cages containing one sire, two dams, and their respective young. One 

side of each cage was kept on a heating pad at low heat in a room maintained at 20 +/- 

1°C with a 12:12-h light-dark (LD) cycle (light intensity 250 lx). During breeding, 

pregnancy, and early development (postnatal days P0-90) the animals were provided ad 

libitum with Prolab Laboratory Animal Diet Product 5P06 and acidified water (2.5 x 10-

5% HCl) to prevent infections. At the age of 3 months (P90), they began receiving adult 

chow (5001 Rodent Diet, PMI Nutrition) and tap water. Before weaning, they were also 

given generous handfuls of dried alfalfa 2 times weekly. Weaning took place between 

ages P35-P50. The animals were then housed in 48 x 26.8 x 20.3 cm opaque plastic cages 

under a 12:12 Light-dark (LD) cycle (40-150 lux) with food and water available ad 

libitum and 1-2 same sex companions.  

Degus were divided into two experimental populations based on age: mid-

pubertal (P83-98) and post-pubertal (P145-204). Brain samples were collected every 

three hours across the day at ZT times: 0, 3, 6, 9, 12, 15, 18, and 21.  Brain collection 

occurred within twenty minutes before or after the given time point. Degus were 

anesthetized and decapitated under isoflurane anesthesia. Care was taken to extract and 

flash-freeze the tissue within four minutes of decapitation so as to prevent mRNA 

degradation.  Tissue was stored at -80°C until the time of sectioning. During the dark 

phase of the LD cycle, brains and blood were collected under dim red lights.  All 

procedures were approved by the University Committee for the Care and Use of Animals 

at the University of Michigan.  

 Tissue Preparation 

Tissue frozen at -80°C was brought to -20°C for sectioning with a cryostat.   Four 

series of serial coronal sections of 16 µm were taken through the SCN.  Sectioning began 

from the anterior brain where the optic chiasm appeared and the anterior commissure met 

medially. This region corresponds to 0.12 mm posterior to bregma in the rat brain.  While 

the SCN has been anatomically verified in the degu (Goel, Lee, and Smale 1999), 

regional neuroanatomy has not been anatomically verified in this species and 

visualization was the primary means of orientation.   From these landmarks, 96 sections 
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were taken in the posterior direction to ensure the capture of the complete SCN and 

placed on Fisherbrand Superfrost/Plus microscope slides.  Sections were 

stored at -80°C until they were processed for in situ hybridization. 

Radioactive Probe Production  

Radioactive cRNA probes were synthesized from bacterial plasmids containing 

the degu Per1 fragment (pGEMT) (courtesy of Drs. Jeremiah Shepard and Steven 

McKnight, Southwest Medical School, Texas, GenBank EU 715821).  These plasmids 

were purified with a QIAprep Spin Miniprep Kit (Qiagen, Valencia CA). The plasmids 

were linearized using restriction enzymes, and fragments were characterized by gel 

electrophoresis and purified using a PCR purification kit (Qiagen, Valencia CA).  Once 

pure, linear DNA was produced, radioactive double-labeled antisense mRNA probes 

were synthesized by incubating the DNA and RNA polymerase in a buffer containing 
35S-UTP and 35S-CTP (Perkin-Elmer, Waltham, MA) and unlabeled adenine and guanine 

for 2 hours in 37°C water bath. After polymerization, plasmid DNA was digested with 

RNase-free DNase I. The labeled probe was separated from free nucleotides using Micro 

Bio-Spin Chromatography Columns (Bio-Rad Laboratories, Hercules, and CA). The 

radioactivity of the cRNA probes was then quantified with a liquid scintillation counter 

(Perkin-Elmer, Tri-Carb 2800). 

In situ Hybridization  

Slides containing one series of sliced tissue (24 sections) per animal were fixed in 

4% paraformaldehyde for 1 hr, washed 3 times in 2X SSC solution, and then incubated 

for 10 min in 0.1M TEA with 0.25% acetic anhydride. Slides were then washed in dH2O 

and dehydrated in graded alcohols before being left to air dry. The 35S-labeled probe was 

diluted in hybridization buffer until the concentration of radioactivity was 4 million cpm 

per 100 uL of solution. The hybridization solution was then applied to each slide and 

cover-slipped. Slides were then placed in a hybridization box with 50% formamide-

soaked filter paper in the bottom and incubated at 55°C overnight. The following day, 

cover slips were removed in a 2X SSC solution. Slides were then washed three times in 

2X SSC solution and incubated at 37°C in RNase solution (200 ng/mL) for 1 hour to 

remove unhybridized probe. Slides were then washed in increasingly stringent SSC 

solutions and incubated at 65°C in 0.1X SSC for 1 hour to decrease non-specific labeling.  
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After incubation, the slides were rinsed with distilled water before being dehydrated 

through graded alcohols and left to air dry. To visualize the radioactive labeling, Biomax 

film (Kodak, Rochester, NY) was exposed to the slides for one week.  The film was then 

digitized with a Microtek ScanMaker 1000XL (Microtek, Cerritos, CA) and SilverFast Ai 

software (Lasersoft Imaging Inc., Sarasota, FL).   

Analysis 

The location of the SCN was identified using ventral landmarks (e.g., optic 

chiasm, 3rd ventricle) in reference to previous anatomical characterization performed in 

our lab (Goel, Lee, and Smale 1999). Per1 signal was then measured from the digitized 

images of two mid-SCN slices representative of each degu using ImageJ software (NIH, 

Bethesda, MA).  Greyscale units were converted to standard optical density units using a 

21-step sensitivity guide (Stouffer, Mishawaka, IN) and the Rodbard calibration function. 

For each image, the optical density of the corpus callosum was measured, and any 

labeling that did not surpass 2.0 standard deviations above this density was considered 

background. The number and density of pixels within the SCN that surpassed background 

was then quantified (referred to as labeled area and optical density, respectively).  

Background values were subtracted from optical density measurements to remove the 

influences of background variation from the final results.  Optical density was then 

multiplied by labeled area to produce a measurement of integrated optical density.  Slides 

deemed low quality (unsalvageable SCN, excessive background signaling) were excluded 

from the data analysis.  All image analysis was performed by an experimenter blind to the 

identity of the tissue. A 2 X 7 ANOVA was used to analyze the effects of age and time 

(ZT) on SCN Per1 optical density, labeled area and integrated optical density.  

 

Preliminary Results 

During analysis, fifteen of the original brains were discarded due to poor tissue 

quality from improper freezing.  Tissue from the remaining 57 subjects was analyzed for 

Per1 expression. Within these 57 subjects, there were 6 animals that had particularly high 

background staining (optical density >0.40): two degus from ZT3 (one pubertal and one 

post-pubertal), two animals from ZT18 (one pubertal and one post-pubertal), and two 
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pubertal animals from ZT15. Results are presented below excluding these animals (n=51, 

with 2-4 degus per group/time point; Table 4.1). 

 Both pubertal and post-pubertal male degus exhibited rhythmic expression of Per1 

transcript in the SCN, where Per1 peaked during the middle of the light period and then 

fell to minimal levels during the dark period (Figure 4.1, Figure 4.2). A two-way 

ANOVA found a significant main effect of time (ZT) on Per1 optical density in the SCN 

(F(7, 35)=18.663, p<0.001), SCN labeled area (F(7, 35)=4.690, p=0.001), and integrated 

optical density (F(7, 35)=9.867, p<0.001). The pattern of Per1 expression differed 

between groups. In post-pubertal degus, Per1 began to increase steadily near the end of 

the dark period, peaked at the beginning of the light period (ZT 3), and declined to 

minimal levels at the beginning of the dark period (ZT 12). In pubertal degus, Per1 began 

to increase following lights-on  (between ZT 0 and ZT3), peaked at ZT 9, and dropped to 

minimal levels at ZT 12. Thus, the peak in Per1 transcript in the SCN of pubertal degus 

was delayed by 3-6 hours relative to the post-pubertal group. The duration of peak 

expression, as defined by the number of hours during which Per1 was elevated above 

50% of amplitude (peak-trough) was also longer in pubertal degus. Thus, there was a 

significant interaction between the effects of age group and time (ZT) on Per1 optical 

density (F (7, 35) = 4.024, p = 0.002), although not on labeled area (F(7, 35)=0.776, 

p=0.612) or integrated optical density (F(7, 35)=1.748, p=0.130). There was no overall 

age group difference in the levels of Per1 at the peak or trough, and therefore we found 

no significant main effect of age group on labeled area (F(1, 35)=0.008, p=0.929), mean-

background (F(1, 35)=0.379, p=0.542), or optical density (F(1, 35)=0.000, p=1.000). 

 

Discussion 

   The daily pattern of Per1 expression in the SCN of post-pubertal degus (145-204 

days of age, or approximately 5-7m) was almost identical to that observed in adult male 

degus (>12m of age) in our previous study (Vosko et al. 2009). In contrast, during 

puberty, when degus exhibit a delayed phasing of activity rhythms (Hagenauer et al. in 

prepration), Per1 rhythms in the SCN appeared either delayed or distorted. This evidence 

supports our hypothesis that the delayed activity rhythms observed during puberty are 

due to changes in the central circadian pacemaker.  
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  We originally chose to examine Per1 specifically because of its photosensitivity.  

Per1 rhythms are directly entrained by the LD cycle (Shigeyoshi et al. 1997), therefore 

we presumed that any changes in the Per1 rhythm would reflect pubertal changes in the 

photic entrainment mechanism.  However, our recent data in the developing rat suggests 

that pubertal reorganization of circadian rhythms still occurs under constant conditions, 

suggesting that changes in the photic entrainment cannot fully explain this phenomenon 

(Chapter 2). The developmental changes in activity rhythms appear similar in these two 

species. If the mechanism driving these changes is also the same, then we should consider 

whether Per1 SCN transcript rhythms could be entrained to a delayed phase at the same 

time as other critical changes in the circadian system occur downstream.  For example, 

gonadal hormones are already known to strengthen the coupling between oscillators in 

the SCN (Shinohara et al. 2000; Shinohara et al. 2001).  Therefore, the younger animals 

could have weaker coupling, which might lead to a delayed rise in Per1 in the morning, 

as well as a delayed phase relationship between the photic-entrained oscillators in the 

SCN and rhythmic output pathways.  

Whether these effects are due to the direct binding of pubertal hormones in the SCN 

is debatable.  Some researchers have found clear evidence of steroidal receptors in the 

SCN (Hummer et al. 2006; Iwahana et al. 2008; Kruijver et al. 2003; Li et al. 2002; Mitra 

et al. 2003; Wilson et al. 2002) whereas others have not (Lauber, Romano, Pfaff 1991; Li 

et al. 1993; Shughrue, Komm, Merchenthaler 1996; Shughrue, Lane, Merchenthaler 

1997: Shughrue and Merchenthaler 2001; Warembourg and Leroy 2004). However, the 

degu exhibits both estrogen and androgen receptors in the SCN throughout development 

(Hummer et al. 2006), thus the mechanism is in place for direct steroid effects on the 

SCN in this species. Also, the functioning of many input structures to the SCN (e.g., the 

intergeniculate leaflet, medial preoptic area, or raphe nuclei) is sensitive to gonadal 

hormones (Abizaid et al. 2005; De La Iglesia 1999; Karatsoreos and Silver 2007). 

Additionally, classical steroidal hormones as well as their metabolites can directly affect 

synaptic transmission, most notably at NMDA and GABAA receptors (Melcangi et al. 

2001). Therefore, pubertal increases in gonadal hormones could modulate SCN function 

regardless of direct binding in the SCN.   
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 However, these results should be treated as preliminary until replicated, as final 

sample sizes were small due to technical difficulties.  Future directions for this study also 

include a characterization of another photosensitive element in SCN transcriptional-

translational feedback loop, Per2, as well as investigation into positive elements in the 

loop, such as the expression of Bmal1. This would reinforce the anticipated conclusion 

that the entire circadian pacemaker system exhibits a delayed phase during puberty. 

Furthermore, as the vlSCN and dmSCN are known to play separate roles in circadian 

rhythm generation and entrainment (Antle and Silver 2005), ideally our experiments 

should analyze these two regions separately. This might be facilitated by using non-

radioactive labeling. Finally, while the mRNA level of analysis is useful, protein 

expression profiles derived using immunocytochemistry or western blotting are 

ultimately needed for a complete functional picture. 

Future investigations will also include an investigation of daily rhythms in clock 

gene expression located in “slave oscillators” in brain areas outside the SCN. Previous 

work indicates that the phase relationship between the central SCN oscillator and slave 

oscillators in other regions of the brain closely relates to the phase of behavioral activity 

rhythms (Abe et al. 2001; Masubuchi et al. 2000; Mrosovsky et al. 2001; Vosko et al. 

2009; Wakamatsu et al. 2001). Therefore, pubertal influences on the phasing of 

molecular clocks in the brain outside of the SCN might also be important for pubertal 

changes in chronotype.   

Interestingly, the molecular oscillators outside of the SCN in traditional laboratory 

rodents (rats, mice) are already known to develop rhythmicity later than those in the SCN 

and show dramatic changes in the amplitude and phasing of their component rhythms 

during the post-weaning period. For example, the striatum and cortex still lack rhythms in 

core components one week before weaning (Bmal1, Clock, Per1, Per2, Cry1; Cai et al. 

2009; Shimomura et al. 2001). Those components that are rhythmic before weaning 

(Reverbα and Npas2) undergo almost a complete phase reversal by adulthood (P60; Cai 

et al. 2009). In the liver, significant rhythms in Cry1 and Clock do not appear until after 

weaning, at an age barely preceding typical pubertal development (Ojeda and Urbanski 

1994; Sladek et al. 2007). Other components are rhythmic around the age of weaning 

(Per1, Per2, and Reverbα) but still seem to phase-advance by at least 4 hrs by adulthood 
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(Sladek et al. 2007; Yamazaki et al. 2009). Similarly, there also appears to be a change in 

the amplitude of phasing of rhythms in the heart, pineal gland, and adrenal glands 

between weaning and adulthood (Sakamoto et al. 2002; Yamazaki et al. 2009).  As these 

measurements were taken in fast-developing, altricial rodents it is not clear whether post-

weaning changes in molecular oscillators outside the SCN are related to pubertal 

development or the transition from nursing predominantly during the day (the dam’s rest 

period) to foraging independently for food during the night (Sumova et al. 2006; 

Yamazaki et al. 2009).  Our future studies using the slow-developing, precocial degu may 

clarify this point.   
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Table 4.1. Final sample size per group at each time point. 
  

ZT 
Pubertal 
n 

Post-
pubertal n 

3 3 4 
6 2 4 
9 2 3 

12 4 3 
15 3 3 
18 3 2 
21 4 3 
24 4 3 
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Figure 4.1. Representative autoradiographs showing Per1 mRNA levels in the SCN 
of mid-pubertal (left) and post-pubertal (right) male degus. Brains were sampled 
every 3 h from animals housed in LD 12:12.  Per1 mRNA levels in the SCN were 
visualized using in situ hybridization.  Time points are presented in zeitgeber time (ZT, 
ZT0= the time of lights on).  Depicted are coronal slices from individuals at three 
representative time points: ZT3 and ZT9, which were time points containing peak Per1 
expression for post-pubertal and mid-pubertal degus, respectively, and ZT15, a time point 
containing trough Per1 expression for both age-groups.   
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Figure 4.2.  The daily expression of Per1 mRNA in the SCN differs between mid-
pubertal and post-pubertal male degus.  Per1 mRNA levels in the SCN at each 
timepoint were compared using in situ hybridization. Error bars represent standard error 
from the mean. Time points are presented in zeitgeber time (ZT, ZT0= the time of lights 
on).  ZT/CT0 is double-plotted as CT/ZT24. A.  Optical density refers to the intensity of 
the signal produced by radioactive Per1 probes in the SCN, as quantified using 
autoradiography.  Background was subtracted from all measurements, and was defined as 
any signal that didn’t surpass 2.0 SD above the density of the corpus callosum. Mid-
pubertal degus exhibited a daily rhythm in Per1 optical density that appeared to be phase-
delayed relative to that of post-pubertal degus (main effect of time: p<0.001; age-group x 
time: p=0.002). B.   Labeled area was defined as the number of pixels within the SCN 
image that had an optical density that surpassed background. Per1 labeled area was 
significantly rhythmic for both age groups (main effect of time: p=0.001), but there were 
no significant differences between age groups (age-group x time: p=0.612). C.  Integrated 
optical density is the product of optical density and labeled area. Per1 integrated optical 
density was significantly rhythmic for both age groups (main effect of time: p<0.001), 
but there were no significant differences between age groups (age-group x time: 
p=0.130).



 

 167 

Figure 4.2 
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Chapter 5 
 

Conclusion 
 

“Without due consideration of the neural and behavioral correlates of 
differences between higher taxa and between closely-related families, 
species, sexes, and stages, we cannot expect to understand our nervous 
systems or ourselves.”  

 - Bolluck (1984)  
 

“We have evolved a nervous system that acts in the interest of our gonads, 
and one attuned to the demands of reproductive competition.” 

 - Ghiselin (1974), as cited in Crews (2002) 
 

Biological Timekeeping, Gonadal Hormones, and Reproductive Diversity: Moving 

Beyond the Use of Pubertal Laboratory Rodents as Models for Human Adolescents 

 This dissertation began with the concept that the use of animal models could 

address fundamental questions regarding the delayed sleep patterns of human 

adolescents, while avoiding the technical and ethical issues associated with using human 

subjects. Two rodent species were chosen with very different developmental trajectories 

and natural histories, the laboratory rat (Rattus norvegicus) and degu (Octodon degus). 

Both species exhibited dramatic changes in the timing and organization of daily activity 

during puberty not unlike human adolescents. These changes exhibited sex differences 

and were, at least partially, dependent on gonadal hormones.  Preliminary results in the 

degu indicated that developmental changes in the phasing of behavioral rhythms 

correlated with changes in the phasing of a photosensitive element of the circadian 

pacemaker.  However, results in the rat indicated that changes in the photic entrainment 

mechanism were not required for the reorganization of activity rhythms during puberty.  

Thus, we conclude that multiple aspects of the circadian timekeeping system are altered 

by puberty. 
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 Taken in tandem with the results of previous studies suggesting that circadian 

phase changes occur during puberty in three other species (the rhesus macaque, fat sand 

rat, and mouse; Hagenauer et al. 2009; Chapter 1), these results indicate that pubertal 

changes in circadian timekeeping may be a relatively common phenomenon in mammals. 

This conclusion is broadly relevant for the circadian community beyond the scope of 

these studies, as immature animals are frequently used as the source of tissue for patch-

clamp investigations of SCN electrophysiology. Our data indicate that the SCN tissues 

from young animals may be representative of only a short period of the life history of the 

species.  Our data also have potential to inform unresolved questions regarding the 

prevalence of circadian, sleep and mood disorders in adolescents, as well as the national 

debate regarding high school start times. 

However, before going into depth on these topics of relevance, it seems important 

to first answer a fundamental question: Are we observing the same phenomenon in these 

species?  How generalizable are the conclusions from each experiment? In 1979, Beach 

laid out two cardinal rules regarding the construction of animal models for human 

behavior as well as for behavioral comparisons between species. One rule was that any 

“significant comparison of a particular type of behavior in two different species is 

impossible unless and until the behavior has been adequately analyzed in each species by 

itself.” In this sense, the research presented in this dissertation has greatly furthered the 

field. This detailed analysis of circadian development has expanded upon several 

conclusions from our initial cross-species comparison (Hagenauer et al. 2009; Chapter 1).  

First, these detailed analyses of activity rhythms across postnatal development 

supported the assertion that pubertal phase changes show sex differences in their timing 

and magnitude.  In the rat, where females exhibit external signs of puberty 8-10 days 

earlier than males, we found that females also showed circadian phase changes at an 

earlier age, although, in the end, male rats showed larger phase changes over the pubertal 

period (Chapter 2). Circadian phase changes in the degu showed strong sex differences, 

with males exhibiting a large phase-advance during the pubertal period and females 

exhibiting little change (Chapter 3).  Since the timing of adolescent phase changes in 

humans also displays sex differences and human males show larger phase changes than 

females (Roenneberg et al. 2004), these findings support the hypothesis that the 
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phenomenon observed in each species shares some common origins.  The magnitude of 

phase change in male degus and rats (3-5 hrs) also resembled that observed in studies of 

human males (Roenneberg et al. 2004).   

Second, the pubertal phase changes occurring in these rodent species are directly 

related to a consolidation of ultradian components in the rhythms (Chapters 2 & 3). This 

conclusion is consistent with previous data indicating that both androgens and estrogens 

can consolidate rhythms at the beginning of the active period in rodents (Iwahana et al. 

2008; Morin et al. 1981; Thomas and Armstrong 1989; Wollnik and Dohler 1986), but 

has not been discussed in previous studies of pubertal phase change (Golub and Takeuchi 

2002; Hummer et al. 2007; Tate, Richardson, and Carskadon 2002).  Earlier research on 

the post-weaning period in altricial rodents discussed this rhythm consolidation in terms 

of the switch from maternal to photic entrainment and in terms of the development of 

circadian output systems (e.g.,Weinert 2005).  These data are the first to note that similar 

changes can occur in precocial species that presumably rely on photic entrainment soon 

after birth and that would have emerged from the burrow in the wild many weeks before 

the age of our initial measurements (Chapter 3). Thus, consolidation of rhythms at the 

beginning of the active period cannot be exclusively attributed to the pups developing 

independence from the dam (or dams and sire, in the case of communally-nesting degus; 

Jesseau 2004). These data are also the first to demonstrate that the developmental 

decrease in ultradian rhythms during post-weaning development is related to pubertal 

hormones (Chapters 2 &3). 

The relationship between rhythm consolidation and phase change in rats and 

degus is one formal characteristic that differentiates the pubertal phase changes in these 

species from those occurring in human adolescents. A second characteristic that appears 

to differ between our rodent species and other species that have been studied in detail 

(human, macaque) was the developmental timing and the direction of the phase changes. 

These data did not provide evidence that circadian phase was relatively more advanced in 

the pre-pubertal animals than the pubertal animals (Chapters 2 &3) unlike previous 

studies in the degu and rat that briefly examined one or two pubertal time points (Alfoldi, 

Tobler, and Borbely 1990; Hummer et al. 2007; Tate, Richardson, and Carskadon 2002). 

However, we did replicate the observation that circadian phase is more delayed during 
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puberty than adulthood (Hummer et al. 2007; McGinnis et al. 2007) as it is in humans 

and macaques (Golub and Takeuchi 2002; Roenneberg et al. 2004). Thus, it is unclear 

whether the changes in rats and degus are more analogous to the circadian phase advance 

that occurs following sexual maturity in humans (Roenneberg et al. 2004) or to the phase 

delay that occurs between pre-puberty and sexual maturity in humans and macaques 

(Figure 5.1; Golub and Takeuchi 2002; Roenneberg et al. 2004). The relationship 

between phase changes and pubertal timing in each species, as well as the dependency on 

pubertal hormones, suggests that the latter comparison may be more appropriate, 

although the direction of phase change during puberty clearly differs between these 

species.   

Consequently, Beach’s second rule of comparative studies pertains, which is that 

meaningful comparisons should not be based “upon the formal characteristics of 

behavior, but upon its causal mechanisms and functional outcomes” (1979).  The causal 

mechanisms of the phenomenon, as suggested by the relationship between circadian 

changes and pubertal timing, sex, and gonadal dependence, indicate that the phenomenon 

that we are observing is analogous between species, whereas the formal characteristics 

may differ in the ways discussed above.  However, some possible differences in the 

causal mechanism driving pubertal phase changes in these species may also exist. First, 

the effect of pre-pubertal gonadectomy on activity rhythms in rats in our studies (Chapter 

2) is very similar to the previously-published effects of adult gonadectomy (Thomas and 

Armstrong 1989; Wollnik and Dohler 1986).  Thus, the hormonally-driven changes 

observed during puberty in the rat are likely to be activational in nature. On the other 

hand, adult male degus show a phase advance in activity rhythms when they are castrated 

(Jechura et al. 2000), which is the opposite of the response observed following pre-

pubertal gonadectomy (Chapter 3; although see Hummer et al. 2007).  Thus, the 

hormonally-driven changes observed during puberty in degus are potentially specific to 

the pubertal period (either organizational in nature or activational but subject to later 

organizational changes in hormone sensitivity). Second, both pubertal and post-pubertal 

female degus appeared to have activity rhythms that were masked by photic cues, and 

responded to constant darkness by decreasing their crepuscularity (Chapter 3), whereas 

juvenile male and female rats actually became more bimodal in response to placement in 
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constant conditions (Chapter 2). Finally, in general the developmental changes in activity 

distribution in rats progressed similarly under entrained and constant conditions (Chapter 

2), whereas developmental changes in degus seemed to correlate with the altered phasing 

of a photo-responsive element in the transcriptional-translational feedback loop in the 

SCN (Per1; Chapter 4).  This evidence regarding the role of pubertal changes in the 

photic entrainment mechanism is not inherently contradictory (e.g., both could be related 

to pubertal changes in SCN coupling), but the coexistence of both traits would be 

counterintuitive.  Thus, further studies are needed to determine the similarity of the 

causal mechanisms driving phase changes during puberty in these species. 

 

“There is…great diversity in the ways in which hormones can affect an 
animal’s nervous system and behavior. To the student, this diversity might 
seem like an unwanted complexity, something else to complicate the 
story.”  

- Crews (2002) 
 

Indeed, in some ways it seems like it would be surprising if we actually did find 

an identical phenomenon occurring during puberty in each of these species because there 

are several striking differences in the progression of puberty between laboratory rodents, 

such as the degu and rat, and primates, such as macaques and humans. As discussed in 

the introduction, puberty in primates is characterized by several years of preceding 

gonadal quiescence (Plant 1994), whereas puberty in rodents follows low-level 

steroidogenesis throughout the infantile and juvenile periods (Ojeda and Urbanski 1994).  

Thus, it is possible that we do not observe a period of relatively advanced phase during 

pre-puberty in rats and degus because they have already been exposed to gonadal 

hormones during juvenile development (Hummer et al. 2007; Ojeda and Urbanski 1994).  

However, it seems unlikely that early-pubertal or juvenile hormone production in the 

degu and rat delayed circadian phase before our recording period in a manner analogous 

to the delay observed in human adolescents and pubertal rhesus macaques, as the activity 

rhythms of rodents gonadectomized prior to puberty appeared similar to those of pre-

pubertal rodents (Chapters 2 & 3).  Since long-term hormone withdrawal is known to 

alter hormone receptor levels (Mohamed and Abdel-Rahman 2000; Rose'Meyer et al. 

2003), it seems more likely that following quiescence in primates, hormones transiently 
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have different effects on the circadian system than those observed in species with low-

level steroidogenesis throughout the juvenile period.   

Another fundamental difference between the progression of puberty in rodents 

and primates is the role of adrenal hormones (Belanger et al. 1989). During puberty in 

primates, there is not only a maturation of the hormone-secreting gonads (gonadarche), 

but also the maturation of the zona reticularis of the adrenals (andrenarche, Havelock et 

al. 2004). During andrenarche, the zona reticularis increases its production of steroid 

hormones with weak androgenic properties (androstenedione, dehydroepiandrosterone or 

DHEA, and DHEA- Sulfate, or DHEA-S; Campbell 2006; Havelock et al. 2004). 

Recently, these hormones were found to have neuroactive properties, modulating the 

GABA, NMDA, serotonergic, and nicotinic neurotransmitter systems (Rupprecht 2002). 

These data are potentialy interesting because GABA is the primary neurotransmitter of 

the SCN (Morin and Allen 2006), and DHEA-S exposure has already been shown to 

cause circadian phase shifts in a manner that depends on the time of administration, as 

well as to diminish phase-advances caused by early morning light exposure (de Tezanos 

Pinto and Golombek 1999).  Similarly provocative is the correlation between the sex 

differences in the profile of DHEA-S secretion across the lifetime and the sex differences 

in lifetime changes in chronotype in humans  (Figure 5.2; Campbell 2006; Havelock et 

al. 2004; Roenneberg et al. 2004).  To the best of my knowledge, this is not true of other 

hormonal candidates (testosterone: Juul and Skakkebaek 2002; Kaufman and Vermeulen 

2005; Mitchell et al. 2001; Moroz and Verkhratsky 1985; Stearns et al. 1974; Vermeulen, 

Rubens, and Verdonck 1971; progesterone: Genazzani et al. 1998; Kaufman and 

Vermeulen 2005; Moroz and Verkhratsky 1985; inhibin A: Burger et al. 2002; Sehested 

et al. 2000; inhibin B: Sehested et al. 2000; growth hormone: Zadik et al. 1985; estrone: 

Labrie et al. 1997; estradiol: Burger et al. 2002; Kaufman and Vermeulen 2005; Labrie et 

al. 1997; pregnenolone: Labrie et al. 1997; pregnenolone sulfate: Halikova et al. 2002; 

epitestosterone: Halikova et al. 2002; allopregnanolone: Genazzani et al. 1998; 

androstenedione: Kaufman and Vermeulen 2005; FSH: Burger et al. 2002; Moroz and 

Verkhratsky 1985; Sehested et al. 2000; Stearns et al. 1974; LH: Moroz and Verkhratsky 

1985; Sehested et al. 2000: Stearns et al. 1974), with the possible exception of free 

testosterone (Kaufman and Vermeulen 2005; Mitchell et al. 2001; Vermeulen, Stoica, and 
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Verdonck 1971; although see Juul and Skakkebaek 2002; Stearns et al. 1974).  Clearly, 

however, plasma hormone levels are not a full reflection of a hormone’s efficacy, 

particularly since hormone receptors and plasma binding proteins also change across the 

lifetime (Karatsoreos and Silver 2007; Vermeulen, Rubens, and Verdonck 1971). Thus, 

the speculation above should be treated cautiously. 

 In general, in the realm of reproduction, diversity is certainly the rule and not the 

exception (Crews 2002).  Therefore, alternatively, it could be that pubertal hormones 

have different effects on the circadian system of primates and rodents.  This would not be 

an unprecedented conclusion, as gonadal hormones are already known to have species-

specific effects during adulthood.  For example, testosterone shortens τ in adult mice 

(Karatsoreos et al. 2007), but not in adult hamsters (Morin and Cummings 1980). 

Estrogen (17β-Estradiol) shortens τ in adult female hamsters (Morin, Fitzgerald and 

Zucker 1977; Zucker, Fitzgerald, and Morin 1977) and adult female rats (Albers 1981) 

but not adult female degus (Labyak and Lee 1995). Testosterone treatment consolidates 

rhythms in adult male mice (Daan et al. 1975, Iwahana et al. 2008), whereas it induces 

rhythm splitting in starlings (Gwinner, 1974). Indeed, since there are pronounced species 

differences in the degree of circadian regulation of the HPG Axis (Chappell 2005), it 

makes sense that gonadal hormone feedback should be similarly diverse.  

 Finally, the role of artificial lighting in prolonging or exaggerating delayed phase 

in human adolescents should not be underestimated. During the earliest human circadian 

experiments, unbeknown to researchers at the time, subjects lengthened their own free-

running period by controlling their daily light exposure (Aschoff 1965). Now it is widely-

acknowledged that behavioral habits in humans can lead to altered zeitgeber exposure 

and atypical circadian phase (e.g. Barion and Zee 2007; Kohyama 2008).  If an individual 

is regularly awake later in the evening and exposes himself to evening light, he will delay 

his circadian phase even more. Likewise, if a subject is regularly up early, and exposes 

herself to morning light, she can shift her phase earlier.   

 In summary, it seems that the pubertal changes in circadian behavior observed in 

each of these species may be best understood in the context of the species’ specific 

endocrinological and physiological context. How about the functional outcomes of phase 

changes during puberty?  Beach’s second rule argues that meaningful comparisons of 
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behavior between species can also be made based upon the “functional outcomes” of that 

behavior. However, the role for gonadal hormone effects on circadian rhythms has been a 

source of mystery for years.  On this front, these new data have the ability to inform two 

pre-existing theories.  

 According to the gonadal hormone “feedback” theory, the circadian timekeeping 

system is sensitive to gonadal hormones because it plays an integral role in the HPG axis 

(as reviewed in the introduction; Karatsoreos and Silver 2007).   In support of this theory, 

many physiological systems that are regulated by circadian rhythms are also known to 

influence circadian function.  For example, the circadian system drives rhythms in pineal 

melatonin, and melatonin is an effective zeitgeber (Lewy et al. 1992). Rhythms in food 

consumption can also feed back on circadian function (Mistlberger et al. 2009), as well as 

rhythms in behavioral arousal (Maywood and Mrosovsky 2001). In each of these cases, it 

seems that the feedback effects of these systems serves a similar purpose across species 

to align output rhythms with appropriate cues from the internal and external environment.  

In this case, the diversity of effects of gonadal hormones on circadian rhythms sets them 

apart from other known feed back effects.  Also, the feedback model seems to make the 

most sense when applied to traditional laboratory rodents (rats, mice, hamsters) that have 

strong circadian regulation of ovulation and mating (Chappell 2005).  On the other hand, 

the reproduction of many primates, including humans, as well as the degu does not seem 

to be so strictly tied to a circadian cycle (Kennaway 2005; Mahoney et al., submitted; 

Mahoney, personal communication; Turek and Van Cauter 1994).  Thus, it is unclear 

why pubertal hormones would have a similar magnitude of effect on the circadian system 

of these various species.  

 Another theory that is regularly discussed regarding the influence of gonadal 

hormones on circadian timekeeping is the “early bird gets the worm” theory.  According 

to this theory, when females are most receptive during their cycle they become 

hyperactive and active earlier in the day to increase their chance of encountering a mate.  

In this case, it is in the best interest of reproductively-active males to be active earlier in 

the day, to increase their probability of gaining first access to females during their 

receptive period. Although this theory seems to have some explanatory power regarding 

the pubertal advances in circadian phase observed in males in our two rodent models, it 
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does not seem to explain the pubertal delays in phase observed in humans and macaques. 

There is a tendency for humans to be more sexually active in the evening, which could 

provide incentive for individuals to stay up later. However, there is also increased sexual 

activity on weekends, which suggests that the daily rhythm is an artifact of the modern 

work week (Palmer, Udry, and Morris 1982).  On weekends, there is a secondary peak in 

sexual activity that develops in the morning (Palmer, Udry, and Morris 1982), which 

occurs around the time that testosterone peaks in men (Turek and Van Cauter 1994), 

again suggesting that the weekday evening peak may be an artifact of modern conditions. 

Rhesus macaques are known to be regularly sexually active during the morning hours 

following dawn, although this is unlikely to be their only time of sexual activity (Wilson 

and Gordon 1980). 

Without an obvious reproductive function, is it possible that changes in circadian 

rhythms during puberty could serve a purpose that is not strictly reproductive? Outside of 

the mammalian kingdom, there are numerous examples of developmental shifts in 

preferred activity times around the time of maturity.  For example, juvenile chubs (a 

variety of fish) are diurnal, whereas adult chubs are nocturnal. These chronotype 

differences are likely to be related to either risk of predation or optimal hunting time, 

since juvenile chubs have smaller mouths and consume different prey (Magnan and 

Fitzgerald 1984). Amongst toad species, it is extremely common for younger toads 

(metamorphlings) to be diurnal, whereas juveniles are crepuscular, and adults are active 

early in the night. The reason for this chronotype shift appears to be related to the risk of 

predation for the young toads as well as the need to avoid dehydration. The need to avoid 

dehydration restricts their habitat to wetter regions, and the high density of the 

metamorphlings, as well as their small size, increases the risk of predation. During the 

day the small toads can make use of their adaptive coloring to advertise toxicity and 

discourage predators (Bufo bufo: Freeland and Kerin 1991).  Diurnal behavior can also 

allow young toads to avoid cannibalistic older toads (Bufo marinus: Pizzatto et al. 2008). 

 Although, clearly, most human teenagers are not at high risk for being consumed 

by their parents, there is an argument to be made that the risks, needs, and social 

interactions of mammalian species, including humans, change over post-weaning 

development. Similarly, there is growing evidence that within-species competition can 
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influence the timing of an individual’s activity within the species’ normal active period 

(called “Temporal Partitioning”; Kronfeld-Schor and Dayan 2003). This temporal 
partitioning regularly results in the dominant individual gaining primary access to the 
early part of the active period, whereas lower-ranking individuals are shunted to either a 
more unconsolidated or delayed activity pattern (bellbirds: Craig & Douglas 1984; trout: 

Alanara et al. 2001; rats: Calhoun 1962), in a manner that also resembles the division of 
time between younger and older individuals in the examples presented above (toads: 

Freeland and Kerin, 1991; Pizzatto et al. 2008). As a result, this temporal partitioning 

allows dominant individuals to forage during times when there are higher rewards 

(bellbirds: Craig & Douglas 1984; trout: Alanara et al. 2001), whereas lower-ranking 

individuals can gain access to resources during a time when there is less personal risk of 

intimidation and attack (bellbirds: Craig & Douglas 1984). Therefore, the pubertal shift 

that we observe in degus and rats from an activity pattern that is more 

crepuscular/delayed to one that is consolidated earlier during the active period resembles 

circadian changes associated with a shift in dominance status.  

 Gonadal hormones correlate with competitive status during adulthood in many 

species (Hirshenhauser and Oliveira 2006) as well as during puberty (Anestis 2006). For 

example, testosterone levels are lower in individuals that are frequent recipients of 

aggressive behavior, and higher in individuals that are frequent initiators (chimpanzees: 

Anestis 2006).  During puberty in primates, individuals become increasingly more 

involved in the adult social hierarchy, engaging in more affiliative behaviors and 

associating with same sex adults. Pubertal animals also start to be treated competitively 

by adults, and aggressive interactions can peak during the pubertal period in some species 

(Spear 2000). Amongst rodent species, puberty overlaps with a play period (Spear 2000, 

Bolles and Woods 1964), but late puberty is also a time of intense competition (Bolles 

and Woods 1964), as many individuals are eventually evicted or emigrate from the 

colony (especially males; Ebensperger et al. 2009). Thus, potentially having a circadian 

system that is sensitive to signals regarding dominance status may be particularly 

important during the pubertal period.  In that case, it is possible that when a 

temperamental adolescent avoids his parents while staying up late socializing with peers 

he might actually be responding to a hormonal drive to establish an independent life at a 

time of day that is not dominated by older individuals. 
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Future Experiments  
 If we theorize that pubertal hormones are influencing circadian rhythms in a 
manner that signals dominance status, then pubertal hormones may produce a 
consolidation and phase advance of activity rhythms in rodents under conditions of low 
competition (e.g. individual laboratory housing) but not under conditions of high 
competition (e.g. social housing with older, dominant individuals; Calhoun 1962).  One 
might also predict that the degree of phase shift and rhythm consolidation would correlate 
with plasma testosterone levels.  Recently the technology to run circadian experiments in 
socially-housed individuals became available (Paul and Schwartz 2007), so such 
experiments are now feasible.  

 Before testing larger theories, however, there are still several critical experiments 

that need to be performed to confirm and build-upon the conclusions presented in this 

dissertation.  The first and foremost is a hormone replacement experiment. Traditionally, 

to demonstrate causality a researcher needs to not only examine the necessity of a 

physiological substrate for behavior, but also its sufficiency to produce that behavior. Our 

experiments demonstrated that pre-pubertal removal of the gonads is capable of reducing 

developmental changes in activity rhythm phase and consolidation but these experiments 

have not irrefutably demonstrated that hormones produce these changes. 

 The fact that the circadian changes during puberty in male rodents so closely-

resembled those previously observed in response to castration and androgen replacement 

in adults (Daan et al. 1975; Iwanahana et al. 2008) suggests that an intuitive follow-up 

experiment would be to replace testosterone during puberty in males gonadectomized 

prior to puberty. Simultaneously, testosterone could be replaced in gonadectomized 

adults to determine whether the effects are specific to the pubertal period in these species 

(as would be expected for degus due to the results of Jechura, Walsh and Lee 2000).  If 

testosterone replacement successfully produces circadian phase advance and activity 

rhythm consolidation, then we could subsequently investigate whether testosterone is 

acting via estrogen receptors following local conversion by the enzyme aromatase (as 

would be suggested by recent studies of τ in pubertal male degus; Hummer 2006), or 

acting via traditional androgen receptors (as suggested by studies of adult mice: 

Iwanahana et al. 2008).  We could also determine whether estrogen is effective at phase-



 

 
 

185 

advancing and consolidating activity rhythms in pubertal rats, as is already suggested by 

estrous-related variations in activity rhythms at this age (Chapter 2). 

 It is possible that the relationship between pubertal hormones and circadian 

rhythms may be more complicated.  Hormonal effects during puberty could be due to the 

slow actions of steroid hormones at traditional nuclear receptors (which act as 

transcription factors), but they could also be due to the rapid actions of hormones at non-

traditional membrane receptors or due to direct hormonal modulation of neurotransmitter 

receptors (McCarthy and Crews 2002). There is already evidence that steroid hormone 

receptors in the SCN of the degu are primarily non-traditionally located on cell 

membranes (Hummer 2006), and estradiol modulates SCN cell excitability in rat tissue 

within minutes of application (Fatehi and Fatehi-Hassanabad 2008). If pubertal hormones 

are acting rapidly on the SCN, then the timing of hormone exposure is likely to matter.  

The circadian system is already known to be phase-dependently sensitive to neuroactive 

steroid exposure (de Tezanos Pinto and Golombek 1999), and estrogen receptor mRNA is 

expressed rhythmically in the SCN, suggesting that rapid effects of estrogen could be 

similarly phase-dependent (Wilson et al. 2002).  In this case, it is possible that the daily 

rhythm of hormone exposure (or plasma binding of hormone: Ankarberg and Norjavaara 

1999) during an experiment could determine the effect of that hormone on circadian 

phase.  This possibility is intriguing, since the daily rhythmicity of natural gonadal 

hormone secretion changes during puberty (Turek and Van Cauter 1994). 

Other future experiments are much more straightforward.  In the introduction, the 

model predicted that the circadian pacemaker is delayed in phase in pubertal animals 

relative to adult animals due to altered photic entrainment.  The experiments presented in 

this dissertation are only a preliminary test of that hypothesis, and the results in the two 

species appeared contradictory.  To address this, the first experiment would be a 

replication of the preliminary Per1 in situ hybridization in the pubertal degus, as the 

sample size was not large enough at some time points due to technical difficulties.  This 

experiment should be followed up by characterization of other elements in the 

transcriptional-translational feedback loop (Per2, Bmal1), as well as a careful analysis of 

rostral-caudal, dorsal-ventral distribution of these transcripts across the day to elucidate 

whether rhythms in a particular functional subsection of the SCN is altered during 
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puberty (Antle and Silver 2005).  This same tissue could be simultaneously analyzed for 

the phasing and organization of oscillators outside the SCN (e.g. striatum, parietal cortex) 

that are known to correlate with behavioral rhythms (Masubuchi et al. 2000; Vosko et al. 

2009).  For a true comparison between species, a similar analysis would need to be 

performed in the rat.  

Second, the phasing of melatonin rhythms could be examined as an indication of 

the phasing of the integrated output signal of the SCN, as has been previously done in 

human adolescents (Carskadon, Acebo, and Jenni 2004; Crowley et al. 2006). In 

phylogenetically older species (birds and reptiles), the pineal gland serves as the master 

circadian pacemaker.  In mammals, pineal rhythms are regulated by the SCN, but the two 

regions are still closely linked (Gorman and Lee 2002). Therefore, under circumstances 

in which the phase of behavioral rhythms is determined downstream from the SCN, the 

phase of melatonin rhythms still remains coupled to the circadian pacemaker in the SCN 

(e.g. diurnality: Vivanco et al. 2007; or scheduled feeding: Ho et al. 1985). For these 

reasons, the daily rhythm in melatonin is treated as the most direct peripheral indicator of 

the phase of the circadian pacemaker (Arendt 2005; Lewy and Sack 1989). If the 

circadian pacemaker is relatively delayed in pubertal degus and rats compared to adults, 

then it would be expected that the melatonin rhythm would also be delayed. This 

hypothesis could be tested using either radioimmunoassay or pineal microdialysis. 

Finally, as described in the model, another traditional manner of inferring the 

phase of the circadian pacemaker is by measuring the magnitude of circadian phase shift 

that is produced by a discrete light exposure at different times of day (a behavioral PRC) 

(Johnson 1992). This is because circadian light-sensitivity is dependent on the phase of 

the pacemaker. This method for measuring pacemaker phase has the additional benefit of 

indicating specific alterations in discrete entrainment mechanisms. Preliminary data from 

the mouse and human already suggest that the photic sensitivity is altered during puberty 

(Carskadon, Acebo, and Arnedt 2002; Weinert and Kompauerova 1998), so this 

experiment is likely to produce interesting results. 

 

Societal Relevance 
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These data indicate that pubertal changes in the circadian timing of activity are 

common across mammalian species. What do these results mean for society? 

 For the research community, these results have two important implications. First, 

the circadian mechanisms in the SCN cannot be assumed to be static after 

prenatal/infantile development. These data, along with that reviewed in the introduction, 

suggests that a number of components of the circadian system change during puberty, 

including free-running period, continuous and discrete entrainment mechanisms, and 

recovery from photic phase-shift (jet lag).  On a practical level, this means that the results 

of electrophysiological studies performed on young animals cannot be immediately 

generalized to adults. This point is particularly significant, because pre-pubertal and 

pubertal rodents are frequently used for voltage clamp studies (e.g., Klisch et al. 2009; 

Rash et al. 2007; Wong, Graham and Berson 2007) due to the greater ease of creating an 

electrode seal (or “patch”) on younger cell membranes of (Vosko, personal 

communication). A reconsideration of the importance of the age of the animals used in 

these studies has the potential to inform current debates.  For example, GABA is the 

primary neurotransmitter in the SCN, but it is still unclear whether its actions are 

exclusively inhibitory due to a contradictory series of results (Albus et al. 2005; Choi et 

al. 2008; Gribkoff, Pieschl and Dudek 2003; Gribkoff et al. 1999; Jeu and Pennartz 2002; 

Wagner 1998; Wagner 2001). If we examine these findings in relationship to the age of 

the animals, the studies that show the greatest GABA-related excitation (during the day) 

come partially from very young animals (P14-P28 rats in Wagner 2001, P21-P56 in 

Wagner 1998), when many circadian output rhythms are diurnal (pre-weaning) or 

strongly crepuscular (post-weaning) and the rats are still sensitive to maternal zeitgebers 

(Weinert 2005). There are two studies that show GABA-related excitation, but only 

during the night, in animals at the age of puberty (pubertal: 150-300 g = P35-P50 in Jeu 

and Pennartz 2002; P30-P40 in Choi et al. 2008) as well as in one multiunit study that 

doesn't give the age of the animals (Albus et al. 2005). In contrast, it appears that all of 

the studies that exclusively show inhibition from GABA are from older animals (>P40 

Gribkoff et al. 1999) or from multiunit or single-unit recordings that are likely to come 

from adults (frequently there is no age given, but for these studies there would be no 

benefit to using young animals; e.g., Gribkoff, Pieschl and Dudek 2003; Gribkoff et al. 
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1999). 

 For clinicians, these results stress the need to consider differential diagnostic 

considerations for sleep and circadian disorders in adolescents. This need appears of 

special importance for the diagnosis of circadian phase disorders, such as delayed 

(DSPD) or advanced (ASPD) sleep phase disorders, as well as for insomnia and 

narcolepsy. Indeed, an earlier study of human adolescents indicated that 10th grade 

students maintaining their typical sleep schedule could fall asleep within 5 minutes 

during a Multiple Sleep Latency Test (MSLT) administered during the morning (8:30 

a.m.). Furthermore, 48% of these teens showed at least one episode of sleep onset REM 

sleep (Carskadon et al.1998).  This combination of findings within a clinical screening 

are hallmarks of narcolepsy (Mitler et al. 1979). Such findings highlight the importance 

of revising clinical assumptions in the face of the prevalence of sleep deprivation 

amongst teens asked to be awake at the “wrong” circadian phase.  In addition, 

interpretations of teenagers’ complaints of malaise, fatigue, and sadness need to take into 

account these developmental sleep/circadian issues that are exacerbated by the exigencies 

of life in the 21st century (Carskadon 2004).  

Finally, for policy makers, teachers and parents, these results provide a clear 

mandate. The effects of sleep deprivation on grades, car accident risk, and mood are 

indisputable (Carskadon 2002; Wolfson and Carskadon 1998, 2003). If there is truly an 

adolescent physiological drive for later bedtimes, it is not enough merely to tell teens that 

they need to go to bed earlier. A number of school districts have moved middle and high 

school start times later (Lofgren 1999; Rosenthal 2007; Wahlstrom 2002) with the goal of 

improving teens’ sleep-wake patterns by easing the pressure for early mornings. This 

approach is supported both due to its inherent logic as well as due to evidence from pilot 

programs where later school start times were associated with decreased truancy and drop-

out rate (Wahlstrom 2002). On the other hand, societal complications can arise if the 

alternative is sending pre-adolescent children to school earlier and requiring after-school 

care.  

 Schools can help teenagers gain control over their own sleep patterns by teaching 

sleep and circadian principles in middle and high school health education. Reducing light 

at night as well as TV or computer usage before bedtime can naturally advance circadian 
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phase. Similarly, incorporating outdoor morning activity into an adolescent schedule 

might also produce a phase advance. A Japanese study found that adolescents who were 

exposed to greater light exposure during the day were less likely to have trouble falling 

asleep at night (Harada, Morisane, and Takeuchi 2002). In high or low latitudes, daylight 

exposure can also produce the added benefit of reducing seasonal affective disorder 

(SAD), a mood disorder that affects more adolescents than any other age group (Imai et 

al. 2003; Tonetti et al. 2007). Whether these changes should be achieved through 

legislative initiatives on either the local or national level is unclear.  What is clear, 

however, is that encouragement, pronouncements, or advocacy from the 

medical/scientific community is essential for driving such curricular enhancements (c.f., 

Committee on Sleep Medicine and Research 2006; National Commission on Sleep 

Disorders Research 1993).  
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“Of course, I shall never accomplish all the goals just listed, but that is 
unimportant.  What counts is to have aims, to be able to work hard toward 
them and to experience the satisfaction of at least believing that progress 
is being made.  I do not want to cross the finish line of this race – not ever 
– but I do hope I will be able to keep running at my own pace until I drop 
out still moving in full stride.  It’s been one hell of a good race.” 
 - Beach (1988) as cited in Glickman and Zucker (1994). 
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Figure 5.1.  A comparison of chronotype changes during puberty in four well-
studied species. Data from males and females are shown in grey and black, respectively. 
Chronotype was approximated from the phase variables measured in each experiment 
(citations given above), and is depicted in terms of relative change. Pubertal stage was 
assigned in the same manner as discussed in Chapter 1.  
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Figure 5.2.  Lifetime changes in serum DHEA-S concentration appear to correlate 
with changes in chronotype. The chronotype figure is identical to Figure 1.2 in the 
introduction and shows that individuals exhibited a transition into a more evening 
chronotype during adolescence (ages 10-20 yrs), as determined by self-reported mid-
sleep phase. This trend showed strong sex differences, and then reversed for the rest of 
adult life (Adapted from Roenneberg et al. 2004). DHEA-S shows gradual increases in 
serum levels starting around the age of 6 years old, but these hormone increases 
accelerate at age 10-11 in a manner that exhibits sex differences. Serum concentration 
peaks at age 20-24 (concentration peaks earlier in females than males). Following this 
peak, DHEA-S levels decrease for the rest of adult life (adapted from Havelock, Auchus, 
and Rainey 2004).  
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