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Abstract 

    This study identifies forms of interactions with diagrams that are involved in conjecturing; 

more specifically, how students display their thinking publicly through using multimodal 

representations. We describe how students interact with diagrams in both gestural and verbal 

forms, and examine how such multimodal interactions with diagrams reveal their reasoning 

about diagrams. We hypothesize that when limited information is given in a diagram, students 

make use of gestural and verbal expressions to compensate for those limitations as they engage 

in making conjectures. As a byproduct, the study also proposes a set of graphical representations 

of gestures that have been identified as important for geometrical reasoning. These can be 

employed to codify the gestural interactions and to depict the practices of teaching and learning 

in geometry classrooms.  
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THE INTERPLAY AMONG GESTURES, DISCOURSE AND DIAGRAMS  
IN STUDENTS’ GEOMETRICAL REASONING  

Chia-Ling Chen and Patricio Herbst 
 

“Mathematical reasoning is not auxiliary to basic goals of mathematics education but rather is 

fundamental to knowing and being proficient with mathematics-- that mathematical reasoning is 

itself basic.” (Ball & Bass, 2003)  

 
 

Principles and Standards for School Mathematics (NCTM, 2000) establish the expectation 

that students develop reasoning skills and be able to formulate and prove conjectures. Since 

diagrams help to state geometric problems and retrieve related geometric concepts geometric 

diagrams are key resources in students’ geometrical reasoning. An investigation of students’ 

interactions with diagrams may help us understand how students reason when making and 

proving conjectures about geometric objects.  

Research has discussed the gap between the physical properties of a diagram and the 

geometrical representations of a figure (Duval, 1995; Fischbein, 1993; Laborde, 2005; Mariotti, 

1995). Duval (1995) has argued that diagrams demand different kinds of graspsi. For example, 

students may need to grasp the figure operationally, that is, they may need to be able to modify 

the diagram mentally or physically. Students may need to grasp the figure perceptually to be able 

to recognize the properties of the figure by its shape, size or sub-figures. Students may need to 



Multimodal interactions with diagrams 

 

4 

demonstrate sequential grasp when constructing or describing a figure. And students may need to 

have a discursive grasp to identify the mathematical properties represented in the figure. Herbst 

(2004) has argued that students engage in different interactions with the diagrams, which are 

arguably tied to the instructional situations that frame the mathematical work they are called to 

do (Herbst, 2006). Some interactions with diagrams involve proximal contact with diagrams, 

such as in constructing or measuring. Other interactions involve using the diagram as referent to 

illustrate verbal statements that could be made without the diagram’s existence. Yet other kinds 

of interaction use the visual inspection of a diagram as the source of verbal descriptions while 

they keep contact distal. These different kinds of interactions with diagrams may engage students 

in particular ways of thinking. We argue that some interactions may help advance students’ 

reasoning and conjecturing. We are interested in how interactions with diagrams can support 

students in the work of figuring out whether a conjecture is reasonable. 

The building of mathematical knowledge of geometric objects requires that one go beyond 

the making of empirical statements about figures. But since students’ knowledge of 

mathematical objects depends on their representations, their building of knowledge is likely to 

require more than simple engagement in deductions from definitions and axioms. Herbst (2004) 

has argued that building geometric knowledge also requires students to make “reasoned 

conjectures,” statements about figures that arise through deduction from the possibilities of a 
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geometric figure instantiated in a diagram. Herbst (2004) further proposes that, in order to 

engage in making “reasoned conjectures,” students may have to act on a diagram, creating 

representations for new geometric objects.  

    To effectively examine students’ reasoning through interactions with diagrams, both 

gestural and verbal expressions need to be observed. Gestures and words create a “multimodal 

representation” (McNeill, 1998) of students’ understanding (Kelly, Singer, Hicks, & 

Goldin-Meadow, 2002). The importance of language as representation of mathematical 

understanding has been addressed profusely. This literature has contributed to establish the 

notion that language not only expresses thought but also generates it (O' Connor, 1998; Sfard, 

2001). We propose that gestures are another communication modality that can also be used to 

generate ideas rather than just express them. McNeill (1992) notes that gestures are “parts of the 

discourse” that can be seen as a mode of communication, especially in explanation and 

description (Roth & Welzel, 2001). When students present their conjectures, the use of gestures 

help them to develop and communicate complex explanations without the need to use formal 

mathematical language; thus gestures may enable students to engage in arguments about 

geometric objects before all those objects have been conceptualized formally and represented in 

formal language. With both gestural and verbal expressions, students can communicate more of 

their reasoning and thinking to their peers and teachers.  
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This study identifies forms of interactions with diagrams that are involved in conjecturing, 

particularly ways in which students display their thinking to the public through multimodal 

representations. The purpose of this study is to understand how students interact with diagrams in 

both gestural and verbal forms, and how such multimodal interactions with diagrams may 

advance their reasoning. Thus this study is led by the following questions:  

• How is students’ reasoning revealed through verbal and gestural forms?  

• How are students’ interactions with diagrams in the situations of making reasoned 

conjectures differ from those interactions typically found when students do proofs in 

customary geometry classes?   

In this paper, we examine the role of students’ interaction with diagrams, their use of 

gestures, and their use of language in their making of conjectures. 

Conceptual Framework 

Learning as participating in situated contexts 

    According to Lave and Wenger (1991), “learning is an integral and inseparable aspect of 

social practice” (p. 29). Full participation in the socio-cultural practice of a community 

contributes to successful learning. The learning-as-participation metaphor (Sfard, 1998) explains 

that learning is constructed through active engagement in a community of practice. That is, when 

participating in a situated activity, learners are embedded within the culture, and are expected to 
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interact with the resources within that setting. Becoming active participants in particular 

situations is equated with learning (Brown, Collins, & Duguid, 1989).  

    From this situated learning point of view, the learning of mathematical practices requires 

becoming a participant of situations where those practices are done (Lave, 1988). Consider the 

case of the geometry class: To engage in geometrical thinking and learning, students have to 

engage in situations that involve interactions with diagrams. Such interactions may include 

working with diagrams verbally (i.e. describing), physically (i.e. drawing), or with gestures. 

Through the participation in the work with diagrams, students may make conjectures and justify 

them.  

 

Intertextual meaning making 

Intertextuality is generally defined as the juxtaposition of different texts, and refers to the 

construction of meaning among texts in different occasions (Bloome & Egan-Robertson, 1993; 

Johnstone, 2002; Lemke, 1992, 1995; Short, 1992). The meanings made intertextually are 

context or culture dependent (Lemke, 1995). Therefore, the intertextual relationships constructed 

among particular texts can reflect certain cultural practices in that particular community.   

Short (1992) notes that learning and understanding are built upon intertextual connections. 

In a classroom setting, students need to identify, make meaning of, and correlate various texts, in 
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order to construct meaning. Lemke (2002) argues that, to promote students’ mathematics 

learning, language and visual representations should be seen as “an integral component of a 

larger sense-making resource system”. That is, students have to make connections in the 

teacher’s explanation through the teacher’s speech, gestures and diagrams drawn on the board 

(Lemke, 1992). Or when students create diagrams, they have to refer to different resources, such 

as the mathematical concepts, the definitions, or teacher’s previous explanations, and then make 

connections among these texts to create the new diagrams. Research on the intertextuality of the 

geometry classroom will enable us to see what meanings students can make and how they do so 

(Lemke, 2002).  

In this study, two layers of intertextual relationships will be examined. First, intertextual 

meanings will be connected among students’ speech, their gestures, and the diagrams drawn 

physically or virtually (through gesture). The second layer will be investigated in the 

employments of diagrams, specifically in how the diagrams students create and refer to evolve 

through students’ work with them. For example, students may first have to identify the properties 

of a figure given the diagram in their worksheet. To do that students may need to refer to their 

prior knowledge regarding definitions and theorems and use those to make conjectures about the 

figure under consideration. Afterwards, they may have to alter the diagrams (e.g. marking or 

labeling), or create their own diagrams physically on the board or virtually through gestures, in 
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order to justify their conjectures. Finally, they may need to apply the conjectures to the original 

figure.   

 

Interactions with diagrams 

Properties of figures 

    We use the words diagram and figure to mean different things. We save the word diagram 

to refer to the sign used in communication, and we save the word figure to the mathematical 

object that sign purports to refer to. The interrelationship between diagrams and geometric 

figures has been addressed in the mathematics education literature on visual perception and 

geometrical reasoning. This literature shows, among other things, that the figure a diagram points 

to is problematic. For example, Fischbein (1993) speaks of conceptual and figural properties of a 

figure. When students are working on geometric problems with diagrams they can access the 

visualized (perceived) image of those geometric objects as well as the concept of those objects. 

The relationship between these two can be complicated: the capacity to perceive a figure 

(through its diagram) has been identified as an obstacle to understanding a figure conceptually 

(Duval, 1995).  

Laborde (2005) proposes two kinds of properties of a figure—spatio-graphical (SG) and 

theoretical (T) that may be revealed when students are working on geometric problems with 
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diagrams. Theoretical properties are those necessitated by the definition of the figure while 

spatio-graphical are those which are contingent to specific cases of the figure, as eventuated in 

choices made when constructing a diagram (e.g., orientation, specific angle values, specific side 

lengths, etc.). According to Laborde, geometry beginners’ identification and interpretation of 

figures tend to be based on spatio-graphical properties represented in diagrams. For example, 

students may determine that an angle is 90 degrees by actually measuring its representation in 

the diagram with a protractor. To advance students’ interactive relationship with a diagram to a 

theoretical level, according to Laborde, requires further mathematical knowledge, exploration, 

and justification.  

Students’ interactions with diagrams  

In his discussion of students’ interactions with diagrams in geometry, Herbst (2004) proposes 

four modes of interactions between the actor, the diagram and the geometrical object (the figure). 

It is an empirical interaction when an actor relies on physical features of a diagram to make a 

statement about a figure. Within this mode, components of a diagram are identified with 

components of a figure (e.g., a dot is a point, a stroke is a segment), as if there was no semiotic 

mediation or as if this was iconic. On the contrary, representational interaction refers to when an 

actor uses the theoretical properties of a figure to make a statement about a diagram (e.g., to say 

what the diagram is meant to show; this is often aided by a markup convention that includes hash 
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marks, arcs, arrows, etc.). Within this mode of interaction, components of a diagram are seen as 

indices or symbols for geometrical objects (components of a figure). While those two modes of 

interaction describe polar opposite ways of treating the relationship between diagram and figure, 

Herbst (2004) also identifies other modes of interaction. 

Herbst (2004) identifies a descriptive mode of interaction and proposes it as characteristic of 

the role that diagrams play in the situation of “doing proofs” (Herbst & Brach, 2006) in high 

school geometry classrooms in the United States. Within this mode of interaction, diagrams 

include two layers: on the one hand, they represent the givens of the problem and contain other 

elements that can represent properties justified through the proof; on the other hand, they rather 

accurately embody properties that could be read off the diagram, suggesting to the user what 

could be asserted about the figure. When they are “doing proofs,” students use visual perception 

to hypothesize what could be true (thus interacting with the diagram in the empirical mode). But 

students are also expected to rely on diagrams only as symbols (using the markings to detect 

which elements of a diagram signify elements of the figure) at the time of justifying the 

statements they make (thus interacting in the representational mode part of the time). The 

descriptive mode alludes to this hybrid mode of interaction. 

In order to have students make “reasoned conjectures” and construct mathematical 

knowledge, Herbst (2004) suggests that students have to interact with diagrams generatively. The 
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work of making reasoned conjectures involves students in making hypotheses and predicting 

what could be true about a figure. Generative interactions with a diagram that might support such 

work include creating objects in the diagram that were not originally given and attributing status 

of geometric objects to them and prescribing hypothetical (possible) properties of diagrams that 

rely on those objects. Mathematical arguments can be assisted by those generative actions (e.g., 

if I slide a vertex of a triangle on a line parallel to the opposite side, the height and the base will 

be constant, so the area will be the same). An important distinction between the generative and 

the descriptive modes of interaction is that generative interactions put the agent in proximal 

contact with the diagram, altering it, unlike the descriptive mode in which contact is distal and 

limited to perception.    

Gesture as a meaning making symbol system  

    Gestures are like “symbols” (McNeill, 1992) of the “visible action as utterance” (Kendon, 

2004). Gestures may represent certain meanings which language may not convey properly. 

Kendon (2004) notes about gestures that, “at times they are used in conjunction with spoken 

expressions, at other times as complements, supplements, substitutes or as alternatives to them” 

(p. 1). Due to the nature of speaking and gesturing, gestures and utterance may occur at different 

time scales. However, Kendon states that gestures and utterance should be seen as a unit of 

spoken communication.  
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   McNeill (1992) categorizes gestures into four types: iconic, metaphoric, deictic, and beat. 

Iconic gestures are hand movements that represent the meaning conveyed through speech. 

Metaphoric gestures are similar to iconic ones in that they all present ideas, but metaphoric ones 

display abstract concepts or relationships. Both iconic and metaphoric gestures require imagistic 

thinking to certain extent. Unlike the above two kinds of gestures, deictic gestures are also 

known as pointing movements, which include both abstract and concrete pointing. Finally, beats 

are small movements that have little meaning by themselves, but rather complement discourse, 

for example by marking its pace.  

In a classroom setting, gestural and verbal expressions can provide a multimodal 

representation of students’ thoughts (Kelly, et al., 2002; McNeill, 1998). More importantly, 

gestures can be taken as part of students’ explanation and communication, especially when their 

ideas or concepts are not yet well developed (Goldin-Meadow & Singer, 2003; Roth & Lawless, 

2002a; Roth & Welzel, 2001).  

    Studies on gestures in science and mathematics learning suggest that gestures are ways to 

express explicitly students’ imagistic thoughts and spatial reasoning (Cook & Goldin-Meadow, 

2006; Nemirovsky & Noble, 1997; Nemirovsky & Tierney, 2001; Nemirovsky, Tierney, & 

Wright, 1998; Noble, Nemirovsky, Wagoner, Solomon, & Cook, 1996; Roth & Lawless, 2002b; 

Roth & Welzel, 2001). By using verbal and gestural expressions, students can show their 
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visualization of diagrams more explicitly (Presmeg, 2001).  

    As Kendon (2004) suggests, the interpretation of gestural and verbal expressions should be 

contextualized. To investigate the role of gestures in geometric reasoning, it is important to 

examine how gestures are employed and involved in the interactions with diagrams.  

    When students need to make conjectures on a diagram, gestures are visible resources with 

which they can describe what they are seeing in diagrams. Gestures can be used as tools to 

prescribe what could or should be true about a figure by depicting a diagram in a particular way. 

In this study we are particularly interested in how students utilize gestures to further their 

reasoning, and what gestures represent students’ geometrical thinking. 

 

The modality system of language as resource for making statements  

Modality is a subsystem of language which is used to encode the various degrees of 

uncertainty that lie between polarities (Halliday, 1985; Halliday & Matthiessen, 2004; Martin & 

Rose, 2003). It contains resources to express degrees in a spectrum between the two poles of 

positivity and negativity for various kinds of attitudinal meanings. Comparing to modality, 

polarity indicates the two poles of positivity (yes) and negativity (no). Modality and polarity 

allow additional meaning to the statements. Modality is a way for speakers to express their 

opinions and make statements that are less determinate than those stated as “yes” or “no.” 
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Modality can be seen as a tool for identifying the degrees between the positivity and negativity. 

For example, between the positive statement of “this is a triangle” and the negative statement of 

“this is not a triangle”, there may be different degrees of possibility about the figure, from very 

possible to less possible—“it must be a triangle”, “it would probably be a triangle”, “it might 

possibly be a triangle”. The modality system of language provides semiotic resources to encode 

that range of possibilities. 

According to Halliday (1985, 2004), there are four types of modality: probability, usuality, 

obligation, and inclination: probability and usuality state the intermediate degrees of propositions 

(what is the case), whereas obligation and inclination show intermediate degrees of proposals 

(what should be the case). Within each category, modality can be expressed in various degrees of 

values and these can be realized with lexical choices. For example, degrees of probability, from 

high to low, can be conveyed with words such as “certainly/ probably/ possibly/ unlikely.” 

Likewise, usuality can be realized with words such as always/ usually/ sometimes/ never. 

Students’ use of the modality system is a crucial observable in assessing the nature of their 

interaction with diagrams.  
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Data Collection and Method 

Data selection 

The data in this study comes from a corpus of video recordings of classroom practices in a 

project that studied mathematical work in high school geometry classrooms. An intervention was 

developed by the second author to observe students’ interactions with diagrams. The lesson was 

based on a problem in which students had a context for making conjectures about angles formed 

by parallel and intersecting lines, a topic that had not yet been taught in the class. Given the 

diagram shown in Figure 1, students were asked to determine the measures of all angles formed 

by the given lines, but challenged to measure the least number of them. No information was 

given about the relationship between lines (e.g., while two pairs of lines appear to be parallel, 

nothing was said about them being parallel or not). Two teachers, Megan Keating and Lucille 

Vance ii, implemented the intervention in five of their classes.  

 

 

Figure 1. Parallel and intersecting lines 
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To help highlight students’ interactions with diagrams in the intervention lesson, an intact 

lesson was selected from the corpus to examine; we compared how the uses of gestures and 

language in both settings. An intact lesson refers to the daily customary teaching practice in high 

school geometry classroom. Records of intact lessons had been collected in both Megan’s and 

Lucille’s classes on a weekly basis through the school year.  

Video segments from five intervention lessons and one intact lesson were identified in 

which students interacted with diagrams in public. To understand how students’ reasoning and 

justification of conjectures were communicated to the teacher and their peers, we attended to 

their gesture and discourse in students’ public interactions with diagrams. Students’ public 

interactions with diagrams could appear in different guises: For example, students might talk at 

the board and interact with the diagrams drawn on the board or shown on an overhead projector. 

Or students might talk at their seat referring to the diagram presented on the board. However, 

among the intact lessons gathered in this study, students rarely had public interactions with 

diagrams. In most of the cases, students were called up to the board to write their solutions to 

homework problems and then present the solutions. The intact lesson selected in this study 

represents a typical case in which students interact with diagrams as they present their homework 

publicly.  
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Method 

In order to better illustrate how students express their thinking in public, it is important that 

the video data are analyzed through transcripts and video images (Zack & Graves, 2001). First, 

along with transcripts, “mind reading” (McNeill, 1992) gestures was used in interpreting gestures 

from video images. According to McNeill, mind reading is “noticing the gestures with which 

speakers unwittingly reveal aspects of their inner mental processes and points of view toward 

events when these are not articulated in speech” (p. 109). As gestures are seen as an “imagistic 

form” of speakers’ utterance, it is useful to mind-read the gestures that are not explicitly 

expressed in the speech. Thus, mind reading gestures can help us identify students’ reasoning 

that is absent in utterances, the gestures that compensate the constraints of diagrams, and the 

thinking in the geometrical setting that may be depicted by the gestures.  

To capture the authenticity of students’ uses of gestures and their interactions with diagrams, 

we represent those gestures graphically. Various graphic representations for gestures were 

developed based on the gestures identified in actual classrooms. This graphic representation of 

gestures can be seen as a tool for transcribing other gestural expressions in classroom interaction.  

Integrating transcripts and gestures will show us what diagrams students are referring to, what 

diagrams they are drawing virtually or on the board, what specific marks they are adding to the 
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present diagrams, and what gestures they are making when talking about the diagrams.   

    Second, we further analyze students’ discourse by identifying the markers of modality that 

students used to express meanings about the diagrams. As noted above, modality differs from 

polarity in that modality contains degrees of uncertainty and allows space for negotiation. When 

students make conjectures and justify them, their use of modality in the discourse indicates that 

they are not stating facts known as true. Instead, they propose ideas that they are uncertain yet, 

and as they provide reasons to justify them, they express stronger degrees of modality.    

    To handle the discourse in which students interacted with diagrams in public, we parsed the 

transcripts into clauses, and then identified tokens of modality in each clause. We look at the 

following indicators: (1) finite modal operators, for example, “must/ should/ might” show the 

degrees of obligation or inclination from high to low; (2) modal adjuncts, for example, degrees 

of usuality, from high to low, can be expressed with the words as “always/ usually/ sometimes/ 

never.” In the context of interacting with diagrams, students might say how likely it is that the 

figure would be what they think or what they think should be true. In particular, utterances that 

prescribe that figures have to be or should be in certain ways point to an interaction with a 

diagram aimed at generating necessary geometrical properties of a figure (Herbst, 2004). This 

event may show that students’ reasoning focuses on more than “spatio-graphical” properties 

(Laborde, 2005) of the diagrams, and reason with diagrams at the theoretical level.   
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    However, a high degree of modal expression, such as ‘always,’ is still less certain than the 

polar expression: Polarity includes positive (such as “it is so”) and negative (such as “it is not so”) 

statements. Unlike modality, polarity does not allow space for negotiation. Polarity statements in 

students’ discourse may indicate that students are referring to the facts they have known as true 

in diagrams. We hypothesize that students use polarity when stating facts about the diagrams, and 

they show modal expressions when making and justifying conjectures.   

  

Data Analysis 

    In this section, we compare students’ interactions in the intact and experimental lessons 

from three perspectives: First, we identify common actions, such as labeling and marking, on the 

diagrams in both settings. Second, we distinguish students’ uses of gestures when interacting 

with diagrams. Finally, we attend to the modality expressions in students’ discourse.            

 

Interactions with diagrams through labeling and marking 

    Marking the diagram was commonly observed in students’ presentations of their work on 

diagrams in both intact and experimental lessons. The selected intact lesson is from Megan 

Keating’s class. At the beginning of the lesson, four students were asked to present their 

solutions to the homework on the board, including drawing diagrams, writing two-column proofs, 
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and then presenting them to the whole class. Marcus presented his diagram (see Figure 2a) and 

proof (see Figure 2b) without being asked to correct them, which tacitly implies the teacher 

approved of them. In the intact lesson, students would not ordinarily label a mathematical object 

that had not been labeled by the textbook.  

a.  
 

 

b.  
Statements Reasons 

1. ∠1≅∠4, 

€ 

NA ≅ TC  
2. 

€ 

EN ≅ ET  
3. 

€ 

ΔENA ≅ ΔETC  
4. 

€ 

EA ≅ EC  
5. ∠2≅∠3 

1. Given 
2. 

€ 

2 ≅ baseΔ → 2 ≅ opp. 
sides 
3. SAS pstiii 
4. CPCTC 
5. 2 ≅ opp. sides→ 2≅ base 
∠’s  

Figure 2. Marcus’s boardwork 

To get a better sense of how Marcus interacted with the diagram, the diagram given in the 

textbook (Boyd, et al., 1998, p.226) is provided below (see Figure 3a-3b). As it shows, the labels 

were given in the original diagram in the textbook, and what Marcus did was to add different 

marks to highlight the angles and segments that were mentioned in the proof. Specifically, he 

made the same number of hash marks to indicate the congruence of a pair of segments, and the 

same number of arcs to show the congruence of two angles.  

N A C T

E

1 432
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a. 
Given: ∠1≅∠4 

€ 

NA ≅ TC  
Prove: ∠3≅∠2 

b. 

 
 

Figure 3. The book problem Marcus was working from  
(drawn according to Boyd, et al., 1998, p.226) 

 
 

In the intervention lesson, in addition to marking a diagram, students also labeled objects in 

the diagrams when they presented their findings at the board. For example, in Megan’s second 

period class, the first group that was called up to the board, labeled the four lines as l, a, g, m 

before their presentation to the class (see Figure 4a). They also made the assumption that lines l 

and a, and lines g and m are two pairs of parallel lines. This action supported students making 

references to the diagram when they stated and explained their conjectures. Later, when they 

showed the measurements of the angles, they drew arcs on the angles with equal measurements 

that had been obtained by measuring one and deducing others with the assistance of their 

conjectures about the parallelogram formed by the two pairs of parallel lines (see Figure 4b).  

 

 

 

 

N A C T

E

1 432

N A C T

E

1 432
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a 

 
 

b.  

 

Figure 4. (a) Two pairs of lines were labeled to be parallel in the group’s conjecture (b) Angles 
were marked with arcs with measurements 

 
     

Interactions with diagrams through gestures 

    In this section, we examine the different uses of gestures in the intact and intervention 

lessons. Particularly, we focus on how students used gestures to represent various geometrical 

ideas that were not visually available.   

The intact lesson: Making references by pointing 

    In Marcus’s short presentation of the solution to a homework problem, he drew the diagram 

and wrote the complete proof before the oral presentation:  

 

79

79

79

79

l
  

a g m

l

a g m
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Marcus: Alright! The given for 38 was, uh,  
angle 1 is congruent to angle 4,  
which is uh, two base angles (points to the 
angle 1 and angle 4 on the board 
respectively, see Figure 5a-5b)iv of the 
triangle NET,  
 
 
 
 

a. 

 
 

Marcus points to angle 1 
 

 
 
b.  

 

 
Marcus points to angle 4 

 
 and then 

€ 

NA is congruent to 

€ 

TC ,   
 so from there, I put 

€ 

EN  is equal to

€ 

ET ,  
 because two congruent base angles give 

you two congruent opposite sides, 
c.  

 
Marcus points to segment  

 which would be these two (points to 
segment 

€ 

ET  and 

€ 

EN  respectively, see 
Figure 5c-5d),  

d.  

N A C T

E

1 432

N A C T

E

1 432

N A C T

E

1 432

! 

ET
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Marcus points to segment  

 and then from there,   
 

you can say, triangle ENA is congruent to 
triangle ETC,  

e.  

 
Marcus traces segment

€ 

ET   
f.  

 
 

Marcus traces angle ETC  
g.  

 
 

Marcus points to vertex C 
 because of the side-angle-side postulate,   

N A C T

E

1 432

! 

EN

N A C T

E

1 432

N A C T

E

1 432

N A C T

E

1 432
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 right there (traces angle ETC from 

segment

€ 

ET , to vertex T and then to 
segment

€ 

TC , see Figure 5e-5g), 

 

 and then from there,   
  you can say,  
 

€ 

EA is equal to

€ 

EC ,   
 because of CPCTC,   
 and then, uh,  
 you can say, these two angles (points to 

angle 2 and angle 3 simultaneously, see 
Figure 5h), 

h.  

 
 

Marcus points to angle 2 and angle 3 
simultaneously 

 
 angle 2 and angle 3 are congruent,   
 because two congruent opposite sides 

give you congruent base angles.  
 

Figure 5. Marcus points to the diagram when talking through the proof 
 

As is shown above, Marcus talked through his proof on the board step by step. When certain 

parts of the diagram were mentioned in the proof, he pointed to the angles and segments, or 

virtually highlighted the triangles.  

The intervention lesson: Extending lines outside the given box 

    In the intervention lesson, in order to get more measurements of angles without actually 

N A C T

E

1 432
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measuring them, students had to apply known properties, such as the angle sum theorem of a 

triangle. Students used gestures that depicted a virtual diagram onto the given diagram in order to 

propose some hypothetical situations outside the given frame.  

Conjecturing a triangle. In Megan’s second period, Audrey proposed that two of the given lines 

would intersect outside the given frame, thus forming a triangle. She first identified a possible 

triangle by pointing to two vertices in that hypothesized triangle (see Figure 6a and 6b) and 

pointing to a spot outside the given frame (see Figure 6c). This virtual spot indicates the third 

vertex formed by the continuation of two line segments. Based on this virtual diagram, Audrey 

could get the measurement of the third angle in the virtual triangle by applying the angle sum 

theorem. This is how she explained it:  

Audrey: If you…alright  
 You know that this (points to 

the up left vertex of the triangle, 
see Figure 6a) is eighty, 

a.  

 
 

Audrey points to the up left vertex of the triangle 
 and this (points to the up right 

vertex of the triangle, see 
Figure 6b) is eightyv, 
 
 

b.  
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Audrey points to the up right vertex of the triangle 

 So this (points to the virtual 
third vertex, outside the screen, 
see Figure 6c) has to equal a 
hundred…uh I mean one eighty 

c.  

 

 
 

Audrey points to a spot outside the screen  
 

 [Megan: the triangle] vi  the 
triangle (traces loosely around 
the triangle, and stops at the 
spot outside the screen, see 
Figure 6d) has to equal one 
eighty 

d.  
 
 

 
 
 
 
 

 
 
 

Audrey traces loosely around the triangle, and stops at 
the spot outside the screen (Dotted lines added 
indicating the tracing path; arrows indicate the 

directions of tracing movements) 
 so eighty (points to the top left 

angle in the triangle) plus 
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eightyvii (points to the top right 
angle in the triangle) and then 
you have to add forty in here 
(writes “40” at the virtual third 
angle) 

Figure 6. Audrey visualizes a triangle  
 

    Although the intersecting point was not shown on the given frame, and whether the two 

lines would intersect outside the given frame was not stated in the given activity, Audrey and her 

group mates made the assumption that a virtual triangle existed. To justify this assumption, she 

virtually gestured a triangle and applied the angle sum theorem to show that if there was to be an 

intersecting point, formed by the two extended line segments, as the third vertex of a triangle, 

they would be able to know the measure of its angle.  

Conjecturing two lines parallel. Students used their gestures to show that two lines were parallel, 

and to virtually indicate that the two parallel lines would extend outside the screen. In Lucille 

Vance’s fourth period class, Reed pointed to the two lines that might be parallel from his seat. He 

had his thumb and index finger parted to show the constant distance between the two lines (see 

Figure 7a-b), and moved along with the two lines virtually outside the screen (see Figure 7c). 

The conception of parallelism was displayed by Reed’s gestures from two perspectives. First, his 

open palm with some space between his thumb and index finger showed the equal distance 

between two parallel lines. Secondly, the movement of his hand—tracing and extending the two 
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lines outside the screen—conveyed the sense that two parallel lines would not intersect as they 

were extended. 

 
a.  

 
 
 
 

b. 

 
 
 

c.  

 

Figure 7. Reed traces the two lines conjecturing they are parallel (Dotted lines added, indicating 
the tracing path; arrows indicate the directions of tracing movements).  

 

    The conjecture of those two lines were parallel was further justified. In Megan’s fourth 

period, a group of students came up with the same conjecture regarding two lines parallel. When 

asked about the reason of the two lines being parallel, Collin and Anthony pointed out that the 

two lines would not intersect anywhere, and would not form a triangle outside the screen.  

 
Collin: We found out that since  

 If you extended these two lines (use 
his thumb and right index finger to 
trace, and virtually extends the two 
lines outside the screen, see Figure 
8a-8c) 

a.  
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Collin traces the two lines from top 
 

b.  

 
Collin traces the two lines downward 

 
c.  

 
 
 
 

Collin traces the two lines, and stops at a spot 
outside the screen 

 
 You’d eventually,   
 If they would not be parallel,  
 you get a triangle (hand rests on a 

spot that might be the intersection of 
the two lines, see Figure 8d) 

d. 
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Collin narrows the space between his thumb and 
index finger, and rests the wrist at a spot outside 

the screen 
 and then, to find the measure of that 

final angle, 
 

 You’d add those two together (points 
to the two interior angles formed by 
the two lines and an upper 
transversal, see Figure 8e-8f),  

e.  

 
Collin points to the left interior angle formed by 

the two lines and an upper transversal 
 
f.  

 
Collin points to the right interior angle formed 

by the two lines and an upper transversal 
 and subtract that from one eighty,   
 and one ten plus seventy is equal to 

one eighty, 
 

 so…  
Anthony: There can’t be another point down 

here somewhere (points to a spot far 
from the screen, see Figure 8g) 

g.  
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Anthony points to a spot far from the screen 
Figure 8. Collin and Anthony prove two lines being parallel  

 

    In this episode, Collin and Anthony justified their conjecture through an argument that 

resembles a proof by contradiction. Collin first stated that the two lines should be parallel by 

moving his open palm along outside the screen (see Figure 8a-8c) as Reed did in the previous 

example. Then, to prove that these two lines are parallel, he assumed that the lines would 

intersect at a certain point if the statement were false. Therefore, a hypothetical intersecting point 

was positioned outside the screen (see Figure 8d). Instead of gesturing with an open palm, Collin 

narrowed the space between his thumb and index finger. This variation of gestures indicates his 

differentiating notions between parallelism and incidence.   

    After making the assumption regarding two lines being intersected, he attempted to get the 

measurement of the third angle in the virtual triangle formed by the two lines. However, with the 
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angle sum theorem and the known measurements of two other angles in the virtual triangle, it is 

impossible to have a third angle anywhere. Anthony’s gesture, by pointing a spot (Figure 8g) 

farther than the one that Collin had, insisted on the impossibility of an intersecting point by two 

parallel lines.   

The Intervention lesson: Reasoning about parallelism  

Gestures play a dynamic role in students’ reasoning about two lines parallel in the following 

segment. In Megan’s third period class, two students, who were working in the same group, were 

asked to present their conjecture about two lines being parallel.  

After working in groups for 22 minutes, Yakim was called up to the board to present his 

group’s finding. He claimed that two lines were parallel and that a transversal would make 

alternate interior angles congruent. However, he could not provide further justification of this 

conjecture.  

29 Yakim: so, well, first, we figured out that these 
(points to the transparency projected on the 
board, see Figure 9a-9b) two lines are 
parallel, 

a.  

 
 

Yakim points to a line  
b.  
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Yakim points to another line 

30  they weren't exactly parallel,  
31  but, like, we figure that they pretty much 

meant them to be parallel, 
 

32  so, we did, we made them parallel,  
33  and um, since they are parallel,  
34  we could find out angles across from each 

other, 
 

35  because of the alternate interior angles 
postulate 

 

 Figure 9. Yakim claims that two lines are parallel 
 

The diagram given in the task involves two major lines that are not said to be parallel. In 

order to work on the task—to measure the least angles to get all the measurements of the 

angles—Yakim and his group mates, decided to “make” (line 31, 32) the two lines to be parallel. 

And based on this assumption, they argued the congruency of alternate interior angles.  

Later, Yuri, a member in Yakim’s group, elaborated the conjecture from his seat. He used 

gestures to sketch a virtual diagram, and to explain that corresponding angles would be 

congruent if the two lines cut by a transversal were parallel.  

 
58 Yuri: I was just going to say that if the 

lines are parallel 
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59 Megan: yeah,  
60 Yuri: then one minute you can figure 

out is you see that, 
 

61  if you have one line (palm placed 
horizontally, see Figure 10a), 

 a.  
 
 
 

 
 

Yuri shows his right lower palm 
horizontally to virtually create a 
horizontal line (dotted line added 

indicating its virtual property) 
62  I mean if you have one angle that 

is, 
 

63  like, let's say 90 degrees 
(sketches virtually a 90-degree 
angle, see Figure 10b-10d),  

b.  

 
 
 
 

c.  

 
 
 

d.  
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Yuri virtually creates a 90-degree 
angle  

 
64 Megan: yeah,  
65 Yuri: then you have two lines,  
66  and if both of the lines are 

parallel, 
 

67  then you can tell that your…You 
have to have exact same angle, 

 

68  because they have to intersect [at 
the same point]2 

 

69 Yakim: [Yeah, because the] transversal is 
like... 

 

70 Yuri: because both lines (uses his 
thumb and index finger to show 
the constant distance relationship 
between two lines. See Figure 
10e), [both parallel lines,] 
(swings his right wrist, see 
Figure 10f) 

e.  
 
 
 
Yuri uses his thumb and index finger 

to show the constant distance 
relationship between two lines that 

are parallel 
 
f.  
 

                                                
2 [  ] indicates overlapping speech 
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Yuri swings his wrist to show that the 

distance between two parallel lines 
remains the same even if they both 

are slanted at different angle 
71 Megan: [go draw] what you are talking 

about, draw it up there!  
 

 Figure 10.  Yuri virtually draws a diagram with gestures at the seat 

 

To justify the conjecture—corresponding angles are congruent if two parallel lines are cut 

by a transversal—Yuri used various gestures to construct a specific case of diagram. First he 

placed his palm horizontally to virtually introduce a transversal (see Figure 10a). Secondly, he 

“drew” a 90-degree angle (see Figure 10b-10d), indicating a vertical line perpendicular to the 

previous line. Adding another line verbally (“then you have two lines”, line 65), Yuri created a 

pair of lines intersecting with a transversal as an example to illustrate the conjecture. Specifically, 

this example consisted of two parallel lines perpendicular to the transversal (see Figure 11a). To 

show the parallel relationship between the two lines, similar to his counterparts, he used his right 

thumb and index finger to show the constant distance between the two parallel lines (see Figure 

10e-10f), no matter at what angle they intersect with the transversal. Figure 11b shows Yuri’s 
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gesture, representing parallelism, was inscribed on the virtual diagram.  

 
a. 

 

b.  
 

Figure 11. (a) This diagram is sketched based on Yuri’s description with gestures. (To signify its 
virtual character, the diagram is drawn with dotted lines) (b) Yuri’s gestures make his virtual 

diagram 
 

However, Yuri was speaking from his seat and thus his example was not visually available 

to his peers and the teacher. The teacher then asked him to draw his virtual diagram on the board. 

He drew two pairs of parallel lines, and marked two pairs of corresponding angles on the board. 

He also used a variety of gestures to show that the parallel lines would be slanted in certain way 

that would make the corresponding angles congruent.  

 
75 Yuri: so we meant these are parallel 

(draws two lines with a distance 
in between, see Figure 12a) 

a.  

  
Yuri draws two lines that have certain 

distance in between on the board 
76 Megan: those are parallel, yeah.  



Multimodal interactions with diagrams 

 

40 

77 Yuri: and these are parallel (draws 
another pair of lines that intersect 
the previous pair, see Figure 12b) 

b.  

  
 

Yuri draws another two lines intersecting 
the previous pair  

78  then and we can tell that all these 
(draws fours marks on the four 
intersecting angles formed by the 
two pairs of lines previously 
drawn, see Figure 12c) have to 
be equal, 

c.  

 
Yuri marks four angles formed by the two 

pairs of lines 
 

79  because these, we know that both 
of these lines (points to the first 
pair of lines, see Figure 12d-12e) 
have to be slanted at same angle, 
right? 

d.  

 

 
Yuri points to the lower line of the first pair 
 
e.  
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Yuri points to the upper line of the first pair 

 
80  The entire line can either be, like, 

completely horizontal (places his 
right palm horizontally, see 
Figure 12f) or....  

f.  
 

 
 
 
Yuri shows his right palm horizontally 

81 Megan: Ok,  
82 Yuri: slanted. (swings his right palm, 

see Figure 12g) 
g.  
 
 
 
 
 
 

Yuri swings his right palm (dotted arrow 
refers to the direction of gesture 

movement) 
83 Megan: Ok, I can go with that  
84 Yuri: and these lines (points to the 

second pair of lines, see Figure 
12h-12i), 

h.  

 

Yuri points to the left line of the second 
pair 

 
i.  



Multimodal interactions with diagrams 

 

42 

 

Yuri points to the right line of the second 
pair 

85  and these lines have to be either, 
completely vertical (holds his 
right palm vertically, see Figure 
12j) or slanted (swings his right 
palm, see Figure 12k), 

j.  
 
 
 
 

Yuri holds his right palm vertically 
k.  
 
 
 
 
 
 
 

Yuri swings his right palm 
(dotted arrow refers to the direction of 

gesture movement) 
86  but they, they both have to be the 

same... (uses his thumb and 
index finger to show the constant 
distance relationship between 
two lines, see Figure 12l), 

l.  
 
 
 

Yuri uses his thumb and index finger to 
show the constant distance relationship 

between two lines 
87  they both have to be slanted on  
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the same angle [Megan: Okay] 
88  Therefore, when they intersect 

(crosses his two index fingers, 
see Figure 12m), you’re always 
going to get the same angle 

m.  
 
 
 

Yuri crosses both his index fingers to show 
the intersecting relationship of two 

intersecting lines 
89 Yakim: Yeah, the opposite angles, but 

not… 
 

90 Yuri: No, these…. (points to one of the 
intersecting angles he marks 
earlier, see Figure 12n) 

n.  

 

Yuri points to one of the intersecting angles 
he had marked earlier 

 
91 Megan: Those are corresponding  
 Figure 12. Yuri gestures with the diagram to illustrate parallel lines make the corresponding 

angles congruent 
 

Yuri first drew two sets of parallel lines intersecting with each other (see Figure 12a-c). He 

positioned his palm to show the orientation of each individual set of parallel lines: first, his palm 

was placed horizontally representing the horizontal pair of parallel lines (see Figure 12f), so he 

swung the palm upward to simulate the motion of parallel lines (see Figure 12g). Similarly, his 

palm latter represented the vertical pair of lines (see Figure 12j), and the swing of the palm was 
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downward (see Figure 12k). With his palms swinging to represent the slanted orientations of sets 

of parallel lines, he showed that two sets of parallel lines should intersect at the exact same 

angles no matter how slanted each set of parallel lines were.  

 

Interactions with diagrams through modality and polarity 

    In this section, we revisit the episodes in which students interacted with diagrams in public, 

and analyze the mathematical discourse using the notions of modality and polarity. We parse the 

transcripts into clauses, and examine the meanings that students made of the diagrams. We look 

for indicators of modality such as the finite modal operators and the modal adjuncts. For example, 

the finite modal operators must be, will be, and might be express degrees of probability from high 

to low; modal adjuncts such as always, usually, or sometimes show degrees of usuality from high 

to low. Unlike modality, polarity (positive vs. negative; yes vs. no) leaves no space for 

uncertainty or negotiation. Polarity refers to positive or negative statements, such as “it is so” 

and “it is not so.” We identify expressions of modality and polarity in students’ discourse when 

they make references to the diagrams. Then we compare how those expressions are different in 

intact and intervention lessons.  

In the intact lesson, Marcus talked about his proof written on the board:  
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Marcus: Alright! The given for 38 was, uh, angle 1 is congruent to angle 4, 
 which is uh, two base angles of the triangle NET,  
 and then NA is congruent to TC,  
 so from there, I put EN is equal to ET, 
 because two congruent base angles give you two congruent opposite 

sides, 
 which would be these two  
 and then from there,  
 you can say, triangle ENA is congruent to triangle ETC,  
 because of the side-angle-side postulate,  
 right there  
 and then from there,  
 you can say, EA is equal to EC, 
 because of CPCTC,  
 and then, uh, you can say, these two angles, angle 2 and angle 3 

are congruent, 
 because two congruent opposite sides give you congruent base 

angles.  
Excerpt 1: Polarity indicators boldened and modality indicators underlined 

 

    As is shown above, when Marcus was referring to the properties of diagrams, he dominantly 

used present tense to show the positive statements (e.g. “is”) about the diagram. For example,  

“

€ 

NA is congruent to 

€ 

TC ”, or “

€ 

EN  is equal to 

€ 

ET” or “because two congruent base angles 

give you two congruent opposite sides”. Some of the statements were given from the problem, 

e.g. 

€ 

NA is congruent to 

€ 

TC ; some statements were inferred from the given, e.g. 

€ 

EN  is equal 

to 

€ 

ET . These statements about diagrams are in the positive pole with no space for negotiation 

(Martin & Rose, 2003). Marcus also expressed modal meanings when he was generating new 

statements from previous ones. For example, the statement he made “you can say, angle 2 and 
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angle 3 are congruent”, is based upon the previous statement “EZ is equal to EC.” Although the 

modal expression may show the inference he made has certain degree of uncertainty, it is in the 

positive polar form when he was referring to the property of the diagram (“angle 2 and angle 3 

are congruent”). Therefore, when Marcus interacted with the diagram, he did not have to 

negotiate the information in the diagram. Instead, he stated the facts about the diagrams from the 

given. When he was inferring information from the given or postulates, he still stated them as 

facts. This observation coheres with observations about the “doing proof” situation in high 

school geometry classes (Herbst, et al., 2009) in which students know the statement to be true 

before they do the proof.   

    Unlike the dominant use of polar (positive) statements in the intact lesson, in the 

intervention lessons students used modality expressions when making conjectures and justifying 

them. In the lesson based on the intersecting lines activity, the diagram was presented with no 

further information regarding the properties of lines and the measurements of the angles. It was 

expected that students would come up with different conjectures and justify them. Through 

looking at the modality in the discourse, we can see what the students assume the diagrams “can 

be” and how the diagrams “should be” in certain ways according to their conjectures.  

 

Audrey: If you…alright 
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 You know that this is eighty,  
 and this is eighty, 
 So this has to equal a hundred…uh I mean one eighty,  
 [Megan: the triangle] the triangle has to equal one eighty 
 so eighty plus eighty and then you have to add forty in here  

Excerpt 2: Polarity indicators boldened and modality indicators underlined 

    In excerpt 2, Audrey claimed that the two lines would intersect by assuming that if one 

extended two lines outside the screen, then the lines would form a triangle. First, she pointed out 

that each of the known angles “is eighty.” The present tense here suggests that she obtained the 

measurements of the two angles by measuring with protractor, so the angle “is” eighty in an 

empirical sense (she latter corrected that one of the angle measurement is sixty degree).  Based 

on the two measurements, the third angle of the virtual triangle “has to” equal forty degrees, 

because the angle sum of a triangle “has to equal to one eighty.” Therefore, the third angle is 

highly “obliged” (Halliday & Matthiessen, 2004) to be 40 degrees. She switches the verb from 

present tense “is” to “has to”, indicating that she is no longer measuring but inferring. She 

inferred from the angle sum theorem, and concluded that the third angle of the triangle has to be 

in certain degree. 

    In Collin and Anthony’s episode in which they claimed that two lines are parallel, they 

started by assuming the possibility of the intersection of the two lines. With the support of 

evidence, they concluded with a strong degree of certainty that the two lines would be parallel.  

Collin: We found out that since 
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 If you extended these two lines 
 You’d eventually… 
 If they would not be parallel, 
 You’d get a triangle  
 and then, to find the measure of that final angle, 
 You’d add those two together  
 and subtract that from one eighty,  
 and one ten plus seventy is equal to one eighty, 
 so… 

Anthony: There can’t be another point down here somewhere. 
Excerpt 3: Polarity indicators boldened and modality indicators underlined 

 

    At first, Collin proposed the possibility that the extended two lines “would not be parallel”. 

Based on this assumption, these two lines would intersect at some point and then “you’d get a 

triangle.” And since the two lines may intersect somewhere outside the screen, the measurement 

of the intersecting angle could be found. However, after adding up the known two angles to 180 

degrees, Anthony proclaimed “there can’t be another point down here”, indicating that the two 

lines cannot be intersecting anywhere, and thus should be parallel. The measurements of two of 

the angles were obtained empirically, but then the students shifted from reporting to inferring, 

concluding with strong conviction that it was impossible for the lines to intersect one another.   

    Yuri presented an example to justify the conjecture about corresponding angles congruent if 

a pair of parallel lines is cut by a transversal. Yuri first proposed an example by sketching in the 

air a diagram with two vertical lines perpendicular to a horizontal line (see Figure 11a). He 
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virtually sketched two parallel lines. Then he inferred that the two lines “have to” intersect with 

the horizontal line at the exact same angle (lines 67-68):  

65 Yuri: then you have two lines, 
66  and if both of the lines are parallel, 

67 
 then you can tell that your…You have to have exact same 

angle, 
68  because they have to intersect [at the same point] 
69 Yakim: [Yeah, because the] transversal is like... 
70 Yuri: because both lines, [both parallel lines..] 
71 Megan: [go draw] what you are talking about, draw it up there!  

Excerpt 5: With modality indicators underlined  
 

After drawing the diagram on the board, Yuri used the drawing of the diagram and gestures 

to illustrate the justification. Since he had the visual evidence (the drawn diagram and gestures) 

to support his conjecture, he further expressed a high degree of certainty about the claim:  

 
75 Yuri: so we meant these are parallel  
76 Megan: those are parallel, yeah. 
77 Yuri: and these are parallel  
78  then and we can tell that all these have to be equal, 

79 
 because these, we know that both of these lines have to be slanted 

at same angle, right? 
80  The entire line can either be, like, completely horizontal or....  
81 Megan: Ok, 
82 Yuri: slanted. 
83 Megan: Ok, I can go with that 
84 Yuri: and these lines  
85  and these lines have to be either, completely vertical or slanted  
86  but they, they both have to be the same...  
87  they both have to be slanted on the same angle [Megan: okay] 
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88 
 Therefore, when they intersect, you’re always going to get the 

same angle 
89 Yakim: Yeah, the opposite angles, but not… 
90 Yuri: No, these….  
91 Megan: Those are corresponding 
Excerpt 6: With polarity indicators boldened and modality indicators underlined 

With the diagram on the board (see Figure 12b), he first put four arcs on the intersecting 

angles formed by two pairs of lines (see Figure 12c), and proposed that “all these have to be 

equal” (line 78). He then further explained in more detail: he pointed to the horizontal pair of 

lines and claimed, “both of these lines have to be slanted at same angle” (line 79), because they 

“can either be horizontal or slanted” (line 80-82). This shows Yuri perceived a pair of lines as a 

unit that “have to” be oriented in the same direction due to their parallelism. The same 

conception of parallel lines was also applied when he was talking about the second pair of 

parallel lines (line 85-87) that the set of parallel lines “have to” be slanted at the same angle. 

With two sets of lines staying at specific angles, Yuri further claimed that when the two pairs of 

lines intersected, “you’re always going to get the same angle” (line 88). This word choice 

(“always”) indicates that there is high degree of usuality in the situation that two pairs of 

intersecting parallel lines form at identical angles. The conjecture about the corresponding angles 

congruent in parallel lines cut by a transversal is made and justified with high certainty.  

As the preceding description shows, in the intervention lessons, students were able to state 

different degrees of probability or usuality toward diagrams in their conjectures or justifications. 
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They made more frequent use of the resources of the modality system in order to use the given 

diagram to make assumptions and provide justifications for possible facts. 

Discussion 

 In this study, students’ interactions were observed from three different perspectives-- the 

use of diagrams, the use of gestures, and the use of language. In what follows we identify 

similarities and differences in the interactions with diagrams between the intact lesson and the 

intervention.  

Use of diagrams 

Students engaged in different interactions with diagrams in the different lessons. In the 

intact lesson, the diagram (see Figure 3) was given with labels for vertices and angles. These 

labels implicitly hints at what elements are likely to be needed when producing the proof (Herbst, 

2004). Indeed, when Marcus did this proof he didn’t need to do any additional labeling on the 

diagram (see Figure 2a).   

    The diagram given in the intervention lesson did include labels and consequently it did not 

hint at what elements to use. Students were expected to come up with conjectures and then 

justify them. They took responsibility in identifying which elements might be involved in a 

conjecture, and how the selected elements might feature in the conjecture. Students labeled the 

lines that were related to their conjectures and only those.  
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    The “incompleteness” of the diagram given in the intervention lesson gave an opportunity 

for visualization. Beyond the given frame, students could visualize the lines extended to form a 

triangle, or extended indefinitely and not meeting. Therefore, constraints in the given diagram, 

such as the frame within which the lines were drawn, or the lack of labels, actually involved 

students in creating signs (e.g. virtual points made with joining fingers) to point to possible 

objects (e.g., intersection between two lines). The intervention lesson engaged students in 

interactions with diagrams that may not be seen in customary geometry class, an interaction that 

we would describe as generative (Herbst, 2004).  

    To justify the conjectures, students sketched virtual diagrams. These virtual diagrams were 

made based on students’ hypothetical claims, and pointed to as the geometric referents needed to 

help students prove those claims and conjectures. For example, Audrey conjectured that the 

angle between two lines would be 40 degrees and used for that the observation that two lines 

would form a triangle if extended. To prove her conjecture, she virtually drew a triangle and got 

the measurement of the third virtual angle by the angle sum theorem (see Figure 6). Collin and 

Anthony followed a similar approach to prove that two lines should be parallel, by showing that 

the virtual triangle could not exist (see Figure 8).  

    In his justification that corresponding angles are congruent if two parallel lines are cut by a 

transversal, Yuri demonstrated different uses of diagrams. In addition to drawing a virtual 
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diagram in the air, he further “modified” the virtual version and presented the modified version 

on the board. First, he sketched a virtual diagram in the air (see Figure 11a) to elaborate the 

conjecture. Then he was called up to the board to actually draw the diagram (see Figure 12b) he 

was referring to. Considering the intertextual relationship between the virtual diagram created by 

gestures and the diagram drawn later on the board, these two diagrams are arguably different. 

The virtual diagram consisted of one pair of parallel lines intersected by a transversal, while the 

diagram on the board were two pairs of parallel lines intersecting with each other. The virtual 

diagram conveyed Yuri’s initial justification of the conjecture, and then his modified version of 

diagram on the board helped him deepen and strengthen his justification. 

The use of gestures 

    Gestures were employed in various ways in the selected episodes. Deictic gestures were 

commonly used when students were interacting with diagrams at the board in both intact and 

intervention lessons. This type of gesture is utilized to point to an object on the diagram and to 

draw the audiences’ attention (McNeill, 1992). For example, when Marcus was presenting his 

proof in the homework, he pointed to the individual angle or segment with his index finger (see 

Figure 5a-5d), and pointed to the two angles at the same time with his right index and middle 

fingers (see Figure 5h). Besides pointing, Marcus also used his index finger to trace the sides of a 

triangle, a sub-unit of the diagram, to highlight a specific portion that calls for attention. The 
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elements of the diagram that Marcus pointed to or traced were all visually available on the board.  

    However, in the intervention lessons, in addition to gesturing deictically, students utilized 

gestures to express ideas that involved imaginary objects, the elements of figures that were not 

visually available. These imagistic gestures can be described as iconic in McNeill’s classification; 

they represent virtual mathematical objects or abstract concepts in the following five ways.    

    First, students pointed at imaginary things. Unlike Marcus who, in the intact lesson, had 

only pointed to objects that were visually available and labeled, two students in the intervention 

lesson pointed to spots outside the given frame where hypothetical objects would be located: 

Audrey positioned a spot as the third vertex of a virtual triangle (see Figure 6c); and similarly, 

Collin picked a spot as a possible intersecting point of two extended lines (see Figure 8d).  

    Second, students traced along the given lines and virtually extended the lines out of the 

given frame. For example, Audrey traced around three lines that might form a triangle (see 

Figure 6d). Two other students similarly moved the palm along the two lines outside the screen, 

indicating that those two lines might be parallel even after extension (see Figure 7; Figure 8a-8c). 

This kind of gestural movements can be classified as iconic (McNeill, 1992) in that it represents 

the extensional properties of lines and their potential directions outside the given frame.  

    Third, students created their own virtual diagrams through gestures. In Yuri’s demonstration, 

he sketched a virtual diagram to justify the conjecture regarding corresponding angles congruent 
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if two parallel lines cut by a transversal. He first placed his right palm horizontally to represent a 

transversal (see Figure 10a); then he sketched a 90-degree angle with his index finger (see Figure 

10b-10d), indicating a line intersecting with the virtual transversal he just created. With the 

verbal description “then you have two lines” (Excerpt 5, line 65), the vertical line was duplicated. 

Therefore, the virtual diagram was constructed with a pair of parallel lines and a transversal (see 

Figure 11a).  

    Fourth, students used gestures to represent properties of diagrams. For example, a constant 

distance between the thumb and index finger was used to portray the parallel relationship 

between two lines. This kind of gesture was commonly adopted in the selected lessons (see 

Figure 7; Figure 8a-8c; Figure 10e; Figure 12l). Besides, Collin slightly narrowed the distance 

between his thumb and index finger to suggest that the distance between two lines would 

gradually decrease if the lines would intersect at some point (see Figure 8d). In addition, an open 

palm was employed to represent one set of parallel lines (see Yuri’s case in Figure 12f and 12j), 

indicating that the angle of the parallel lines with the horizon stays the same. Thus, parallel lines 

were seen as a set that has an identical orientation. Hence, the properties of figures can be 

symbolically expressed by various gestures that reveal students’ conceptions about figures. They 

revealed that parallel lines are equidistant, and they also revealed that the distance between two 

non-parallel lines would gradually decrease as the two lines would eventually meet.  
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    Finally, students gestured to animate the dynamic movements of diagrams. By swinging his 

wrist back and forth or palm up and down, Yuri illustrated the consistent identical orientations of 

a set of parallel lines (see Figure 12g; Figure 12k). This kind of dynamical proposition of 

gestures displays the abstract concept of the parallel property of two lines; thus can be 

categorized as metaphoric in McNeill’s classification.  

    In the intervention lessons, gestures were extensively employed to represent the objects that 

had not been represented in the diagram, and so to externalize the students’ conception of figures. 

Comparing the uses of gestures in both intact and intervention lessons, we argue that the 

different nature of the diagrams given call for different uses of gestures. Gestures were used only 

deictically in the intact lesson, since the given diagram from the homework provided all 

information (e.g. labels) that was needed in the proof. On the contrary, in the intervention lesson, 

the given diagram consisted of parts of several lines. The limited given information and visual 

constraints, however, allow for extensive and diverse uses of gestural expressions. Therefore, 

gestures can be seen as mediation tools to make up for the constraints and limitation of diagrams.  

 

The use of language 

    Through modality, students’ verbal interactions with diagrams are differentiated in the intact 

and intervention lessons. In the intact lesson, where the student presented his proof from 
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homework, his dominant uses of present tense indicates that he was stating the facts about 

diagrams. The positive statements (e.g. is, are) show that no ambiguity or uncertainty exists in 

his proof statements or his perceptions of the diagram.  

    Unlike the polarity statements in the proof from the intact lesson, modality expressions were 

observed in students’ presentations of diagrams in the intervention lessons. With the aids of 

gestures creating hypothetical diagrams, students were able to justify the conjectures with high 

degree of certainty (e.g. have to), or to state high value of usuality of a figural property (e.g. 

“you’re always going to get the same angle”).  

    Modality were also shown in the case of proof by contradiction. In the case of proving two 

lines being parallel, Collin first proposed that the two lines “would not” be parallel as an 

impossibility. After justifying with reasonable statements, Anthony concluded that there “can’t” 

be any intersecting point formed by the two parallel lines (see Excerpt 3). “Can’t” shows high 

certainty of nonoccurrence. The degree of impossibility increased as Collin and Anthony 

concluded the justification of their conjecture. These two modality expressions communicate 

degrees of impossibility, which reflects the characteristic of proof by contradiction.  

    The different uses of modality expressions and gestures in the intact and intervention 

lessons can be attributed to the different characteristics in the given diagrams. As mentioned 

before, the given diagram in the intact lesson presents the diagram as a perceptibly isosceles 
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triangle, and includes the labels that are needed in the proof. Hence, in doing the proof, students 

are expected to read the object of reference (the isosceles triangle) using the provided signs 

(labels of vertices and angles), and no further alterations of diagrams are required. The sufficient 

information actually hinders students in making plausible claims about diagrams, thus limiting 

their uses of gestures to depict hypothetical diagrams. This kind of interaction can be identified 

as “descriptive”, along the lines of what Herbst (2004) states that is customary in high school 

geometry classes.     

    Herbst (2004) proposes a generative mode of interactions with diagrams that contrasts with 

the descriptive. In the generative mode students generate their mathematical arguments by actual 

interactions with diagrams. Generative interactions involve creating new signs to complement a 

diagram, so that students can “think with” (Herbst, 2004) diagrams and predict that the figure 

“should be” a particular way. This kind of interactions with diagrams was observed in the 

intervention lessons. Through gestural expressions, students virtually illustrated potential 

extension or orientations of diagrams. Thus, gestures depict certain “hypothetical phenomena” 

(Pozzer-Ardenghi & Roth, 2005) that could possibly be true to the figures represented by the 

diagram. Through modality expressions, students stated plausible claims with different degrees 

of certainty toward the diagrams. Therefore, modality can be seen as a tool to express the 

reasonableness of the statements.   
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 Fischbein (1993) suggests that promoting conflicts between figural and conceptual aspects 

of diagrams could help students develop “figural concepts”. The constraints of the diagram 

(intersecting lines with no other information, and lines discontinued at the given frame) invited 

students’ gestural and verbal involvements in making hypothetical statements about diagrams 

and further justify their conjectures.  

    Hence, gestures complement the limitations of static diagrams and provide dynamic 

elements to support students’ reasoning. As McNeill (1992) states “gestures, together with the 

accompanying speech, offer a privileged view of thought. They are the closest look at the ideas 

of another person that we, the observers, can get” (p. 133), the coordination of speech and 

gestures could lead to effective communication of thoughts in classrooms (Roth & Welzel, 2001), 

especially in understanding students’ thinking and reasoning.  

Conclusion 

This study identifies forms of interactions with diagrams that are involved in conjecturing, 

particularly ways in which students display their thinking in public through multimodal 

representations. Although reform in mathematics education stresses the importance of 

conjecturing and proving, it has been argued that students in customary geometry classes usually 

have limited opportunities in making reasoned conjectures about figures (Herbst, 2004, 2006). 

This study shows that the nature of diagrams provided could play a role in what gestural and 
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verbal interactions students develop with diagrams. The constraints of diagrams may enable 

students to use particular gestures and verbal expressions that rather than reporting on known 

facts permit them to make hypothetical claims about diagrams. It is to be expected that if a 

diagram did not include signs to represent all the objects that could be talked about, students’ 

allusions to those objects, were they to occur, might be more conjectural than factual. Our report, 

however, shows that iconic and metaphorical gestures as well as modality expressions are 

mediation tools that are available to compensate the semiotic limitations of diagrams (e.g., their 

lack of elements drawn or labeled), and could be especially important in enabling students to 

engage in such conjecturing.  

    The analysis of gestures highlights the importance of multimodal representations in 

understanding students’ thinking and learning. Using the four types of gestures that McNeill 

(1992) categorizes, we have identified contextualized uses of gestures representing geometrical 

ideas in different ways, especially representing ideas that are not visually available: First, deictic 

gestures can position a hypothetical point on a diagram. Second, gestures can be used 

metaphorically to “extend” existing lines. Third, gestures can be used to create signs for possible 

objects. Fourth, gestures may symbolize specific geometrical properties of diagrams (i.e. the 

constant distance between the thumb and index finger representing the parallelism between two 

lines). Last, gestures simulate the range of possibilities of a figure by displaying dynamic virtual 
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diagrams.  

Gestures could be conceived as mediation tools to observe students’ thinking. The five 

different uses of gesture in the context of geometrical thinking identified in this study help 

examine students’ conceptions of geometrical properties. More research on gestural uses in 

specific settings could contribute to understanding students’ thinking and learning.  

    In addition, the graphic representations adopted in this study can be utilized as a tool to 

codify the gestural communication in mathematics classroom practice. Further developments of 

graphic gestural expressions that can represent the authentic interactions in classrooms could 

help in capturing the essences of students’ interactions, and consequently, in understanding how 

students make sense of mathematical ideas.  
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Appendix A: Activity Worksheet of the Intervention Lesson 
 

Worksheet on angles formed by intersecting lines 

Name: 

Date: 

Period: 

 
 

There are six lines on the paper and some of their intersections are not visible. 

1. Would it be possible for somebody to determine the measures of all the angles formed 

by those lines, considering that not all angles can be measured? Explain. 

2. What is the total number of different angle measures that one would need to determine? 

Explain. 

3. How many of those angle measures would be impossible to find unless one could 

extend the lines beyond the screen limits? Explain. 

4. What is the minimum number of angles that one would have to measure before being 

able to say “I know all the angle measures”? Explain.  
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i Duval calls these grasps “apprehensions,” in the sense of capture.  
ii All the names of the teachers and students in this paper are pseudonyms. 
iii “pst” refers to postulate. 
iv The gestural actions are denoted with parenthesis.  
v Audrey latter corrected that this angle is sixty degrees.  
vi The overlapping speech is denoted in square brackets. 
vii Audrey latter corrected that this angle is sixty degrees, so the third angle (the virtual angle) is 
40 degrees.  


